

107 244 039

RDT

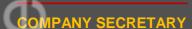
DATE 8 April 2022

SUED CAPITAL

Ordinary Shares: 299.1M

BOARD OF DIRECTORS

Matthew Boyes Managing Director


Alex Hewlett

James Croser Non-Executive Director

Tim Manners Non-Executive Director

Nader El Sayed on-Executive Director

Steven Wood

REGISTERED OFFICE

Suite 4, Level 1, 6 Centro Ave.

Subiaco WA 6008 +61 8 6109 0104

info@reddirtmetals.com.au

reddirtmetals.com.au

ASX ANNOUNCEMENT

Mt Ida Drilling Update and **Discovery of Further Pegmatites**

Red Dirt Metals Limited (ASX: RDT) ("Red Dirt" or the "Company") is pleased to provide an update on the second batch of assays received from its Mt Ida Lithium/gold Project, highlighting continued exploration success and additional peamatite bodies discovered on the Eastern Limb and to the immediate south of the Central Mt Ida Project area.

Highlights include;

- Northern pegmatites (Sparrow and Timoni) returned shallow high grades in second round of assays, both pegmatites remain open
- Timoni pegmatite now drilled down to 280m below surface with thick 11.4m (IDRCD232 from 312.5m) interval of spodumene rich pegmatite intersected (see figure 3)
- Timoni pegmatite thickening with depth
- Main southern pegmatite (Sister Sam) extended down dip to 400m below surface, significant visual intervals in core from 5 down-dip holes are pending assays, along with a further 2000+ samples awaiting analysis
- New pegmatite body discovered to south of Central Mt Ida Project area, follow up drilling continuing
- Pegmatite swarm discovered on Eastern Limb, up to 18m of pegmatite in RC chips over 300m in strike extent drilled to date
- Extensive geochemical soil programme 50% completed, 1800 samples to be submitted this week for pXRF lithium index analysis
- Sighter metallurgical testwork ongoing

Significant intervals reported;

Southern "Sister Sam" Pegmatite;

11m @ 1.81% Li₂O and 374ppm Ta₂O₅ from 226m in IDRCD100 with 4m of further pegmatite in diamond tail to be analysed

Timoni Pegmatite;

- 5m @ 1.88% Li₂O and 68ppm Ta₂O₅ from 242m in IDRC109
- 3m @ 1.22% Li₂O and 125ppm Ta₂O₅ from 43m and **3m @ 1.76% Li₂O and 52ppm Ta₂O₅** from 86m in IDRC118
- 5m @ 1.46% Li₂O and 279ppm Ta₂O₅ from 64m in IDRC101

Sparrow Pegmatite;

- 6m @ 1.82% Li₂O and 241ppm Ta₂O₅ from 51m and 3m @ 1.21% Li₂O and 224ppm Ta₂O₅ from 65m in IDRC137
- 8m @ 1.47% Li₂O and 318ppm Ta₂O₅ from 186m in IDRC115
- 6m @ 1.01% Li₂O and 171ppm Ta₂O₅ from 155m in IDRC139

Drilling at the southern Sister Sam pegmatite has continued to deliver thick mineralised pegmatite with results from pre-collar IDRCD100 11m @ 1.81% Li₂O from 226m, with assays pending from a further 4m of contiguous pegmatite drilled in the diamond tail. Extension drilling at depth of the Sister Sam pegmatite has also intercepted thick mineralised pegmatites at depth with IDRCD204 intercepting a very large mineralised intercept from 363-397m. The mineralisation now extends down dip a further 150m to a depth of 400m below surface with thicknesses up to 34m intersected. Diamond tails on each of these 5 holes are pending assay results and will reported once available.

Current drilling at the Sister Sam pegmatite is focused on the collection of a representative metallurgical sample for follow up comprehensive testwork. Sighter testwork including preliminary DMS and flotation work is well underway at Nagrom Laboratories and nearing completion with final results expected to be available in the next 2-3 weeks. Initial density work on the diamond core has reported an average **Specific Gravity (SG) of 2.84 tonnes per cubic metre from 40 samples** from the Sister Sam pegmatite. Measurement of SG will continue as standard practice on all sampled core intervals going forward.

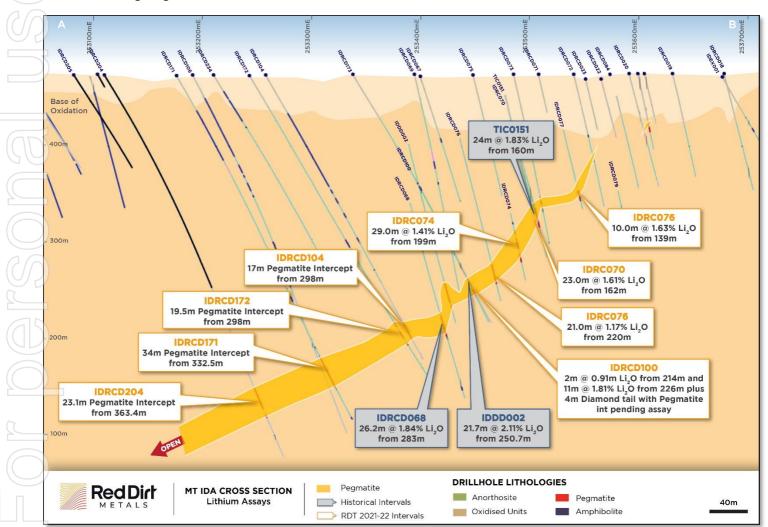


Figure 1; Section through Sister Sam pegmatite showing lithium grades reported to date with additional new intervals

Exploration drilling directly to the south of the Sister Sam pegmatite has intercepted a new mineralised pegmatite in the footwall position with exploration and infill drilling ongoing. Drillholes IDEX004 (1m from 204m) and IDEX003 (2m from 190m) both intersected a previously undrilled pegmatite with samples now submitted for analysis. Follow up drilling is now underway in the area to understand the dip and strike and better evaluate the size of the pegmatite intrusive.

Drilling at the northern Timoni pegmatite has delivered high grade near surface results in IDRC101 with 5m @ 1.45% Li₂O from 64m, while deeper down plunge drilling has intersected broad widths of spodumene rich pegmatites effectively extending the mineralised system down to and past 300m vertically from surface. The system remains completely open and is thickening with depth. The mineralisation visually appears to contain very similar quantities of Spodumene to the high-grade mineralisation intersected in the Sister Sam pegmatite in previously reported holes.

