

HIGH GRADE MINERALISATION EXPANDS PORT GREGORY FOOTPRINT

- ★ Assay results for the entire 2022 drilling campaign have been returned, with results submitted to IHC Mining for inclusion in the JORC Mineral Resource model due for release within 3-4 Weeks
- - o 9.3% THM over 12 m from surface (PGAC0165)
 - o 7.7% THM over 15 m from surface (PGAC0169)
 - o 5.7% THM over 27 m from 1m downhole (PGAC0154)
 - o 5.7% THM over 19 m from surface (PGAC0167)
- ₭ Extension drilling has uncovered a large, thick, high grade mineralised sand package not previously identified or included in previous Exploration Targets. The mineralisation is open to the North and South and will be targeted for follow up drilling to determine the extent of the mineralisation

Heavy Minerals Limited (ACN 647 831 833) ("**HVY**", "**Heavy Minerals**" or the "**Company**") is pleased to announce that assay results for the 2022 drilling campaign have been received, processed, and are summarised in Table 1. The focus of the 2022 campaign was to complete drilling of the exploration target area and conduct extension drilling to follow-up encouraging 2021 results which highlighted the mineralisation was open to the East. HVY successfully drilled 40% more ground than originally planned, delivering numerous high-grade, shallow THM intercepts; The mineralised footprint has been extended significantly as a result.

Figure 1: Preliminary block model provided by IHC Mining showing indicative THM grade distribution

HEAVY MINERALS LIMITED | ABN: 26 647 831 883 | Business Address: Unit 2, 106 Robinson Avenue, Belmont, Western Australia 6104 | Registered Address: Level 11, London House, 216 St George's Terrace, Perth, Western Australia 6000 | Phone: +61 8 9481 0389 | Fax: +61 8 9463 6103 | E-mail: info@heavyminerals.com | Website: www.heavyminerals.com | Non-Executive Chairman: Adam Schofield | Executive Director & CEO: Nic Matich | Non-Executive Director: Greg Jones | Non-Executive Director: Glenn Simpson | Company Secretary: Stephen Brockhurst

Extension Drilling

During the drilling campaign, HVY conducted extension drilling to cover a footprint 40% larger than that of the original Exploration Target (HVY ASX release 1st February 2022). The extension drilling was conducted to extend upon open mineralisation encountered on the eastern side of the target area.

A preliminary block model for the project is presented in Figure 1. The mineralisation is open to both the North and South, within HVY's tenure E70/5160 and recently granted tenement E70/5394.

Select intercepts highlighting the high-grade extension drilling results are presented in Figure 2:

Figure 2 Oblique view looking due northeast, of select extension drill holes

Executive Director & CEO, Mr. Nic Matich said:

"The importance of the 2022 campaign results can't be understated. Extending the mineralised footprint by this amount with high grade, shallow mineralisation, significantly bolsters the prospectivity of the project. As additional work enhances our understanding of the project, we are seeing more and more similarities with the other active garnet operations in the region like GMA & RDG."

Upcoming News:

- ₭ March 2022: Maiden JORC Mineral Resource (Port Gregory)
- H April 2022: Metallurgy results (Inhambane)
- **H** Second Quarter 2022: Metallurgy results and Scoping Study Commencement (Port Gregory)

Summary of drilling results from 2022

This announcement refers to, a total of 83 holes for 2,927.8 m (refer to Figure 3) that were drilled up to the end of January 2022. All samples drilled were submitted for assay and these assay results have now been returned. A total of 2,293 samples were submitted to Diamantina Laboratories for assay by wet screening and THM float/sink using Tetrabromomethane (TBE). The visual/empirical estimates for the garnet and ilmenite proportion of the THM are very encouraging and are similar in composition to those from the 2021 campaign. A complete summary of the drilling, sampling and assaying techniques is presented in Appendix 1.

The drilling program consisted of aircore drilling to limestone basement or where THM mineralisation closed out, on a regular spaced grid of 100 m east-west by 500 m north-south locations. All holes drilled were vertical and targeted the dunal sand package that sits on top of the Tamala Limestone. Significant drill results are presented in Table 1 below and a complete list of results is provided in Appendix 2.

	EASTING	NORTHING	RL	EOH	סוח		FROM	то	LENGTH	тнм	SLIMES	OS
HOLL_ID	(GDA94)	(GDA94)	(m)	(m)	Dir	ALIWIOTT	(m)	(m)	(m)	(%)	(%)	(%)
PGAC0107	229113	6887903	91.8	45	-90	360	1	12.0	11.0	7.2	11	9
PGAC0109	228966	6887780	94.8	24	-90	360	2	14.0	12.0	6.8	7	2
PGAC0110	228894	6887698	94.2	19	-90	360	0	15.0	15.0	4.8	6	1
PGAC0111	228827	6887628	90.5	15	-90	360	3	11.0	8.0	4.7	5	1
PGAC0116	228470	6887273	79.9	39	-90	360	4	9.0	5.0	5.1	9	15
PGAC0122	228117	6886924	63.6	60	-90	360	4	12.0	8.0	4.6	12	8
PGAC0123	228047	6886849	62.7	55	-90	360	10	16.0	6.0	4.8	8	10
PGAC0124	227976	6886781	59.9	51	-90	360	12	17.0	5.0	5.0	10	9
PGAC0145	228759	6886151	54.9	60	-90	360	5	9.0	4.0	5.6	12	10
PGAC0146	230021	6887404	81.5	47	-90	360	0	11.0	11.0	4.3	9	4
PGAC0149	230377	6887062	81.9	39	-90	360	4	16.0	12.0	5.6	6	2
PGAC0151	230452	6887127	89.9	39	-90	360	1	16.0	15.0	5.5	4	3
PGAC0153	230663	6886647	86.6	48	-90	360	0	13.0	13.0	4.3	6	6
PGAC0153	230663	6886647	72.1	48	-90	360	14	28.0	14.0	5.5	9	4
PGAC0154	230733	6886722	78.4	45	-90	360	1	28.0	27.0	5.7	8	3
PGAC0155	230523	6887205	80.1	42	-90	360	15	25.0	10.0	6.5	14	12
PGAC0158	230870	6886859	90.6	20	-90	360	0	9.0	9.0	4.7	6	7
PGAC0159	230947	6886926	67.2	39	-90	360	27	31.0	4.0	5.8	12	1
PGAC0160	231010	6887002	70.7	42	-90	360	18	26.0	8.0	4.2	15	5
PGAC0163	230661	6885929	66.0	18	-90	360	0	10.0	10.0	4.8	11	10
PGAC0165	231442	6885287	76.1	20	-90	360	0	12.0	12.0	9.3	9	4
PGAC0166	231367	6885224	72.3	13.5	-90	360	0	13.5	13.5	6.0	8	4
PGAC0167	231298	6885152	71.7	20.4	-90	360	0	19.0	19.0	5.7	11	12
PGAC0168	231290	6885853	80.3	14.9	-90	360	0	14.9	14.9	4.2	8	4
PGAC0169	231226	6885783	75.8	42	-90	360	0	15.0	15.0	7.7	7	6
PGAC0170	231162	6885718	73.5	39	-90	360	0	15.0	15.0	4.1	10	4

