

Further High-Grade Gold at Marymia Open-Pits

All results from first-phase open drilling campaign received

Highlights

- Results from final 3 open-pits in 1st phase open-pit drilling campaign received from the Redfin, Speckled and Kookaburra open pits
- Significant gold results returned from each pit which have extended previous known mineralised gold zones to depth at each pit
 - High-grade gold intersected at the Redfin Pit;
- 3m @ 5.8g/t Au from 126m in VRERC0001 incl 1m @ 12.2 g/t Au from 127m
 These results appear to be controlled by a major shear which has not been well tested by previous drilling
- Drilling below the Speckled open pit also returned significant gold and elevated gold along a persistent mineralised structure, including:
 - o 2m at 2.8 g/t Au from 26m in VSPRC0002
 - o 3m at 1.9 g/t Au from 113m in VSPRC0004 incl. 1m at 4.3 g/t Au from 113m
- Drilling at Kookaburra confirmed the continuation of the mineralisation at depth, including 3m at 1.2 g/t Au from 59m in VKORC0001
- All results are in addition to historic drilling at these open-pits highlight results
 of historical drilling are included in this announcement and will be included in a
 planned Marymia JORC resource upgrade due in H1, 2022
- Second-phase drilling completed at Skyhawk and Parrot open-pits- results pending

Vango Mining Limited (Vango, ASX: VAN, Company) is pleased to announce results from the final three targets from its extensive first-phase open-pit focused drilling campaign at the Company's flagship Marymia Gold Project (Marymia, the Project) in the Mid-West region of Western Australia.

The latest results are from the Redfin, Speckled and Kookaburra open-pit targets, and include further high-grade gold results, at the Redfin open-pit (Figure 5).

These results complement the Company's previously announced results from the first eight openpits, which have extended unmined mineralised gold zones at depth at each pit, and has already resulted in further drilling at the Skyhawk and Parrot open-pits with results pending.

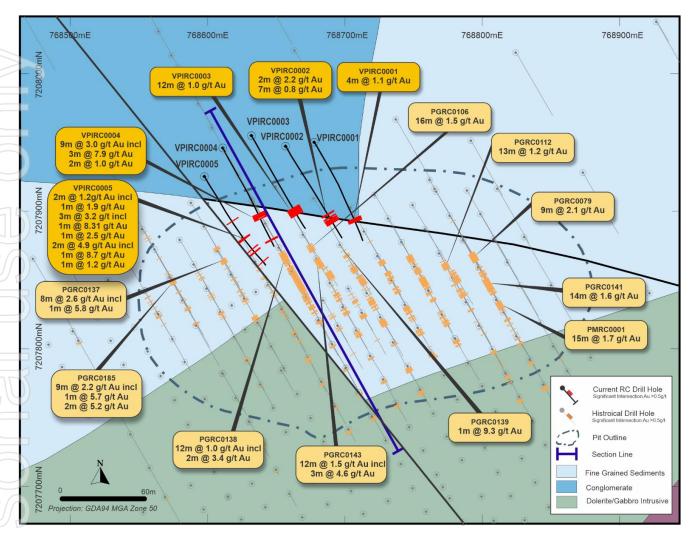


Figure 1 Plan View Redfin Open-Pit Area

Redfin Open Pit

The Redfin pit was targeted with five drillholes in the first-phase open-pit focused resource extension drilling program. Significant results were received from 4 of the 5 holes as detailed below (Figures 1 and 2):

- o 3m @ 5.8g/t Au from 126m in VRERC0001 incl 1m @ 12.2 g/t Au from 127m
- 5m @ 1.2g/t Au from 92m in VRERC0001 1m @ 2.4g/t Au from 92m and 1m @ 3.3g/t
 Au from 96m
- 3m @ 1.5g/t Au from 104m in VRERC0001
- 1m @ 2.7g/t Au from 78m in VRERC0002
- 1m @ 0.7g/t Au from 96m in VRERC0002
- 5m @ 0.7g/t Au from 125m in VRERC0002 incl 1m @ 1.9g/t Au from 125m and 1m @ 1.2g/t Au from 129m
- 3m @ 1.4g/t Au from 137m in VRERC0002
- o 1m @ 1.1g/t Au from 132m in VRERC0003
- 1m @ 1.3g/t Au from 81m in VRERC0005

The results from these holes showed the continuity of a strong gold zone that broadly follows an interpreted mineralised structure following the contact between sediments and mafic packages.

Results from this drilling will significantly enhance the understanding of the primary zone and the controls on the high-grade mineralisation at Redfin. Importantly, the results also extend the known mineralisation beneath the existing pit, which includes the following highlighted historical intersections:

- 18m at 2.4 g/t Au from 79m in FRC1341
- o 11m at 5.9 g/t Au from 89m in FRC1342
- 10m at 2.8 g/t Au from 90m in FRC1363
- o 12m at 4.3 g/t Au from 126m in FRC1504

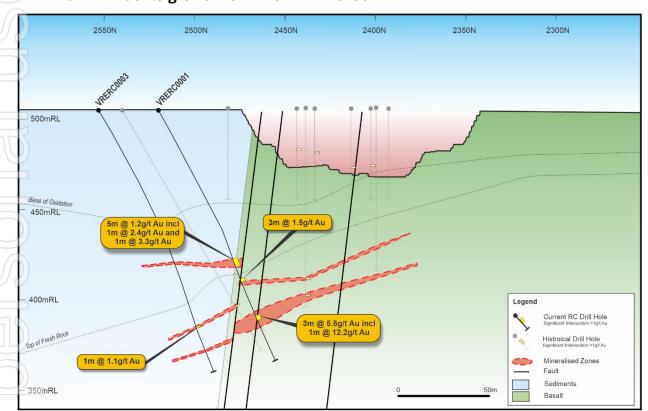


Figure 2 Cross-section Redfin 5400E

Speckled Open Pit

Results from five 5 holes drilled during the phase 1 program at the Speckled pit have also been received. Significant results were received from all five holes as detailed below (Figure 3):

- 1m at 0.6 g/t Au from 64m in VSPRC0001
- o 2m at 2.8 g/t Au from 26m in VSPRC0002
- 2m at 1.1 g/t Au from 92m in VSPRC0002
- 1m at 0.5 g/t Au from 65m in VSPRC0003
- 1m at 0.8 g/t Au from 129m in VSPRC0003
- o 1m at 0.8 g/t Au from 156m in VSPRC0003
- o 5m at 0.8 g/t Au from 50m in VSPRC0004 incl. 1m at 1.4 g/t Au from 54m

- o 3m at 1.9 g/t Au from 113m in VSPRC0004 incl. 1m at 4.3 g/t Au from 113m
- o 5m at 0.7 g/t Au from 47m in VSPRC0005 incl. 1m at 2.4 g/t Au from 51m
- 1m at 0.6 g/t Au from 112m in VSPRC0005

Historical drilling outside the Speckled pit includes several good gold zones including:

- 9m at 1.8 g/t Au from 54m in FRC9616
- 7m at 3.8 g/t Au from 60m in FRC9709
- 10m at 2.5 g/t Au from 25m in FRC9716
- 5m at 2.7 g/t Au from 74m in FRC9787
- 5m at 2.5 g/t Au from 78m in FRC9793

The results at Speckled show the continuity of the structure along the contact between sediments and mafics once again, with a varying tenor of gold mineralisation.

The persistent occurrence of gold in this setting throughout the drilling is encouraging, and these results will be further integrated with the previous drilling in the area to determine the potential for any significant resources. While encouraged by these results this area is likely to be a lower priority target for future drilling phases.