Figure 2; IDRCD153 HQ drill core interval 275.79 to 280m high % of coarse Spodumene visible as white acicular needles within groundmass #

Figure 3; IDRCD232 312.6m to 317.1m a section of 11.4m of pegmatite intersected down plunge of the IDRCD153, coarse Spodumene needles visible throughout the 11.4m interval

#The Company has no estimate of potential lithium mineralisation contained within IDRCD232 which can only be determined through laboratory analysis

Drilling at the Timoni pegmatite will continue once assay results for the deeper pegmatite intervals are returned. The recent diamond drilling into the deeper sections of the Timoni pegmatite has demonstrated thicknesses in excess of 11m of true width continuing to 200+m below surface increasing significantly the exploration upside

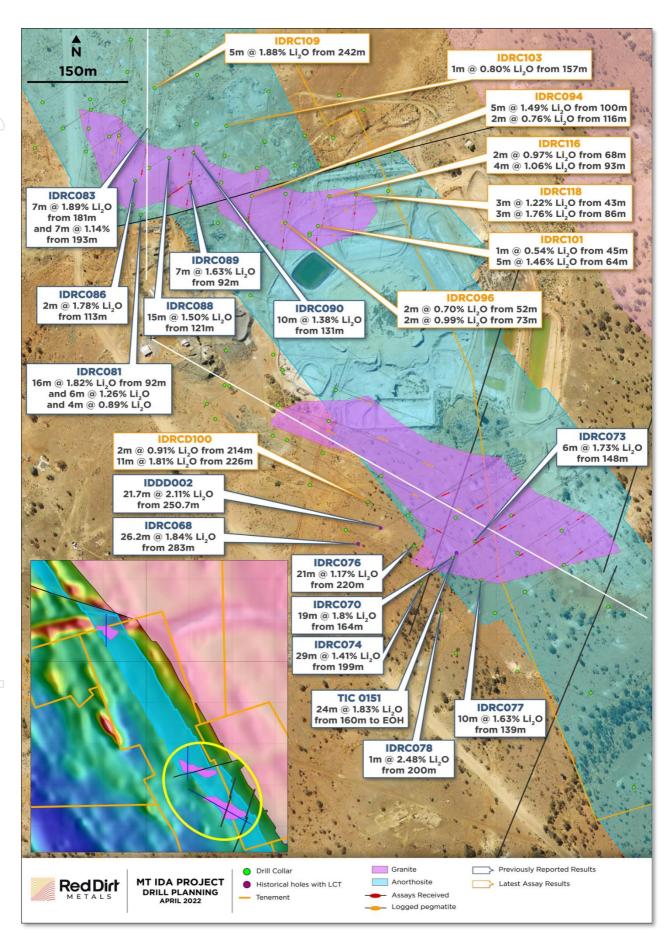


Figure 4; Plan view showing drill results and surface expression of drilled Timoni and Sister Sam pegmatites

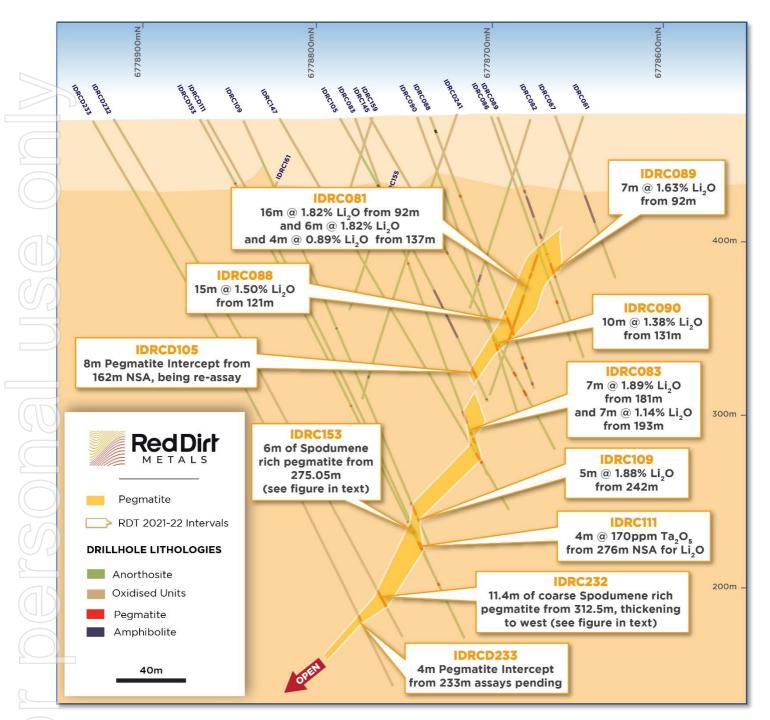


Figure 5; N-S section 75m window through the northern Timoni pegmatite showing Li2O and Ta2O5 grades plus recently intersected pegmatite intervals

