

22 February 2022

ROX RESOURCES LIMITED

ASX: RXL

Rox Resources Limited (ASX: RXL) is an Australian listed company with advanced gold projects in Western Australia: the Youanmi Gold Project and the Mt Fisher Gold project.

DIRECTORS

Mr Stephen Dennis Chairman

Mr Alex Passmore Managing Director

Dr John Mair Non-Executive Director

Shares on Issue	158.9m
Share Price	\$0.42
Market Cap.	\$66.7m
Cash	\$5.6m
(As at 31 Dec 21)	

Level 2, 87 Colin Street, West Perth WA 6005

+61 8 9226 0044

admin@roxresources.com.au www.roxresources.com.au

Follow Rox:

Near Mine Drilling Delivers High-Grade Results, Youanmi Gold Project

Highlights:

- Drilling down plunge of historical underground workings intersects high gold grades:
 - RXDD031: 3.25m @ 32.22g/t Au from 282m and 4.38m @ 3.65g/t Au from 286.82m
 - RXDD040: 4m @ 10.91g/t Au from 196m and 2.66m @ 11.6g/t Au from 307.15m
 - RXDD037: 1.12m @ 48.01g/t Au from 299.78m
 - RXDD036: 2.09m @ 5.71g/t Au from 281.82m and 3.51m @ 3.54g/t Au from 294.3m
 - RXRC418: 3m @ 3.33g/t Au from 273m and 4m @ 4.78g/t Au from 284m
- Additional results from Link include:
 - RXDD028: 2.7m @ 6.09g/t Au from 206.3m, 3m @ 4.12g/t Au from 309m, 3.24m @ 3.67g/t Au from 323.76m and 3m @ 6.09g/t Au from 348m
- Multiple lodes intersected in hanging wall at Junction:
 - RXDD013: 2.33m @ 17.38g/t Au from 247.93m, 0.7m @ 7.33g/t Au from 400.6m and 0.92m @ 20.86g/t Au from 429.39m
 - RXDD025: 0.45m @ 7.84g/t Au from 411.3m, 1.24m @ 27.67g/t Au from 490m, 1.26m @ 13.29g/t Au from 679.78m, 1m @ 12.25g/t Au from 741m and 0.37m @ 25.38g/t Au from 791.13m
- Results add confidence to the reported resource inventory at Youanmi of 3Moz at 3.78g/t Au (ASX: RXL 20 January 2020) with inferred to indicated resource category conversion likely in key areas.
- Results from 23 RC and 5 Diamond Holes are pending.

West Australian focused gold exploration and development company, Rox Resources Limited ("Rox" or "the Company") **(ASX: RXL)**, in conjunction with its joint venture partner Venus Metals Corporation Limited **(ASX: VMC)**, is pleased to provide an update on drill results from the Youanmi Gold Project near Mt Magnet, WA, in the OYG JV area (Rox 70% and Manager, VMC 30%).

The latest round of drilling results include high gold grades from: (1) near pre-1942 stopes (2) the Link area and (3) hanging wall lodes at Junction.

Managing Director Alex Passmore commented: "The high-grade results reported today add further confidence to our mining scenarios which are being progressively developed. Pleasingly, drilling in near mine areas that were left behind by historical (pre-1942) mining operations when the gold price and mining methods were vastly different to today is showing good widths and grade of mineralisation. Elsewhere in the newly delineated areas of mineralisation (Link and Junction) we continue to prove up the continuity of gold lodes."

High gold grades intersected down plunge of historical underground workings

Drilling was completed to test for extensions to the historically mined high-grade stopes. Results confirm there is potentially a significant source of material down plunge to the northwest (Figure 1).

Highlights from drilling include:

- RXDD031: 3.25m @ 32.22g/t Au from 282m and 4.38m @ 3.65g/t Au from 286.82m
- RXDD040: 4m @ 10.91g/t Au from 196m and 2.66m @ 11.6g/t Au from 307.15m
- RXDD037: 1.12m @ 48.01g/t Au from 299.78m
- RXDD036: 2.09m @ 5.71g/t Au from 281.82m and 3.51m @ 3.54g/t Au from 294.3m
- RXRC418: 3m @ 3.33g/t Au from 273m and 4m @ 4.78g/t Au from 284m

The results define an area of high-grade material within close proximity to existing underground development and serve to convert the inferred resource to indicated status, which is likely to contribute to early production plans.