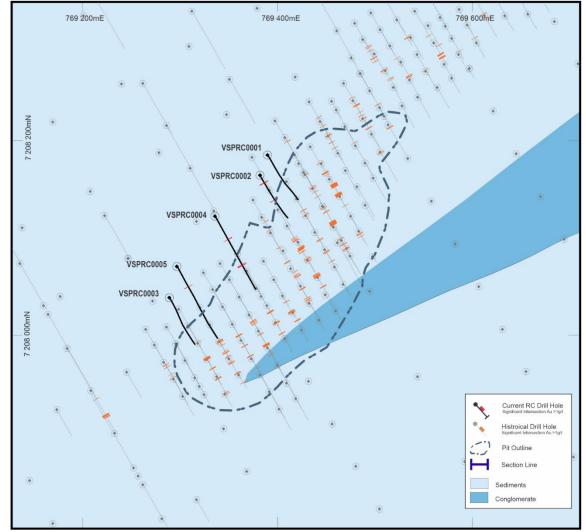


Figure 3 Speckled drill plan 2021 drilling

Kookaburra Open Pit

Results from four holes drilled at the Kookaburra pit, the final pit from the phase 1 drilling program, have also been received. Results showed once again further mineralisation adjacent and below the pit, but at a lower tenor to that in the oxide zone previously mined. The best intercept was 3m at 1.2 g/t Au from 59m in VKORC0001.

All Significant results are detailed below with 3 of the 4 holes hitting the mineralised target (Figure 4):

- 3m at 1.2 g/t Au from 59m in VKORC0001
- o 1m at 0.8 g/t Au from 53m in VKORC0002
- 1m at 0.8 g/t Au from 70m in VKORC0004

There are several wide gold intercepts from previous drilling outside the existing pit, including:

- o 3m at 1.2 g/t Au from 47m in KBRC0009
- 16m at 2.0 g/t Au from 25m in KBRC0019
- 18m at 1.0 g/t Au from 42m in PBRC0079
- 4m at 7.1 g/t Au from 47m in PBRC0118

These results will be further modelled to determine if further work is warranted.

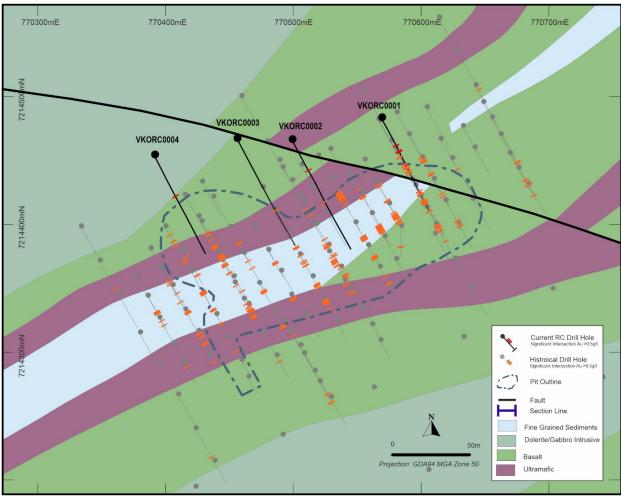


Figure 4 Kookaburra Open Pit 2021 drilling

Table 1 2021 Drilling Collar information

Pit	HoleID	MGA E	MGA N	RL	North	East	Depth	Dip	Az
REDFIN	VRERC0001	7198635	757897	584	2520	5395	153	-62	152
REDFIN	VRERC0002	7198630	757881	584	2523	5379	147	-60	152
REDFIN	VRERC0003	7198667	757886	584	2553	5401	159	-60	152
REDFIN	VRERC0004	7198625	757839	584	2539	5340	171	-60	152
REDFIN	VRERC0005	7198594	757829	584	2517	5316	129	-59	153
KOOKABUR	VKORC0001	7214483	770569	594	10201	24168	171	-61	152
KOOKABUR	VKORC0002	7214466	770499	594	10220	24098	196	-61	152
KOOKABUR	VKORC0003	7214467	770456	594	10242	24061	213	-61	153
KOOKABUR	VKORC0004	7214454	770391	594	10262	23998	165	-60	152
SPECKLED	VSPRC0001	7208185	769390	600	5273	20076	159	-72	149
SPECKLED	VSPRC0002	7208164	769382	600	5259	20059	159	-71	149
SPECKLED	VSPRC0003	7208039	769289	600	5195	19917	177	-72	152
SPECKLED	VSPRC0004	7208122	769336	600	5245	19998	171	-60	151
SPECKLED	VSPRC0005	7208071	769297	600	5219	19940	177	-61	152

Open-Pit Focused Drilling Campaign Progress and Next Steps

Vango targeted 11 priority open-pits in an extensive open-pit focused drilling campaign in 2021. Drilling was designed to add resources to the substantial existing Marymia resource base, and to assist in delivering 'critical mass' to Marymia's resource base to support a proposed stand-alone mining operation at the Project.

The first phase of drilling in all 11 open pits has now been completed and consisted of 8,914 metres of RC drilling across 56 holes. All results from the first-phase campaign have now been received and reported.

Vango will now conduct follow-up, second phase drilling at targets that have delivered positive results from the completed first round of drilling, to test for further extensions of gold mineralisation to add to the Marymia resource base.

Second-phase drilling has already been competed at the Skyhawk and Parrot open-pits, and results are pending.

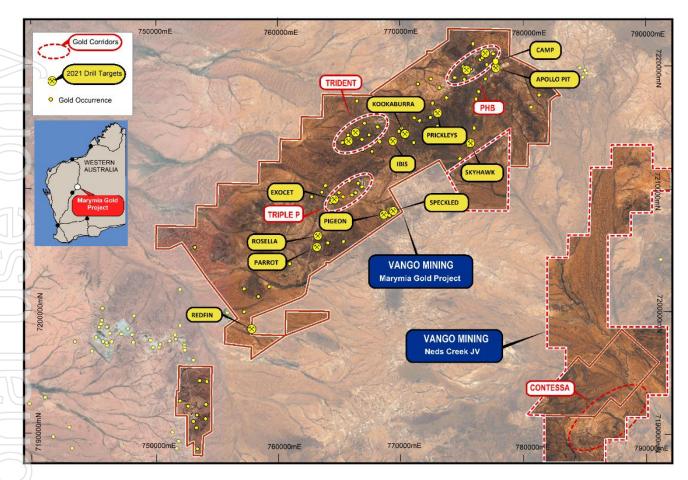


Figure 5 Marymia Gold Project showing the 11 priority open pits.

Authorised for release by the Chairman of Vango Mining Limited.

-ENDS-

For further information, contact:

Bruce McInnes James Moses
Chairman Investor Relations

info@vangomining.com james@mandatecorporate.com.au

+61 418 183 466 +61 420 991 574

The information in this announcement is extracted from reports lodged as market announcements available on the Company's website https://vangomining.com/.

The Company confirms that it is not aware of any new information that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original market announcements.

About Vango Mining

Vango Mining Limited (ASX: VAN) is a minerals exploration mining company with ambitions of becoming a high-grade WA gold miner by developing the 100% owned Marymia Gold Project (**Marymia**) in the mid-west region of Western Australia. The Project comprises 45 granted mining leases over an area of 325.08km². It has an established high-grade resource of 1Moz @ 3g/t Au¹, underpinned by the Trident Deposit, whose resource is 410koz @ 8g/t Au, with immediate extensions open at depth/along strike.

The Marymia Project has the potential to become a significant Australian high-grade producer. The Greenstone Belt in the Marymia region includes six major gold corridors, which remain largely un-tested beyond 100m depth supported with an extensive drilling and geophysical database. Previous mining between 1992-2001, produced 580,000 ounces of gold almost entirely from open-pits.

Vango is focused on growing its high-grade gold resource to support a proposed stand-alone gold mining and production operation at Marymia. The Project is located along strike, immediately to the north of Superior Gold's (TSX-V: SGI) Plutonic Gold Mine which has produced more than 5.5Moz of gold².

