

EXCEPTIONAL ASSAY RESULTS FROM 2021 DRILLING CAMPAIGN

- H Notable intersections at a cut-off grade of 2% THM (refer to Table 1) include:
 - o 17.9% THM over 13 m from surface (PGAC0025A)
 - o 11.3% THM over 22.5 m from 12 m downhole (PGAC0067)
 - o 13.3% THM over 12 m from surface (PGAC0088)
 - o 12.9% THM over 14 m from surface (PGAC0089)
 - o 39.5% THM over 3 m from surface (PGAC0026A)
- → Garnet percentage in Heavy mineral fraction ranges from approximately 65% 75% which is significantly higher than that reported by GMA (46%) which was originally used by HVY to generate the Exploration Target
- H Ilmenite fraction of THM reporting at between 10% and 20% (Not previously included in Exploration Target)

Heavy Minerals Limited (ACN 647 831 833) ("HVY", "Heavy Minerals" or the "Company") is pleased to announce that assay results for the 2021 drilling campaign have been received, processed, and are summarised in Table 1. Numerous intersections and characteristics of the mineralisation met expectations both in grade and thickness, which coupled with the shallow depth, bode well for any future mining operations. Preliminary sachet scanning results have identified a higher than anticipated garnet fraction of between 65% - 75% in the Total Heavy Mineral Assemblage, which is approximately one and a half times that reported by previous GMA drilling.

Assay results have highlighted the presence of a very high-grade mineralised package on the eastern side of the frontal dune of the tenement. The mineralised grades from surface can exceed 30% THM and the package exhibits true thicknesses exceeding 20 m in areas and up to 200 m in width. Given these favourable characteristics this mineralised package is considered an ideal follow-up for a more detailed drill out.

Executive Director & CEO, Mr. Nic Matich said:

"The intercepts from the 2021 campaign are exceptional, not only in grade but also in thickness and the shallow depth. These characteristics are why this style of deposit, which is analogous to those in the region (GMA & RDG), are amenable to low CAPEX and OPEX mining operations.

With a large quantum of assay results returned, we have been able to visually estimate the garnet fraction of the THM to be approximately 65% - 75% with 10% - 20% contained Ilmenite in numerous intervals. The garnet percentage is over one and a half times that reported by GMA. This is an extremely positive outcome and bodes well for the Mineral Resource Estimate which utilised a conservative garnet percentage of 46%.

Upcoming News:

- H March 2022: Metallurgy results (Inhambane)
- H March 2022: Maiden JORC Mineral Resource (Port Gregory)
- H Quarter two 2022: Metallurgy results and Scoping Study Commencement (Port Gregory)

Summary of drilling results from 2021

This announcement refers to, a total of 101 holes for 3,106.2 m (refer to Figure 1) that were drilled up to the end of 2021. Of those holes, a total of 97 holes for 3,093.3 m were submitted for assay and these assay results have now been returned. A total of 2,348 samples were submitted to Diamantina Laboratories for assay by wet screening and THM float/sink using Tetrabromomethane (TBE). The drill results verify the historical drilling completed by GMA, however further drilling and mineral assemblage assaying is required to fully validate the tenor of the THM and garnet grades. The visual/empirical estimates for the garnet proportion of the THM are very encouraging and are greater than those previously recorded by GMA, averaging around 65% - 75%. A complete summary of the drilling, sampling and assaying techniques is presented in Appendix 1.

The drilling program consisted of aircore drilling to limestone basement or where THM mineralisation is closed out, on a regular spaced grid of 100 m east-west by 500 m north-south locations. All holes are vertical and targeting the dunal sand package that sits on top of the Tamala Limestone. Significant drill results are presented in Table 1 below and a complete list of results is provided in Appendix 2.

	EASTING	NORTHING	RL	EOH	סוח		FROM	то	LENGTH	тнм	SLIMES	OS
HOLL_ID	(GDA94)	(GDA94)	(m)	(m)	DIF	ALIWOTT	(m)	(m)	(m)	(%)	(%)	(%)
PGAC0001	229248	6885228	41.8	64.2	-90	360	0.0	12.0	12.0	7.0	1.6	5.8
PGAC0003	229392	6885369	59.4	51.0	-90	360	0.0	7.5	7.5	5.4	3.4	17.8
PGAC0015	229107	6887909	92.0	25.4	-90	360	3.0	9.0	6.0	6.2	5.0	0.9
PGAC0022	228918	6885552	32.0	30	-90	360	0.0	14.0	14.0	6.1	3.0	2.7
PGAC0023	228995	6885649	49.3	32.0	-90	360	0.0	8.0	8.0	5.0	3.6	9.2
PGAC0025	229040	6885721	53.5	48	-90	360	0.0	8.0	8.0	20.6	4.6	3.0
PGAC0025A	229043	6885715	50.9	40	-90	360	0.0	13.0	13.0	17.9	5.6	9.7
PGAC0026	229117	6885802	47.9	58	-90	360	0.0	8.0	8.0	16.7	17.2	15.0
PGAC0026A	229122	6885785	51.0	60	-90	360	0.0	3.0	3.0	39.5	4.6	3.0
PGAC0032A	229464	6886149	57.6	50	-90	360	0.0	6.0	6.0	6.4	16.4	10.5
PGAC0058	230169	6886856	59.5	45	-90	360	10.5	15.0	4.5	5.6	15.4	9.7
PGAC0067	228664	6885982	18.5	48	-90	360	12.0	34.5	22.5	11.3	5.6	5.8
PGAC0068A	228830	6886219	61.2	29	-90	360	1.0	10.0	9.0	9.5	10.4	21.4
PGAC0082	229818	6887207	76.2	20.0	-90	360	0.0	12.0	12.0	5.6	5.8	5.1
PGAC0083	229891	6887281	83.0	42	-90	360	0.0	8.0	8.0	5.3	6.6	5.8
PGAC0083	229891	6887281	69.0	42.0	-90	360	14.0	22.0	8.0	5.8	7.0	11.7
PGAC0085	229537	6886201	47.5	42	-90	360	12.0	15.0	3.0	5.6	5.5	2.1
PGAC0087	228331	6886427	61.4	16.5	-90	360	0.0	13.0	13.0	7.8	14.6	8.0
PGAC0088	228405	6886497	65.3	39	-90	360	0.0	12.0	12.0	13.2	10.0	5.3
PGAC0089	228472	6886572	63.6	23	-90	360	0.0	14.0	14.0	12.9	10.4	7.0
PGAC0093	228753	6886851	72.4	14	-90	360	3.0	14.0	11.0	5.0	13.8	3.4

Table 1: E70/5160 Tene	ment - Sianificant Summa	rv Assav Results f	or 2021 Drilling	Campaian
	inche Significant Samma	ry noody neodico j	or Lott Drinning	campaign

Results are prepared from composited drill hole assays at a cut-off grade of 2% THM and all composited intervals are continuous and unbroken.

Figure 1: Drill collars referenced in this announcement

Figure 2 Oblique view looking due north, of completed drill holes for the 2021 exploration campaign

Figure 3 Type section for Port Gregory 2021 exploration campaign (local grid, looking due north, 7x vert. exag.)

Table 2 E70/5160 Tenement - Exploration Target

Summary of Exploration Target ⁽¹⁾ HM Assemblage ⁽²⁾						age ⁽²⁾			
Classification	Material (Mt)	In Situ HM (Mt)	In Situ Garnet (Mt)	HM (%)	SL (%)	OS (%)	Garnet (%)	Ilmenite (%)	Non Valuable HM (%)
Exploration Target	170 - 250	7 - 9	3.5 - 4.5	3.5 - 4.5	10	20	46	1	53
Grand Total	170 - 250	7 - 9	3.5 - 4.5	3.5 - 4.5	10	20	46	1	53

Notes:

(1) Exploration Target reported at an upper cut-off-grade of 2.5% HM and a lower cut-off grade of 1.5%.

(2) Mineral assemblage is reported as a percentage of in situ HM content.

The potential quality and grade of the Exploration Target is conceptual in nature as there has been insufficient exploration to estimate a Mineral Resource for this target area and it is uncertain if further exploration will result in the estimation of a Mineral Resource.

Exploration Target Development

Previous exploration activities by GMA were carried out on tenement E70/5160, with a total of 52 holes for 1,725m and 589 assays completed. These assays included THM, SLIMES and OS as well as mineralogy assays (mags, Ilmenite and Garnet). It is assumed that individual assays have been prepared for each sample interval as there are no composite sample identifiers.