Additionally, drilling was completed to evaluate the potential to extract the pillars left unmined during pre-1942 mining operations.

Results from pillar drilling include:

- RXDD034: 0.73m @ 38.65g/t Au from 266.6m
- RXDD033: 1.2m @ 5.84g/t Au from 149.6m and 0.35m @ 9.13g/t Au from 154.27m

Results demonstrate that significant grade remains in-situ in the pillars. Potential exists to apply modern mining techniques to extract remnant material in zones that were previously considered not technically feasible.

A scenario is being investigated which involves extending decline rehabilitation to the level under evaluation and then pushing new lateral mine development (i.e. with ground support) into historical workings. On this basis it is envisaged that remnant ore is easily accessible (Figure 1).

Assay results remain pending for 14 RC and 2 diamond holes drilled in near mine areas.

ASX CODE: RXL

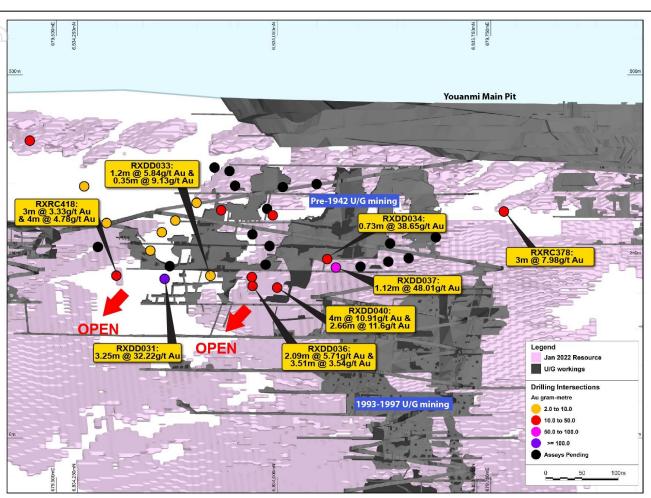


Figure 1: Long section looking northeast showing historically mined stopes and recent drilling results.

Resource Growth at Link Prospect

Drilling at Link is focussed on growing the recently reported resource inventory at Youanmi of 3Moz at 3.78g/t Au (ASX RXL 20 January 2022) through resource conversion and extensional drilling. Results were received from an additional infill diamond hole at Link. RXDD028 intersected 2.7m @ 6.09g/t Au from 206.3m, 3m @ 4.12g/t Au from 309m, 3.24m @ 3.67g/t Au from 323.76m and 3m @ 6.09g/t Au from 348m. RXDD028 was drilled between previously reported holes (RXDD026: 7.25m @ 15.02g/t Au from 315.8m, RXDD018: 6.8m @ 11.98g/t Au from 264m and RXRC412: 8m @ 6.24g/t Au from 249m) with the aim of achieving indicated resource status in the area (Figure 2).

Drilling in this zone is expected to add inventory to the Youanmi indicated resource category in an area with near-term production potential.

Drilling to date at Link has defined a zone of high-grade mineralisation more than 200m from the current resource envelope with extensive down-plunge continuity of high-grade ore zones.

ASX CODE: RXL

E: admin@roxresources.com.au www.roxresources.com.au

600mRL Kurrajong Pit DOR-2 200mRL

Mineralisation at Link is open down plunge to the northwest and up plunge to the southeast (Figure 2).

Results are pending for 8 RC and 3 diamond holes drilled at Link

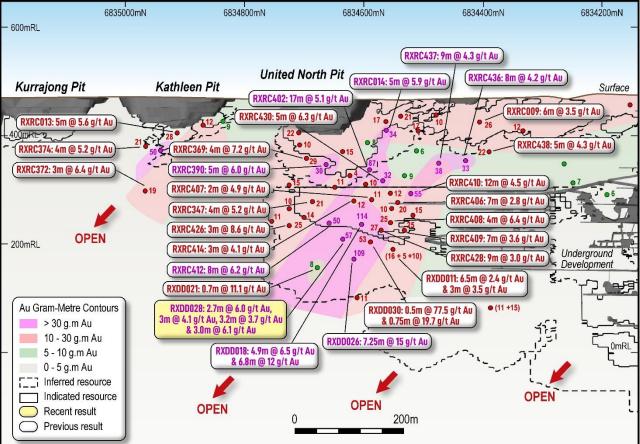


Figure 2: Link target area long-section looking northeast

Multiple Lodes intersected in hanging wall at Junction

Results are reported for two step-out diamond holes at Junction. Recent drilling returned multiple high-grade results in hanging wall shear zones.