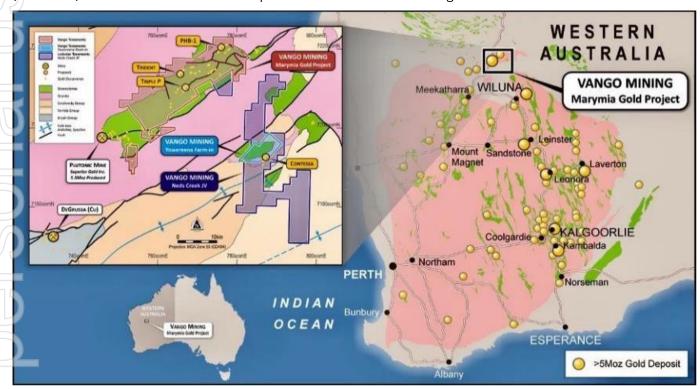


Figure 5 Location of Marymia Gold Project in the Yilgarn block of Western Australia.

² Superior Gold Inc., TSX-V:SGI, Corporate Website www.superior-gold.com

¹ VAN ASX 20/05/20 "Vango Mineral Increases to One Million Ounces"

JORC compliant Mineral Resource Estimate (ASX Announcement dated 20 May 2020)

N	MARYMIA GOLD PROJECT JORC 2012 MINERAL RESOURCE ESTIMATE – MAY 2020									
Deposit	Cut-off		Indicated			Inferred			Total	
Mineral Resource	Au g/t	Κt	g/t	K oz	Κt	g/t	Oz	Kt	g/t	K oz
Open Pits	0.5	5,300	1.8	311	2,950	1.6	150	8,250	1.7	461
Underground	3.0	1,142	9.6	352	992	5.9	189	2,134	7.9	541
Total		6,442	3.2	663	3,942	2.7	339	10,384	3.0	1,002

^{*} VAN confirms all material assumptions and technical parameters underpinning the Resource Estimate and Reserve continue to apply, and have not materially changed as per Listing Rule 5.23.2

Mineral Resources reported in accordance with the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (Joint Ore Reserves Committee Code – JORC 2012 Edition). Open pit resources reported within optimised conceptual pit shells at A\$2,500/oz gold price above a 0.5 g/t Au cut off and include oxide, transition and fresh material.

Trident underground resources are retained as first reported 18 April 2019³ above a 3.0 g/t Au cut-off grade, and modelled at a gold price of A\$2,000/oz, on the basis that the information has not materially changed since last reported. Other underground resources reported above a 3.0 g/t Au cut off (with minor 2.5 g/t Au cut-off material included for continuity purposes) and includes fresh material only. Totals may differ due to rounding, Mineral Resources reported on a dry in-situ basis.

Competent Persons Statements

The Statement of Mineral Resource Estimates has been compiled by Dr. Spero Carras who is a full-time employee of Carras Mining Pty Ltd and a Fellow of the Australian Institute of Mining and Metallurgy ("FAusIMM"). Dr. Carras has sufficient experience, including over 40 years' experience in gold mine evaluation, relevant to the style of mineralisation and type of deposits under consideration to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee ("JORC") Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves. Dr. Carras consents to the inclusion in this report of the matters based on this information in the form and context in which it appears. The information in this report that relates to exploration results has been reviewed, compiled and fairly represented by Mr David Jenkins, a Member of the Australian Institute of Geologists and a full time employee of Terra Search Pty Ltd. Mr Jenkins has sufficient experience, including over 29 years' experience in exploration and resource evaluation relevant to the style of mineralisation and type of deposits under consideration to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee ('JORC') Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves. Mr Jenkins consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.

Forward Looking Statements

This announcement contains 'forward-looking information' that is based on the Company's expectations, estimates and projections as of the date on which the statements were made. This forward-looking information includes, among other things, statements with respect to the Company's business strategy, plans, development, objectives, performance, outlook, growth, cash flow, projections, targets and expectations, mineral reserves and resources, results of exploration and related expenses. Generally, this forward-looking information can be identified by the use of forward-looking terminology such as 'outlook', 'anticipate', 'project', 'target', 'potential', 'likely', 'believe', 'estimate', 'expect', 'intend', 'may', 'would', 'could', 'should', 'scheduled', 'will', 'plan', 'forecast', 'evolve' and similar expressions. Persons reading this announcement are cautioned that such statements are only predictions, and that the Company's actual future results or performance may be materially different. Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the Company's actual results, level of activity, performance or achievements to be materially different from those expressed or implied by such forward-looking information.

³ ASX: VAN 18/04/2019 "New High-Grade Trident Gold Resource Upgrade"

Table 2 Significant Assays current announcement

Pit	Hole ID	Sample	From	То	Samp Type	Au	Au1
KOOKABUR	VKORC0001	2022311	42	46	СОМР	0.008	
KOOKABUR	VKORC0001	5311415	46	47	INT	0.016	
KOOKABUR	VKORC0001	2022312	46	50	СОМР	0.274	
KOOKABUR	VKORC0001	5311416	47	48	INT	0.407	
KOOKABUR	VKORC0001	5311417	48	49	INT	0.063	
KOOKABUR	VKORC0001	5311418	49	50	INT	0.5	
KOOKABUR	VKORC0001	5311421	50	51	DUP	0.031	
KOOKABUR	VKORC0001	5311419	50	51	INT	0.033	
KOOKABUR	VKORC0001	2022313	51	55	СОМР	0.182	
KOOKABUR	VKORC0001	2022314	55	59	СОМР	0.24	
KOOKABUR	VKORC0001	5311427	55	56	INT	0.479	
KOOKABUR	VKORC0001	5311428	56	57	INT	0.244	
KOOKABUR	VKORC0001	5311429	57	58	INT	0.253	
KOOKABUR	VKORC0001	5311430	58	59	INT	0.136	
KOOKABUR	VKORC0001	5311431	59	60	INT	2.257	
KOOKABUR	VKORC0001	5311432	60	61	INT	0.534	
KOOKABUR	VKORC0001	5311433	61	62	INT	0.736	
KOOKABUR	VKORC0001	5311434	62	63	INT	0.093	
KOOKABUR	VKORC0001	2022315	63	67	СОМР	0.096	
KOOKABUR	VKORC0001	5311441	67	68	DUP	0.019	
KOOKABUR	VKORC0002	2022340	41	45	СОМР	0.01	
KOOKABUR	VKORC0002	2022341	45	49	COMP	0.121	
KOOKABUR	VKORC0002	5311621	49	50	DUP	0.327	
KOOKABUR	VKORC0002	5311619	49	50	INT	0.491	
KOOKABUR	VKORC0002	5311623	50	51	INT	0.057	
KOOKABUR	VKORC0002	2022342	50	54	СОМР	0.213	
KOOKABUR	VKORC0002	5311624	51	52	INT	0.037	
KOOKABUR	VKORC0002	5311625	52	53	INT	0.028	
KOOKABUR	VKORC0002	5311626	53	54	INT	0.826	
KOOKABUR	VKORC0002	2022343	54	58	СОМР	0.048	
KOOKABUR	VKORC0002	2022344	58	62	СОМР	0.021	
KOOKABUR	VKORC0002	5311635	62	63	INT	0.025	
KOOKABUR	VKORC0002	5311636	63	64	INT	0.005	
KOOKABUR	VKORC0002	5311756	164	165	INT	0.02	
KOOKABUR	VKORC0002	5311757	165	166	INT	0.069	