Table 1 · E70/5160	Tenement - Significant	Summary Accay	Results for 20	22 Drilling I	Campaian
10010 1. 270/5100	renement - Significant	Summury Assuy	nesuits jui 20	zz Driiniy (zumpuign

	EASTING	NORTHING	RL	EOH	DIP	ΔΖΙΜΙΙΤΗ	FROM	то	LENGTH	тнм	SLIMES	OS
Hote_ib	(GDA94)	(GDA94)	(m)	(m)	2	ALINOTH	(m)	(m)	(m)	(%)	(%)	(%)
PGAC0171	231087	6885647	72.4	25	-90	360	0	7.0	7.0	4.2	10	9
PGAC0172	231021	6885577	66.0	12	-90	360	0	12.0	12.0	4.4	8	7
PGAC0174	230891	6885447	66.5	15	-90	360	0	10.0	10.0	5.9	9	15
PGAC0175	230875	6886146	84.7	17	-90	360	0	17.0	17.0	4.1	8	2
PGAC0177	230737	6886003	73.9	14	-90	360	0	10.0	10.0	4.1	6	11
PGAC0182	231017	6886281	67.0	24	-90	360	18	24.0	6.0	5.8	9	3
PGAC0183	230943	6886213	82.7	24	-90	360	0	19.0	19.0	4.2	8	6

Results are prepared from composited drill hole assays at a cut-off grade of 2% THM, with significant lengths greater than 4 m and all composited intervals are continuous and unbroken.

Figure 3: Drill collars referenced in this announcement

Table 2 E70/5160 Tenement - Exploration Target

Summary of Exploratio	n Target ⁽¹⁾						HM	l Assembla	age ⁽²⁾
Classification	Material (Mt)	In Situ HM (Mt)	In Situ Garnet (Mt)	HM (%)	SL (%)	OS (%)	Garnet (%)	Ilmenite (%)	Non Valuable HM (%)
Exploration Target	170 - 250	7 - 9	3.5 - 4.5	3.5 - 4.5	10	20	46	1	53
Grand Total	170 - 250	7 - 9	3.5 - 4.5	3.5 - 4.5	10	20	46	1	53

Notes:

(1) Exploration Target reported at an upper cut-off-grade of 2.5% HM and a lower cut-off grade of 1.5%.

(2) Mineral assemblage is reported as a percentage of in situ HM content.

The potential quality and grade of the Exploration Target is conceptual in nature as there has been insufficient exploration to estimate a Mineral Resource for this target area and it is uncertain if further exploration will result in the estimation of a Mineral Resource.

Exploration Target Development

Previous exploration activities by GMA were carried out on tenement E70/5160, with a total of 52 holes for 1,725m and 589 assays completed. These assays included THM, SLIMES and OS as well as mineralogy assays (mags, Ilmenite and Garnet). It is assumed that individual assays have been prepared for each sample interval as there are no composite sample identifiers.

The mineralogy assay method has not been described or documented in WAMEX reports; however, it is likely that a magnetic fractionation has been carried out for the individual HM sink fractions and then an XRF or XRD performed on the magnetic fraction, yielding an ilmenite and garnet assay.

The drill hole and assay information was used to develop a 3D block model in Datamine using the following steps:

- The 52 holes were constrained with an upper topography surface generated from the collar co-ordinates.
- The end of hole was used as the lower basement constraint. These constraints were selected to prevent assay grades from being interpolated below maximum drill hole depths.
- A perimeter string was developed around the drill hole collar locations with an offset of approximately 200 m north and south and 80-100 m east and west.
- A block model was created by filling cells between the two constraining surfaces using a parent cell size of 50 x 100 x 3 m in XYZ.
- Assay grades were interpolated into the block model using inverse distance weighting (cubed).
- An assumed bulk density of 1.7 gcm⁻³ was used to estimate material tonnages.
- An Exploration Target was estimated by reporting tonnages between two grade cut-off ranges, the lower at 1.5% HM and the upper at 2.5% HM.
- No assumed minimum thicknesses or other constraints were used to estimate the Exploration Target.

This announcement has been authorised by the Board of Directors of the Company.

Ends

For further information, please contact:

Heavy Minerals Limited

Nic Matich, Executive Director & CEO Ph: +61 (08) 9481 0389 E: <u>info@heavyminerals.com</u>

Media & Investor Enquiries

Peter Taylor, NWR Communications Ph: +61 (0) 412 036 231 E: <u>Peter@nwrcommunications.com.au</u>

About Heavy Minerals Limited

Heavy Minerals Limited (ASX: HVY) is an Australian listed industrial mineral exploration company. The Company's projects are prospective for industrial minerals including but not limited to Garnet, Zircon, Rutile, and Ilmenite. The Company's initial focus is the Port Gregory Garnet Project which has an Exploration Target of between 3.5 Mt and 4.5 Mt contained Garnet.

To learn more please visit: www.heavyminerals.com

Competent Person Statement

The information in this announcement that relates to Exploration Targets and Exploration Results is based on and fairly represents information and supporting documentation prepared by Mr. Greg Jones (FAusIMM) who is a Non-Executive Director for Heavy Minerals Limited. Mr. Jones is a Fellow of the Australasian Institute of Mining and Metallurgy and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity that is being reported on to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr. Jones has reviewed this report and consents to the inclusion in the report of the matters in the form and context with which it appears.