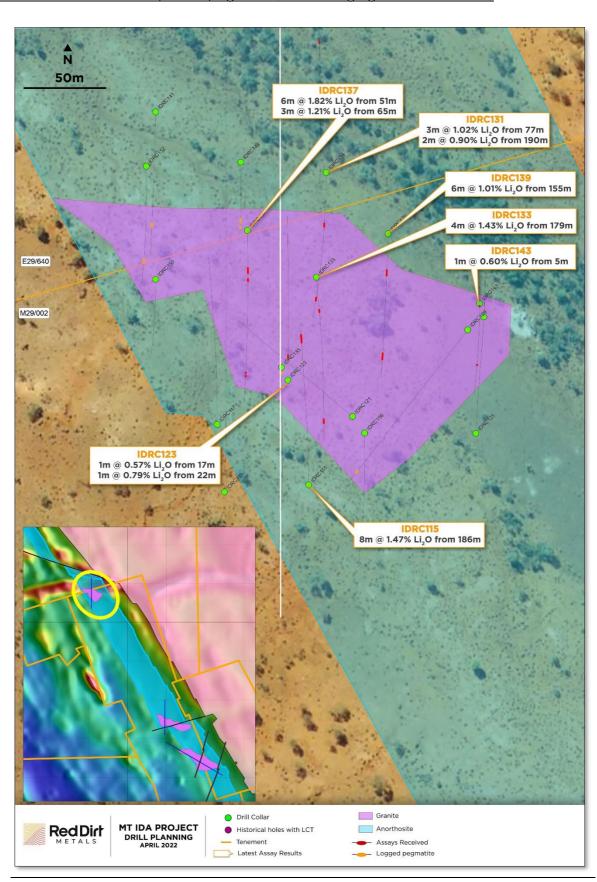


Figure 6; Sparrow pegmatite surface expression with latest results

The Sparrow pegmatite was originally drilled in December 2021 and RDT have been awaiting assays results to confirm mineralisation before continuing to further expand exploration. The Sparrow pegmatite is located on the contact of a very large Proterozoic east west trending dyke which crosscuts the pegmatite at depth and to the east as the pegmatite shallows and comes to surface. RDT is very excited by the grades and widths from the Sparrow as the northern side of the dyke remains completely unexplored and the system remains open in several directions. RC, soil geochemical programmes and aircore drilling will help develop drill targets to the immediate north of the dyke and further afield over the next 2 months.

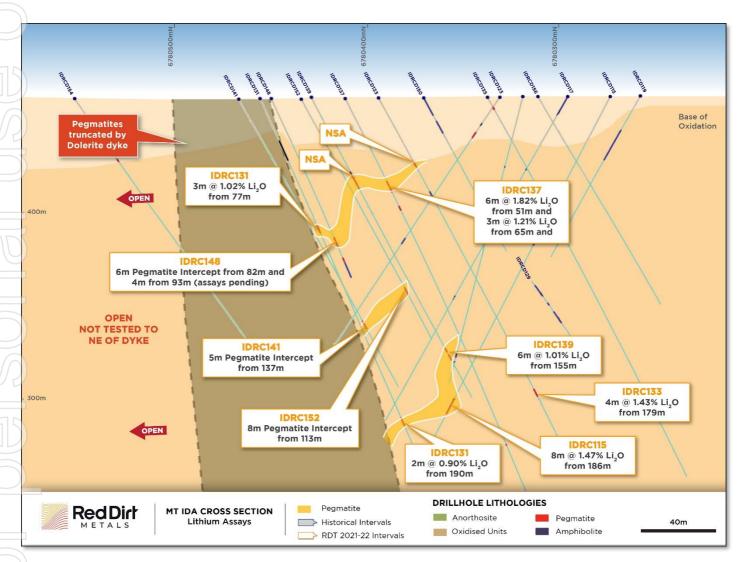


Figure 7; N-S orientated section through the Sparrow pegmatite showing Li₂O grades and interpreted geology

Eastern pegmatites

Exploration drilling and surface sampling on the eastern side of the Copperfield granite has successfully identified three separate mineralised pegmatite prospects at the Blackbeard prospect, the Vane Prospect and the Forrest Belle prospect. Drilling at the Blackbeard prospect has confirmed LCT mineralisation within a swarm of pegmatites with assay results expected for this prospect in 5 weeks. Surface sampling at the Vane prospect has identified LCT mineralisation in an outcropping pegmatite with rock chip R0015 assaying 2.37% Li₂O and surface mapping has identified the Vane and Forrest Belle pegmatites over 400m of strike.

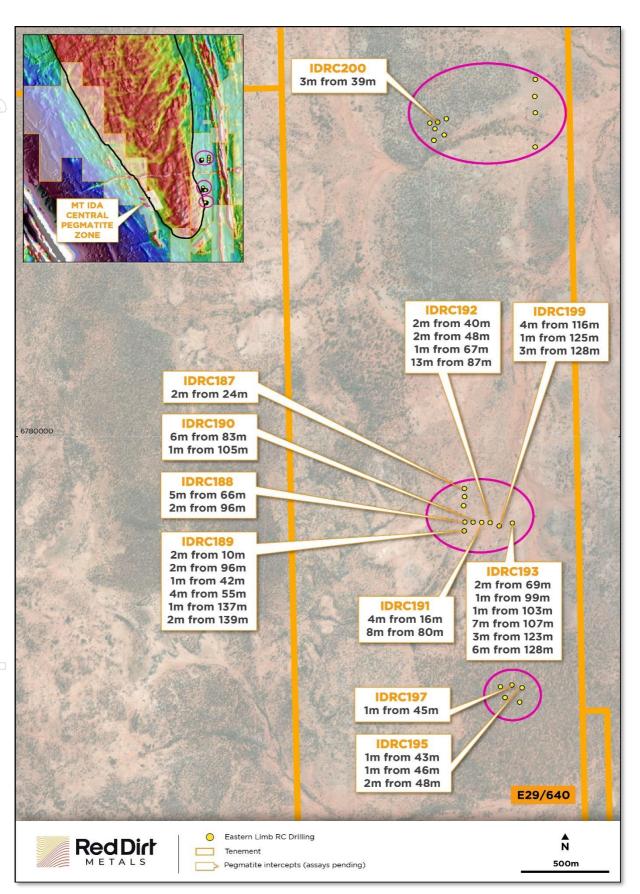


Figure 8; Pegmatite locations discovered on the eastern limb of the granite intrusive, up to 18m of logged pegmatite in IDRC 192, #The Company has no estimate of potential lithium mineralisation contained within any of the RC holes drilled on the eastern limb which can only be determined through laboratory analysis

Mt Ida Gold-Copper

Baldock Au-Cu lode and Timoni Au lodes intersected

Recent Lithium exploration drilling has also intersected high grade gold results in several holes from the Baldock-Timoni central areas including:

- 3m @ 11.37g/t gold from 170m in IDRC 103
- 5m @ 4.96 g/t gold from 112m in IDRC113
- 3m @ 3.39 g/t gold from 56m and 1m @ 3.27 g/t gold from 99m in IDRC099
- 2m @ 4.16 g/t from 102m and 1m @ 9.48g/t gold from 139m and 2m @ 7.29 g/t gold from 154m and 6m @ 1.92g/t gold from 171m in IDRC122

Four diamond drill holes have been drilled into the Baldock-Copperfield Au-Cu prospect as proof of concept with the intention of replicating historic drillholes and giving RDT confidence in pursuing a resource update for this prospect. The current resource calculated on the Baldock and Meteor deeps is non JORC compliant and will need to be upgraded to current JORC code compliancy.

