

QUARTERLY REPORT FOR THE PERIOD ENDED 31 DECEMBER 2021

Highlights

- Hualilan Gold Project San Juan, Argentina
 - Continued to return outstanding results with 83 holes completed and 10 extended for 30,170 metres during the Quarter with results significantly expanding mineralisation.
 - On track to complete the remaining 67,000 metres of drilling in the next 5 months with 9 rigs programmed to be on site during the remainder of this program.
 - Next round of drilling at Sentazon returned best result received at Hualilan on a gram x metres basis breaking the previous record from DDH-71 (10.0m at 39.7 g/t AuEq), by more than 50%.
 - 63.3m at 9.8 g/t AuEq² 8.5 g/t Au, 7.9 g/t Ag, 2.9% Zn from 108.3m including;
 24.1m at 23.3 g/t AuEq² 20.4 g/t Au, 15.9 g/t Ag, 6.2% Zn from 113.60m and;
 1.9m at 17.2 g/t AuEq² 13.5 g/t Au, 23.1g/t Ag, 7.8% Zn from 168.7m (GNDD-378).
 - The first holes drilled with the portable rig targeting up-dip extensions of the high-grade mineralisation in the Hualilan Hills returned outstanding results including:
 - 5.0m at 19.9 g/t AuEq² 17.3 g/t Au, 30.1 g/t Ag, 5.1% Zn from 15.0m including;
 3.0m at 32.5 g/t AuEq² 28.2 g/t Au, 49.8 g/t Ag, 8.3% Zn (GNDD-397).
 - 5.4m at 28.7 g/t AuEq² 28.6 g/t Au, 11.1 g/t Ag from 24.4m inc
 2.4m at 60.2 g/t AuEq² 60.0 g/t Au, 20.4 g/t Ag from 26.0m within
 67.6m at 2.6 g/t AuEq² 2.5 g/t Au, 2.6 g/t Ag from 24.4m (GNDD-434)
 - Drilling on the Magnata Fault extended the high-grade Magnata Fault mineralisation to 520 metres strike and 500 metres vertically with mineralisation still open in all directions.
 - 4.2m at 16.1 g/t AuEq² 10.4 g/t Au, 61.5g/t Ag, 11.4% Zn from 330.8m (GNDD-370)
 - 4.0m at 16.9g/t Au from 240.0m (silver and base metal results pending) (GNDD-416).
 - Drillhole GNDD-450 testing the prognosed position of the Verde Zone across the Magnata Fault approximately 400 metres south of the known Verde mineralisation intercepted:
 - 97.8m at 2.2 g/t AuEq² 1.7 g/t Au, 11.9g/t Ag, 0.9% Zn from 313.5m including
 16.8 at 9.7 g/t AuEq² 7.1 g/t Au, 50.7 g/t Ag, 4.4% Zn from 376.2m including
 4.8m at 30.0 g/t AuEq² 21.6 g/t Au, 9.3 g/t Ag, 0.2% Zn from 376.2 (GNDD-450)
- El Guayabo/Colorado V Gold/Copper Projects El Oro, Ecuador
 - First drill hole in 100% owned El Guayabo concession in Ecuador has intersected significant Au-Cu-Ag-Mo mineralisation over 784 metres from 16.2m to the end of the hole at 800.5m.
 - 784.3m at 0.4 g/t AuEq² 0.2 g/t Au, 1.6 g/t Ag, 0.1 % Cu from 16.2m including;
 380.5m at 0.5 g/t AuEq2 0.3 g/t Au, 2.0 g/t Ag, 0.1 % Cu from 167.5m including;
 188.5m at 0.6 g/t AuEq2 0.4 g/t Au, 2.3 g/t Ag, 0.1 % Cu from 359.5m including;
 21.0m at 1.1 g/t AuEq2 0.8 g/t Au, 3.0 g/t Ag, 0.2 % Cu, from 403.0m and
 30.0m at 1.1 g/t AuEq2 0.8 g/t Au, 2.6 g/t Ag, 0.2 % Cu, from 468.5m
 (Drillhole GYDD-21-001 with the hole ending in mineralisation)

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Challenger Exploration (ASX: CEL) ("CEL" or the "Company") is pleased to provide its Quarterly Activities Report for its Gold and Copper projects in Argentina and Ecuador for the period ended 31 December 2021 ("Quarterly", "Reporting Period").