Highlights include:

- RXDD013: 2.33m @ 17.38g/t Au from 247.93m, 0.7m @ 7.33g/t Au from 400.6m and 0.92m @ 20.86g/t Au from 429.39m
- RXDD025: 0.45m @ 7.84g/t Au from 411.3m, 1.24m @ 27.67g/t Au from 490m, 1.26m @ 13.29g/t Au from 679.78m, 1m @ 12.25g/t Au from 741m and 0.37m @ 25.38g/t Au from 791.13m

The hanging wall lodes were commonly overlooked by historical operators. These lodes were frequently left unsampled with assays often occurring only on the Mine Shear along the granite margin. The recent high-grade results demonstrate the potential for further economic mineralisation in this area (Figure 3). The new hanging wall positions are open at depth and along strike and follow up drilling is likely to add to growth in overall resource inventory.

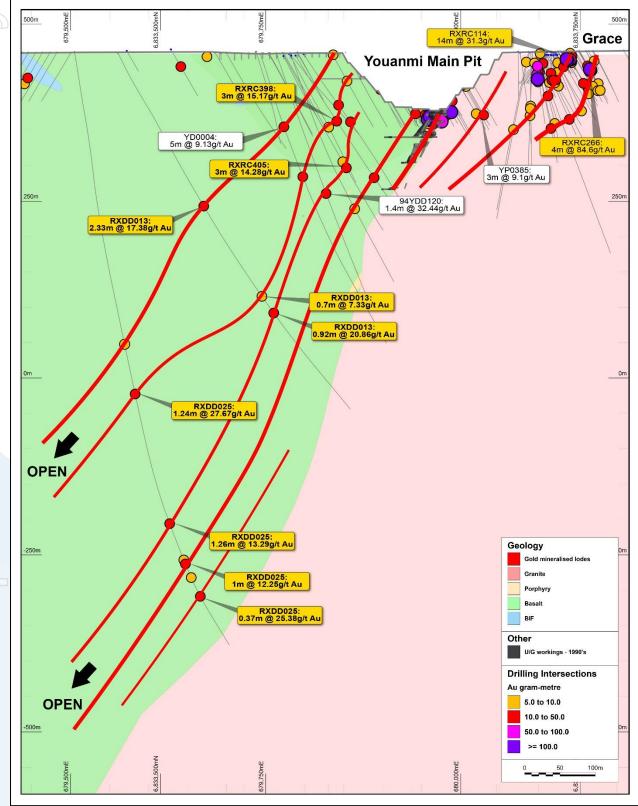


Figure 3: Junction target area cross section looking northwest.

ROX RESOURCES LIMITED Level 2, 87 Colin Street, West Perth WA 6005 +61 8 9226 0044

5

ASX CODE: RXL

E: admin@roxresources.com.au www.roxresources.com.au

Authorised for release to the ASX by the Board of Rox Resources Limited.

*** ENDS ***

For more information:

Alex Passmore Managing Director Rox Resources Limited Tel: +61 8 9226 0044 E: admin@roxresources.com.au Matt Hogan Managing Director Venus Metals Corporation Limited Tel: +61 8 9321 7541