Additional drilling is required to satisfy the QAQC requirements as very little historic QAQC exits. RDT sees huge potential for additional discovery and extension of the known limits of the currently drilled gold copper mineralisation. The Baldock, Timoni and Meteor deeps are currently second priority for RDT but will be drilled during the course of the current exploration programme when scheduling of the Lithium exploration enables drill availability.

Due to long assay turnaround for the initial 2 batches of results, several diamond holes have been completed into the Baldock and Timoni lodes. A resource update will be completed once RDT has gained sufficient feedback from its resource consultants with regards to specific quantities and locations of drilling required to upgrade the existing reported resource models.

Figure 9; IDRCD238; Uncut diamond showing 1.2m of semi-massive sulphide (Pyrrhotite and Chalcopyrite) in quartz veining within and Anorthosite country rock (206.9m to 208.3m) #

Figure 10; IDRCD239 diamond core interval showing strongly mineralised quartz veining with massive and semi massive sulphides in a sheared mafic and Anorthosite host interval from 190m to 192.3m#

Figure 11; IDRCD102 HQ drill core intersected massive to semi massive sulphides predominantly pyrrhotite, pyrite with minor Chalcopyrite from 250.8 to 253.7m #

#The Company has no estimate of potential gold copper or precious metal mineralisation contained within IDRCD238;102 or 239 which can only be determined through laboratory analysis, core is currently being cut and sampled and will be submitted for ICP multi-element and gold fire assay analysis as soon as ready

Regional Geochemical Programme and Aircore

A regional geochemical programme is now into its third week. A total of 3600 samples sites have been designed, after an desktop soil geochemical ameniability study was completed targeting areas with minimal cover and insitu regolith. The soil programme will give the best representation of the geochemical signature of the underlying insitu rock prior to drill testing.

All samples will be submitted to Portable Spectral Services for pXRF Lithium index work and then a full wet chemical ICP analysis. Dr NIgel Brand has been contracted to carry out interpretation of the results from the Litium index work to assiist with target generation from the data.

As previously reported, a significant area north-west and along the eastern limb of the granitic pluton is covered by transported weathered material and not necessarily amenable to soil geochemical sampling. However, soil sampling will be carried out over portions of this transported material to better determine the extents of the regoltith and transported soil margins. This area will also be drilled with a 320 hole aircore programme planned to start immediately upon the granting of drill approvals, which are expected shortly.

Both the soil geochemical and aircore results will enable RDT to better develop and estimate an exploration target quantum for the Mt Ida package, and will produce targets for a comprehensive follow up RC exploration programme during Q2 and Q3 of 2022.

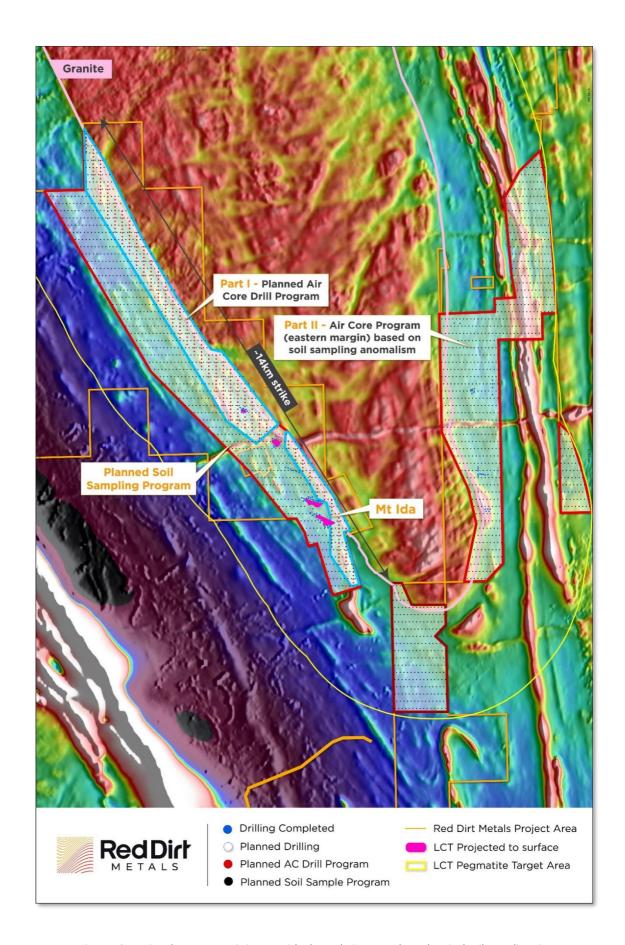


Figure 12; Regional TMI magnetic image with planned Aircore and geochemical soil sampling sites

Managing Director Matthew Boyes commented on updated Drill results from Mt Ida;

"Mt Ida continues to grow and develop as our exploration programme moves forward and new discoveries on the eastern limb have opened up a new zone for potential new resources to add to what we have already discovered on the western limb.

The next quarter for RDT will see some major milestones achieved with first round of sighter metallurgical testwork and the completion of a tenure wide geochemical soil programme completed along with 3rd round of drilling assay results and the commencement of our maiden resource estimation, I look forward to updating the market in which will be our busiest quarter of activity to date"

Authorised for ASX lodgement by the Board.

Red Dirt Metals Limited

Matthew Boyes

Managing Director

+61 8 6109 0104

info@reddirtmetals.com.au

Competent Persons Statement

Exploration information in this Announcement is based upon work undertaken by Mr Matthew Boyes who is a Fellow of the Australasian Institute of Mining and Metallurgy (AUSIMM). Mr Boyes has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a 'Competent Person' as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr Boyes is an employee of Red Dirt Metals Limited and consents to the inclusion in the report of the matters based on their information in the form and context in which it appears.

The information in this release that references previously reported exploration results is extracted from the Company's ASX market announcements released on the date noted in the body of the text where that reference appears, or above. The previous market announcements are available to view on the Company's website or on the ASX website (www. asx.com.au). The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

ABN 67107244039

Naming of the Sister Sam Pegmatite

The Sister Sam pegmatite has been named in honour of local healthcare worker Janet Mazza, who was affectionately named "Sister Sam" by the local community at the town of Menzies, which is situated close to the Mt Ida project. Janet provided service to the community of Menzies and other rural shires in WA for over a 30 year period, and was the only healthcare provider in what is the largest shire in the country during her time in Menzies. Janet passed away at the end of 2021 but her memory is fondly remembered all in the community.