CORPORATE

The Company has allotted the final 4 million of the 18 million shares under the acquisition agreement to complete the 100% acquisition of the El Guayabo Project in Ecuador.

CEL significantly expanded its tenement position during the Quarter, entering into agreements to acquire a package of Exploration Licences adjacent to the Company's existing Hualilan Gold Project. The concessions comprise five contiguous exploration licenses which are collectively called the Cordon del Peñon tenements.

The Cordon del Peñon tenements cover 97.5 km² and are located 3 kilometres north of Challenger's existing Hualilan Project concessions which cover approximately 80 Km², with the tenements bounded by Newmont on the eastern and southern boundaries. They contain the same package of sedimentary rocks and limestones which host the Hualilan Gold Project and cover approximately 15 kilometres of prospective strike. The Company is in a constructive dialogue with the San Juan Department of Mines regarding further consolidating its tenement position in the vicinity of the Hualilan Project.

Challenger is in a strong financial position, with \$27.6m in cash at the end of the Quarter. Spend during the Quarter was \$9.3m of which approximately \$1.3m was Argentinian VAT which will be recouped. The net exploration expenditure for the Quarter inclusive of all overhead with 9 rigs completing 30,170 metres in Hualilan, and two rigs drilling in Ecuador, with all overheads was approximately \$8.6m, primarily relating to drilling and assay expenditure. The balance was substantially related to repayment and expenses related to the Riverfort facility and corporate overheads.

COVID-19

The Company continues to work with all levels of government and local communities in relation to COVID-19. In addition to its regular community support activities during COVID-19, which include the donation of fortnightly food packs to the 100 most needy families in its local community in around the El Guayabo Project, the Company agreed to donate a number of oxygen bottles to the Santa Rosa community at the request of the local mayor.

During the Quarter there were no incidences of COVID-19 at any of the Company's projects and all of the company's employees from Ecuador and Argentina are fully vaccinated for COVID-19. CEL's priority remains the health and wellbeing of all its staff and contractors and their families. A copy of the Company's COVID-19 protocols is available on our website.

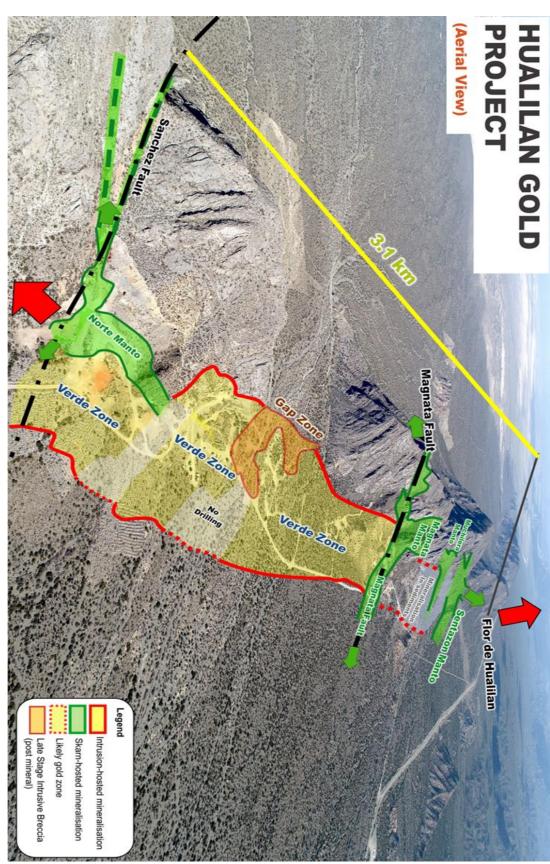


Figure 1 - Hualilan Gold Project Location Map (looking south-east)