The mineralogy assay method has not been described or documented in WAMEX reports; however, it is likely that a magnetic fractionation has been carried out for the individual HM sink fractions and then an XRF or XRD performed on the magnetic fraction, yielding an ilmenite and garnet assay.

The drill hole and assay information were used to develop a 3D block model in Datamine using the following steps:

- The 52 holes were constrained with an upper topography surface generated from the collar coordinates.
- The end of hole was used as the lower basement constraint. These constraints were selected to prevent assay grades from being interpolated below maximum drill hole depths.
- A perimeter string was developed around the drill hole collar locations with an offset of approximately 200 m north and south and 80-100 m east and west.
- A block model was created by filling cells between the two constraining surfaces using a parent cell size of 50 x 100 x 3 m in XYZ.
- Assay grades were interpolated into the block model using inverse distance weighting (cubed).
- An assumed bulk density of 1.7 gcm⁻³ was used to estimate material tonnages.
- An Exploration Target was estimated by reporting tonnages between two grade cut-off ranges, the lower at 1.5% HM and the upper at 2.5% HM.
- No assumed minimum thicknesses or other constraints were used to estimate the Exploration Target.

This announcement has been authorised by the Board of Directors of the Company.

Ends

For further information, please contact:

Heavy Minerals Limited

Nic Matich, Executive Director & CEO Ph: +61 (08) 9481 0389 E: <u>info@heavyminerals.com</u>

Media & Investor Enquiries

Peter Taylor, NWR Communications Ph: +61 (0) 412 036 231 E: <u>Peter@nwrcommunications.com.au</u>

About Heavy Minerals Limited

Heavy Minerals Limited (ASX: HVY) is an Australian listed industrial mineral exploration company. The Company's projects are prospective for industrial minerals including but not limited to Garnet, Zircon, Rutile, and Ilmenite. The Company's initial focus is the Port Gregory Garnet Project which has an Exploration Target of between 3.5 Mt and 4.5 Mt contained Garnet.

To learn more please visit: www.heavyminerals.com

Competent Person Statement

The information in this announcement that relates to Exploration Targets is based on and fairly represents information and supporting documentation prepared by Mr. Greg Jones (FAusIMM) who is a Non-Executive Director for Heavy Minerals Limited. Mr. Jones is a Fellow of the Australasian Institute of Mining and Metallurgy and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity that is being reported on to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr. Jones has reviewed this report and consents to the inclusion in the report of the matters in the form and context with which it appears.

The Exploration Results referred to in this announcement were first reported in accordance with ASX Listing Rule 5.7 in the Company's prospectus dated 27 July 2021 and released on the ASX market announcements platform on 10 September 2021. The Company confirms that it is not aware of any new information or data that materially affects the information included in the prospectus.

Appendix 1: JORC Code Table 1

Section 1 Sampling Techniques and Data					
Criteria	Explanation	Comment			
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Aircore drilling was used to obtain samples for analysis at a mixture of 1, 1.5 and 2 m intervals Each sample was homogenized within the sample bag by rotating the sample bag A appropriate sample of sand, approx. 70 g (or the size of a matchbox), is scooped from the sample bag for an initial visual THM% estimation and logging. A similar sample mass is used for every pan sample for visual THM% estimation The standard sized sample is to ensure calibration is maintained for consistency in visual estimation A sample ledger is kept at the drill rig for recording sample numbers The aircore drill samples have an average range between 6 kg and 9 kg and were split down using a rig based rotary splitter to 1.5 to 2.5 kg. Samples were transported to Diamantina Laboratories for assaying. The laboratory sample was dried for up to 24 hours @ 105-110 degrees Celsius. The sample was then loosened until friable and passed through a rotary splitter to take a 250 g sub-sample. This sub-sample was then wet screened on a Sweco vibrating screen deck at a top aperture of 1 mm (oversize - OS) and a bottom screen of 45 µm (SLIMES fraction). The sand fraction containing the THM (-1 mm and +45 µm) is then dried and a sub-split of approximately 100 g is taken using a micro riffle splitter and used for heavy liquid separation using funnels and a heavy liquid, Tetrabromoethane (TBE), with a density of between 2.92 and 2.96 gcm⁻³ to determine total heavy mineral (THM) content. 			
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented 	 Aircore drilling with inner tubes for sample return was used Aircore is considered a standard industry technique for HMS mineralisation. Aircore drilling is a form of reverse circulation drilling where the sample is collected at the face and returned inside the inner tube Aircore drill rods used were 3 m long 			

Cuitouio	Evaluation	Commont
Criteria	Explanation	Comment
	una ij so, by what method, etc).	• NG didmeter (76mm) drift bits and roas were used
		All drill holes were vertically
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 AC drill sample recovery is monitored by reviewing the sample mass of the total weight of the 1.5 m interval weighed both on site as a wet sample and at the laboratory as a dried sample Industry leading mineral sand drilling specialists were engaged to drill the holes with experienced drillers to maximize drill recovery such as maintaining drill penetration rates, airflow and water injection While initially collaring the hole, limited sample recovery can occur in the initial 0 m to 2 m sample interval owing to sample and air loss into the surrounding loose soils The initial 0 m to 2 m sample interval is drilled very slowly in order to achieve optimum sample recovery The entire sample passes through the on board rotary splitter and the sample collected in a pre-numbered calico bag. The bulk reject is not collected and is shovelled back down the hole upon completion About 10 samples are placed in numbered poly weave bags and secured with a cable tie All samples were drilled in dry conditions, with no groundwater encountered. Water injection was used to keep dust down and maintain the integrity of the drill hole. At the end of each drill rod, the drill string is cleaned by blowing down with air/water to remove any clay and silt potentially built up in the sample hose At the end of each hole the cyclone is inspected for material build up and cleanliness (for potential contamination) The twin-tube aircore drilling technique is known to provide hiah auality samples from the face of the drill hole.
	Whether core and chip samples have	• The aircore samples were each qualitatively logged using a
	been geologically and geotechnically logged to a level of detail to support	field laptop (Toughbook) an entered into Field Marshall
	appropriate Mineral Resource	The aircore samples were logged for lithology, colour, arginging rounding bardness rock tune setting estimated
Logging	estimation, mining studies and metalluraical studies	THM%, estimated Slimes% and any relevant comments
	Mhathar logging is qualitative at	• Every drill hole was logged in full with detailed logging
	writerier logging is qualitative of auantitative in nature. Core for	based on a small sample of sand taken from the split
	costean, channel, etc) photoaraphy.	sample to improve representivity
	, , , , , , , , , , , , , , , , , , ,	• Logging is undertaken with reference to a Drilling Guideline

Criteria	Explanation	Comment
	 The total length and percentage of the relevant intersections logged. 	with codes prescribed and guidance on description to ensure consistent and systematic data collection
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The AC drill sample collected at the source was split down to 1.5 to 2.5 kg using a rig based rotary splitter The sample size and process is considered an appropriate technique for mineral sands The sample sizes were deemed suitable to reliably capture THM, slime, and oversize characteristics, based on industry experience of the geologists involved and consultation with laboratory staff Field duplicates of the samples were completed at a frequency of 1 per 40 primary samples Standard Certified Reference Material samples are inserted into numbered sample bags in the field at a frequency of 1 per 40 samples. These are blind to the laboratory staff and laboratory processing flowsheet
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The wet panning at the drill site provides an estimate of the THM and SLIMES grade which is expressed as a percentage and is sufficient for the purpose of determining approximate initial concentrations Individual aircore sub-samples (approximately 1.5 - 2.5 kg) were analysed by Diamantina Laboratories in Perth, Western Australia Diamantina Laboratories is considered to be a mineral sands industry leading laboratory The as received sample was dried for up to 24 hours @ 105-110 degrees Celsius. The sample was then loosened until friable and put over a rotary splitter to take a 250 g sub-sample. This sub-sample was then wet screened on a Sweco vibrating screen deck at a top aperture of 1 mm (oversize - OS) and a bottom screen of 45 μm (SLIMES fraction). The sand fraction containing the THM (-1 mm and +45 μm) is then dried and a sub-split of approximately 100 g is taken using a micro riffle splitter and used for heavy liquid