ASX CODE: RXL

E: admin@roxresources.com.au www.roxresources.com.au

Table 1 - Signific	cant Intersection	ons					
Hole ID	Prospect	Drill type	From	to	Interval	Au g/t	Au g.m
RXRC415	Mine Lode	RC	243	245	2	1.14	2.28
RXRC415	Mine Lode	RC	258	266	8	1.01	8.08
RXRC416	Mine Lode	RC	4	8	4	0.5	2
RXRC416	Mine Lode	RC	74	75	1	0.74	0.74
RXRC416	Mine Lode	RC	215	216	1	2.97	2.97
RXRC417	Mine Lode	RC	206	208	2	1.34	2.68
RXRC418	Mine Lode	RC	156	157	1	0.6	0.6
RXRC418	Mine Lode	RC	273	276	3	3.33	9.99
RXRC418	Mine Lode	RC	284	288	4	4.78	19.12
RXRC420	Mine Lode	RC	154	155	1	5.82	5.82
RXRC421	Mine Lode	RC	134	135	1	3.33	3.33
RXRC421	Mine Lode	RC	149	150	1	0.51	0.51
RXRC422	Mine Lode	RC	127	130	3	0.71	2.13
RXRC427	Link	RC	212	216	4	1.26	5.04
RXRC427	Link	RC	221	225	4	0.59	2.36
RXDD013	Junction	DD	247.93	250.26	2.33	17.38	40.51
RXDD013	Junction	DD	400.6	401.3	0.7	7.33	5.13
RXDD013	Junction	DD	429.39	430.31	0.92	20.86	19.19
RXDD025W1	Junction	DD	411.3	411.75	0.45	7.84	3.53
RXDD025W1	Junction	DD	490	491.24	1.24	27.67	34.31
RXDD025W1	Junction	DD	679.78	681.04	1.26	13.29	16.74
RXDD025W1	Junction	DD	733	738	5	1.36	6.8
RXDD025W1	Junction	DD	741	742	1	12.25	12.25
RXDD025W1	Junction	DD	745	746.51	1.51	3.06	4.61
RXDD025W1	Junction	DD	761	764	3	1.95	5.84
RXDD025W1	Junction	DD	791.13	791.5	0.37	25.38	11.8
RXDD028	Link	DD	193	193.98	0.98	2.14	2.09
RXDD028	Link	DD	206.3	209	2.7	6.09	16.44
RXDD028	Link	DD	249.7	251	1.3	2.4	3.11
RXDD028	Link	DD	263.1	270	6.9	1.16	8.04
RXDD028	Link	DD	309	312	3	4.12	12.37
RXDD028	Link	DD	323.76	327	3.24	3.67	11.9
RXDD028	Link	DD	331	339	8	1.78	14.24
RXDD028	Link	DD	348	351	3	6.09	18.28
RXDD029	Link	DD	169	172.41	3.41	1.77	6.05
RXDD029	Link	DD	178.49	179.45	0.96	2.19	2.1
RXDD029	Link	DD	186.82	188.47	1.65	2.3	3.79
RXDD029	Link	DD	216.01	218	1.99	3.82	7.6
RXDD029	Link	DD	229.91	233.87	3.96	1.04	4.1
RXDD029	Link	DD	251	253	2	1.87	3.75
RXDD029	Link	DD	263	265.19	2.19	0.69	1.5
RXDD029	Link	DD	289	291.81	2.81	0.82	2.31
RXDD031	Mine Lode	DD	282	285.25	3.25	32.22	104.72

Table 1 - Significant Intersections							
Hole ID	Prospect	Drill type	From	to	Interval	Au g/t	Au g.m
RXDD031	Mine Lode	DD	286.82	291.2	4.38	3.65	15.99
RXDD031	Mine Lode	DD	303.46	304	0.54	1.03	0.56
RXDD033	Mine Lode	DD	149.6	150.8	1.2	5.84	7.01
RXDD033	Mine Lode	DD	154.27	154.62	0.35	9.13	3.2
RXDD033	Mine Lode	DD	285.5	289.39	3.89	1.92	7.47
RXDD034	Mine Lode	DD	259.34	261.2	1.86	3	5.58
RXDD034	Mine Lode	DD	266.6	267.33	0.73	38.65	28.21
RXDD034	Mine Lode	DD	275.98	277.61	1.63	1.01	1.65
RXDD036	Mine Lode	DD	281.82	283.91	2.09	5.71	11.93
RXDD036	Mine Lode	DD	294.3	297.81	3.51	3.54	12.43
RXDD036	Mine Lode	DD	319.28	320.56	1.28	2.02	2.59
RXDD036	Mine Lode	DD	321.7	322.5	0.8	0.72	0.58
RXDD040	Mine Lode	DD	196	200	4	10.91	43.64
RXDD040	Mine Lode	DD	296.7	297.22	0.52	4.68	2.43
RXDD040	Mine Lode	DD	307.15	309.81	2.66	11.6	30.86
RXDD040	Mine Lode	DD	314.4	316	1.6	1.86	2.98