Janet Mazza aka "Sister Sam" in front of the Menzies Nursing Post

APPENDIX 1; Significant intervals for Li2O, Ta2O5 and gold

HoleID		From	То	Width (m)	Li2O %	Ta2O5 ppm	Au ppm
				()	70	ppm	ppiii
IDRC091		82	84	2			1.08
IDRC092	ava al	62	64	2			2.71 4.99
	and	86	87	1			
	and	156	157	1			1.52
IDDC004	and	175	176	1	0.75	102	1.52
IDRC094	al	82	83	1	0.75	183	
	and	89	90	1	1.06	134	
	and	93	94	1 -	0.55	127	
	and	100	105	5	1.49	348	
	and	116	118	2	0.76	477	
IDRC096		52	54	2	0.7	229	
	and	73	75	2	0.99	425	
IDRC099		34	35	1			0.63
	and	56	59	3			3.39
	and	99	100	1			3.27
	and	103	105	2			1.71
IDRC101		45	46	1	0.54	179	
	and	59	61	2			1.05
	and	64	69	5	1.46	279	
IDRC103		157	158	1	0.8	155	
	and	170	173	3			11.37
IDRC109		121	122	1			0.52
	and	123	124	1			0.89
	and	242	247	5	1.88	68	
IDRC113		112	117	5			4.96
	and	128	129	1			0.57
	and	130	131	1			0.6
IDRC115		186	194	8	1.47	318	
IDRC116		36	40	4			1.92
	and	68	70	2	0.97	250	
	and	93	97	4	1.06	128	
IDRC118		43	46	3	1.22	125	
		86	89	3	1.76	52	
IDRC120		78	79	1			2.32
		 					1.38
	and	139	14				
IDRC121	and	139	14 61	1			
IDRC121	and	60	61	1			1.09
IDRC121 IDRC122	and						

	and	171	177	6			1.92
IDRC123	did	17	18	1	0.57	0.6	1.72
IDRC125	and	22	23	1	0.79	9	
IDRC125	did	47	48	1	0.77	,	0.61
IDIC 123		52	53	1			0.6
1006131					1.00	250	0.6
IDRC131	ava al	77	80	3	1.02	250	
	and	190	192	2	0.9	222	
IDRC133		179	183	4	1.43	248	
IDRC137		51	57	6	1.82	241	
	and	65	68	3	1.21	224	
	and	201	202	1	1.05	314	
	and	206	207	1	1.26	299	
IDRC139		155	161	6	1.01	171	
IDRC143		5	6	1	0.6	446	
IDRC186		143	144	1			0.95
IDRCD100	precollar only	214	216	2	0.91	610	
	and	226	237	11	1.81	374	
IDRCD104	precollar only	95	96	1			0.75
Previously Reported assays							
•							
IDRC069							
		122	123	1			1.39
	and	188	189	1			0.54
	and	248	249	1			25.23
IDRC070	3.13	162	185	23	1.61	189	
IDRC071		102	100	20	1.01	107	
IDRCOTT		128	129	1			1.08
IDRC072		120	127	'			1.00
IDRC072		112	116	4			1.1
	and			2			
1000070	and	146	148				2.86
IDRC073		72	73	1		17/	5.93
	and	149	155	6	1.75	176	
IDRC074		198	228	30	1.38	253	
IDRC075		214	215	1	0.6	272	
	and	220	221	1			1.02
	and	245	246	1			0.66
IDRC076		226	247	21	1.18	245	
	and	250	252	2			0.96
IDRC077		139	149	10	1.63	375	
IDRC078		167	168	1			0.51
	and	200	201	1	2.48	195	
IDRC080							
	and	110	112	2			1.66
IDRC081		92	108	16	1.82	360	
	and	119	125	6	1.26	166	

	and	137	141	4	0.89	117	
IDRC083		89	90	1	0.67	102	
	and	181	188	7	1.89	208	
	and	193	200	7	1.14	109	
IDRC084		32	40	8			0.91
	and	59	61	2	1.03	318	
IDRC085		67	68	1	0.86	228	
IDRC086		113	115	2	1.78	408	
IDRC088		121	136	15	1.5	175	
	and	149	150	1	1.53	203	
IDRC089		92	99	7	1.63	206	
IDRC090		131	141	10	1.38	81	

APPENDIX 2; Drillhole collar locations for RDRT drilling completed 2021-2022 drilling campaigns

HoleID	MGA_East	MGA_North	MGA_RL	Dip	MGA_Azi	Depth
IDRC069	253370	6778186	475	-60	55	280
IDRC070	253436	6778119	475	-60	55	220
IDRC071	253523	6778186	475	-60	55	200
IDRC072	253532	6778126	475	-60	55	200
IDRC073	253471	6778144	475	-60	55	200
IDRC074	253387	6778080	475	-60	55	250
IDRC075	253439	6778175	475	-60	55	252
IDRC076	253377	6778138	475	-60	55	270
IDRC077	253470	6778072	476	-60	55	162
IDRC078	253417	6778035	479	-60	55	228
IDRC079	253497	6778030	481	-60	55	180
IDRC080	253546	6778064	481	-60	55	138
IDRC081	252973	6778648	475	-60	55	186
IDRC082	253016	6778678	475	-60	55	220
IDRC083	252999	6778781	475	-70	185	220
IDRC084	253606	6778161	475	-60	55	102
IDRC085	253599	6778108	475	-60	55	90
IDRC086	252965	6778706	475	-70	185	138
IDRC087	252961	6778665	474	-70	185	100
IDRC088	253015	6778738	475	-70	185	168
IDRC089	253047	6778700	475	-70	185	148
IDRC090	253051	6778745	474	-70	185	180
IDRC091	253095	6778695	475	-70	185	162
IDRC092	253099	6778738	474	-70	185	120
IDRC093	253097	6778680	476	-70	185	132
IDRC094	253101	6778725	475	-70	185	162
IDRC095	253145	6778675	474	-70	185	228
IDRC096	253145	6778638	476	-60	185	88
IDRC097	253149	6778679	476	-60	185	118