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

HUALILAN GOLD PROJECT - ARGENTINA

SENTAZON EXTENSION DRILLING PROGRAM

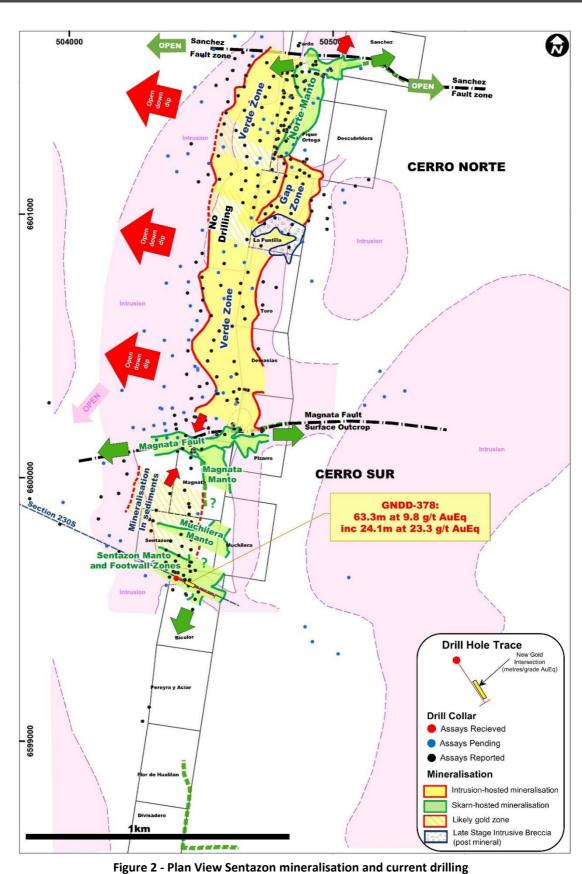
Sentazon is the southernmost mineralisation that was defined historically with its location shown in Figure 1. Mineralisation as Sentazon was described historically as;

"Manto-style" high grade lenses, oriented parallel to the limestone beds, caused by the replacement of the limestone beds with massive sulphides. The Sentazon Manto is one of three en-echelon manto zones at Cerro Sur, over a strike interval of 330 metres, the others being Muchilera and Magnata both to the north. This mineralisation is lensoid in shape, trending northerly, dipping 40 to 70 degrees west with thickness of 1 to 4 metres ranging to 8 metres and open at depth."

Previous drilling by CEL at Sentazon intersected mineralisation over 150 metres of strike and 300 metres down dip at Sentazon with the mineralisation open along strike, at depth, and up-dip into the Hualilan Hills. Additionally, GNDD-142 had intersected a broad zone of high-grade mineralisation 50 metres below the Sentazon Manto returning an intercept of 40.0 metres at 6.2 g/t AuEq in limestones and intrusives.

The Sentazon extension drill program has been expanded several times due to the continuing high-grade results. The expanded program at Sentazon now includes a minimum of 24 additional drill holes of which 15 have been completed (assays pending), one hole is in progress, and eight more are planned.

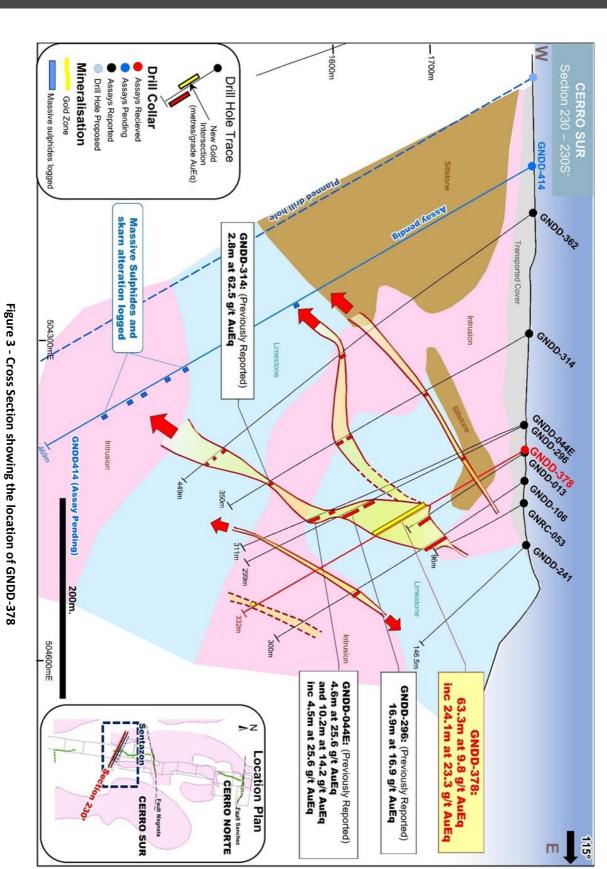
During the Quarter, the Company received assays results for GNDD-378 which was drilled to test 40 metres down-dip of earlier drill hole GNDD-106, which had intersected 25 metres at 0.7 g/t AuEq including 4 metres at 2.6 g/t AuEq and 1.1 metres at 1.6 g/t AuEq (Figure 2). GNDD-378 was effectively a redrill of one of the Company's earliest Sentazon drill holes, GNDD-013, which intersected 6.9 metres at 2.7 g/t in the main Sentazon Manto and was terminated prior to reaching the, then undiscovered, underlying Footwall Zone at Sentazon.