	Pit	Hole ID	Sample	From	То	Samp Type	Au	Au1
	KOOKABUR	VKORC0002	5311758	166	167	INT	0.298	
	KOOKABUR	VKORC0002	5311761	167	168	DUP	0.16	
	KOOKABUR	VKORC0002	5311759	167	168	INT	0.259	
	KOOKABUR	VKORC0002	5311763	168	169	INT	0.029	
	KOOKABUR	VKORC0002	5311764	169	170	INT	-0.005	
	KOOKABUR	VKORC0002	5311765	170	171	INT	-0.005	
74	KOOKABUR	VKORC0003	5311819	22	23	INT	0.071	
L	KOOKABUR	VKORC0003	5311821	22	23	DUP	0.605	
	KOOKABUR	VKORC0003	2022358	23	27	COMP	0.056	
7	KOOKABUR	VKORC0003	2022359	27	31	COMP	0.009	
	KOOKABUR	VKORC0004	2022395	65	69	COMP	0.014	
	KOOKABUR	VKORC0004	5312127	69	70	INT	0.045	
	KOOKABUR	VKORC0004	5312128	70	71	INT	0.764	
_	KOOKABUR	VKORC0004	5312129	71	72	INT	0.1	
	KOOKABUR	VKORC0004	5312130	72	73	INT	0.034	
	KOOKABUR	VKORC0004	5312131	73	74	INT	0.018	
	REDFIN	VRERC0001	DG24892	90	91	INT	0.016	
	REDFIN	VRERC0001	DG24893	91	92	INT	0.145	
	REDFIN	VRERC0001	DG24894	92	93	INT	2.43	
/	REDFIN	VRERC0001	DG24895	93	94	INT	0.039	
	REDFIN	VRERC0001	2022111	93	97	COMP	1.07	
	REDFIN	VRERC0001	DG24896	94	95	INT	0.162	
	REDFIN	VRERC0001	DG24897	95	96	INT	0.083	
	REDFIN	VRERC0001	DG24898	96	97	INT	3.34	
	REDFIN	VRERC0001	DG24901	97	98	DUP	0.076	
	REDFIN	VRERC0001	DG24899	97	98	INT	0.133	
	REDFIN	VRERC0001	2022112	98	102	COMP	0.063	
	REDFIN	VRERC0001	DG24907	102	103	INT	0.021	
	REDFIN	VRERC0001	DG24908	103	104	INT	0.144	
	REDFIN	VRERC0001	DG24909	104	105	INT	1.26	
	REDFIN	VRERC0001	DG24910	105	106	INT	2.238	
	REDFIN	VRERC0001	DG24911	106	107	INT	0.913	
	REDFIN	VRERC0001	DG24912	107	108	INT	0.082	
	REDFIN	VRERC0001	DG24913	108	109	INT	0.072	
	REDFIN	VRERC0001	DG24914	109	110	INT	0.022	
	REDFIN	VRERCO001	DG24929	121	122	INT	0.025	

	Pit	Hole ID	Sample	From	То	Samp Type	Au	Au1
\geq	REDFIN	VRERC0001	DG24930	122	123	INT	0.034	
	REDFIN	VRERC0001	DG24931	123	124	INT	0.448	
	REDFIN	VRERC0001	DG24932	124	125	INT	0.014	
	REDFIN	VRERC0001	DG24933	125	126	INT	0.234	
	REDFIN	VRERC0001	DG24934	126	127	INT	3.118	3.198
	REDFIN	VRERC0001	DG24935	127	128	INT	12.179	12.768
74	REDFIN	VRERC0001	DG24936	128	129	INT	1.994	
L	REDFIN	VRERC0001	DG24937	129	130	INT	0.22	
7	REDFIN	VRERC0001	DG24938	130	131	INT	0.283	
1	REDFIN	VRERC0001	DG24941	131	132	DUP	0.293	
	REDFIN	VRERC0001	DG24939	131	132	INT	0.361	
	REDFIN	VRERC0001	DG24943	132	133	INT	0.269	
	REDFIN	VRERC0001	DG24944	133	134	INT	0.055	
_	REDFIN	VRERC0001	DG24945	134	135	INT	0.048	
6	REDFIN	VRERC0002	5310091	76	77	INT	0.032	
	REDFIN	VRERC0002	2022133	76	80	СОМР	0.58	
	REDFIN	VRERC0002	5310092	77	78	INT	-0.005	
	REDFIN	VRERC0002	5310093	78	79	INT	2.66	
	REDFIN	VRERC0002	5310094	79	80	INT	0.165	
/[REDFIN	VRERC0002	5310113	95	96	INT	0.097	
	REDFIN	VRERC0002	5310114	96	97	INT	0.681	
74	REDFIN	VRERC0002	5310148	124	125	INT	0.013	
L	REDFIN	VRERC0002	5310149	125	126	INT	1.91	2.076
	REDFIN	VRERC0002	5310150	126	127	INT	0.067	
	REDFIN	VRERC0002	5310151	127	128	INT	0.026	
	REDFIN	VRERC0002	5310152	128	129	INT	0.22	
	REDFIN	VRERC0002	5310153	129	130	INT	1.159	
	REDFIN	VRERC0002	5310154	130	131	INT	0.23	
	REDFIN	VRERC0002	5310155	131	132	INT	0.033	
	REDFIN	VRERC0002	5310158	134	135	INT	0.029	
	REDFIN	VRERC0002	5310159	135	136	INT	0.026	
	REDFIN	VRERC0002	5310161	135	136	DUP	0.03	
	REDFIN	VRERC0002	5310163	136	137	INT	0.255	
	REDFIN	VRERC0002	5310164	137	138	INT	1.995	1.605
	REDFIN	VRERC0002	5310165	138	139	INT	1.616	1.581
	REDFIN	VRERC0002	5310166	139	140	INT	0.566	

	Pit	Hole ID	Sample	From	То	Samp Type	Au	Au1
	REDFIN	VRERC0002	5310167	140	141	INT	0.014	
	REDFIN	VRERC0002	5310168	141	142	INT	0.031	
	REDFIN	VRERC0002	5310169	142	143	INT	0.009	
	REDFIN	VRERC0003	5310279	89	90	INT	0.02	
	REDFIN	VRERC0003	2022163	90	94	COMP	0.017	
	REDFIN	VRERC0003	5310287	94	95	INT	0.568	
74	REDFIN	VRERC0003	5310288	95	96	INT	0.041	
L	REDFIN	VRERC0003	5310319	123	124	INT	0.024	
	REDFIN	VRERC0003	2022167	124	128	СОМР	0.133	
1	REDFIN	VRERC0003	2022168	128	132	COMP	0.099	
	REDFIN	VRERC0003	2022169	132	136	СОМР	0.332	
	REDFIN	VRERC0003	5310331	132	133	INT	1.137	
	REDFIN	VRERC0003	5310332	133	134	INT	0.15	
	REDFIN	VRERC0003	5310333	134	135	INT	0.345	
7	REDFIN	VRERC0003	5310334	135	136	INT	0.122	
	REDFIN	VRERC0003	5310335	136	137	INT	0.013	
	REDFIN	VRERC0003	5310336	137	138	INT	0.414	
	REDFIN	VRERC0003	5310337	138	139	INT	0.072	
	REDFIN	VRERC0003	5310338	139	140	INT	0.011	
	REDFIN	VRERC0003	5310341	140	141	DUP	0.01	
	REDFIN	VRERC0003	5310339	140	141	INT	0.011	
	REDFIN	VRERC0003	2022170	141	145	СОМР	0.058	
	REDFIN	VRERC0003	5310347	145	146	INT	0.098	
	REDFIN	VRERC0003	5310348	146	147	INT	0.717	
	REDFIN	VRERC0003	5310349	147	148	INT	-0.005	
	REDFIN	VRERC0003	5310350	148	149	INT	0.022	
	REDFIN	VRERC0003	5310351	149	150	INT	0.008	
	REDFIN	VRERC0003	5310352	150	151	INT	0.031	
	REDFIN	VRERC0005	5310655	78	79	INT	0.023	
	REDFIN	VRERC0005	2022217	78	82	COMP	0.379	
	REDFIN	VRERC0005	5310656	79	80	INT	0.06	
	REDFIN	VRERC0005	5310657	80	81	INT	0.029	
	REDFIN	VRERC0005	5310658	81	82	INT	1.274	
	REDFIN	VRERC0005	5310661	82	83	DUP	0.029	
	REDFIN	VRERC0005	5310659	82	83	INT	0.04	
	REDFIN	VRERC0005	2022218	83	87	COMP	0.033	