The Exploration Results referred to in this announcement were first reported in accordance with ASX Listing Rule 5.7 in the Company's prospectus dated 27 July 2021 and released on the ASX market announcements platform on 10 September 2021. The Company confirms that it is not aware of any new information or data that materially affects the information included in the prospectus.

Heavy Minerals

LIMITED

Appendix 1: JORC Code Table 1

Section 1 Sampling Techniques and Data					
Criteria	Explanation	Comment			
	Nature and quality of sampling (eg cut channels, random chips, or	• Aircore drilling was used to obtain samples for analysis at a mixture of 1, 1.5 and 2 m intervals			
	specific specialised industry standard measurement tools appropriate to the minerals under	• Each sample was homogenized within the sample bag by rotating the sample bag			
investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	• A appropriate sample of sand, approx. 70 g (or the size of a matchbox), is scooped from the sample bag for an initial visual THM% estimation and logging. A similar sample mass is used for every pan sample for visual THM% estimation				
	 Include reference to measures taken to ensure sample representivity and 	• The standard sized sample is to ensure calibration is maintained for consistency in visual estimation			
the appumeasure measure • Aspects mineralit the Public techniques findustry done the (eg 'reve	the appropriate calibration of any measurement tools or systems used.	 A sample ledger is kept at the drill rig for recording sample numbers 			
	 Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine 	 The aircore drill samples have an average range between 6 kg and 9 kg and were split down using a rig based rotary splitter to 1.5 to 2.5 kg. 			
		 Samples were transported to Diamantina Laboratories for assaying. 			
		 The laboratory sample was dried for up to 24 hours @ 105-110 degrees Celsius. 			
		• The sample was then loosened until friable and passed through a rotary splitter to take a 250 g sub-sample.			
		 This sub-sample was then wet screened on a Sweco vibrating screen deck at a top aperture of 1 mm (oversize - OS) and a bottom screen of 45 μm (SLIMES fraction). 			
	nodules) may warrant disclosure of detailed information.	 The sand fraction containing the THM (-1 mm and +45 μm) is then dried and a sub-split of approximately 100 g is taken using a micro riffle splitter and used for heavy liquid separation using funnels and a heavy liquid, Tetrabromoethane (TBE), with a density of between 2.92 and 2.96 gcm⁻³ to determine total heavy mineral (THM) content. 			
	Drill type (e.g. core, reverse circulation, open-hole hammer.	Aircore drilling with inner tubes for sample return was used			
Drilling techniques	rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether	 Aircore is considered a standard industry technique for HMS mineralisation. Aircore drilling is a form of reverse circulation drilling where the sample is collected at the face and returned inside the inner tube 			

Criteria	Explanation	Comment
	core is oriented and if so, by what	Aircore drill rods used were 3 m long
	method, etc).	• NQ diameter (76mm) drill bits and rods were used
		All drill holes were vertically
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 AC drill sample recovery is monitored by reviewing the sample mass of the total weight of the 1.5 m interval weighed both on site as a wet sample and at the laboratory as a dried sample Industry leading mineral sand drilling specialists were engaged to drill the holes with experienced drillers to maximize drill recovery such as maintaining drill penetration rates, airflow and water injection While initially collaring the hole, limited sample recovery can occur in the initial 0 m to 2 m sample interval owing to sample and air loss into the surrounding loose soils The initial 0 m to 2 m sample interval is drilled very slowly in order to achieve optimum sample recovery The entire sample passes through the on board rotary splitter and the sample collected in a pre-numbered calico bag. The bulk reject is not collected and is shovelled back down the hole upon completion About 10 samples are placed in numbered poly weave bags and secured with a cable tie All samples were drilled in dry conditions, with no groundwater encountered. Water injection was used to keep dust down and maintain the integrity of the drill hole. At the end of each drill rod, the drill string is cleaned by blowing down with air/water to remove any clay and silt potentially built up in the sample hose At the end of each hole the cyclone is inspected for material build up and cleanliness (for potential contamination) The twin-tube aircore drilling technique is known to provide high quality samples from the face of the drill
Logging	• Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource	 The aircore samples were each qualitatively logged using a field laptop (Toughbook) an entered into Field Marshall The aircore samples were logged for lithology, colour, arainsize, rounding, hardness, rock type, sorting.
	estimation, mining studies and metallurgical studies.	estimated THM%, estimated Slimes% and any relevant comments

Critoria	Evaluation	Commont
CITCETIA	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Every drill hole was logged in full with detailed logging based on a small sample of sand taken from the split sample to improve representivity Logging is undertaken with reference to a Drilling Guideline with codes prescribed and guidance on description to ensure consistent and systematic data collection
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The AC drill sample collected at the source was split down to 1.5 to 2.5 kg using a rig based rotary splitter The sample size and process is considered an appropriate technique for mineral sands The sample sizes were deemed suitable to reliably capture THM, slime, and oversize characteristics, based on industry experience of the geologists involved and consultation with laboratory staff Field duplicates of the samples were completed at a frequency of 1 per 40 primary samples Standard Certified Reference Material samples are inserted into numbered sample bags in the field at a frequency of 1 per 40 samples. These are blind to the laboratory staff and laboratory processing flowsheet
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, 	 The wet panning at the drill site provides an estimate of the THM and SLIMES grade which is expressed as a percentage and is sufficient for the purpose of determining approximate initial concentrations Individual aircore sub-samples (approximately 1.5 - 2.5 kg) were analysed by Diamantina Laboratories in Perth, Western Australia Diamantina Laboratories is considered to be a mineral sands industry leading laboratory The as received sample was dried for up to 24 hours @ 105-110 degrees Celsius. The sample was then loosened until friable and put over a rotary splitter to take a 250 g sub-sample.