GNDD-378 intersected **63.3 metres at 9.8 g/t AuEq (8.5 g/t gold, 7.9 g/t silver, 2.9% zinc)** from 108.3m including **24.1 metres at 23.3 g/t AuEq (20.4 g/t gold, 15.9 g/t silver, 6.2% zinc)** from 113.60m and; **1.9 metres at 17.2 g/t AuEq (13.5 g/t gold, 23.1g/t silver 7.8% zinc)** from 168.7m.

Definition of new consistent wide zone of high-grade mineralisation at Sentazon

This 63 metre intersection in GNDD-378 (true width approximately 40 metres) correlates with the intercept in GNDD-142, located in the same stratigraphic position 25 metres north along strike. GNDD-142 intersected 11.5m at 6.5 g/t AuEq from 81.5m, plus 40.0m at 6.2 g/t AuEq from 152.0m (including 10.7m at 13.3 g/t AuEq) within a larger zone of 110.5 metres at 3.0 g/t AuEq. This confirms a thick high-grade zone of mineralisation is present where the structures that control the main Sentazon Manto (which dips at approximately 45 degrees) and the steeper underlying Footwall Zone (which dips at approximately 60 degrees) intersect.

The mineralisation in GNDD-378 is consistent, pervasive, and high-grade. The core was sampled for assaying in 1 to 1.5 metre intervals, with the 63.3 metre intercept comprising 51 splits (Table 1).



Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Sixteen of the 51 samples returned grades above 10 g/t AuEq, with 11 splits above 20 g/t AuEq and the two highest grade splits returning: 124.5 g/t AuEq (119.8 g/t gold, 68.6 g/t silver, 8.7% zinc) and 142 g/t AuEq (131.1 g/t gold, 52.8 g/t silver, 23.6% zinc).

Additionally, GNDD-296 (16.9 metres at 16.9 g/t AuEq), GNDD-044e (4.6 metres at 25.6 g/t plus 10.2m at 14.2 g/t AuEq), and GNDD-314 (2.8m at 62.5 g/t AuEq), collectively stepping 160 metres downdip from GNDD-378, demonstrate the significant scale of the high-grade gold mineralisation at Sentazon.

Record Hualilan Gold Project Intercept

GNDD-378 is the best drill hole recorded at the project exceeding the previous best hole DDH-71 (10.0m at 39.7 g/t AuEq), by more than 50% on a gram x metres basis. Ongoing results demonstrate that these types of intercepts are not uncommon as Hualilan continues to grow into a discovery of significance. Fifteen of the 341 CEL drill holes for which assays have been received have intercepted more than 200 gram x metres with 37 of 341 (approximately 11%) of CEL drill holes returning more than 100 gram x metres.

Ongoing Sentazon drill program

Based on the results of GNDD-378 additional drilling is now planned along strike in the same stratigraphic position as drill holes GNDD-142 and GNDD-378 to test for extensions to the thick high-grade zone that forms where the structures that control the main Sentazon Manto and the Footwall Zone join. A hole is planned 20 metres north of GNDD-142 in the approximate position of historical drill hole 04-HD-5 which intersected several zones of mineralisation from 80 to 114 metres downhole.