Pit	Hole ID	Sample	From	То	Samp Type	Au	Au1
REDFIN	VRERC0005	2022219	87	91	COMP	0.334	
REDFIN	VRERC0005	5310667	87	88	INT	0.928	
REDFIN	VRERC0005	5310668	88	89	INT	0.252	
REDFIN	VRERC0005	5310669	89	90	INT	0.072	
REDFIN	VRERC0005	5310670	90	91	INT	0.092	
REDFIN	VRERC0005	2022220	91	95	СОМР	0.019	
SPECKLED	VSPRC0001	5026401	62	63	DUP	0.077	
SPECKLED	VSPRC0001	5026403	63	64	INT	0.118	
SPECKLED	VSPRC0001	2021934	63	67	СОМР	0.231	
SPECKLED	VSPRC0001	5026404	64	65	INT	0.639	
SPECKLED	VSPRC0001	5026405	65	66	INT	0.094	
SPECKLED	VSPRC0001	5026406	66	67	INT	0.328	
SPECKLED	VSPRC0001	2021935	67	71	СОМР	0.085	
SPECKLED	VSPRC0001	5026437	94	95	INT	0.011	
SPECKLED	VSPRC0001	5026438	95	96	INT	0.215	
SPECKLED	VSPRC0001	5026441	96	97	DUP	0.344	
SPECKLED	VSPRC0001	5026439	96	97	INT	0.431	
SPECKLED	VSPRC0001	5026443	97	98	INT	0.036	
SPECKLED	VSPRC0001	5026444	98	99	INT	0.486	
SPECKLED	VSPRC0001	5026445	99	100	INT	0.31	
SPECKLED	VSPRC0001	5026446	100	101	INT	0.038	
SPECKLED	VSPRC0001	5026447	101	102	INT	0.034	
SPECKLED	VSPRC0001	5026448	102	103	INT	0.021	
SPECKLED	VSPRC0002	5026541	23	24	DUP	0.014	
SPECKLED	VSPRC0002	5026539	23	24	INT	0.028	
SPECKLED	VSPRC0002	5026543	24	25	INT	0.036	
SPECKLED	VSPRC0002	2021948	24	28	СОМР	1.638	
SPECKLED	VSPRC0002	5026544	25	26	INT	0.014	
SPECKLED	VSPRC0002	5026545	26	27	INT	2.429	
SPECKLED	VSPRC0002	5026546	27	28	INT	3.102	
SPECKLED	VSPRC0002	2021949	28	32	COMP	0.062	
SPECKLED	VSPRC0002	2021950	32	36	COMP	0.006	
SPECKLED	VSPRC0002	5026619	91	92	INT	0.019	
SPECKLED	VSPRC0002	5026621	91	92	DUP	0.046	
SPECKLED	VSPRC0002	5026623	92	93	INT	1.09	
SPECKLED	VSPRC0002	5026624	93	94	INT	1.016	

Pit	Hole ID	Sample	From	То	Samp Type	Au	Au1
SPECKLED	VSPRC0002	5026625	94	95	INT	0.29	
SPECKLED	VSPRC0002	5026626	95	96	INT	0.269	
SPECKLED	VSPRC0002	2021961	96	100	СОМР	0.268	
SPECKLED	VSPRC0002	5026627	96	97	INT	0.436	
SPECKLED	VSPRC0002	5026628	97	98	INT	0.474	
SPECKLED	VSPRC0002	5026629	98	99	INT	0.216	
SPECKLED	VSPRC0002	5026630	99	100	INT	0.209	
SPECKLED	VSPRC0003	5026759	51	52	INT	0.03	
SPECKLED	VSPRC0003	2021978	52	56	СОМР	0.087	
SPECKLED	VSPRC0003	2021979	56	60	СОМР	0.012	
SPECKLED	VSPRC0003	2021980	60	64	СОМР	0.075	
SPECKLED	VSPRC0003	5026775	64	65	INT	0.354	
SPECKLED	VSPRC0003	5026776	65	66	INT	0.536	
SPECKLED	VSPRC0003	5026777	66	67	INT	0.413	
SPECKLED	VSPRC0003	5026778	67	68	INT	0.114	
SPECKLED	VSPRC0003	5026781	68	69	DUP	0.026	
SPECKLED	VSPRC0003	5026845	122	123	INT	0.071	
SPECKLED	VSPRC0003	5026846	123	124	INT	0.16	
SPECKLED	VSPRC0003	5026847	124	125	INT	0.041	
SPECKLED	VSPRC0003	5026848	125	126	INT	0.24	
SPECKLED	VSPRC0003	5026849	126	127	INT	0.046	
SPECKLED	VSPRC0003	5026850	127	128	INT	0.02	
SPECKLED	VSPRC0003	5026851	128	129	INT	0.015	
SPECKLED	VSPRC0003	5026852	129	130	INT	0.765	
SPECKLED	VSPRC0003	5026853	130	131	INT	0.427	
SPECKLED	VSPRC0003	5026854	131	132	INT	0.105	
SPECKLED	VSPRC0003	5026855	132	133	INT	0.01	
SPECKLED	VSPRC0004	5310839	106	107	INT	0.008	
SPECKLED	VSPRC0004	2022245	107	111	COMP	0.053	
SPECKLED	VSPRC0004	5310847	111	112	INT	0.015	
SPECKLED	VSPRC0004	2022246	111	115	COMP	1.234	
SPECKLED	VSPRC0004	5310848	112	113	INT	0.263	
SPECKLED	VSPRC0004	5310849	113	114	INT	4.269	
SPECKLED	VSPRC0004	5310850	114	115	INT	0.326	
SPECKLED	VSPRC0004	5310851	115	116	INT	1.233	
SPECKLED	VSPRC0004	5310852	116	117	INT	0.312	

Pit	Hole ID	Sample	From	То	Samp Type	Au	Au1
SPECKLED	VSPRC0004	5310853	117	118	INT	0.042	
SPECKLED	VSPRC0004	5310854	118	119	INT	0.016	
SPECKLED	VSPRC0004	5310855	119	120	INT	0.009	
SPECKLED	VSPRC0005	5310971	46	47	INT	0.12	
SPECKLED	VSPRC0005	2022261	46	50	СОМР	0.214	
SPECKLED	VSPRC0005	5310972	47	48	INT	0.698	
SPECKLED	VSPRC0005	5310973	48	49	INT	0.063	
SPECKLED	VSPRC0005	5310974	49	50	INT	0.024	
SPECKLED	VSPRC0005	5310975	50	51	INT	0.021	
SPECKLED	VSPRC0005	2022262	50	54	СОМР	0.709	
SPECKLED	VSPRC0005	5310976	51	52	INT	2.447	
SPECKLED	VSPRC0005	5310977	52	53	INT	0.227	
SPECKLED	VSPRC0005	5310978	53	54	INT	0.132	
SPECKLED	VSPRC0005	5311047	110	111	INT	0.008	
SPECKLED	VSPRC0005	5311048	111	112	INT	-0.005	
SPECKLED	VSPRC0005	5311049	112	113	INT	0.579	
SPECKLED	VSPRC0005	5311050	113	114	INT	-0.005	