	RC098	253157	6778725	475	-60	185	160
IDI	RC099	253219	6778768	474	-60	185	214
IDI	RC101	253236	6778634	475	-60	185	82
IDI	RC103	253102	6778781	474	-60	185	203
IDI	RC105	253057	6778795	473	-60	185	185
IDI	RC107	253071	6778357	478	-90	0	162
IDI	RC109	253005	6778845	473	-65	185	269
	RC110	253242	6778724	474	-60	185	179
	RC111	253061	6778865	473	-60	185	294
	RC112	253260	6778769	474	-60	185	203
	RC113	253008	6778433	473	-78	60	138
	RC114	253296	6778724	474	-62	185	178
	RC115	252054	6780263	468	-60	0	209
	RC116	253256	6778675	474	-60	195	118
	RC117	251994	6780305	468	-60	0	202
	RC118	253297	6778682	474	-50	185	118
	RC119	252000	6780252	469	-60	0	100
	RC120	253346	6778681	475	-50	185	160
	RC121	252079	6780306	470	-60	310	178
	RC122	253352	6778746	475	-50	185	196
	RC123	252042	6780327	468	-55	0	180
	RC124	253159	6778761	474	-70	185	180
	RC125	252158	6780289	467	-55	0	202
	RC126	251152	6781193	462	-60	0	160
	RC127	252156	6780373	466	-60	0	118
	RCD100	253305	6778206	475	-60	110	240
	CD102	253226	6778232	474	-60	110	250
	RCD104	253243	6778278	474	-60	110	250
	CD104	253164	6778306	474	-60	110	250
	CD108	253084	6778335	475	-60	110	204
	RC128	251136	6781270	464	-55	180	78
	RC129	252154	6780370	475	-50	220	190
	RC130	251148	6781325	462	-55	180	124
	RC131	252062	6780454	465	-65	180	220
	RC132	251060	6781345	462	-55	180	166
	RC133	252058	6780389	465	-60	180	208
	RC134	251152	6781310	462	-55	150	148
	RC135	252042	6780332	468	-60	180	232
	RC136	251152	6781310	462	-55	210	124
	RC137	252014	6780413	468	-62	180	200
	RC138	251106	6781302	464	-55	180	100
	RC139	252100	6780412	468	-62	180	184
	RC140	251106	6781270	464	-55	180	46
			6780489	464	-60	180	178
IDF	RC141	251958		10 f		100	1,70
IDI IDI	RC141 RC142	251958 251135		464	-55	330	55
IDI IDI IDI	RC142	251135	6781235	464 468	-55 -70	330 180	55 1.54
IDI IDI IDI				464 468 464	-55 -70 -55	330 180 30	55 154 46

	IDRC146	251158	6781202	464	-55	30	64
	IDRC147	252950	6778824	471	-60	185	262
	IDRC148	252011	6780458	468	-65	180	106
	IDRC150	251958	6780389	465	-60	180	94
	IDRC152	251958	6780439	465	-60	180	148
	IDRC154	252059	6780554	465	-55	180	184
	IDRC155	252892	6778747	477	-62	55	130
	IDRC156	252079	6780295	465	-60	180	160
	IDRC157	252857	6778782	478	-60	55	124
-	IDRC158	251203	6781246	465	-55	210	76
-	IDRC159	252926	6778770	477	-60	55	70
-	IDRC160	251061	6780975	477	-60	180	130
-		252898	İ				
	IDRC161		6778811	478 465	-60 -55	55 210	70 124
	IDRC162	251229	6781289				
	IDRC163	253277	6778162	475	-60	110	292
-	IDRC164	251258	6781241	465	-55	210	94
	IDRC165	252828	6778823	478	-60	55	136
	IDRC166	251190	6781279	464	-55	210	94
	IDRC167	252816	6778753	476	-60	55	196
	IDRC168	253137	6778526	474	-60	110	250
	IDRC169	252772	6778842	477	-60	55	203
	IDRC170	253079	6778536	475	-55	180	179
_	IDRC174	256991	6783686	447	-60	0	89
	IDRC176	257153	6783675	449	-60	0	137
-	IDRC177	257483	6781740	450	-55	335	94
_	IDRC178	258050	6782002	447	-55	180	131
L	IDRC179	257540	6781770	456	-55	335	97
	IDRC180	257487	6781808	453	-60	140	100
L	IDRC181	257457	6781839	455	-60	140	64
	IDRC182	258050	6781902	446	-55	180	148
	IDRC183	258050	6782102	449	-55	180	154
	IDRC184	258050	6781702	448	-55	180	131
	IDRC185	257650	6779596	458	-55	180	120
	IDRC186	257650	6779646	456	-55	180	196
	IDRCD100	253305	6778206	475	-60	110	290
	IDRCD102	253226	6778232	474	-60	110	350
	IDRCD104	253243	6778278	474	-60	110	340.6
	IDRCD106	253164	6778306	474	-60	110	444.4
	IDRCD108	253084	6778335	475	-60	110	197
	IDRCD149	252896	6778780	472	-60	185	232
	IDRCD151	252900	6778828	472	-60	185	286.5
	IDRCD153	252954	6778870	471	-60	185	337
	IDRCD171	253176	6778357	474	-60	110	405.4
—			6778327	474	-60	110	366.4
1	IDRCD172	Z33734					
F	IDRCD172	253254 253332		476.618	-60	110	296.1
	IDRCD173	253332	6778247	476.618 475	-60 -60	110	296.1 398.3
				476.618 475 475	-60 -60 -60	110 110 110	296.1 398.3 16