Verification of sanying• The verification of significant intersections by either independent or alternative company personnel.• The use of twinned holes. • Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic)• Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine• Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine • Anandheld GPS was initially used to identify the positions of the dill holes in the field. The handheld GPS was initially used to identify the positions • No adjustment survey for shallow vertical aircare holes are not required.Location of data points• Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine or altar points• Anandheld GPS was initially used to identify the positions of the file and hole surveys for shallow vertical aircare holes are not required.Verification of data points• Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mineVerification of data points• Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mineVerification of data points• Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine of the drill holes in the field. The handheld GPS was initially used to identify the positions of the drill holes in the field. The handheld GPS has an	2	Criteria	Explanation	Comment
 This is considered to be an industry standard technique Field duplicates and HM Standards are alternatively inserted into the sample string at a frequency of 1 per 40 primary samples Diamantina completed its own internal QA/QC checks that included laboratory repeats at a rate of 1 in 40 and the insertion of Standard Certified Reference Material at a rate of 1 in 40 prior to the results being released Analysis of QA/QC samples show the laboratory data to be of acceptable accuracy and precision. The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Discuss any adjustment to assay data. Standard Certified Reference Material sample results are standard that there is no bias or drift The field and laboratory data has been updated into a Microsoft Access data base and then imported into Data mine drill hole files. Data validation criteria are included to check for overlapping sample intervals, end of hale match between "Lithology', Sample', Survey' files, duplicate sample numbers and other common errors No adjustments are made to the primary assay data A cacuracy and quality of surveys used to locate drill holes (calar and downhole surveys), trenches, mine workings and other location used in Mineral Resource estimation. 				separation using funnels and a heavy liquid, Tetrabromomethane (TBE), with a density of between 2.92 and 2.96 gcm ⁻³ to determine total heavy mineral (THM) content.
 Field duplicates and HM Standards are alternatively inserted into the sample string at a frequency of 1 per 40 primary samples Diamantina completed its own internal QA/QC checks that included laboratory repeates at a rate of 1 in 40 and the insertion of Standard Certified Reference Material at a rate of 1 in 40 primary samples The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Standard Certified Reference Material sample results are checked from each sample batch to ensure they are within tolerance (<2SD) and there is no bias or drift The field and laboratory dupta has been updated into a Microsoft Access database and then imported into Datamine drill hole files. Data validation criteria are included to check for overlapping sample intervals, end of hole match between 'Lithology'. 'Sampe', 'Survey files, duplicate sample numbers and other common errors No adjustment sample intervals, end of hole match between 'Lithology'. 'Sample', 'Survey files, duplicate sample numbers and other common errors No adjustments are made to the primary assay data Accuracy and quality of surveys used to locate drill holes (collar and downholes surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 				This is considered to be an industry standard technique
 Diamantina completed its own internal QA/QC checks that included laboratory repeats at a rate of 1 in 40 and the insertion of Standard Certified Reference Material at a rate of 1 in 40 and the insertion of Standard Certified Reference Material at a rate of 1 in 40 and the insertion of Standard Certified Reference Material at a rate of 1 in 40 and the insertion of Standard Certified Reference Material at a rate of 1 in 40 and the insertion of Standard Certified Reference Material at a rate of 1 in 40 prior to the results being released Analysis of QA/QC samples show the laboratory data to be of acceptable accuracy and precision. The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Discuss any adjustment to assay data. Standard Certified Reference Material sample results are checked from each sample batch to ensure they are within tolerance (<2D) and that there is no bias or drift The field and laboratory data has been updated into a Microsoft Access database and then imported into Datamine drill hole files. Data validation criteria are included to check for overlapping sample intervals, end of hole match between 'Lithology'. 'Sample', 'Survey' files, duplicate sample numbers and other common errors No adjustments are made to the primary assay data Location of data points Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in writing and other locations used in writing and other locations. Down hole surveys for shallow vertical aircore holes are not required A handheld GPS was initially used to identify t				• Field duplicates and HM Standards are alternatively inserted into the sample string at a frequency of 1 per 40 primary samples
Verification of significant intersections by either independent or alternative company personnel. • The verification of significant intersections by either independent or alternative company personnel. • Analysis of QA/QC protocols are acceptable and equal to acceptable accuracy and precision. • The use of twinned holes. • Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. • A process of laboratory data validation using mass balance is undertaken to identify entry errors or questionable data • Verification of sampling and assaying • Discuss any adjustment to assay data. • A process of laboratory data validation using mass balance is undertaken to identify entry errors or questionable data • Discuss any adjustment to assay data. • Discuss any adjustment to assay data. • Stundard Certified Reference Material sample results are checked from each sample batch to ensure they are within tolerance (c2SD) and that there is no bias or drift • The field and laboratory data base nupdated into a Microsoft Access database and then imported into Datamine drill hole files. • Data validation criteria are included to check for overlapping sample intervals, end of hole match between 'Lithology', 'Sample', 'Survey' files, duplicate sample numbers and other icommon errors • Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. • Down hole surveys for shallow vertical aircore holes are not required				• Diamantina completed its own internal QA/QC checks that included laboratory repeats at a rate of 1 in 40 and the insertion of Standard Certified Reference Material at a rate of 1 in 40 prior to the results being released
The adopted QA/QC protocols are acceptable and equal to accepted best industry practiceThe verification of significant intersections by either independent or alternative company personnel.All results are checked by the Competent PersonThe use of twinned holes.All results are checked by the Competent PersonDocumentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.A process of laboratory to observe sample processingVerification of sampling and assayingDiscuss any adjustment to assay data.Standard Certified Reference Material sample results are checked from each sample batch to ensure they are within tolerance (<2SD) and that there is no bias or drift				• Analysis of QA/QC samples show the laboratory data to be of acceptable accuracy and precision.
 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Discuss any adjustment to assay data. Standard Certified Reference Material sample results are checked from each sample batch to ensure they are within tolerance (<25D) and that there is no bias or drift The field and laboratory data has been updated into a Microsoft Access database and then imported into Datamine drill hole files. Data validation criteria are included to check for overlapping sample intervals, end of hole match between 'Lithology', 'Sample', 'Survey' files, duplicate sample numbers and other common errors No adjustments are made to the primary assay data Data points Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 				• The adopted QA/QC protocols are acceptable and equal to accepted best industry practice
 Verification of sampling and assaying The currecy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other location. Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other location. Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other location. Accuracy and quality of surveys used to locate drill holes (collar and downholes surveys), trenches, mine workings and other location. 	Ī		The verification of significant	All results are checked by the Competent Person
 The use of twinned holes. The use of twinned holes. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Discuss any adjustment to assay data. Field and laboratory duplicate data pairs (THM / OS / SLIMES) of each batch are plotted to identify potential quality control issues Standard Certified Reference Material sample results are checked from each sample batch to ensure they are within tolerance (<2SD) and that there is no bias or drift The field and laboratory data has been updated into a Microsoft Access database and then imported into Datamine drill hole files. Data validation criteria are included to check for overlapping sample intervals, end of hole match between 'Lithology', 'Sample', 'Survey' files, duplicate sample numbers and other common errors No adjustments are made to the primary assay data Location of data points Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 			intersections by either independent or alternative company personnel.	 The Competent Person makes periodic visits to the laboratory to observe sample processing
Verification of sampling and assaying• Field and laboratory duplicate data pairs (THM / OS / SLIMES) of each batch are plotted to identify potential quality control issues• Discuss any adjustment to assay data.• Discuss any adjustment to assay data.• Standard Certified Reference Material sample results are checked from each sample batch to ensure they are within tolerance (<2SD) and that there is no bias or drift			 The use of twinned holes. Documentation of primary data, data	• A process of laboratory data validation using mass balance is undertaken to identify entry errors or questionable data
 Verification of sampling and assaying Discuss any adjustment to assay data. Standard Certified Reference Material sample results are checked from each sample batch to ensure they are within tolerance (<2SD) and that there is no bias or drift The field and laboratory data has been updated into a Microsoft Access database and then imported into Datamine drill hole files. Data validation criteria are included to check for overlapping sample intervals, end of hole match between 'Lithology', 'Sample', 'Survey' files, duplicate sample numbers and other common errors No adjustments are made to the primary assay data Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 			entry procedures, data verification, data storage (physical and electronic) protocols.	 Field and laboratory duplicate data pairs (THM / OS / SLIMES) of each batch are plotted to identify potential quality control issues
 The field and laboratory data has been updated into a Microsoft Access database and then imported into Datamine drill hole files. Data validation criteria are included to check for overlapping sample intervals, end of hole match between 'Lithology', 'Sample', 'Survey' files, duplicate sample numbers and other common errors No adjustments are made to the primary assay data Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Anandheld GPS was initially used to identify the positions of the drill holes in the field. The handheld GPS has an 		Verification of sampling and assaying	 Discuss any adjustment to assay data. 	 Standard Certified Reference Material sample results are checked from each sample batch to ensure they are within tolerance (<2SD) and that there is no bias or drift
 Data validation criteria are included to check for overlapping sample intervals, end of hole match between 'Lithology', 'Sample', 'Survey' files, duplicate sample numbers and other common errors No adjustments are made to the primary assay data Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Data validation criteria are included to check for overlapping sample intervals, end of hole match between 'Lithology', 'Sample', 'Survey' files, duplicate sample numbers and other common errors No adjustments are made to the primary assay data Down hole surveys for shallow vertical aircore holes are not required A handheld GPS was initially used to identify the positions of the drill holes in the field. The handheld GPS has an 				 The field and laboratory data has been updated into a Microsoft Access database and then imported into Datamine drill hole files.
 No adjustments are made to the primary assay data No adjustments are made to the primary assay data Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. No adjustments are made to the primary assay data Down hole surveys for shallow vertical aircore holes are not required A handheld GPS was initially used to identify the positions of the drill holes in the field. The handheld GPS has an 				 Data validation criteria are included to check for overlapping sample intervals, end of hole match between 'Lithology', 'Sample', 'Survey' files, duplicate sample numbers and other common errors
 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Down hole surveys for shallow vertical aircore holes are not required A handheld GPS was initially used to identify the positions of the drill holes in the field. The handheld GPS has an 				No adjustments are made to the primary assay data
data pointsworkings and other locations used in Mineral Resource estimation.• A handheld GPS was initially used to identify the positions of the drill holes in the field. The handheld GPS has an		Location of	 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine 	 Down hole surveys for shallow vertical aircore holes are not required
accuracy of L/E 10 m in the horizontal		data points	workings and other locations used in Mineral Resource estimation.	 A handheld GPS was initially used to identify the positions of the drill holes in the field. The handheld GPS has an accuracy of 1/5 10 m in the harizantal
Specification of the grid system used.			• Specification of the grid system used.	עכנערעבע טן דין- 5-10 ווו ווו נוופ ווטווצטוונטו