JORC Code, 2012 Edition: Table 1 Section 1: Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 RC Drilling assays are from 1m samples cone split on the cyclone for the key intercepts. 4m composites from these 1m splits are taken in zones of lower prospectivity at the Laboratory. Where the composite samples return > 0.2g/t Au, they are re-assayed on 1m intervals Historical drilling has been sampled on a 1m basis. By Battle Mt and Homestake Gold – split at rig. Duplicates are taken of the second quarter of core every 20 samples to ensure the samples were representative.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	Face Sampling, Reverse Circulation hammer
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC drilling was bagged on 1m intervals and an estimate of sample recovery has been made on the size of each sample.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	Reverse Circulation holes are being logged on 1m intervals
Sub-samplin techniques of sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc 	 Duplicates taken every 20 samples by sampling a second quarter of the NQ core, or from a second split directly from cyclone. Standards submitted every 20 samples of tenor similar to those

Criteria	JORC Code explanation	Commentary
	 stages to maximise samples representivity Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 expected in the sampling. Cone splitter on the cyclone was used to produce a 1m sub-sample or the RC rig. Blanks were inserted every 20 samples also In un-prospective lithologies these
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 1m samples were composited at the lab over 4m intervals. Samples analysed at Intertek Laboratories in Perth, WA, using a 50g Fire Assay method. One sample with a initial value of 8.338 g/t Au and a repeat of 22.9 g/t Au was repeated using screen fire assay which agreed with the original Samples are dried, crushed and pulverised prior to analysis.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Intercepts have been calculated generally using a 0.5g/t cutoff and internal waste of up to 3m thickness with total intercepts greater than 0.3g/t. All repeats and duplicates have been included. Historical work has been cross referenced against WAMEX reports A62465 (Battle Mt) and A64818 (Homestake)
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 DGPS has been used to locate the drillholes. REFLEX Gyro Tool used for downhol surveys on all holes
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	 Sample data down hole is at no mor than 1m intervals Data spacing varies from approx. 20m Assessment as to whether sufficient data has been generated t establish the degree of geological and grade continuity appropriate for Mineral Resource and estimation procedure(s) is underway and, if necessary, additional drilling will be carried out to establish continuity.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to 	 Intercepts given are downhole widths with the true widths not determined.

Criteria	JORC Code explanation	Commentary
	have introduced a sampling bias, this should be assessed and reported if material.	
Sample security	The measures taken to ensure sample security.	 Samples sealed in bulka bag with Security seal, unbroken when delivered to lab
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 Review of standards, blanks and Duplicates indicate sampling and analysis has been effective for current and historical drilling where QA/QC has been available

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

	(Criteria listed in the preceding section also apply to th			
Criteria	JORC Code explanation	Commentary		
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Located in the Marymia - Plutonic Greenstone Belt ~218km northeast of Meekatharra in the Midwest mining district in WA Redfin M52/306, Kookaburra M52/218, Speckled M52/299 tenements in good standing The tenements predate Native title interests, but are covered by the Gingirana Native Title claim The tenements are 100% owned by Vango Mining Limited and subsidiary Dampier Plutonic Pty Ltd. Gold production will be subject to a 1-4% royalty dependent on gold price (Currently 2%) capped at \$2M across the entire project area. Contingent production payments of up to \$4M across the entire project area. 		
Exploration done by other parties.	 Acknowledgment and appraisal of exploration by other parties. 	Extensive previous work by Battle Mt and Homestake Gold		
Geology	 Deposit type, geological setting and style of mineralisation. 			
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	 Location of new drillholes based on surveyed sites, and DGPS, summarised in Table 1 and shown on Figures 2 and 3. Location of previous Drillholes based on historical reports and data, originally located on surveyed sites, and DGPS. Northing and easting data generally within 0.1m accuracy RL data +-0.2m Down hole length =+- 0.1 m 		

Cr	Criteria JORC Code explanation		Commentary
	D	the report, the Competent Person should clearly explain why this is the case.	
	ata aggregation ethods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Intercepts have been calculated generally using a 1 g/t cut off or as otherwise stated (see Tables 2 and 4) and internal waste of up to 3m thickness with total intercepts greater than 1g/t. All Duplicates and repeats are included No upper cut off has been applied to intersections.
be mi wid int	elationship etween ineralisation idths and tercept ngths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Orientation of mineralised zones are still to be ascertained by follow up drilling.
Die	agrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Appropriate cross-sectional and plan view of the drilling are included. Tables 1 and 3, drillhole locations and Tables 2 and 4, all significant assays, with repeats and duplicates.
. //	nlanced porting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	Tables 1 and 3, drillhole locations and Tables 2 and 4, all significant assays, with repeats and duplicates.
sul exp	ther abstantive aploration ata	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Geological interpretations are included on plan views (Figures 1, 3,4,5), sectional view (Figure 2) No new exploration data has been generated apart from the drilling information included in this report.
Fu	ırther work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	Extensive further drilling is planned for the project

Criteria	JORC Code explanation	Commentary
	 Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	

Criteria		C Code exp	lanation			Co	Commentary				
	•	extensior interpret	s clearly high ns, including t ations and fu mation is not	the main ge ture drilling	ological areas, provi						
Table 3 Historica	al Collars Redfin										
Pit	HoleID	MGA E	MGA N	RL	North	East	Depth	Dip	Az		
REDFIN	FRC1341	7198520	757898	585	2419	5340	100	-90	0		
REDFIN	FRC1342	7198530	757915	585	2419	5360	100	-90	0		
REDFIN	FRC1363	7198548	757905	585	2440	5361	100	-90	0		
REDFIN	FRC1504	7198618	757866	584	2520	5360	201	-60	150		
KOOKABUR	KBRC0009	7214470	770590	636	10180	24180	75	-60	150		
KOOKABUR	KBRC0019	7214436	770529	636	10180	24110	60	-60	150		
KOOKABUR	PBRC0079	7214465	770576	636	10182	24166	75	-60	150		
KOOKABUR	PBRC0118	7214352	770405	638	10166	23961	53	-60	150		
SPECKLED	FRC9616	7208112	769410	611	5199	20058	70	-60	150		
SPECKLED	FRC9709	7208193	769434	610	5259	20118	70	-60	150		
SPECKLED	FRC9716	7208300	769561	612	5291	20281	50	-60	150		
SPECKLED	FRC9787	7208009	769308	608	5160	19920	90	-60	150		
SPECKLED	FRC9793	7208029	769321	608	5171	19940	90	-60	150		

	KOOKABUR	KBRC0019	7214436	7	70529	636	10180	24110	60
	KOOKABUR	PBRC0079	7214465	7	70576	636	10182	24166	75
	KOOKABUR	PBRC0118	7214352	7	70405	638	10166	23961	53
	SPECKLED	FRC9616	7208112	76	59410	611	5199	20058	70
$(\cap \Gamma)$	SPECKLED	FRC9709	7208193		59434	610	5259	20118	70
9	SPECKLED	FRC9716	7208300		59561	612	5291	20281	50
	SPECKLED	FRC9787	7208009		59308	608	5160	19920	90
	SPECKLED	FRC9793	7208029	76	59321	608	5171	19940	90
	Table 4 Historica	l assay results							
	Pit	Hole ID	Sampl	e	From	То	Samp	Au	Au1
							Туре		
	REDFIN	FRC1341	E61	957	76	77	INT	0.14	
	REDFIN	FRC1341	E61	958	77	78	INT	0.07	
	REDFIN	FRC1341	E61	959	78	79	INT	0.27	
	REDFIN	FRC1341	E61	960	79	80	INT	0.68	
	REDFIN	FRC1341	E61	961	80	81	INT	3.19	
	REDFIN	FRC1341	E61	962	81	82	INT	2.59	
	REDFIN	FRC1341	E61	963	82	83	INT	0.57	
	REDFIN	FRC1341	E61	964	83	84	INT	0.29	
	REDFIN	FRC1341	E61	965	84	85	INT	0.67	
	REDFIN	FRC1341	E61	966	85	86	INT	1.47	
	REDFIN	FRC1341	E61	967	86	87	INT	10.8	
	REDFIN	FRC1341	E61	968	87	88	INT	6.75	
	REDFIN	FRC1341	E61	969	88	89	INT	3.53	
	REDFIN	FRC1341	E61	970	89	90	INT	2.24	
	REDFIN	FRC1341	E61	971	90	91	INT	0.85	
	REDFIN	FRC1341	E61	972	91	92	INT	0.62	
	REDFIN	FRC1341	E61	973	92	93	INT	0.77	