A Suite 4, Level 1, 6 Centro Avenue, Subiaco WA 6008

P (08) 6109 0104

E info@reddirtmetals.com.au

IDRCD204	253116	6778391	475	-60	112	441.4
IDRC187	6779692.84	257648.41	452.22	-53.7	185.1	262
IDRC188	6779496.67	257651.65	453.85	-55.0	2.2	124
IDRC189	6779444.63	257647.58	454.48	-54.6	0.0	148
IDRC190	6779495.45	257697.70	453.68	-54.8	1.8	118
IDRC191	6779493.77	257746.44	453.21	-54.6	353.8	124
IDRC192	6779492.57	257794.03	452.78	-54.3	359.7	154
IDRC193	6779489.95	257920.29	452.88	-54.8	2.7	178
IDRC194	6778437.58	257961.38	457.58	-54.8	0.8	100
IDRC195	6778523.19	257974.12	457.47	-54.5	191.3	88
IDRC196	6778464.29	257878.12	458.49	-54.7	22.8	88
IDRC197	6778538.81	257918.54	458.12	-54.7	181.3	82
IDRC198	6778527.54	257852.57	458.83	-54.6	183.3	70
IDRC199	6779473.37	257845.53	452.92	-54.8	1.8	166
IDRC200	6781847.26	257497.86	451.84	-59.8	156.0	70
IDRC200	6781867.32	257546.59	449.84	-54.2	154.8	76
IDRC206	6779549.35	252685.81	468.07	-54.2	106.4	148
IDRC207	6779577.67	252621.00	467.65	-58.4	111.1	154
IDRC207	6779607.28	252537.67	467.44	-59.5	112.3	148
IDRC209	6779620.78	252469.20	467.22	-59.2	109.2	148
IDRC207	6779655.30	252399.36	467.29	-58.8	107.2	160
IDRC211	6779690.24	252377.36	467.42	-59.4	107.1	136
IDRC212	6779687.00	252608.00	470.00	-59.8	109.8	136 142
IDRC213 IDRC214	6779714.00	252533.00	470.00	-59.6	109.5	
	6779742.00	252458.00	470.00	-59.3	110.7	160
IDRC215	6779769.00	252383.00	470.00	-59.9	111.7	226
IDRC216	6779796.00	252307.00	470.00	-57.8	111.6	148
IDRC217	6779824.00	252232.00	470.00	-59.3	111.5	148
IDRC218	6779813.00	252555.00	470.00	-59.4	108.3	100
IDRC219	6779840.00	252480.00	470.00	-59.2	111.2	142
IDRC220	6779868.00	252405.00	470.00	-59.0	113.2	130
IDRC223	6779015.00	252999.00	470.00	-59.8	110.5	160
IDRC224	6779043.00	252924.00	470.00	-59.9	109.8	118
IDRC225	6779070.00	252849.00	470.00	-59.4	110.6	124
IDRC226	6779098.00	252774.00	470.00	-59.8	110.6	118
IDRC228	6779152.00	252624.00	470.00	-59.9	110.6	154
IDRC230	6779151.00	252911.00	470.00	-58.5	113.1	118
IDRC231	6779179.00	252835.00	470.00	-59.6	109.8	118
IDRC235	6778832.00	253267.00	473.00	-59.5	185.0	250
IDRC243	6777883.00	253743.00	474.00	-60.0	110.0	160
IDRC244	6777910.00	253640.00	474.00	-60.0	110.0	190
IDRC245	6777943.00	253531.00	473.00	-60.0	110.0	250
IDRCD168	6778523.37	253135.32	472.95	-60.1	109.1	551.4
IDRCD205	6778438.33	253099.06	474.27	-56.0	106.0	488.3
IDRCD221	6778414.00	253018.00	475.00	-54.8	108.8	124
IDRCD222	6778416.00	253016.00	475.00	-54.3	108.7	126.8

		<u>.</u>				
IDRCD232	6778918.00	252958.00	471.00	-59.2	184.5	345
IDRCD233	6778930.00	253013.00	470.00	-60.1	183.6	384.5
IDRCD234	6778300.00	253190.00	474.00	-56.7	108.0	244
IDRCD236	6778810.00	253303.00	473.00	-59.3	182.6	250
IDRCD237	6778838.00	253162.00	473.00	-63.7	183.2	238
IDRCD238	6778619.00	253223.00	475.00	-58.8	55.0	221
IDRCD239	6778616.00	253239.00	480.00	-59.5	89.4	136
IDRCD240	6778432.00	253169.00	472.00	-59.8	91.0	140
IDRCD241	6778720.00	252985.00	474.00	-58.8	55.8	202
IDRCD242	6778635.00	253087.00	468.00	-58.9	191.6	232
Rock Chip						
Sampling						
Causarda ID	Tenement	14C 1 F	MGA	DI (+)	1:00	T-:005 :- :-
Sample ID	ID	MGA East	North	RL (est)	LiO2_pct	Ta2O5_ppm
R0001	M29/165	253658	6778123	470	1.07	279.63
R0002	M29/002	252038	6780328	470	1.12	691.14
R0003	M29/165	251155	6781238	470	0.44	380.98
R0004	M29/165	254336	6778439	470	0.00	<1
R0005	M29/165	253669	6778135	470	0.03	631.31
R0006	M29/165	253666	6778157	470	0.13	343.13
R0007	M29/165	253662	6778133	470	2.57	492.10
R0008	M29/165	253663	6778128	470	0.60	323.59
R0009	M29/002	252188	6780352	470	0.00	1.22

JORC Code, 2012 Edition - Table 1

Section 1 Sampling Techniques and Data

Criteria	Commentary
Sampling techniques	 Red Dirt Metals Sampling activities have included reverse circulation (RC) and diamond (DD) drilling, and rock chip sampling at the Mt Ida project. Core sampling of one historic drillhole has also been carried out, with assaying, petrological and XRD analysis completed RC are samples collected from a static cone splitter mounted directly below the cyclone on the rig DD core has not yet been processed Historic Data Limited historical data has been supplied, historic sampling referenced has been carried out by Hammill Resources, International Goldfields, La Mancha Resources, Eastern Goldfields and Ora Banda Mining, and has included rock chip sampling, and RC, DD and rotary air blast (RAB) drilling Sampling of historic RC has been carried out via riffle split for 1m sampling, and scoop or spear sampling for 4m composites, historic RAB drilling was sampled via spear into 4m composites Historic core has been cut and sampled to geological intervals

Criteria	Commentary
	 These methods of sampling are considered to be appropriate for this style of exploration
Drilling techniques	 Red Dirt Metals Drilling is being carried out by Orlando Drilling, RC drilling is utilising an Explorac 220RC rig with a 143 mm face sampling hammer bit and DD drilling is carried out by a truck mounted Sandvik DE820 and is HQ2 diameter Diamond tails average 110m depth Historic Data Historic drilling has been completed by various companies including Kennedy Drilling, Wallis Drilling, Ausdrill and unnamed contractors utilising purpose-built RAB, RC and DD rigs as well as combination rigs Historic DD drilling was NQ sized core It is assumed industry standard drilling methods and equipment were
Drill sample recovery	 vtilised for all historic drilling Red Dirt Metals Sample condition is recorded for every RC drill metre including noting the presence of water or minimal sample return, inspections of rigs is carried out daily DD core has not yet been processed Historic Data Limited sample recovery and condition information has been supplied or found
Logging	 Red Dirt Metals Quantitative and qualitative geological logging of drillholes adheres to company policy and includes lithology, mineralogy, alteration, veining and weathering Diamond core has not yet been processed or logged All chip trays and drill core are photographed in full Historic Data A complete quantitative and qualitative logging suite was supplied for historic drilling including lithology, alteration, mineralogy, veining, weathering It is unknown if all historic core was oriented, limited geotechnical logging has been supplied No historic core or chip photography has been supplied Logging is of a level suitable to support Mineral resource estimates and subsequent mining studies
Sub-sampling techniques and sample preparation	 Red Dirt Metals DD core has not yet been processed or sampled RC samples are collected from a static cone splitter mounted directly below the cyclone on the rig, sample weights are kept under 3kg to ensure total inclusion at the pulverisation stage Occasional wet samples are encountered, extra cleaning of the splitter is carried out afterward Chip samples have been analysed for Li suite elements via ICPMS, and for Au by 50g fire assay by Nagrom. Select samples have been assayed at North Australian Laboratories (NAL) for Au via 50g fire assay and a limited multielement suite via ICPOES