Criteria	Explanation	Comment
	 Quality and adequacy of topographic control. 	 Adjusted SRTM (Shuttle Radar Topography Mapping) at 30 arc seconds was used for indicative topography and RL prior to photogrammetry drone mapping that is planned to take place once field cropping is completed. At this stage of the exploration program this is considered to be of adequate indicative accuracy.
		 Following the completion of the drilling program, a professional survey pickup of all the drill hole collar coordinates will be undertaken
		• The datum used is GDA94 and coordinates are projected as UTM zone 50
	• Data spacing for reporting of	Aircore Drilling
	Exploration Results.Whether the data spacing and	• The planned drill density was 100 m east-west by 500 m north-south
	 distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	• Drilling completed to date consists of the southernmost drill line and a line of holes to the north of the Exploration Target area
Data spacing		• This spacing is designed for supporting the development of Mineral Resource Estimation pending that the ensuing results of drilling and assaying will support the development of a Mineral Resource estimate
and distribution		• Each aircore drill sample is a single 1, 1.5 or 2 m sample of material intersected down the hole
		 No compositing has been applied for values of THM, slime and oversize, other than the summary reporting of mineralisation intervals in this announcement
		 Microscope scanning and high level grain counting of the THM sinks fraction will be carried out to aid the mineralogical and geological interpretation
		 It is planned to prepare compositing of heavy samples for mineral assemblage determination based on the mineralogical and geological interpretation
	• Whether the orientation of sampling achieves unbiased sampling of	The aircore drilling section lines were oriented perpendicular to the strike of mineralisation
Orientation of data in relation to	possible structures and the extent to which this is known, considering the deposit type.	• The strike of the mineralisation is sub-parallel to the contemporary coastline and is interpreted to be controlled by limestone basement
geological structure	If the relationship between the drilling orientation and the orientation of key mineralised	 Drill holes were vertical because the nature of the mineralisation is relatively horizontal
	structures is considered to have introduced a sampling bias, this	• The orientation of the drilling is considered appropriate for testing the lateral and vertical extent of mineralisation

Criteria	Explanation	Comment
	should be assessed and reported if material.	limiting bias
Sample	• The measures are taken to ensure sample security.	• Aircore samples remained in the custody of Company representatives until they were trucked to Perth using an independent contractor or samples were transported by Company representatives
security		• The samples were transported to Perth and delivered directly to the laboratory along with a sample manifest for checking of samples
		• The laboratory inspected the packages and did not report tampering of the samples
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• Internal reviews were undertaken and Richard Stockwell of Placer Consulting Pty Ltd was engaged to undertake supervision and training of onsite Company engaged contractors.

Section 2 Reporting of Exploration Results					
Criteria	Explanation	Comment			
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Exploration Target and planned / completed drilling lies within the granted exploration licences. At the time of reporting all tenure was secure and any administrative costs or fees were fully paid up. 			
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	• Previous tenement holders in the area, GMA, conducted Air Core drilling over the tenement.			
Geology	• Deposit type, geological setting and style of mineralisation.	• The deposit style is a combination of dunal and fluvial / marine sediments. Heavy mineral accumulations are preserved throughout the stratigraphic sequence.			
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea 	 All significant drill results and drill hole collar locations have been identified in Appendices 2 and 3 respectively of this report. No relevant material data has been excluded from this report 			

Criteria	Explanation	Comment
	level in metres) of the drill hole collar - dip and azimuth of the hole - down hole length and interception depth - hole length.	
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Independent Geologist should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. 	• All length weighted intervals are reported for each hole in (Appendix 2) for grades above 2.0% THM
	• Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	
	• The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported 	• All drill holes are vertical and perpendicular to the dip and strike of mineralisation and therefore all interceptions are approximately true thickness.
lengths	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known') 	• Drill holes are inferred to intersect the mineralisation approximately perpendicularly.
		• The deposit style is flat-lying and so the vertical holes are assumed to intersect the true width of any mineralisation.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	• Figures and plans are displayed in the main text of the Release
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• All drill results > 2.0% THM have been summarised as composited intervals and reported and tabulated in Appendix 2.

Criteria	Explanation	Comment
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Samples have not yet been tested for in situ density. Passive seismic surveys have been carried out over the deposit in alignment with planned drilling. Processing of the passive seismic surveys is still ongoing however preliminary results correlate to the identification of bands of limestone and calcrete in the drilling carried out to date.
Further work	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further work via infill drilling to target high grade and continuous mineralisation is recommended. Exploration by geophysical and drilling is planned on other parts of the tenement. Refer to the main body of the release for further information regarding diagrams.

LIMITE

Π

Heavy

Minerals //

Appendix 2: Composited drill assay results for 2021 Drilling Campaign. Results are prepared from drill hole assays at a cut-off grade of 2% THM and all composited intervals are continuous and unbroken.