CEL drilling has shown that these historical drill holes have often significantly under reported both the grade and width of mineralisation due to poor core recoveries washing out the sulphides that contain the gold.

DRILL PROGRAM IN THE HUALILAN HILLS USING PORTABLE RIG

During the Quarter, the Company released the results are from a series of holes drilled using a track mounted portable rig into the Hualilan Hills. Previous drilling by Challenger has consisted of a series of drill holes collared on the plain surrounding the Hualilan Hills, targeting the down-dip extensions of the historically defined high-grade mineralisation. The Hualilan Hills extend up to 200 metres above the plains and while mineralisation was historically mapped outcropping up into the hills, drilling had not been possible due to access issues. Additionally, drilling in the Hualilan Hills was not deemed high-priority prior to the excellent results of the channel sampling, which indicated the presence of bonanza grades up-dip from drilling.

GNDD-397

Photo 1 (over the page) shows, GNDD-397 the first in series of additional holes in progress stepping progressively higher into the Hualilan Hills at Cerro Norte, along a recently completed access road. GNDD-397 was collared approximately 25 metres vertically above the plain some 50 metres up-dip from previous CEL drilling. GNDD-434 was collared at the end of this access road.

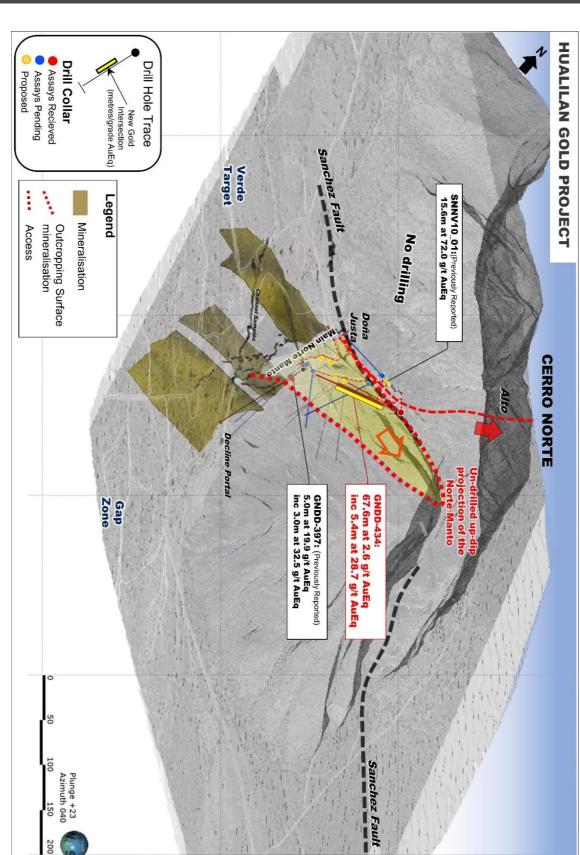


Figure 4 - 3D view of Cerro Norte showing the location of GNDD-397 and additional portable rig drilling

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Contact

Photo 1 (looking north) - GNDD-397 drilling and road to up-dip drill pads including GNDD-434

The hole successfully intersected the prognosed up-dip extension of the main Cerro Norte Manto, intersecting 5.0 metres at 19.9 g/t AuEq (17.3 g/t gold, 30.1 g/t silver, 5.1% zinc) from 15.0m including; 3.0 metres at 32.5 g/t AuEq (28.2 g/t gold, 49.8 g/t silver, 8.3% zinc). Additionally, the hole encountered two deeper zones of mineralisation, intersecting 4 metres at 0.4 g/t AuEq from 50.0m and 4 metres at 0.6 g/t AuEq from 98.0m. Both these deeper zones are hosted in intrusives and correlate with the prognosed position of the Gap Zone mineralisation, approximately 250 metres south.