Table 2	- Collar Loca	ations a	nd Drilling	Details					
Hole ID	Prospect	Drill	East	North	RL	Depth	Dip	Azi	Comments
RXRC415	Mine Lode	RC	679556	6834138	482	294	-57	54	
RXRC416	Mine Lode	RC	679596	6834125	479	280	-58	60	
RXRC417	Mine Lode	RC	679596	6834125	479	240	-52	60	
RXRC418	Mine Lode	RC	679483	6834179	482	312	-60	63	
RXRC419	Mine Lode	RC	679518	6834219	480	252	-60	58	Assays
RXRC420	Mine Lode	RC	679672	6834139	474	222	-73	65	
RXRC421	Mine Lode	RC	679695	6834098	470	200	-63	61	
RXRC422	Mine Lode	RC	679701	6834084	468	200	-54	61	
RXRC423	Mine Lode	RC	679623	6833960	473	240	-50	58	Abandoned
RXRC424	Mine Lode	RC	679609	6833999	472	270	-52	60	Assays
RXRC427	Link	RC	679200	6834573	467	290	-69	73	Assays
RXRC429	Link	RC	679225	6834544	467	290	-68	70	Assays
RXRC431	Link	RC	679315	6834382	466.5	246	-60	60	Assays
RXRC432	Link	RC	679350	6834436	466.5	222	-62	65	Assays
RXRC433	Link	RC	679377	6834557	466	200	-60	65	Assays
RXRC434	Link	RC	679398	6834476	466	210	-61	63	Assays
RXRC435	Link	RC	679397	6834527	466	200	-60	67	Assays
RXRC439	Mine Lode	RC	679709	6834129	469	170	-58	60	Assays
RXRC440	Mine Lode	RC	679715	6834108	468	186	-55	60	Assays
RXRC441	Mine Lode	RC	679694	6834017	466	180	-54	61	Assays
RXRC442	Mine Lode	RC	679694	6834016	466	186	-55	95	Assays
RXRC443	Link	RC	678971	6834791	470	286	-58	63	Assays
RXRC444	Mine Lode	RC	679594	6834014	477	242	-60	58	Abandoneo
RXRC445	Mine Lode	RC	679607	6833875	477	300	-58	82	Assays
RXRC446	Mine Lode	RC	679623	6833861	477	300	-54	78	Assays
RXRC447	Mine Lode	RC	679624	6833861	477	303.5	-61	87	Assays

Hole ID	Prospect	Drill	East	North	RL	Depth	Dip	Azi	Comments
RXRC448	Mine Lode	RC	679604	6833997	472	270	-56	62	Assays
RXRC449	Hanging wall	RC	679658	6833246	457	305	-60	30	Assays
RXRC450	Mine Lode	RC	679595	6834015	476.88	270	-55	60	Assays
RXRC451	Mine Lode	RC	679556	6834137	481	276	-65	65	Assays
RXRC452	Mine Lode	RC	679730	6833779	460	100	-68	40	Assays
RXRC453	Mine Lode	RC	679686.58	679686.58	470	156	-70	65	Assays
RXDD013	Junction	DD	679572	6833456	460	630.4	-63	61	
RXDD025	Junction	DD	679493	6833474	460	870	-80	59	
RXDD028	Link	DD	679157	6834527	467	351.8	-65	65	
RXDD029	Link	DD	679105	6834603	467	315.9	-65	65	
RXDD031	Mine Lode	DD	679515	6834109	482	324.7	-60	57	
RXDD032	Mine Lode	DD	679561	6833996	477	286.9	-58	57	Assays
RXDD033	Mine Lode	DD	679532	6834042	481	330.6	-62	56	
RXDD034	Mine Lode	DD	679598	6833908	475	320.09	-62	57	
RXDD036	Mine Lode	DD	679559	6834004	477	342.2	-65	57	
RXDD037	Mine Lode	DD	679595	6833884	477	311.57	-55	57	
RXDD038	Mine Lode	DD	679605	6833853	478	323.1	-60	54	Assays
RXDD039	Link	DD	679067	6834465	467	408	-69	59	Assays
RXDD040	Mine Lode	DD	679536	6833977	480	354.85	-61	70	
RXDD043	Link	DD	679126	6834409	465	394.5	-61	65	Assays
RXDD044	Link	DD	679099	6834381	465	408.2	-64	68	Assays