	Pit	Hole ID	Sample	From	То	Samp Type	Au	Au1
\geq	REDFIN	FRC1341	E61974	93	94	INT	1.21	
	REDFIN	FRC1341	E61975	94	95	INT	0.42	
	REDFIN	FRC1341	E61976	95	96	INT	5.71	
	REDFIN	FRC1341	E61977	96	97	INT	0.82	
	REDFIN	FRC1341	E61978	97	98	INT	0.24	
	REDFIN	FRC1341	E61979	98	99	INT	0.08	
74	REDFIN	FRC1341	E61980	99	100	INT	0.09	
L	REDFIN	FRC1342	E62026	45	46	INT	0.14	
7	REDFIN	FRC1342	E62027	46	47	INT	6.22	
1	REDFIN	FRC1342	E62028	47	48	INT	0.73	
	REDFIN	FRC1342	E62029	48	49	INT	6.58	
	REDFIN	FRC1342	E62030	49	50	INT	4.72	
	REDFIN	FRC1342	E62031	50	51	INT	14.3	
_	REDFIN	FRC1342	E62032	51	52	INT	0.74	
6	REDFIN	FRC1342	E62033	52	53	INT	0.95	
	REDFIN	FRC1342	E62034	53	54	INT	0.58	
	REDFIN	FRC1342	E62035	54	55	INT	0.22	
	REDFIN	FRC1342	E62036	55	56	INT	0.2	
	REDFIN	FRC1342	E62037	56	57	INT	23.2	
/[REDFIN	FRC1342	E62038	57	58	INT	4.61	
	REDFIN	FRC1342	E62039	58	59	INT	0.91	
74	REDFIN	FRC1342	E62040	59	60	INT	0.75	
L	REDFIN	FRC1342	E62041	60	61	INT	0.4	
	REDFIN	FRC1342	E62042	61	62	INT	0.25	
	REDFIN	FRC1342	E62043	62	63	INT	0.13	
	REDFIN	FRC1342	E62044	63	64	INT	0.14	
	REDFIN	FRC1342	E62045	64	65	INT	0.1	
	REDFIN	FRC1342	E62046	65	66	INT	0.49	
	REDFIN	FRC1363	E63975	84	85	INT	0.03	
	REDFIN	FRC1363	E63976	85	86	INT	0.77	
	REDFIN	FRC1363	E63977	86	87	INT	0.35	
	REDFIN	FRC1363	E63978	87	88	INT	0.21	
	REDFIN	FRC1363	E63979	88	89	INT	0.09	
	REDFIN	FRC1363	E63980	89	90	INT	0.18	
	REDFIN	FRC1363	E63981	90	91	INT	8.5	
	REDFIN	FRC1363	E63982	91	92	INT	5.14	

Pit	Hole ID	Sample	From	То	Samp Type	Au	Au1
REDFIN	FRC1363	E63983	92	93	INT	1.94	
REDFIN	FRC1363	E63984	93	94	INT	0.15	
REDFIN	FRC1363	E63985	94	95	INT	4.98	
REDFIN	FRC1363	E63986	95	96	INT	2.5	
REDFIN	FRC1363	E63987	96	97	INT	0.4	
REDFIN	FRC1363	E63988	97	98	INT	0.16	
REDFIN	FRC1363	E63989	98	99	INT	2.86	
REDFIN	FRC1363	E63990	99	100	INT	1.78	
REDFIN	FRC1504	E94275	124	125	INT	0.01	
REDFIN	FRC1504	E94276	125	126	INT	0.02	
REDFIN	FRC1504	E94277	126	127	INT	0.73	
REDFIN	FRC1504	E94278	127	128	INT	3.85	
REDFIN	FRC1504	E94279	128	129	INT	1.94	
REDFIN	FRC1504	E94280	129	130	INT	0.38	
REDFIN	FRC1504	E94281	130	131	INT	0.86	
REDFIN	FRC1504	E94282	131	132	INT	5.09	
REDFIN	FRC1504	E94283	132	133	INT	0.97	
REDFIN	FRC1504	E94284	133	134	INT	0.69	
REDFIN	FRC1504	E94285	134	135	INT	0.13	
REDFIN	FRC1504	E94286	135	136	INT	0.04	
REDFIN	FRC1504	E94287	136	137	INT	34.6	
REDFIN	FRC1504	E94288	137	138	INT	2.75	
REDFIN	FRC1504	E94289	138	139	INT	0.39	
REDFIN	FRC1504	E94290	139	140	INT	0.32	
REDFIN	FRC1504	E94291	140	141	INT	0.21	
KOOKABUF	R KBRC0009	L30831	40	41	INT	-0.01	
KOOKABUF	R KBRC0009	L30832	41	42	INT	0.6	
KOOKABUF	R KBRC0009	L30833	42	43	INT	0.14	
KOOKABUF	R KBRC0009	L30834	43	44	INT	0.13	
KOOKABUF	R KBRC0009	L30835	44	45	INT	0.27	
KOOKABUF	R KBRC0009	L30836	45	46	INT	0.56	
KOOKABUF	R KBRC0009	L30837	46	47	INT	0.14	
KOOKABUF	R KBRC0009	L30838	47	48	INT	0.54	
KOOKABUF	R KBRC0009	L30839	48	49	INT	0.43	
KOOKABUF	R KBRC0009	L30840	49	50	INT	2.76	
KOOKABUF	R KBRC0009	L30841	50	51	INT	0.04	