GNDD-397 was located 80 metres up-dip of CEL drill hole GNRC-078 (1 metre at 1.2 g/t AuEq) and 50 metres up-dip of GNRC-064 (1 metre at 1.6 g/t AuEq and 1 metre at 1.7 g/t AuEq). Additionally, GNDD-397 is located approximately 30 metres up-dip from channel sample RNNV12-01 (35.2 metres at 6.9 g/t AuEq) and 20 metres north along strike of RNNV12-10 (8.7 metres at 15.0 g/t AuEq). Drill holes GNRC-064 and GNRC-078 and channel sample RVNN12-01, recorded significantly lower grades than were intersected in drillhole GNDD-397. This supports the interpretation of better grades, as the Company continues the program of drilling higher into the Hualilan hills.

Eastern Extension of the Sanchez Fault - GNDD-425, GNDD-434, GNDD-441

The results of this first up-dip hole were followed subsequent to the end of the quarter with the results of GNDD-425, GNDD-434 and GNDD-441. GNDD-434 is the deepest and most westerly hole on the Sanchez Fault for which results have been received (Figure 5). The hole was collared approximately 100 metres up into the Hualilan Hills at the eastern limit of the current drill access road. The closest

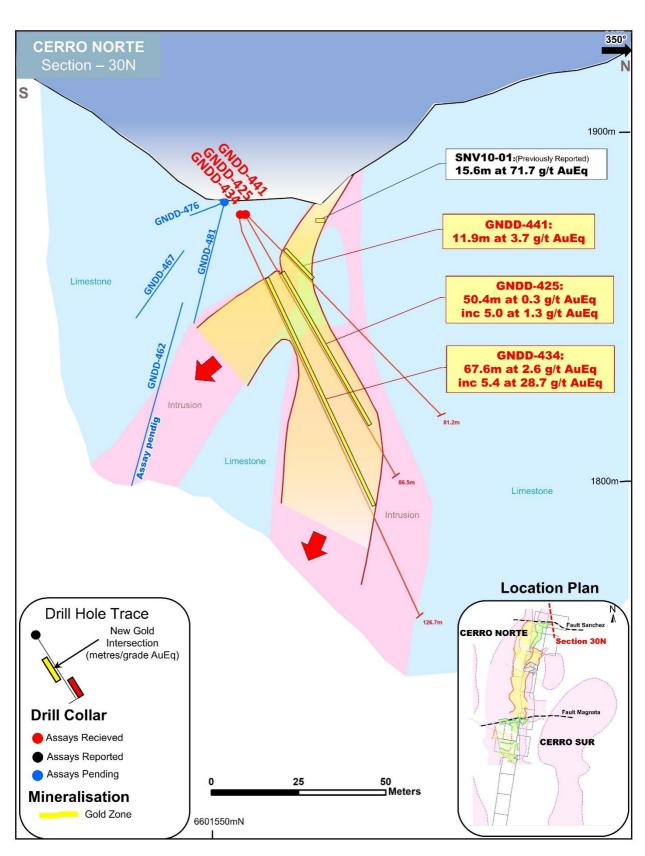


Figure 5 - Sanchez Fault Cross Section 30N showing GNDD-434 and earlier drilling

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

hole to GNDD-434 is CEL's fourth drill hole GNDD-004 collared 120 metres to the east. It should be noted, GNDD-004 was designed to test under the Dona Justa Open Pit and wasn't drilled to intersect the Sanchez Fault.

GNDD-434 extended the Sanchez Fault mineralisation almost 200 metres to the east intersecting **5.4** metres at **28.7** g/t AuEq (**28.6** g/t gold, **11.1** g/t silver) from 24.4m including **2.4** metres at **60.2** g/t AuEq (**60.0** g/t gold, **20.4** g/t silver). This intersection was located directly above a 3-metre void with the void interpreted as old workings, given the proximity of the hole to surface and the access tunnels noted in the vicinity of the collar location. Historical mining generally, did not take ore grading less than 10 g/t, hence it is anticipated that the true width of the high-grade section of the Sanchez Fault mineralisation is almost 9 metres at this location.