Competent Person Statements

Exploration Results

The information in this report that relates to Data and Exploration Results is based on information compiled and reviewed by Mr Gregor Bennett a Competent Person who is a Member of the Australian Institute Geoscientists (AIG) and Exploration Manager at Rox Resources. Mr Bennett has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he has undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Bennett consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Where reference is made to previous releases of exploration results in this announcement, the Company confirms that it is not aware of any new information or data that materially affects the information included in those announcements and all material assumptions and technical parameters underpinning the exploration results included in those announcements continue to apply and have not materially changed.

The information in this report that relates to previous Exploration Results, was either prepared and first disclosed under the JORC Code 2004 or under the JORC Code 2012 and has been properly and extensively cross-referenced in the text to the date of the original announcement to the ASX. In the case of the 2004 JORC Code Exploration Results and Mineral Resources, they have not been updated to comply with the JORC Code 2012.

Resource Statements

The information in this report that relates to gold Mineral Resources for the Youanmi Project was reported to the ASX on 20 January 2022 (JORC 2012). Rox confirms that it is not aware of any new information or data that materially affects the information included in the announcement of 20 January 2022, and that all material assumptions and technical parameters underpinning the estimates in the announcement of 20 January 2022 continue to apply and have not materially changed.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Rox Resources Limited planned exploration program(s) and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward looking statements.

About Rox Resources

Rox Resources (ASX:RXL) is a West Australian focused gold exploration and development company. It is the 70 per cent owner and operator of the historic Youanmi Gold Project near Mt Magnet, approximately 480 kilometres northeast of Perth, and wholly-owns the Mt Fisher Gold project approximately 140 kilometres southeast of Wiluna. Youanmi has a Total Mineral Resource of 2,994 koz of contained gold, with potential for further expansion with the integration of existing prospects into the Resource and further drilling. Youanmi was a high-grade gold mine and produced 667,000ozof gold (at 5.47 g/t Au) before it closed in 1997. Youanmi is classified as a disturbed site and is on existing mining leases which has significant existing infrastructure to support a return to mining operations.

JORC Table 1 - Section 1 Data and	d Sampling Techniques
-----------------------------------	-----------------------

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	 RC hole diameter was 5.5" (140 mm) reverse circulation percussion (RC). Sampling of RC holes was undertaken by collecting 1m cone split samples at intervals. Diamond drill hole core size is NQ2 size diameter through the mineralisation. Sampling of diamond holes was by cut half core as described further below. Drill holes were generally angled at -65^o towards grid northeast (but see Table for individual hole dips and azimuths) to intersect geology as close to perpendicular as possible.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used	Drillhole locations were picked up by differential GPS. Logging of drill samples included lithology, weathering, texture, moisture and contamination (as applicable). Sampling protocols and QAQC are as per industry best practice procedures.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases	RC drillholes were sampled on 1m intervals using a cone splitter. Diamond core is dominantly NQ2 size, sampled on geological intervals, with a minimum of 0.2 m up to a maximum of 1.2 m. HQ and NQ2 holes were cut in half, with one half sent to the lab and one half retained.
	more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	Samples were sent to Intertek Genalysis in Perth, crushed to 10mm, dried and pulverised (total prep) in LM5 units (Some samples > 3kg were split) to produce a sub-sample. RC and diamond pulps were analysed by 50g Fire Assay with ICP-OES (Intertek code FA50/OE).
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Drilling technique was Reverse Circulation (RC) and diamond core (DD). The RC hole diameter was 140mm face sampling hammer. Hole depths reported range from 200m to 300m for RC and 350m to 700m for diamond.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed	RC drill recoveries were high (>90%).
	Measures taken to maximise sample recovery and ensure representative nature of the samples	Samples were visually checked for recovery, moisture and contamination and notes made in the logs.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no observable relationship between recovery and grade, and therefore no sample bias.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Detailed geological logs have been carried out on all RC, but no geotechnical data have been recorded (or is possible to be recorded due to the nature of the sample). Detailed geological and geotechnical logs were carried out on all diamond drill holes for recovery, RQD, structures etc. which included structure type, dip, dip direction, alpha angle, beta angle, texture, shape, roughness, fill material, and this data is stored in the database.
		The geological data would be suitable for inclusion in a Mineral Resource estimate.