	EASTING	NORTHING	RL	EOH	010	0.71	FROM	то	LENGTH	тнм	SLIMES	OS
HOLE_ID	(GDA94)	(GDA94)	(m)	(m)	DIP	AZI	(m)	(m)	(m)	(%)	(%)	(%)
PGAC0001	229248	6885228	41.8	64.2	-90	360	0.0	12.0	12.0	7.0	1.6	5.8
PGAC0001	229248	6885228	29.1	64.2	-90	360	15	22.5	7.5	2.9	1.1	0.5
PGAC0001	229248	6885228	23.1	64.2	-90	360	24	25.5	1.5	2.9	1.8	0.3
PGAC0001	229248	6885228	-1.7	64.2	-90	360	46.5	52.5	6	3.5	2.1	0.8
PGAC0002	229325	6885299	57.0	40.5	-90	360	0	9	9	2.5	2.4	3.4
PGAC0002	229325	6885299	39.0	40.5	-90	360	15	30	15	4.0	1.9	1.0
PGAC0002	229325	6885299	27.8	40.5	-90	360	31.5	36	4.5	2.9	2.5	1.3
PGAC0003	229392	6885369	59.4	51.0	-90	360	0.0	7.5	7.5	5.4	3.4	17.8
PGAC0003	229392	6885369	44.4	51	-90	360	19.5	21	1.5	2.0	9.0	11.1
PGAC0003	229392	6885369	29.4	51	-90	360	33	37.5	4.5	2.7	4.4	7.7
PGAC0003	229392	6885369	21.9	51	-90	360	42	43.5	1.5	3.2	5.3	16.6
PGAC0004	229459	6885432	58.4	63	-90	360	0	1.5	1.5	5.7	6.4	41.3
PGAC0004	229459	6885432	55.4	63	-90	360	3	4.5	1.5	2.0	2.3	6.0
PGAC0004	229459	6885432	50.9	63	-90	360	6	10.5	4.5	3.9	5.0	10.2
PGAC0004	229459	6885432	44.9	63	-90	360	13.5	15	1.5	2.1	3.9	8.5
PGAC0005	229535	6885506	49.9	66	-90	360	0	1.5	1.5	2.8	7.3	28.5
PGAC0005	229535	6885506	42.4	66	-90	360	6	10.5	4.5	2.4	11.6	20.5
PGAC0005	229535	6885506	37.9	66	-90	360	12	13.5	1.5	2.3	8.5	17.5
PGAC0005	229535	6885506	25.9	66	-90	360	24	25.5	1.5	2.0	7.8	13.7
PGAC0005	229535	6885506	22.1	66	-90	360	27	30	3	2.9	7.4	2.7
PGAC0006	229603	6885580	46.1	43.5	-90	360	3	4.5	1.5	2.0	5.5	21.3
PGAC0006	229603	6885580	42.4	43.5	-90	360	6	9	3	2.6	5.5	0.9
PGAC0007	229676	6885653	39.3	39	-90	360	9	10.5	1.5	2.1	5.8	28.2
PGAC0008	229747	6885722	53.7	39	-90	360	0	1.5	1.5	2.7	8.2	11.7
PGAC0008	229747	6885722	45.5	39	-90	360	7.5	10.5	3	2.6	9.4	19.5
PGAC0008	229747	6885722	40.2	39	-90	360	13.5	15	1.5	2.1	11.8	24.6
PGAC0009	229832	6885796	57.0	38	-90	360	0	1.5	1.5	2.1	8.8	36.2
PGAC0009	229832	6885796	51.8	38	-90	360	4.5	7.5	3	3.5	7.5	9.4
PGAC0010	230447	6886431	70.6	11.9	-90	360	0	11.9	11.9	4.5	8.0	6.3
PGAC0010A	230454	6886430	70.3	14.5	-90	360	0	13.5	13.5	3.9	9.5	7.4
PGAC0011	230386	6886366	69.5	42	-90	360	0	7.5	7.5	3.4	5.3	7.6
PGAC0011	230386	6886366	62.7	42	-90	360	9	12	3	2.2	6.7	5.8
PGAC0011	230386	6886366	58.2	42	-90	360	13.5	16.5	3	2.2	9.9	17.5
PGAC0012	231085	6887067	83.2	30.6	-90	360	0	7.5	7.5	3.0	7.0	17.3
PGAC0012	231085	6887067	75.7	30.6	-90	360	10.5	12	1.5	2.2	11.0	0.9
PGAC0012	231085	6887067	69.7	30.6	-90	360	16.5	18	1.5	2.1	10.0	16.4
PGAC0014	229041	6887841	101.0	39	-90	360	0	6	6	3.7	4.2	9.4
PGAC0014	229041	6887841	94.3	39	-90	360	9	10.5	1.5	2.8	9.3	3.6
PGAC0014	229041	6887841	91.3	39	-90	360	12	13.5	1.5	2.2	9.1	6.8

Heavy Minerals LIMITED

2	

	EASTING	NORTHING	RL	EOH	010		FROM	то	LENGTH	THM	SLIMES	OS
HOLE_ID	(GDA94)	(GDA94)	(m)	(m)	DIP	AZI	(m)	(m)	(m)	(%)	(%)	(%)
PGAC0014	229041	6887841	85.3	39	-90	360	18	19.5	1.5	2.1	6.6	0.1
PGAC0015	229107	6887909	92.0	25.4	-90	360	3.0	9.0	6.0	6.2	5.0	0.9
PGAC0015	229107	6887909	85.3	25.4	-90	360	12	13.5	1.5	2.1	8.3	0.3
PGAC0015	229107	6887909	74.8	25.4	-90	360	22.5	24	1.5	2.3	7.3	26.9
PGAC0016	228734	6887867	91.3	20.5	-90	360	0	7.5	7.5	3.2	6.2	19.3
PGAC0016	228734	6887867	80.8	20.5	-90	360	13.5	15	1.5	2.7	7.0	8.1
PGAC0017	228336	6887840	81.7	4.5	-90	360	0	1.5	1.5	2.4	7.0	0.7
PGAC0017	228336	6887840	78.7	4.5	-90	360	3	4.5	1.5	2.2	7.2	11.8
PGAC0020B	229886	6885857	55.6	40	-90	360	4	12	8	4.3	19.2	5.4
PGAC0021	229675	6885649	42.0	10.0	-90	360	6.0	8.0	2.0	2.0	18.5	9.1
PGAC0021A	229675	6885651	32.0	39	-90	360	16	18	2	2.3	8.3	16.1
PGAC0022	228918	6885552	32.0	30	-90	360	0.0	14.0	14.0	6.1	3.0	2.7
PGAC0023	228995	6885649	49.3	32.0	-90	360	0.0	8.0	8.0	5.0	3.6	9.2
PGAC0023	228995	6885649	37.3	32.0	-90	360	14.0	18.0	4.0	3.0	5.5	1.0
PGAC0023	228995	6885649	32.3	32.0	-90	360	20.0	22.0	2.0	4.8	7.1	0.4
PGAC0024C	229261	6885941	51.5	45	-90	360	0	1	1	2.2	7.4	3.7
PGAC0025	229040	6885721	53.5	48	-90	360	0.0	8.0	8.0	20.6	4.6	3.0
PGAC0025	229040	6885721	34.5	48	-90	360	22	24	2	2.6	6.9	2.8
PGAC0025	229040	6885721	27.5	48	-90	360	28	32	4	2.3	7.2	0.7
PGAC0025	229040	6885721	10.5	48	-90	360	46	48	2	15.9	21.5	13.8
PGAC0025A	229043	6885715	50.9	40	-90	360	0.0	13.0	13.0	17.9	5.6	9.7
PGAC0025A	229043	6885715	38.4	40.0	-90	360	18.0	20.0	2.0	17.3	9.9	8.9
PGAC0025A	229043	6885715	33.9	40.0	-90	360	23.0	24.0	1.0	3.8	9.2	7.6
PGAC0025A	229043	6885715	30.4	40	-90	360	26	28	2	2.4	10.6	5.4
PGAC0025A	229043	6885715	27.4	40	-90	360	29	31	2	3.1	10.8	1.1
PGAC0025A	229043	6885715	24.9	40	-90	360	32	33	1	2.1	5.6	0.3
PGAC0025A	229043	6885715	22.9	40.0	-90	360	34.0	35.0	1.0	2.4	18.8	0.3
PGAC0025A	229043	6885715	18.4	40	-90	360	38	40	2	4.3	14.1	1.4
PGAC0026	229117	6885802	47.9	58	-90	360	0.0	8.0	8.0	16.7	17.2	15.0
PGAC0026A	229122	6885785	51.0	60	-90	360	0.0	3.0	3.0	39.5	4.6	3.0
PGAC0027	229146	6885909	50.0	1.7	-90	360	0	1.7	1.7	4.5	10.5	1.1
PGAC0029	228684	6886081	47.0	4.5	-90	360	2	4.5	2.5	6.8	9.0	13.4
PGAC0030	228755	6886149	57.7	5	-90	360	2	5	3	4.2	13.7	10.1
PGAC0031	229396	6886077	54.2	40	-90	360	2	4	2	2.4	19.9	16.3
PGAC0031	229396	6886077	44.2	40	-90	360	10	16	6	4.2	12.8	13.2
PGAC0032	229463	6886147	59.6	16	-90	360	0	2	2	2.6	12.6	37.3
PGAC0032A	229464	6886149	57.6	50	-90	360	0.0	6.0	6.0	6.4	16.4	10.5
PGAC0032A	229464	6886149	46.6	50	-90	360	12	16	4	4.3	13.9	16.3
PGAC0032A	229464	6886149	41.6	50	-90	360	18	20	2	2.2	9.6	7.5
PGAC0032A	229464	6886149	29.6	50.0	-90	360	30.0	32.0	2.0	2.2	5.9	3.2
PGAC0051	229962	6885936	62.7	85.5	-90	360	4.5	7.5	3	2.8	9.2	20.8