20-	

Criteria	Explanation	Comment
	duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias)	 This sub-sample was then wet screened on a Sweco vibrating screen deck at a top aperture of 1 mm (oversize OS) and a bottom screen of 45 μm (SLIMES fraction).
		 The sand fraction containing the THM (-1 mm and +45 μm) is then dried and a sub-split of approximately 100 g is taken using a micro riffle splitter and used for heavy liquid separation using funnels and a heavy liquid, Tetrabromomethane (TBE), with a density of between 2.92 and 2.96 gcm⁻³ to determine total heavy mineral (THM) content.
		• This is considered to be an industry standard technique
	 Field duplicates and HM Standards are alternatively inserted into the sample string at a frequency of 1 per 40 primary samples 	
		• Diamantina completed its own internal QA/QC checks that included laboratory repeats at a rate of 1 in 40 and the insertion of Standard Certified Reference Material at a rate of 1 in 40 prior to the results being released
		 Analysis of QA/QC samples show the laboratory data to be of acceptable accuracy and precision.
		• The adopted QA/QC protocols are acceptable and equal to accepted best industry practice
	• The verification of significant	All results are checked by the Competent Person
	intersections by either independent or alternative company personnel.	 The Competent Person makes periodic visits to the laboratory to observe sample processing
	 The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 A process of laboratory data validation using mass balance is undertaken to identify entry errors or questionable data
Verification of		 Field and laboratory duplicate data pairs (THM / OS / SLIMES) of each batch are plotted to identify potential quality control issues
sampling and assaying		 Standard Certified Reference Material sample results are checked from each sample batch to ensure they are within tolerance (<2SD) and that there is no bias or drift
		 The field and laboratory data has been updated into a Microsoft Access database and then imported into Datamine drill hole files.
		 Data validation criteria are included to check for overlapping sample intervals, end of hole match between 'Lithology', 'Sample', 'Survey' files, duplicate sample numbers and other common errors

Criteria	Explanation	Comment
		No adjustments are made to the primary assay data
	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in 	 Down hole surveys for shallow vertical aircore holes are not required A handheld GPS was initially used to identify the positions
Location of data points	 Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 of the drill holes in the field. The handheld GPS has an accuracy of +/- 5-10 m in the horizontal Adjusted SRTM (Shuttle Radar Topography Mapping) at 30 arc seconds was used for indicative topography and RL prior to photogrammetry drone mapping that is planned to take place once field cropping is completed. At this stage of the exploration program this is considered to be of adequate indicative accuracy. Following the completion of the drilling program, a professional survey pickup of all the drill hole collar coordinates will be undertaken
		• The datum used is GDA94 and coordinates are projected as UTM zone 50
	Data spacing for reporting of	Aircore Drilling
	 Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	• The planned drill density was 100 m east-west by 500 m north-south
		• Drilling completed to date consists of the southernmost drill line and a line of holes to the north of the Exploration Target area
Data spacing		 This spacing is designed for supporting the development of Mineral Resource Estimation pending that the ensuing results of drilling and assaying will support the development of a Mineral Resource estimate
and distribution		• Each aircore drill sample is a single 1, 1.5 or 2 m sample of material intersected down the hole
		 No compositing has been applied for values of THM, slime and oversize, other than the summary reporting of mineralisation intervals in this announcement
		• Microscope scanning and high level grain counting of the THM sinks fraction will be carried out to aid the mineralogical and geological interpretation
		• It is planned to prepare compositing of heavy samples for mineral assemblage determination based on the mineralogical and geological interpretation
Orientation of data in relation to	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to	• The aircore drilling section lines were oriented perpendicular to the strike of mineralisation

Criteria	Explanation	Comment
geological structure	 which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The strike of the mineralisation is sub-parallel to the contemporary coastline and is interpreted to be controlled by limestone basement Drill holes were vertical because the nature of the mineralisation is relatively horizontal The orientation of the drilling is considered appropriate for testing the lateral and vertical extent of mineralisation limiting bias
Sample security	• The measures are taken to ensure sample security.	 Aircore samples remained in the custody of Company representatives until they were trucked to Perth using an independent contractor or samples were transported by Company representatives The samples were transported to Perth and delivered directly to the laboratory along with a sample manifest for checking of samples
		• The laboratory inspected the packages and did not report tampering of the samples
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 Internal reviews were undertaken and Richard Stockwell of Placer Consulting Pty Ltd was engaged to undertake supervision and training of onsite Company engaged contractors.

	Section 2 Reporting of Exploration Results				
Criteria	Explanation	Comment			
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Exploration Target and planned / completed drilling lies within the granted exploration licences. At the time of reporting all tenure was secure and any administrative costs or fees were fully paid up. 			
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	• Previous tenement holders in the area, GMA, conducted Air Core drilling over the tenement.			
Geology	• Deposit type, geological setting and style of mineralisation.	 The deposit style is a combination of dunal and fluvial / marine sediments. Heavy mineral accumulations are 			

Criteria	Explanation	Comment
		preserved throughout the stratigraphic sequence.
Drill hole Information	• A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	• All significant drill results and drill hole collar locations have been identified in Appendices 2 and 3 respectively of this report.
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	• No relevant material data has been excluded from this report.
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Independent Geologist should clearly explain why this is the case.	
Data aggregation methods	• In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated.	• All length weighted intervals are reported for each hole in (Appendix 2) for grades above 2.0% THM
	• Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	
	• The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between	These relationships are particularly important in the reporting of Exploration Results.	All drill holes are vertical and perpendicular to the dip and strike of
mineralisation widths and intercept	 If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	mineralisation and therefore all interceptions are approximately true thickness.
iengtns	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Drill holes are inferred to intersect the mineralisation approximately perpendicularly.
		• The deposit style is flat-lying and so the vertical holes are assumed to intersect the true width of any mineralisation.

Criteria	Explanation	Comment
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	• Figures and plans are displayed in the main text of the Release
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All drill results > 2.0% THM have been summarised as composited intervals and reported and tabulated in Appendix 2.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Samples have not yet been tested for in situ density. Passive seismic surveys have been carried out over the deposit in alignment with planned drilling. Processing of the passive seismic surveys is still ongoing however preliminary results correlate to the identification of bands of limestone and calcrete in the drilling carried out to date.
Further work	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the greas of possible 	 Further work via infill drilling to target high grade and continuous mineralisation is recommended. Exploration by geophysical and drilling
	extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 is planned on other parts of the tenement. Refer to the main body of the release for further information regarding diagrams.

Minerals //

Heavy

Appendix 2: Composited drill assay results for 2022 Drilling Campaign. Results are prepared from drill hole assays at a cut-off grade of 2% THM and all composited intervals are continuous and unbroken.