JORC Table 1 - Section 1 Data and Sampling Techniques

Criteria	JORC Code explanation	Commentary
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Logging of diamond core and RC chips recorded lithology mineralogy, mineralisation, weathering, colour, and othe sample features. RC chips are stored in plastic RC chip trays.
	The total length and percentage of the relevant intersections logged	All holes were logged in full.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Drill core was cut in half on site using a core saw. Al samples were collected from the same side of the core preserving the orientation mark in the kept core half.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples were collected on the drill rig using a cone splitter. If any mineralised samples were collected wet these were noted in the drill logs and database.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The sample preparation followed industry best practice. Fire Assay samples were dried, coarse crushing to ~10mm followed by pulverisation of the entire sample in an LM5 o equivalent pulverising mill to a grind size of 85% passing 75 micron.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Field QC procedures involve the use of Certified Reference Materials (CRM's) as assay standards, along with duplicates and blank samples. The insertion rate of these was approximately 1:20.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	For RC drilling field duplicates were taken on a routine basis at an approximate 1:20 ratio using the same sampling techniques (i.e. cone splitter) and inserted into the sample run. No diamond core field duplicates were taken.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered more than adequate to ensure that there are no particle size effects relating to the grain size of the mineralisation which lies in the percentage range.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The analytical technique involved Fire Assay 50g.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical or portable analysis tools were used to determine assay values stored in the database.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Internal laboratory control procedures involve duplicate assaying of randomly selected assay pulps as well as internal laboratory standards. All of these data are reported to the Company and analysed for consistency and any discrepancies.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Senior personnel from the Company have visually inspected mineralisation within significant intersections.
	The use of twinned holes.	Two twin RC holes have been completed at the Grace Prospect and confirm reliability of previous results.

JORC Table 1 - Section	1 Data and Sampling	Techniques
------------------------	---------------------	------------

Criteria	JORC Code explanation	Commentary
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary data was collected using a standard set of Excel templates on Toughbook laptop computers in the field. These data are transferred to Geobase Pty Ltd for data verification and loading into the database.
-	Discuss any adjustment to assay data.	No adjustments or calibrations have been made to any assay data.
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole locations have been established using a field GPS unit.
-	Specification of the grid system used.	The grid system is MGA_GDA94, zone 50 for easting, northing and RL.
-	Quality and adequacy of topographic control.	The topography of the mined open pits is well defined by historic monthly survey pickups
Data spacing and distribution	Data spacing for reporting of Exploration Results.	RC and diamond drill hole spacing varies 40-200 metres between drill sections, with some areas at 40 metre drill section spacing. Down dip step-out distance varies 20-100 metres.
-	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Data spacing and distribution are sufficient to establish the degree of geological and grade continuity appropriate for JORC(2012) classifications applied.
-		No sample compositing has occurred for diamond core drilling. Sample intervals are based on geologica boundaries with even one metre samples between.
	Whether sample compositing has been applied.	For RC samples, 1m samples through target zones were sent to the laboratory for analysis. The remainder of the hole was sampled using 4m composite samples. For 4m composite samples >0.2g/t Au, 1m samples were collected and sent to the laboratory for analysis.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The mineralisation strikes generally NNW-SSE and dips to the west at approximately -50 degrees. The drill orientation was 065 and 245 degrees and -60 to -90 dip. Drilling is believed to be generally perpendicular to strike.
-	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No sampling bias is believed to have been introduced.
Sample security	The measures taken to ensure sample security.	Sample security is managed by the Company. After preparation in the field samples are packed into polyweave bags and despatched to the laboratory. For a large number of samples these bags were transported by the Company directly to the assay laboratory. In some cases the sample were delivered by a transport contractor the assay laboratory. The assay laboratory audits the samples or arrival and reports any discrepancies back to the Company. No such discrepancies occurred.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits have yet been completed.