Heavy Minerals LIMITED

4	

	EASTING NORTHING RL EOH					то	LENGTH	THM	SLIMES	OS		
HOLE_ID	(GDA94)	(GDA94)	(m)	(m)	DIP	AZI	(m)	(m)	(m)	(%)	(%)	(%)
PGAC0052	230034	6886005	73.3	34.5	-90	360	1.5	3	1.5	2.2	7.5	4.6
PGAC0052	230034	6886005	62.8	34.5	-90	360	4.5	21	16.5	3.4	9.9	6.4
PGAC0053	230101	6886074	58.3	21	-90	360	9.5	17	7.5	2.7	10.4	2.5
PGAC0053	230101	6886074	51.8	21	-90	360	18.5	21	2.5	2.1	12.7	4.5
PGAC0055	230242	6886217	65.4	10.5	-90	360	0	1.5	1.5	2.5	11.2	10.9
PGAC0056	230314	6886281	64.9	45	-90	360	0	3	3	2.2	5.6	0.8
PGAC0057	230243	6886919	74.9	17.5	-90	360	0	9	9	5.0	11.2	13.5
PGAC0058	230169	6886856	67.7	45	-90	360	0	9	9	3.7	9.4	9.6
PGAC0058	230169	6886856	59.5	45	-90	360	10.5	15.0	4.5	5.6	15.4	9.7
PGAC0059	230100	6886779	61.4	30	-90	360	0	13.5	13.5	3.7	9.3	3.0
PGAC0061	229961	6886637	62.2	21.0	-90	360	7.5	13.5	6.0	3.2	11.3	10.3
PGAC0062	229880	6886574	66.8	21.0	-90	360	7.5	8.5	1.0	2.7	10.2	23.2
PGAC0062	229880	6886574	62.8	21	-90	360	10.5	13.5	3	2.9	10.0	21.4
PGAC0062	229880	6886574	58.3	21	-90	360	15	18	3	2.4	12.3	17.9
PGAC0063	229822	6886503	72.1	17.3	-90	360	5.5	6.5	1	3.1	13.3	17.4
PGAC0064	229747	6886413	65.6	23.5	-90	360	7	10	3	3.7	7.0	0.5
PGAC0065	229688	6886351	63.9	60	-90	360	0	9.5	9.5	2.6	14.7	15.8
PGAC0065	229688	6886351	47.6	60	-90	360	20.5	21.5	1	2.0	13.2	1.1
PGAC0066	229602	6886282	55.1	48	-90	360	10.5	12	1.5	2.9	14.0	14.2
PGAC0067	228664	6885982	41.0	48	-90	360	0	1.5	1.5	3.0	8.5	2.8
PGAC0067	228664	6885982	18.5	48	-90	360	12.0	34.5	22.5	11.3	5.6	5.8
PGAC0068A	228830	6886219	61.2	29	-90	360	1.0	10.0	9.0	9.5	10.4	21.4
PGAC0068A	228830	6886219	52.7	29	-90	360	12	16	4	3.7	15.2	7.3
PGAC0068A	228830	6886219	44.2	29	-90	360	22	23	1	4.5	13.4	1.8
PGAC0069	228893	6886282	63.3	42	-90	360	0	2	2	3.1	17.2	0.9
PGAC0069	228893	6886282	59.8	42	-90	360	4	5	1	2.0	14.5	15.8
PGAC0071	229039	6886428	64.7	42	-90	360	0	3	3	2.9	15.3	17.8
PGAC0071	229039	6886428	60.2	42	-90	360	4.5	7.5	3	2.2	16.8	14.3
PGAC0072	229110	6886489	62.0	35	-90	360	8	9	1	3.1	11.8	22.5
PGAC0072	229110	6886489	60.0	35	-90	360	10	11	1	2.3	8.0	10.1
PGAC0073	229182	6886581	64.7	42	-90	360	9	10	1	2.5	20.7	3.0
PGAC0074	229253	6886639	75.9	24.8	-90	360	0	1	1	2.5	6.2	2.1
PGAC0074	229253	6886639	71.4	24.8	-90	360	4	6	2	2.2	14.7	10.8
PGAC0075	229351	6886707	77.9	75	-90	360	0	5	5	4.2	10.2	11.1
PGAC0075	229351	6886707	73.4	75	-90	360	6	8	2	2.9	21.7	4.3
PGAC0075	229351	6886707	66.4	75	-90	360	12	16	4	2.5	9.9	17.3
PGAC0076	229408	6886787	81.4	32	-90	360	0	1	1	3.6	3.0	1.5
PGAC0076	229408	6886787	76.4	32	-90	360	4	7	3	2.8	10.9	11.8
PGAC0076	229408	6886787	70.9	32	-90	360	10	12	2	2.5	6.5	1.9
PGAC0076	229408	6886787	66.9	32	-90	360	13	17	4	3.0	11.4	4.8
PGAC0078	229533	6886922	78.1	15	-90	360	5	9	4	2.9	16.8	14.6

Heavy Minerals LIMITED

\rightarrow	
19	

	EASTING NORTHING RL EOH		010	0.71	FROM	то	LENGTH	тнм	SLIMES	OS		
HOLE_ID	(GDA94)	(GDA94)	(m)	(m)	DIP	AZI	(m)	(m)	(m)	(%)	(%)	(%)
PGAC0078	229533	6886922	74.1	15.0	-90	360	10.0	12.0	2.0	2.3	10.3	1.5
PGAC0079	229604	6886995	83.9	22.0	-90	360	0.0	1.0	1.0	2.1	25.6	7.4
PGAC0079	229604	6886995	76.9	22	-90	360	4	11	7	4.8	10.3	9.3
PGAC0079	229604	6886995	69.9	22	-90	360	14	15	1	2.1	4.2	4.9
PGAC0079	229604	6886995	67.9	22.0	-90	360	16.0	17.0	1.0	2.1	19.1	0.6
PGAC0079	229604	6886995	64.9	22	-90	360	19	20	1	2.3	18.8	12.4
PGAC0080	229680	6887069	71.1	27	-90	360	8	13	5	4.7	10.7	15.1
PGAC0080	229680	6887069	62.1	27	-90	360	18	21	3	2.2	21.2	3.5
PGAC0081	229745	6887136	80.6	20	-90	360	0	1.5	1.5	3.6	8.8	4.6
PGAC0081	229745	6887136	71.6	20	-90	360	4.5	15	10.5	3.8	6.9	5.2
PGAC0082	229818	6887207	76.2	20.0	-90	360	0.0	12.0	12.0	5.6	5.8	5.1
PGAC0083	229891	6887281	83.0	42	-90	360	0.0	8.0	8.0	5.3	6.6	5.8
PGAC0083	229891	6887281	77.0	42.0	-90	360	9.0	11.0	2.0	2.8	2.3	0.9
PGAC0083	229891	6887281	74.5	42	-90	360	12	13	1	2.2	5.5	27.0
PGAC0083	229891	6887281	69.0	42.0	-90	360	14.0	22.0	8.0	5.8	7.0	11.7
PGAC0083	229891	6887281	53.0	42	-90	360	33	35	2	2.5	8.4	11.9
PGAC0083	229891	6887281	50.5	42.0	-90	360	36.0	37.0	1.0	2.4	23.9	5.3
PGAC0084	228897	6887001	85.4	43.5	-90	360	0	6	6	4.7	9.3	4.6
PGAC0084	228897	6887001	74.9	43.5	-90	360	8	19	11	3.2	8.7	7.2
PGAC0085	229537	6886201	60.3	42.0	-90	360	0.0	1.5	1.5	2.2	8.2	11.1
PGAC0085	229537	6886201	47.5	42	-90	360	12.0	15.0	3.0	5.6	5.5	2.1
PGAC0086	228262	6886355	44.9	45	-90	360	9	11	2	2.3	13.7	4.8
PGAC0087	228331	6886427	61.4	16.5	-90	360	0.0	13.0	13.0	7.8	14.6	8.0
PGAC0087	228331	6886427	52.4	16.5	-90	360	15	16	1	3.2	14.8	9.6
PGAC0088	228405	6886497	65.3	39	-90	360	0.0	12.0	12.0	13.2	10.0	5.3
PGAC0088	228405	6886497	50.8	39	-90	360	20	21	1	2.2	14.0	0.7
PGAC0089	228472	6886572	63.6	23	-90	360	0.0	14.0	14.0	12.9	10.4	7.0
PGAC0089	228472	6886572	55.1	23.0	-90	360	15.0	16.0	1.0	12.3	12.8	15.1
PGAC0089	228472	6886572	53.1	23	-90	360	17	18	1	3.4	7.5	1.5
PGAC0090A	228541	6886636	67.9	45	-90	360	0	2	2	7.5	7.4	1.5
PGAC0090A	228541	6886636	42.4	45	-90	360	26	27	1	2.7	9.1	1.1
PGAC0091	228638	6886725	69.5	39	-90	360	0	2	2	2.4	9.1	4.0
PGAC0091	228638	6886725	65.0	39	-90	360	5	6	1	2.3	19.3	13.4
PGAC0092	228708	6886777	73.0	35	-90	360	0	1	1	3.4	3.4	5.0
PGAC0092	228708	6886777	71.0	35	-90	360	2	3	1	2.4	2.3	0.5
PGAC0092	228708	6886777	67.0	35	-90	360	5	8	3	4.4	10.7	6.5
PGAC0093	228753	6886851	79.4	14	-90	360	1	2	1	3.2	20.6	0.4
PGAC0093	228753	6886851	72.4	14	-90	360	3.0	14.0	11.0	5.0	13.8	3.4
PGAC0094	228823	6886910	82.5	33.7	-90	360	0	1	1	2.2	9.4	28.5
PGAC0094	228823	6886910	77.0	33.7	-90	360	2	10	8	3.7	12.8	3.4
PGAC0094	228823	6886910	70.5	33.7	-90	360	12	13	1	2.2	41.1	2.1