	EASTING	NORTHING	RL	EOH			FROM	то	LENGTH	THM	SLIMES	OS
HOLE_ID	(GDA94)	(GDA94)	(m)	(m)	DIP	AZI	(m)	(m)	(m)	(%)	(%)	(%)
PGAC0105	229606	6887697	90.5	12	-90	360	0	2.0	2.0	2.1	14	9
PGAC0105	229606	6887697	80.0	12	-90	360	11	12.0	1.0	2.1	5	18
PGAC0106	229423	6887873	92.9	46	-90	360	1	5.0	4.0	2.3	10	18
PGAC0106	229423	6887873	81.4	46	-90	360	13	16.0	3.0	3.1	9	3
PGAC0106	229423	6887873	59.4	46	-90	360	36	37.0	1.0	2.4	7	2
PGAC0106	229423	6887873	56.4	46	-90	360	38	41.0	3.0	2.9	12	9
PGAC0106	229423	6887873	50.4	46	-90	360	45	46.0	1.0	4.1	8	4
PGAC0107	229113	6887903	91.8	45	-90	360	1	12.0	11.0	7.2	11	9
PGAC0107	229113	6887903	76.3	45	-90	360	21	23.0	2.0	3.4	17	8
PGAC0107	229113	6887903	73.3	45	-90	360	24	26.0	2.0	2.2	22	18
PGAC0108	229039	6887838	100.5	39	-90	360	0	7.0	7.0	3.6	7	8
PGAC0108	229039	6887838	94.5	39	-90	360	8	11.0	3.0	4.0	11	8
PGAC0108	229039	6887838	91.0	39	-90	360	12	14.0	2.0	2.5	6	1
PGAC0108	229039	6887838	85.5	39	-90	360	18	19.0	1.0	2.1	8	1
PGAC0109	228966	6887780	102.3	24	-90	360	0	1.0	1.0	4.1	7	23
PGAC0109	228966	6887780	94.8	24	-90	360	2	14.0	12.0	6.8	7	2
PGAC0109	228966	6887780	86.8	24	-90	360	15	17.0	2.0	2.3	6	0
PGAC0109	228966	6887780	83.3	24	-90	360	19	20.0	1.0	2.2	8	0
PGAC0109	228966	6887780	79.3	24	-90	360	23	24.0	1.0	3.0	12	25
PGAC0110	228894	6887698	94.2	19	-90	360	0	15.0	15.0	4.8	6	1
PGAC0111	228827	6887628	97.0	15	-90	360	0	1.0	1.0	2.4	11	17
PGAC0111	228827	6887628	90.5	15	-90	360	3	11.0	8.0	4.7	5	1
PGAC0111	228827	6887628	83.5	15	-90	360	13	15.0	2.0	4.3	7	15
PGAC0112	228751	6887557	87.5	12	-90	360	1	10.0	9.0	3.9	11	10
PGAC0112	228751	6887557	81.5	12	-90	360	11	12.0	1.0	2.1	9	31
PGAC0113A	228679	6887485	85.5	16	-90	360	0	7.5	7.5	3.9	12	11
PGAC0113A	228679	6887485	77.2	16	-90	360	10.5	13.5	3.0	2.5	11	13
PGAC0114B	228547	6887338	83.1	27	-90	360	0	4.0	4.0	3.5	11	14
PGAC0115	228613	6887420	32.1	51	-90	360	50	51.0	1.0	2.2	6	1
PGAC0116	228470	6887273	79.9	39	-90	360	4	9.0	5.0	5.1	9	15
PGAC0116	228470	6887273	74.9	39	-90	360	10	13.0	3.0	2.8	11	13
PGAC0116	228470	6887273	68.9	39	-90	360	17	18.0	1.0	2.5	15	4
PGAC0116	228470	6887273	65.9	39	-90	360	20	21.0	1.0	2.4	7	0
PGAC0117	228400	6887206	80.1	38	-90	360	0	1.0	1.0	2.8	7	4
PGAC0118	228330	6887132	72.5	38	-90	360	0	4.0	4.0	2.8	7	14
PGAC0119	228259	6887061	69.7	42	-90	360	0	1.0	1.0	2.1	8	1
PGAC0121	228186	6886989	64.6	39	-90	360	1	8.0	7.0	3.6	9	8
PGAC0121	228186	6886989	56.6	39	-90	360	12	13.0	1.0	2.5	27	6
PGAC0121	228186	6886989	51.6	39	-90	360	17	18.0	1.0	2.7	11	3