JORC Table 1 - Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Rox Resources Ltd is in a Joint Venture Agreement with Venus Metals Corporation Ltd under which it has a 70% interest in the Youanmi Gold Mine Joint Venture (OYG Joint Venture). Tenements in the JV consist of the following mining leases: M 57s /10, 51,76,97,109, 135, 160A, 164, 165, 166 and 167.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Significant previous exploration has been carried out throughout the project by various companies, including AC/RAB, RC drilling and diamond drilling 1971-1973 WMC: RAB, RC and surface diamond drilling 1976 Newmont: 10 surface diamond drilling (predominantly targeting base metals). 1980-1986 BHP: RAB, RC and surface diamond drilling (predominantly targeting base metals). 1986-1993 Eastmet: RAB, RC and surface diamond drilling. 1993-1997 Goldmines of Australia: RAB, RC and surface diamond drilling. 2000-2003 Aquila Resources Ltd: Shallow RAB and RC drilling 2004-2005 Goldcrest Resources Ltd: Shallow RAB and RC drilling; data validation. 2007- 2013 Apex Minerals NL: 9 diamond holes targeting extensions to the Youanmi deeps resource.

Criteria	JORC Code explanation	Commentary
	Deposit type, geological setting and style of mineralisation.	The Youanmi Project straddles a 40km strike length of the Youanmi Greenstone Belt, lying within the Southern Cross Province of the Archaean Yilgarn Craton in Western Australia. The greenstone belt is approximately 80km long and 25km wide, and incorporates an arcuate, north-trending major crustal structure termed the Youanmi Fault Zone. This structure separates two discordant greenstone terrains, with the stratigraphy to the west characterised by a series of weakly deformed, layered mafic complexes (Windimurra Black Range, Youanmi and Barrambie) enveloped by strongly deformed, north-northeast trending greenstones. Gold mineralisation is developed semi-continuously in sheat zones over a strike length of 2,300m along the western margin of the Youanmi granite. The Youanmi gold lodes are invariably associated with a high pyrite and arsenopyrite content. There are a series of major fault systems cutting through the Youanmi trend mineralisation that have generated some significant off-sets. The Youanmi Deeps project area is subdivided into three main areas or fault blocks by cross-cutting steep south-ease trending faults; and these are named Pollard, Main, and Hi End from south to north respectively. Granite hosted gold mineralisation occurs at several sites most notably Grace and the Plant Zone Prospects. Gold mineralization occurs as free particles within quartz-sericite altered granite shear zones. The Commonwealth-Connemarra mineralised trend is centred 4km northwest of the Youanmi plant. The geology comprises a sequence of folded mafic and felsic volcanie rocks intercalated with BIF and intruded by granite along the eastern margin. Gold mineralisation is developed over a 600m strike length, associated with a north trending and steeply west dipping shear zone that traverses the northwest trending succession.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	Refer to drill results Table/s and the Notes attached thereto
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	All reported assay intervals have been length weighted. No top cuts have been applied. A lower cut-off of 0.5g/t Au was applied for RC and diamond core.
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Mineralisation over 0.5g/t Au has been included ir aggregation of intervals for RC and diamond core.
	The assumptions used for any reporting of metal	No metal equivalent values have been used or reported.

JORC Table 1 - Section 2 Reporting of Exploration Results

ASX CODE: RXL

JORC Table 1 - Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	The mineralisation strikes generally NNW-SSE and dips to the west at approximately -50 degrees. The drill orientation was 065 and 245 degrees and -60 to -90 dip. Drilling is believed to be generally perpendicular to strike. Given the angle of the drill holes and the interpreted dip of the host rocks and mineralisation (see Figures in the text), reported intercepts approximate true width.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures and Table in the text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Representative reporting of both low and high grades and widths is practiced.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All meaningful and material information has been included in the body of the announcement.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	Further work (RC and diamond drilling) is justified to locate extensions to mineralisation both at depth and along strike.