>>	
4	
1	

	EASTING	NORTHING	RL	EOH	010		FROM	то	LENGTH	тнм	SLIMES	OS
HOLE_ID	(GDA94)	(GDA94)	(m)	(m)	DIP	AZI	(m)	(m)	(m)	(%)	(%)	(%)
PGAC0095	228897	6887001	84.4	10.5	-90	360	3	5	2	2.7	3.1	0.1
PGAC0095	228897	6887001	81.9	10.5	-90	360	6	7	1	2.4	3.1	2.6
PGAC0095	228897	6887001	78.2	10.5	-90	360	10	10.5	0.5	2.1	6.7	2.1
PGAC0096	228962	6887062	80.6	11.5	-90	360	3	11.5	8.5	3.3	8.3	9.1
PGAC0097	229019	6887114	86.6	45	-90	360	0	1	1	2.3	12.6	17.0
PGAC0097	229019	6887114	79.6	45	-90	360	3	12	9	3.0	8.9	10.9
PGAC0098	229115	6887194	89.9	20	-90	360	0	1.5	1.5	3.7	7.7	7.8
PGAC0098	229115	6887194	82.7	20	-90	360	7	9	2	2.2	14.9	9.1
PGAC0098	229115	6887194	78.7	20	-90	360	10	14	4	2.5	14.4	7.0
PGAC0099	229184	6887275	90.5	12	-90	360	0	4	4	3.4	10.7	7.4
PGAC0100	229251	6887346	92.7	45	-90	360	0	4	4	3.5	14.0	4.8
PGAC0100	229251	6887346	86.2	45	-90	360	8	9	1	2.1	5.7	0.1
PGAC0101	229320	6887420	92.8	26.5	-90	360	0	8	8	3.0	13.9	13.2
PGAC0101	229320	6887420	81.8	26.5	-90	360	14	16	2	3.1	4.3	0.2
PGAC0101	229320	6887420	78.3	26.5	-90	360	18	19	1	2.6	9.1	0.7
PGAC0102	229393	6887486	92.7	16.5	-90	360	0	2	2	2.9	12.1	9.5
PGAC0102	229393	6887486	88.7	16.5	-90	360	4	6	2	2.5	19.4	5.8
PGAC0103	229465	6887558	79.3	28.9	-90	360	11	13	2	2.3	13.2	10.9

Heavy Minerals LIMITE

Appendix 3: Drill hole collar coordinates for 2021 exploration campaign.

D

		EASTING	NORTHING	RL	EOH	LOGGED			HOLF	HOLF			DRILLING
LEASE	HOLE_ID	(GDA94)	(GDA94)	(m)	(m)	BY	DATE	SPLIT	ТҮРЕ	SIZE	DIP	AZI	COMPANY
E70/5160	PGAC0001	229248	6885228	47.8	64.2	NM	12/10/2021	25/75	AC	NQ	90	360	HORNET
E70/5160	PGAC0002	229325	6885299	61.5	40.5	NM	12/10/2021	25/75	AC	NQ	90	360	HORNET
E70/5160	PGAC0003	229392	6885369	61.6	51.0	NM	12/10/2021	25/75	AC	NQ	90	360	HORNET
E70/5160	PGAC0004	229459	6885432	59.1	63.0	NM	13/10/2021	25/75	AC	NQ	90	360	HORNET
E70/5160	PGAC0005	229535	6885506	50.6	66.0	NM	13/10/2021	25/75	AC	NQ	90	360	HORNET
E70/5160	PGAC0006	229603	6885580	49.9	43.5	NM	13/10/2021	25/75	AC	NQ	90	360	HORNET
E70/5160	PGAC0007	229676	6885653	49.0	39.0	NM	14/10/2021	25/75	AC	NQ	90	360	HORNET
E70/5160	PGAC0008	229747	6885722	54.5	39.0	NM	14/10/2021	25/75	AC	NQ	90	360	HORNET
E70/5160	PGAC0009	229832	6885796	57.8	38.0	NM	14/10/2021	25/75	AC	NQ	90	360	HORNET
E70/5160	PGAC0010	230447	6886431	76.5	11.9	NM	14/10/2021	25/75	AC	NQ	90	360	HORNET
E70/5160	PGAC0010A	230454	6886430	77.0	14.5	DC	7/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0011	230386	6886366	73.2	42.0	NM	14/10/2021	25/75	AC	NQ	90	360	HORNET
E70/5160	PGAC0012	231085	6887067	87.0	30.6	NM	15/10/2021	25/75	AC	NQ	90	360	HORNET
E70/5160	PGAC0013	229432	6887874	96.3	0.7	NM	15/10/2021	25/75	AC	NQ	90	360	HORNET
E70/5160	PGAC0014	229041	6887841	103.6	39.0	NM	15/10/2021	25/75	AC	NQ	90	360	HORNET
E70/5160	PGAC0015	229107	6887909	98.0	25.4	NM	15/10/2021	25/75	AC	NQ	90	360	HORNET
E70/5160	PGAC0016	228734	6887867	95.1	20.5	NM	16/10/2021	25/75	AC	NQ	90	360	HORNET
E70/5160	PGAC0017	228336	6887840	82.5	4.5	NM	16/10/2021	25/75	AC	NQ	90	360	HORNET
E70/5160	PGAC0018	228011	6887875	69.6	4.8	NM	16/10/2021	25/75	AC	NQ	90	360	HORNET
E70/5160	PGAC0019	227629	6887837	76.3	3.0	NM	16/10/2021	25/75	AC	NQ	90	360	HORNET
E70/5160	PGAC0020	229889	6885859	63.5	7.5	GC	9/11/2021	25/75	AC	NQ	90	360	TERRAIN
E70/5160	PGAC0020A	229888	6885858	63.7	23.4	GC	10/11/2021	25/75	AC	NQ	90	360	TERRAIN
E70/5160	PGAC0020B	229886	6885857	63.6	40.0	GC	10/11/2021	25/75	AC	NQ	90	360	TERRAIN
E70/5160	PGAC0021	229675	6885649	49.0	10.0	GC	12/11/2021	25/75	AC	NQ	90	360	TERRAIN
E70/5160	PGAC0021A	229675	6885651	49.0	39.0	GC	13/11/2021	25/75	AC	NQ	90	360	TERRAIN
E70/5160	PGAC0022	228918	6885552	39.0	30.0	GC	13/11/2021	25/75	AC	NQ	90	360	TERRAIN
E70/5160	PGAC0023	228995	6885649	53.3	32.0	GC	14/11/2021	25/75	AC	NQ	90	360	TERRAIN
E70/5160	PGAC0024	229247	6885936	51.3	3.8	GC	14/11/2021	25/75	AC	NQ	90	360	TERRAIN
E70/5160	PGAC0024A	229280	6885951	52.9	46.0	GC	27/11/2021	25/75	AC	NQ	90	360	TERRAIN
E70/5160	PGAC0024B	229260	6885940	52.1	6.0	DC	10/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0024C	229261	6885941	52.3	45.0	DC	10/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0025	229040	6885721	57.0	48.0	GC	15/11/2021	25/75	AC	NQ	90	360	TERRAIN
E70/5160	PGAC0025A	229043	6885715	57.9	40.0	DC	10/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0026	229117	6885802	51.4	58.0	GC	15/11/2021	25/75	AC	NQ	90	360	TERRAIN
E70/5160	PGAC0026A	229122	6885785	52.8	60.0	DC	10/12/2021	25/75	AC	NQ	90	360	BOSTECH