5

	EASTING	NORTHING	RL	EOH	010		FROM	то	LENGTH	тнм	SLIMES	OS
HOLE_ID	(GDA94)	(GDA94)	(m)	(m)	DIP	AZI	(m)	(m)	(m)	(%)	(%)	(%)
PGAC0122	228117	6886924	63.6	60	-90	360	4	12.0	8.0	4.6	12	8
PGAC0123	228047	6886849	62.7	55	-90	360	10	16.0	6.0	4.8	8	10
PGAC0123	228047	6886849	56.7	55	-90	360	18	20.0	2.0	3.0	10	22
PGAC0123	228047	6886849	54.2	55	-90	360	21	22.0	1.0	2.5	14	24
PGAC0124	227976	6886781	70.4	51	-90	360	3	5.0	2.0	2.3	2	1
PGAC0124	227976	6886781	59.9	51	-90	360	12	17.0	5.0	5.0	10	9
PGAC0124	227976	6886781	55.4	51	-90	360	18	20.0	2.0	2.2	12	9
PGAC0125	227910	6886718	65.6	51	-90	360	0	1.0	1.0	2.1	7	7
PGAC0125	227910	6886718	63.1	51	-90	360	2	4.0	2.0	2.1	3	5
PGAC0125	227910	6886718	55.6	51	-90	360	10	11.0	1.0	2.4	14	20
PGAC0129	227763	6887272	61.9	51	-90	360	6	9.0	3.0	2.8	13	2
PGAC0134	227904	6887413	64.7	33	-90	360	0	3.0	3.0	2.9	9	12
PGAC0135	227975	6887485	63.2	14	-90	360	5	7.0	2.0	3.4	16	7
PGAC0135	227975	6887485	60.7	14	-90	360	8	9.0	1.0	2.1	16	16
PGAC0137	228116	6887630	71.4	23	-90	360	0	4.0	4.0	2.7	9	4
PGAC0138	228187	6887699	73.4	25	-90	360	3	8.0	5.0	3.9	13	18
PGAC0139	228254	6887768	75.5	30	-90	360	7	8.0	1.0	4.3	20	12
PGAC0139	228254	6887768	66.5	30	-90	360	15	18.0	3.0	3.4	10	4
PGAC0140	228328	6887840	72.9	43	-90	360	9	10.0	1.0	2.4	21	9
PGAC0142	228720	6887871	91.2	19	-90	360	0	8.0	8.0	3.5	9	15
PGAC0142	228720	6887871	84.2	19	-90	360	10	12.0	2.0	2.3	11	1
PGAC0142	228720	6887871	81.7	19	-90	360	13	14.0	1.0	2.3	17	25
PGAC0142	228720	6887871	79.2	19	-90	360	15	17.0	2.0	2.3	20	15
PGAC0142	228720	6887871	76.7	19	-90	360	18	19.0	1.0	2.1	29	9
PGAC0144	228682	6886081	47.8	60	-90	360	2	3.0	1.0	3.1	7	7
PGAC0144	228682	6886081	45.8	60	-90	360	4	5.0	1.0	2.8	7	33
PGAC0145	228759	6886151	61.4	60	-90	360	0	1.0	1.0	3.2	13	13
PGAC0145	228759	6886151	54.9	60	-90	360	5	9.0	4.0	5.6	12	10
PGAC0146	230021	6887404	81.5	47	-90	360	0	11.0	11.0	4.3	9	4
PGAC0146	230021	6887404	69.0	47	-90	360	17	19.0	2.0	2.7	13	14
PGAC0146	230021	6887404	66.5	47	-90	360	20	21.0	1.0	2.1	11	2
PGAC0147	230095	6887483	91.4	11	-90	360	1	2.0	1.0	2.4	19	8
PGAC0147	230095	6887483	86.4	11	-90	360	3	10.0	7.0	3.3	9	4
PGAC0148	230307	6886987	78.8	45	-90	360	0	13.0	13.0	3.5	9	8
PGAC0148	230307	6886987	58.8	45	-90	360	26	27.0	1.0	2.5	17	12
PGAC0149	230377	6887062	90.9	39	-90	360	0	2.0	2.0	2.8	10	13
PGAC0149	230377	6887062	81.9	39	-90	360	4	16.0	12.0	5.6	6	2
PGAC0149	230377	6887062	72.9	39	-90	360	18	20.0	2.0	2.5	11	12
PGAC0149	230377	6887062	59.4	39	-90	360	32	33.0	1.0	2.2	12	2
PGAC0150	230520	6886499	77.3	13	-90	360	0	9.0	9.0	3.2	9	5
PGAC0150	230520	6886499	71.8	13	-90	360	10	11.0	1.0	2.2	10	1

>>	

	EASTING	NORTHING	RL	EOH	515		FROM	то	LENGTH	тнм	SLIMES	OS
HOLE_ID	(GDA94)	(GDA94)	(m)	(m)	DIP	AZI	(m)	(m)	(m)	(%)	(%)	(%)
PGAC0151	230452	6887127	89.9	39	-90	360	1	16.0	15.0	5.5	4	3
PGAC0151	230452	6887127	75.4	39	-90	360	17	29.0	12.0	3.1	14	12
PGAC0152	230594	6886567	78.8	15.5	-90	360	0	15.5	15.5	4.0	9	4
PGAC0153	230663	6886647	86.6	48	-90	360	0	13.0	13.0	4.3	6	6
PGAC0153	230663	6886647	72.1	48	-90	360	14	28.0	14.0	5.5	9	4
PGAC0153	230663	6886647	63.1	48	-90	360	29	31.0	2.0	2.8	11	5
PGAC0153	230663	6886647	60.6	48	-90	360	32	33.0	1.0	2.2	13	8
PGAC0153	230663	6886647	50.6	48	-90	360	41	44.0	3.0	3.3	17	2
PGAC0154	230733	6886722	78.4	45	-90	360	1	28.0	27.0	5.7	8	3
PGAC0154	230733	6886722	56.4	45	-90	360	33	40.0	7.0	2.6	11	3
PGAC0154	230733	6886722	51.4	45	-90	360	41	42.0	1.0	2.6	12	16
PGAC0154	230733	6886722	48.4	45	-90	360	44	45.0	1.0	2.2	33	6
PGAC0155	230523	6887205	93.1	42	-90	360	0	14.0	14.0	3.9	10	10
PGAC0155	230523	6887205	80.1	42	-90	360	15	25.0	10.0	6.5	14	12
PGAC0155	230523	6887205	73.1	42	-90	360	26	28.0	2.0	2.2	18	4
PGAC0155	230523	6887205	61.6	42	-90	360	38	39.0	1.0	2.1	22	10
PGAC0155	230523	6887205	59.1	42	-90	360	40	42.0	2.0	2.7	15	11
PGAC0156	230592	6887275	97.0	39	-90	360	0	10.0	10.0	3.5	7	6
PGAC0156	230592	6887275	83.5	39	-90	360	11	26.0	15.0	2.9	15	6
PGAC0156	230592	6887275	74.5	39	-90	360	27	28.0	1.0	2.0	13	0
PGAC0156	230592	6887275	68.5	39	-90	360	29	38.0	9.0	3.5	17	5
PGAC0157	230805	6886784	87.5	42	-90	360	0	10.0	10.0	2.8	12	6
PGAC0157	230805	6886784	72.0	42	-90	360	17	24.0	7.0	2.4	14	18
PGAC0157	230805	6886784	61.5	42	-90	360	28	34.0	6.0	3.3	16	2
PGAC0157	230805	6886784	56.5	42	-90	360	35	37.0	2.0	2.2	18	1
PGAC0158	230870	6886859	90.6	20	-90	360	0	9.0	9.0	4.7	6	7
PGAC0158	230870	6886859	78.1	20	-90	360	14	20.0	6.0	2.2	15	14
PGAC0159	230947	6886926	95.7	39	-90	360	0	1.0	1.0	4.0	11	16
PGAC0159	230947	6886926	89.7	39	-90	360	2	11.0	9.0	3.0	6	5
PGAC0159	230947	6886926	83.7	39	-90	360	12	13.0	1.0	2.7	9	15
PGAC0159	230947	6886926	81.7	39	-90	360	14	15.0	1.0	2.5	10	11
PGAC0159	230947	6886926	74.7	39	-90	360	20	23.0	3.0	2.4	14	6
PGAC0159	230947	6886926	70.7	39	-90	360	25	26.0	1.0	2.2	14	0
PGAC0159	230947	6886926	67.2	39	-90	360	27	31.0	4.0	5.8	12	1
PGAC0160	231010	6887002	87.7	42	-90	360	0	10.0	10.0	2.8	12	16
PGAC0160	231010	6887002	80.7	42	-90	360	11	13.0	2.0	2.2	13	3
PGAC0160	231010	6887002	70.7	42	-90	360	18	26.0	8.0	4.2	15	5
PGAC0160	231010	6887002	59.2	42	-90	360	33	34.0	1.0	2.2	14	14
PGAC0161	230524	6885787	59.0	10	-90	360	0	7.0	7.0	3.5	13	9
PGAC0163	230661	6885929	66.0	18	-90	360	0	10.0	10.0	4.8	11	10
PGAC0163	230661	6885929	54.5	18	-90	360	15	18.0	3.0	5.5	11	3