	Pit	Hole ID	Sample	From	То	Samp Type	Au	Au1
\backslash	KOOKABUR	KBRC0019	L31944	23	24	INT	0.4	
	KOOKABUR	KBRC0019	L31945	24	25	INT	0.09	
	KOOKABUR	KBRC0019	L31946	25	26	INT	3.78	
	KOOKABUR	KBRC0019	L31947	26	27	INT	1.12	
	KOOKABUR	KBRC0019	L31948	27	28	INT	1.12	
	KOOKABUR	KBRC0019	L31949	28	29	INT	2.12	
74	KOOKABUR	KBRC0019	L31950	29	30	INT	0.61	
L	KOOKABUR	KBRC0019	L31951	30	31	INT	0.69	
	KOOKABUR	KBRC0019	L31952	31	32	INT	0.07	
7	KOOKABUR	KBRC0019	L31953	32	33	INT	0.8	
	KOOKABUR	KBRC0019	L31954	33	34	INT	5.11	
	KOOKABUR	KBRC0019	L31955	34	35	INT	0.69	
	KOOKABUR	KBRC0019	L31956	35	36	INT	2.85	
$\overline{}$	KOOKABUR	KBRC0019	L31957	36	37	INT	0.41	
	KOOKABUR	KBRC0019	L31958	37	38	INT	7.01	
	KOOKABUR	KBRC0019	L31959	38	39	INT	1.08	
	KOOKABUR	KBRC0019	L31960	39	40	INT	1.45	
	KOOKABUR	KBRC0019	L31961	40	41	INT	3.51	
	KOOKABUR	KBRC0019	L31962	41	42	INT	0.33	
/	KOOKABUR	KBRC0019	L31963	42	43	INT	0.12	
	KOOKABUR	PBRC0079	MA_521623	42	43	INT	0.57	
	KOOKABUR	PBRC0079	MA_521624	43	44	INT	2.14	
	KOOKABUR	PBRC0079	MA_521625	44	45	INT	0.08	
	KOOKABUR	PBRC0079	MA_521626	45	46	INT	0.03	
	KOOKABUR	PBRC0079	MA_521627	46	47	INT	0.77	
	KOOKABUR	PBRC0079	MA_521628	47	48	INT	0.16	
	KOOKABUR	PBRC0079	MA_521629	48	49	INT	0.54	
	KOOKABUR	PBRC0079	MA_521630	49	50	INT	0.27	
	KOOKABUR	PBRC0079	MA_521631	50	51	INT	1.66	
	KOOKABUR	PBRC0079	MA_521632	51	52	INT	0.48	
	KOOKABUR	PBRC0079	MA_521633	52	53	INT	0.16	
	KOOKABUR	PBRC0079	MA_521634	53	54	INT	0.16	
	KOOKABUR	PBRC0079	MA_521635	54	55	INT	8.84	
	KOOKABUR	PBRC0079	MA_521636	55	56	INT	0.91	
	KOOKABUR	PBRC0079	MA_521637	56	57	INT	0.03	
	KOOKABUR	PBRC0079	MA_521638	57	58	INT	0.1	

	Pit	Hole ID	Sample	From	То	Samp Type	Au	Au1
\geq	KOOKABUR	PBRC0079	MA_521639	58	59	INT	0.19	
	KOOKABUR	PBRC0079	MA_521640	59	60	INT	0.56	
	KOOKABUR	PBRC0118	MA_523537	46	47	INT	0.16	
	KOOKABUR	PBRC0118	MA_523538	47	48	INT	4.33	
	KOOKABUR	PBRC0118	MA_523539	48	49	INT	11.3	
	KOOKABUR	PBRC0118	MA_523540	49	50	INT	11.2	
74	KOOKABUR	PBRC0118	MA_523541	50	51	INT	1.7	
L	KOOKABUR	PBRC0118	MA_523542	51	52	INT	0.02	
	KOOKABUR	PBRC0118	MA_523543	52	53	INT	0.005	
7	SPECKLED	FRC9616	L37862	51	52	INT	0.06	
	SPECKLED	FRC9616	L37863	52	53	INT	0.05	
	SPECKLED	FRC9616	L37864	53	54	INT	0.19	
	SPECKLED	FRC9616	L37865	54	55	INT	3.64	3.02
$\overline{}$	SPECKLED	FRC9616	L37866	55	56	INT	3.16	2.48
	SPECKLED	FRC9616	L37867	56	57	INT	0.2	0.2
	SPECKLED	FRC9616	L37868	57	58	INT	0.19	
	SPECKLED	FRC9616	L37869	58	59	INT	0.09	
	SPECKLED	FRC9616	L37870	59	60	INT	6.18	4.89
	SPECKLED	FRC9616	L37871	60	61	INT	1.47	1.17
/	SPECKLED	FRC9616	L37872	61	62	INT	0.38	0.34
	SPECKLED	FRC9616	L37873	62	63	INT	0.57	0.44
74	SPECKLED	FRC9616	L37874	63	64	INT	0.44	0.41
	SPECKLED	FRC9616	L37875	64	65	INT	0.15	
	SPECKLED	FRC9616	L37876	65	66	INT	0.05	
	SPECKLED	FRC9709	L64858	57	58	INT	0.05	
	SPECKLED	FRC9709	L64859	58	59	INT	0.1	
	SPECKLED	FRC9709	L64860	59	60	INT	0.05	
	SPECKLED	FRC9709	L64861	60	61	INT	1.82	1.55
	SPECKLED	FRC9709	L64862	61	62	INT	17.3	15.39
	SPECKLED	FRC9709	L64863	62	63	INT	2.64	2.24
	SPECKLED	FRC9709	L64864	63	64	INT	0.81	0.73
	SPECKLED	FRC9709	L64865	64	65	INT	0.56	0.43
	SPECKLED	FRC9709	L64866	65	66	INT	0.21	0.2
	SPECKLED	FRC9709	L64867	66	67	INT	3.21	2.75
	SPECKLED	FRC9709	L64868	67	68	INT	0.3	0.24
	SPECKLED	FRC9709	L64869	68	69	INT	0.12	0.12

Pit	Hole ID	Sample	From	То	Samp Type	Au	Au1
SPECKLED	FRC9709	L64870	69	70	INT	0.19	0.22
SPECKLED	FRC9716	L65783	22	23	INT	0.18	
SPECKLED	FRC9716	L65784	23	24	INT	0.14	
SPECKLED	FRC9716	L65785	24	25	INT	0.08	
SPECKLED	FRC9716	L65786	25	26	INT	5.34	4.62
SPECKLED	FRC9716	L65787	26	27	INT	2.37	2.03
SPECKLED	FRC9716	L65788	27	28	INT	6.14	3.61
SPECKLED	FRC9716	L65789	28	29	INT	0.77	0.56
SPECKLED	FRC9716	L65790	29	30	INT	0.06	
SPECKLED	FRC9716	L65791	30	31	INT	0.36	0.28
SPECKLED	FRC9716	L65792	31	32	INT	0.42	0.26
SPECKLED	FRC9716	L65793	32	33	INT	1.13	0.67
SPECKLED	FRC9716	L65794	33	34	INT	4.44	2.57
SPECKLED	FRC9716	L65795	34	35	INT	4.38	3.52
SPECKLED	FRC9716	L65796	35	36	INT	0.13	
SPECKLED	FRC9716	L65797	36	37	INT	0.09	
SPECKLED	FRC9716	L65798	37	38	INT	0.13	
SPECKLED	FRC9787	L92292	71	72	INT	0.16	
SPECKLED	FRC9787	L92293	72	73	INT	0.26	0.21
SPECKLED	FRC9787	L92294	73	74	INT	0.3	0.29
SPECKLED	FRC9787	L92295	74	75	INT	1.43	1.4
SPECKLED	FRC9787	L92296	75	76	INT	1.69	1.46
SPECKLED	FRC9787	L92297	76	77	INT	5.25	4.45
SPECKLED	FRC9787	L92298	77	78	INT	1.92	1.53
SPECKLED	FRC9787	L92299	78	79	INT	2.98	2.83
SPECKLED	FRC9787	L92300	79	80	INT	0.11	
SPECKLED	FRC9787	L92301	80	81	INT	0.16	
SPECKLED	FRC9787	L92302	81	82	INT	0.04	
SPECKLED	FRC9793	L92696	75	76	INT	0.23	
SPECKLED	FRC9793	L92697	76	77	INT	0.03	
SPECKLED	FRC9793	L92698	77	78	INT	0.02	
SPECKLED	FRC9793	L92699	78	79	INT	1.8	1.46
SPECKLED	FRC9793	L92700	79	80	INT	1.36	1.14
SPECKLED	FRC9793	L92701	80	81	INT	0.56	0.45
SPECKLED	FRC9793	L92702	81	82	INT	4.25	3.67
SPECKLED	FRC9793	L92703	82	83	INT	4.35	3.4

	Pit	Hole ID	Sample	From	То	Samp	Au	Au1
						Type		
\rangle	SPECKLED	FRC9793	L92704	83	84	INT	0.12	
	SPECKLED	FRC9793	L92705	84	85	INT	0.18	
	SPECKLED	FRC9793	L92706	85	86	INT	0.05	