Criteria	Commentary
Quality of assay data and laboratory tests	 Historic core sampled by Red Dirt Metals was collected for ICPMS analysis via selection from NQ half and quarter core, and submitted to Nagrom Samples analysed by Nagrom were dried, crushed and pulverised to 80% passing 75 microns before undergoing a peroxide fusion digest with ICPMS finish or fire assay with ICPMS finish Samples submitted to NAL were dried, crushed and pulverised to 90% passing 75 microns before undergoing fire assay with AAS finish or acid digest with ICP-OES finish Semi-Quantitative XRD analysis was carried out by Microanalysis Australia using a representative sub-sample that was lightly ground such that 90% was passing 20 µm to eliminate preferred orientation RC duplicate field samples were carried out at a rate of 1:20 and were sampled directly from the splitter on the rig. These are submitted for the same assay process as the primary samples and the laboratory are unaware of such submissions Historic Data Historic chip sampling methods include single metre riffle split and 4m composites that were either scoop or spear sampled, while historic core was cut onsite and half core sampled Historic samples were analysed at LLAS, Genalysis and unspecified laboratories Historic Au analysis techniques generally included crushing, splitting if required, and pulverisation, with aqua regia or fire assay with AAS finish used to determine concentration Historic multielement analysis was carried with mixed acid digest and ICP-MS determination Red Dirt Metals Samples have been analysed by external laboratories utilising industry standard methods The assay methods utilised by Nagrom and NAL for RC chip, rock chip and historic core sampling allow for total dissolution of the sample Standards and blanks are inserted at a rate of 1 in 20 in RC sampling, All QAQC analyses were within tolerance No QAQC samples were submitted with rock chip analysis No standards were used by Red
Verification of sampling and assaying	 Red Dirt Metals Significant intercepts have been verified No specific twinned holes have been completed, but drilling has verified historic drilling intervals Primary data is collected via excel templates and third-party logging software with inbuilt validation functions, the data is forwarded to the Database administrator for entry into a secure SQL database. Historic data was supplied in various formats and has been validated as much

Criteria	Commentary
	 as practicable No adjustments to assay data have been made other than conversion from Li to Li2O and Ta to Ta2O5 Historic Data Data entry, verification and storage protocols remain unknown for historic operators
Location of data points	 Red Dirt Metals MGA94 zone 51 grid coordinate system is used Current drilling collars have been pegged using a handheld GPS unit, all collars will be surveyed upon program completion by an independent third party Downhole surveys are completed by Orlando using a true north seeking gyro instrument Topography has been surveyed by recent operators. Collar elevations are consistent with surrounding holes and the natural surface elevation Historic Data Historic collars are recorded as being picked up by DGPS, GPS or unknown methods and utilised the MGA94 zone 51 coordinate system Historic downhole surveys were completed by north seeking gyro, Eastman single shot and multi shot downhole camera
Data spacing and distribution	 Drill hole spacing is variable throughout the programme Spacing is considered appropriate for this style of exploration and development drilling Sample composting has not been applied
Orientation of data in relation to geological structure	 Drill holes are orientated perpendicular to the regional trend of the mineralisation previously drilled at the project; drill hole orientation is not considered to have introduced any bias to sampling techniques utilised
Sample security Audits or reviews	Red Dirt Metals Samples are prepared onsite under supervision of Red Dirt Metals staff and transported by personnel directly to the Nagrom laboratory. Samples despatched to NAL were delivered via third party transport contractor Historic Data Sample security measures are unknown None carried out

Section 2; Reporting of Exploration Results

Criteria	Commentary
Mineral tenement and land tenure status	 Drilling and sampling activities have been carried on M29/2, M29/165 and E29/640 The tenements are in good standing There are no heritage issues
Exploration done by other parties	 The area has a long history of gold and base metals exploration and mining, with gold being discovered in the district in the 1890s. Numerous generations of exploration have been completed including activities such as drilling, geophysics and geochemical sampling Targeted Li assaying was first carried out in the early 2000s by La Mancha Resources and more recently, lithium assays were completed by Ora Banda Mining

Criteria	Commentary
Geology	 The Mt Ida project is located within the Eastern Goldfields region of Western Australia within the Mt Ida/Ularring greenstone belt Locally the Kurrajong Antiform dominates the regional structure at Mount Ida, a south-southeast trending, tight isoclinal fold that plunges at a low angle to the south. The Antiform is comprised of a layered greenstone sequence of mafic and ultramafic rocks. Late stage granitoids and pegmatites intrude the sequence.
Drill hole Information	 A list of the drill hole coordinates, orientations and metrics are provided as an appended table
Data aggregation methods	No metal equivalents are used
Relationship between mineralisation widths and intercept lengths	The geometry of the Li mineralisation is currently unknown although preliminary interpretation suggests the pegmatite intrusive sills and bodies are orientated sub-parallel to the Mt Ida Granitic intrusion and the northwest trending amphibolite mafic units which bound the western and eastern limbs of the intrusive
Diagrams	Figures have been included in the announcement
Balanced reporting	 It is not practical to report all historical exploration results from the Mount Ida Project. Relevant collars and details are contained within the body of the announcement
Other substantive exploration data	None completed at this time
Further work	 Drilling is continuing at Mt Ida with an initial 25,000m programme consisting of a mix of RC and diamond drilling underway Aircore and geochemical drilling will also be commenced along strike from the Mt Ida central area with the objective of targeting the pegmatite outcrops located in the mafic sequence sitting to the west of the Mt Ida granitic complex