2	

	EASTING	NORTHING	RL	EOH	010	. 71	FROM	то	LENGTH	тнм	SLIMES	OS
HOLE_ID	(GDA94)	(GDA94)	(m)	(m)	DIP	AZI	(m)	(m)	(m)	(%)	(%)	(%)
PGAC0164	231153	6886423	88.0	15	-90	360	0	9.0	9.0	3.0	12	17
PGAC0164	231153	6886423	80.5	15	-90	360	10	14.0	4.0	2.2	10	1
PGAC0165	231442	6885287	76.1	20	-90	360	0	12.0	12.0	9.3	9	4
PGAC0165	231442	6885287	63.6	20	-90	360	17	20.0	3.0	2.4	18	14
PGAC0166	231367	6885224	72.3	13.5	-90	360	0	13.5	13.5	6.0	8	4
PGAC0167	231298	6885152	71.7	20.4	-90	360	0	19.0	19.0	5.7	11	12
PGAC0168	231290	6885853	80.3	14.9	-90	360	0	14.9	14.9	4.2	8	4
PGAC0169	231226	6885783	75.8	42	-90	360	0	15.0	15.0	7.7	7	6
PGAC0169	231226	6885783	59.8	42	-90	360	21	26.0	5.0	2.5	13	15
PGAC0169	231226	6885783	53.8	42	-90	360	29	30.0	1.0	2.2	11	1
PGAC0169	231226	6885783	48.3	42	-90	360	32	38.0	6.0	3.4	16	12
PGAC0170	231162	6885718	73.5	39	-90	360	0	15.0	15.0	4.1	10	4
PGAC0170	231162	6885718	52.0	39	-90	360	26	32.0	6.0	3.2	10	7
PGAC0171	231087	6885647	72.4	25	-90	360	0	7.0	7.0	4.2	10	9
PGAC0171	231087	6885647	60.9	25	-90	360	12	18.0	6.0	3.2	9	4
PGAC0171	231087	6885647	51.4	25	-90	360	24	25.0	1.0	2.3	24	11
PGAC0172	231021	6885577	66.0	12	-90	360	0	12.0	12.0	4.4	8	7
PGAC0173	230949	6885507	66.1	39	-90	360	0	6.0	6.0	3.5	11	16
PGAC0173	230949	6885507	59.1	39	-90	360	9	11.0	2.0	2.1	6	24
PGAC0173	230949	6885507	37.6	39	-90	360	31	32.0	1.0	3.2	10	1
PGAC0174	230891	6885447	66.5	15	-90	360	0	10.0	10.0	5.9	9	15
PGAC0174	230891	6885447	59.0	15	-90	360	12	13.0	1.0	3.7	12	17
PGAC0175	230875	6886146	84.7	17	-90	360	0	17.0	17.0	4.1	8	2
PGAC0176	230805	6886069	80.8	17	-90	360	0	17.0	17.0	3.6	8	5
PGAC0177	230737	6886003	73.9	14	-90	360	0	10.0	10.0	4.1	6	11
PGAC0177	230737	6886003	65.4	14	-90	360	13	14.0	1.0	2.6	8	24
PGAC0178	230595	6885860	63.9	18	-90	360	0	3.0	3.0	4.6	6	9
PGAC0178	230595	6885860	52.4	18	-90	360	9	17.0	8.0	2.9	11	9
PGAC0181	231085	6886354	89.9	28	-90	360	1	7.0	6.0	3.1	9	6
PGAC0181	231085	6886354	79.9	28	-90	360	8	20.0	12.0	3.6	9	9
PGAC0181	231085	6886354	69.4	28	-90	360	22	27.0	5.0	3.2	14	4
PGAC0182	231017	6886281	83.0	24	-90	360	0	10.0	10.0	3.8	10	11
PGAC0182	231017	6886281	74.5	24	-90	360	12	15.0	3.0	2.6	9	18
PGAC0182	231017	6886281	67.0	24	-90	360	18	24.0	6.0	5.8	9	3
PGAC0183	230943	6886213	82.7	24	-90	360	0	19.0	19.0	4.2	8	6
PGAC0184	231149	6887132	83.7	42	-90	360	1	2.0	1.0	2.8	9	2
PGAC0184	231149	6887132	75.7	42	-90	360	5	14.0	9.0	2.3	13	8
PGAC0184	231149	6887132	54.7	42	-90	360	29	32.0	3.0	3.2	11	4
PGAC0186	231282	6887293	83.5	39	-90	360	5	7.0	2.0	3.2	14	1
PGAC0187	231423	6887433	89.3	11	-90	360	4	8.0	4.0	2.4	10	9

Heavy Minerals LIMITE

D

Appendix 3:

Drill hole collar coordinates for 2022 exploration campaign.