	LEASE		EASTING	NORTHING	RL	EOH	LOGGED	DATE	CDUT	HOLE	HOLE	DID	471	DRILLING
	LEASE	HOLE_ID	(GDA94)	(GDA94)	(m)	(m)	BY	DATE	SPLIT	ТҮРЕ	SIZE	DIP	AZI	COMPANY
	E70/5160	PGAC0027	229146	6885909	50.7	1.7	GC	22/11/2021	25/75	AC	NQ	90	360	TERRAIN
	E70/5160	PGAC0027A	229177	6885865	49.5	66.0	GC	27/11/2021	25/75	AC	NQ	90	360	TERRAIN
	E70/5160	PGAC0028	229317	6886002	53.0	67.0	GC	23/11/2021	25/75	AC	NQ	90	360	TERRAIN
	E70/5160	PGAC0029	228684	6886081	50.2	4.5	GC	24/11/2021	25/75	AC	NQ	90	360	TERRAIN
	E70/5160	PGAC0030	228755	6886149	61.2	5.0	GC	24/11/2021	25/75	AC	NQ	90	360	TERRAIN
	E70/5160	PGAC0031	229396	6886077	57.2	40.0	DC	1/12/2021	25/75	AC	NQ	90	360	TERRAIN
Ī	E70/5160	PGAC0032	229463	6886147	60.6	16.0	DC	2/12/2021	25/75	AC	NQ	90	360	TERRAIN
	E70/5160	PGAC0032A	229464	6886149	60.6	50.0	DC	2/12/2021	25/75	AC	NQ	90	360	TERRAIN
	E70/5160	PGAC0033	229534	6886215	61.0	12.0	DC	4/12/2021	25/75	AC	NQ	90	360	TERRAIN
	E70/5160	PGAC0051	229962	6885936	69.0	85.5	DC	6/12/2021	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0052	230034	6886005	75.6	34.5	DC	7/12/2021	25/75	AC	NQ	90	360	BOSTECH
Ī	E70/5160	PGAC0053	230101	6886074	71.8	21.0	DC	7/12/2021	25/75	AC	NQ	90	360	BOSTECH
Ī	E70/5160	PGAC0054	230171	6886146	67.4	12.5	DC	7/12/2021	25/75	AC	NQ	90	360	BOSTECH
Ī	E70/5160	PGAC0055	230242	6886217	66.2	10.5	DC	7/12/2021	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0056	230314	6886281	66.4	45.0	DC	7/12/2021	25/75	AC	NQ	90	360	BOSTECH
Ī	E70/5160	PGAC0057	230243	6886919	79.4	17.5	DC	7/12/2021	25/75	AC	NQ	90	360	BOSTECH
Ī	E70/5160	PGAC0058	230169	6886856	72.2	45.0	DC	8/12/2021	25/75	AC	NQ	90	360	BOSTECH
Ī	E70/5160	PGAC0059	230100	6886779	68.2	30.0	DC	8/12/2021	25/75	AC	NQ	90	360	BOSTECH
Ī	E70/5160	PGAC0060	230027	6886712	70.2	27.0	DC	8/12/2021	25/75	AC	NQ	90	360	BOSTECH
Ī	E70/5160	PGAC0061	229961	6886637	72.7	21.0	DC	8/12/2021	25/75	AC	NQ	90	360	BOSTECH
Ī	E70/5160	PGAC0062	229880	6886574	75.0	21.0	DC	8/12/2021	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0063	229822	6886503	77.9	17.3	DC	9/12/2021	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0064	229747	6886413	74.1	23.5	DC	9/12/2021	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0065	229688	6886351	68.6	60.0	DC	9/12/2021	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0066	229602	6886282	66.4	48.0	DC	9/12/2021	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0067	228664	6885982	41.7	48.0	DC	11/12/2021	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0068	228826	6886217	67.1	11.0	DC	11/12/2021	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0068A	228830	6886219	66.7	29.0	DC	11/12/2021	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0069	228893	6886282	64.1	42.0	DC	11/12/2021	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0070	228979	6886350	65.4	6.0	DC	11/12/2021	25/75	AC	NQ	90	360	BOSTECH
Ī	E70/5160	PGAC0070A	228981	6886354	65.0	44.0	DC	12/12/2021	25/75	AC	NQ	90	360	BOSTECH
	E70/5160	PGAC0071	229039	6886428	65.9	42.0	DC	12/12/2021	25/75	AC	NQ	90	360	BOSTECH
Ī	E70/5160	PGAC0072	229110	6886489	70.7	35.0	DC	12/12/2021	25/75	AC	NQ	90	360	BOSTECH
Ī	E70/5160	PGAC0073	229182	6886581	74.2	42.0	DC	12/12/2021	25/75	AC	NQ	90	360	BOSTECH
Ī	E70/5160	PGAC0074	229253	6886639	76.4	24.8	NM	13/12/2021	25/75	AC	NQ	90	360	BOSTECH
Ī	E70/5160	PGAC0075	229351	6886707	80.4	75.0	NM	13/12/2021	25/75	AC	NQ	90	360	BOSTECH
Ī	E70/5160	PGAC0076	229408	6886787	81.9	32.0	NM	13/12/2021	25/75	AC	NQ	90	360	BOSTECH

IFASE		EASTING	NORTHING	RL	EOH	LOGGED	DATE	CDUT	HOLE	HOLE	DID	471	DRILLING
LEASE	HOLE_ID	(GDA94)	(GDA94)	(m)	(m)	BY	DATE	SPLII	ТҮРЕ	SIZE	DIP	ALI	COMPANY
E70/5160	PGAC0077	229473	6886858	83.5	14.0	NM	14/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0078	229533	6886922	85.1	15.0	NM	14/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0079	229604	6886995	84.4	22.0	NM	14/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0080	229680	6887069	81.6	27.0	NM	14/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0081	229745	6887136	81.1	20.0	NM	14/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0082	229818	6887207	82.2	20.0	NM	14/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0083	229891	6887281	87.3	42.0	NM	14/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0084	228897	6887001	88.4	43.5	NM	15/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0085	229537	6886201	60.8	42.0	NM	15/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0086	228262	6886355	55.2	45.0	NM	15/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0087	228331	6886427	67.9	16.5	NM	15/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0088	228405	6886497	71.3	39.0	NM	16/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0089	228472	6886572	70.6	23.0	NM	16/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0090	228541	6886636	68.9	4.0	NM	16/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0090A	228541	6886636	68.9	45.0	NM	16/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0091	228638	6886725	70.5	39.0	NM	16/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0092	228708	6886777	73.5	35.0	NM	17/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0093	228753	6886851	80.9	14.0	NM	17/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0094	228823	6886910	83.0	33.7	NM	17/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0095	228897	6887001	88.4	10.5	NM	17/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0096	228962	6887062	87.8	11.5	NM	17/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0097	229019	6887114	87.1	45.0	NM	17/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0098	229115	6887194	90.4	20.0	NM	17/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0099	229184	6887275	92.5	12.0	NM	18/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0100	229251	6887346	94.9	45.0	NM	18/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0101	229320	6887420	96.8	26.5	NM	18/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0102	229393	6887486	93.7	16.5	NM	18/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0103	229465	6887558	91.3	28.9	NM	18/12/2021	25/75	AC	NQ	90	360	BOSTECH
E70/5160	PGAC0104	229537	6887634	95.4	8.5	NM	18/12/2021	25/75	AC	NQ	90	360	BOSTECH