		EASTING	NORTHING	RL	EOH	LOGGED			HOLE	HOLE	-		DRILLING
LEASE	HOLE_ID	(GDA94)	(GDA94)	(m)	(m)	BY	DATE	SPLIT	ТҮРЕ	SIZE	DIP	AZI	COMPANY
E70/5160	PGAC0105	229606.36	6887696.8	90.20	12	JH	8/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0106	229423.4	6887872.5	96.84	46	JH	9/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0107	229113.26	6887903.2	96.58	45	JH	9/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0108	229038.82	6887837.6	103.13	39	JH	9/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0109	228966.16	6887780.1	104.56	24	JH	9/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0110	228894.07	6887697.7	102.20	19	ΗL	10/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0111	228826.81	6887628.1	97.49	15	JH	10/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0112	228751.41	6887556.8	91.47	12	Hſ	10/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0113A	228678.82	6887485.3	84.22	16	ΗL	10/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0114B	228546.81	6887338.4	83.04	27	Hſ	12/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0115	228613.39	6887419.6	81.04	51	Hſ	12/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0116	228469.97	6887273.3	87.81	39	Hſ	12/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0117	228400.18	6887206.5	80.69	38	Hſ	13/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0118	228329.56	6887132.2	73.88	38	ΗL	13/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0119	228258.66	6887061.2	69.94	42	JH	13/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0120	228185.26	6886992	66.70	12	ΗL	13/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0121	228185.89	6886988.8	66.74	39	ΗL	13/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0122	228116.6	6886923.9	68.52	60	ΗL	13/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0123	228047.49	6886848.7	74.96	55	ΗL	14/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0124	227976.09	6886780.6	73.90	51	JH	14/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0125	227909.64	6886717.5	66.15	51	Hſ	14/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0126	227741.4	6886911.3	57.33	60	ΗL	15/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0127	227618.53	6887156.2	66.67	60	HL	15/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0128	227689.23	6887203.6	66.77	39	ΗL	15/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0129	227762.55	6887272.5	68.30	51	Hſ	15/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0130	227626.59	6887829	71.22	39	HL	16/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0131	227553.45	6887771.5	73.26	39	Hſ	16/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0132	227583.59	6887473	74.22	39	HL	16/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0133	227835.68	6887342.4	66.27	39	Hſ	16/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0134	227904.36	6887412.8	64.91	33	ΗL	16/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0135	227975.39	6887485.4	67.85	14	Hſ	16/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0136	228045.3	6887556.2	68.70	14	ΗL	17/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0137	228115.7	6887630.3	71.60	23	JH	17/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0138	228186.92	6887698.8	77.10	25	Hſ	17/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0139	228254.37	6887767.6	83.11	30	JH	17/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0140	228327.51	6887840.3	83.20	43	ΗL	17/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0142	228720.01	6887871.3	95.03	19	JH	18/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0143	228009.32	6887873.8	68.00	10	JH	18/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0144	228682.33	6886081.1	50.10	60	JH	20/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0145	228758.91	6886151.2	61.97	60	JH	20/01/2022	25/75	AC	NQ	90	360	BOSTECH

LEACE		EASTING	NORTHING	RL	EOH	LOGGED	DATE	CDUT	HOLE	HOLE	DID	A 71	DRILLING
LEASE	HOLE_ID	(GDA94)	(GDA94)	(m)	(m)	BY	DATE	SPLIT	ТҮРЕ	SIZE	DIP	AZI	COMPANY
E70/5160	PGAC0146	230021.13	6887403.8	87.76	47	Hſ	21/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0147	230095.05	6887483.3	90.40	11	Hſ	21/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0148	230307.21	6886986.8	82.14	45	ΗL	21/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0149	230376.83	6887062	89.22	39	ΗL	21/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0150	230519.89	6886498.7	79.33	13	ΗL	22/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0151	230451.7	6887127.1	96.43	39	HL	22/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0152	230594.13	6886567.4	88.06	15.5	Hſ	22/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0153	230663.2	6886647.4	92.23	48	Hſ	22/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0154	230733.14	6886722.2	91.17	45	Hſ	22/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0155	230522.86	6887204.6	98.44	42	ΗL	23/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0156	230592.36	6887274.8	100.78	39	ΗL	23/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0157	230805.22	6886783.8	88.90	42	Hſ	23/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0158	230870.03	6886859.4	91.83	20	ΗL	23/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0159	230946.68	6886926.3	95.41	39	Hſ	23/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0160	231009.8	6887001.7	92.55	42	Hſ	23/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0161	230523.94	6885787	60.68	10	HL	24/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0162	230590.2	6885865.3	66.78	6	Hſ	24/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0163	230661.37	6885929.1	72.16	18	HL	24/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0164	231153.34	6886422.9	91.36	15	ΗL	24/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0165	231441.91	6885287.4	82.95	20	Hſ	24/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0166	231367.44	6885223.8	82.38	13.5	ΗL	25/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0167	231298.18	6885152.4	81.40	20.4	ΗL	26/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0168	231289.88	6885853	88.71	14.9	ΗL	26/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0169	231226.37	6885782.6	85.42	42	Ы	26/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0170	231161.85	6885717.9	79.93	39	Ы	26/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0171	231086.82	6885646.8	76.94	25	Ы	26/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0172	231020.97	6885577.3	73.70	12	JH	26/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0173	230948.75	6885507.4	70.61	39	JH	26/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0174	230891.22	6885446.8	69.01	15	JH	26/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0175	230874.61	6886145.6	91.61	17	JH	27/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0176	230805.09	6886068.7	85.94	17	JH	27/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0177	230736.75	6886003.4	78.19	14	JH	27/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0178	230595.2	6885860.3	66.30	18	JH	27/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0180	230523.94	6885787	60.68	16	ΗL	27/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0181	231085.4	6886354	89.53	28	JΗ	27/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0182	231017.05	6886280.9	85.56	24	ΗL	28/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0183	230943.37	6886212.6	89.15	24	Ы	28/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0184	231148.83	6887131.7	82.22	42	НL	28/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0185	231211.4	6887218.3	83.79	17	НL	28/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0186	231281.65	6887292.5	86.79	39	JH	28/01/2022	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0187	231422.54	6887433.1	94.29	11	JH	28/01/2022	25/75	AC	NQ	90	360	BOSTECH