Additionally, the hole intersected a much broader zone of mineralisation around this high-grade zone, with GNDD-434 intersecting **67.6 metres at 2.6 g/t AuEq (2.5 g/t gold, 2.6 g/t silver) from 24.4m.** This lower grade halo is typical of the Sanchez Fault Zone mineralisation to date with drillholes such as GNRC-068 collared 200 metres east along the Sanchez Fault intersecting 69.0 metres at 4.7 g/t AuEq, including 27.0 metres at 11.2 g/t AuEq.

GNDD-441 and GNDD-425 were drilled from the same pad as GNDD-434, at shallower dips of 45 degrees (GNDD-441) and 60 degrees (GNDD-425), to test the Sanchez Fault near surface at this location. GNDD-441 successfully confirmed the Sanchez Fault continues to be mineralised from near surface at this eastern extension with the hole intersecting 11.9 metres at 3.7 g/t AuEq (3.2 g/t gold, 9.3 g/t silver, 0.8% zinc) from 15.1m including 1.2 metres at 14.1 g/t AuEq (13.3 g/t gold, 45.3 g/t silver, 0.6% zinc). GNDD-425 intersected 50.4 metres at 0.4 g/t AuEq (0.3 g/t gold, 3.7 g/t silver, 0.1% zinc) from 19.8m including 5.0 metres at 1.3 g/t AuEq (1.2 g/t gold, 6.3 g/t silver).

GNDD-425, GNDD-434 and GNDD-441 (Figures 4 and 5) confirm that the high-grade mineralisation on the Sanchez Fault remains open at the current eastern limit of drilling, which is controlled by drill rig access. Additionally, grades appear to be improving at depth. The Sanchez Fault mineralisation has been historically mapped another 200 metres to the east in outcrop over the Hualilan Hills, with drilling planned to target the Sanchez Fault from the eastern side of the Hualilan Hills.

Up-dip Potential

With these initial drill holes validating the Company's model of bonanza grade mineralisation up-dip, the undrilled potential in the Hualilan Hills has the potential to make a significant contribution to the high-grade endowment of the Hualilan Gold Project. High-grade mineralisation has been mapped in outcrop in the Hualilan Hills over 300 meters of strike at Cerro Norte, 600 metres strike between the Magnata Fault and Sentazon and for 500 metres south of the Flor de Hualilan Adit.

The Company's current drilling has intersected high-grade manto mineralisation, from surface to 200-300 metres down-dip and there is an additional 200-300 metres up-dip potential to the top of the Hualilan Hills.

# drill holes	Location	Target				
26	Cerro Norte	up-dip extensions of high-grade skarn mineralisation				
5	Sentazon	up-dip extensions of high-grade skarn mineralisation				
11	Magnata	up-dip extensions of high-grade skarn mineralisation				
2	Flor de Hualilan	up-dip extensions of high-grade skarn mineralisation				
8	Pizzaro	up-dip extensions of Verde Intrusion-hosted mineralisation				

Table 1 - Summary of current drill program with the track-mounted drill rig

This potential will be addressed by an expanded program of 52 drill holes, using the track-mounted drill rig (Table 1). The majority of this drilling, 26 of 52 drill holes, is currently programmed at Cerro Norte where access roads have been completed. Conditional on results at Sentazon and Magnata, it is likely additional access roads will be constructed to further expand the program.

MAGNATA FAULT EXTENSION DRILLING

During the Reporting Period, the Company released the results are from a series of drill holes designed to test for extensions of high-grade mineralisation on the Magnata Fault at depth and along strike. The program was particularly pleasing with all 18 drill holes intersecting mineralisation and the footprint of the high-grade Magnata Fault mineralisation extended significantly.

Highlights from the program included GNDD-416 (4.0m at 16.9g/t Au from 240.0m and 1.1m at 44.5 g/t Au from 530.7m) and GNDD-422 (29.0m at 5.3g/t AuEq including 2.6m at 24.7 g/t AuEq). Both these holes intersected strong mineralisation below earlier holes which recorded limited intercepts. These holes confirm the Magnata Fault mineralisation remains strong and open at depth with GNDD-416 extending mineralisation to 500 metres below surface.

GNDD-370 (4.2m at 16.1 g/t AuEq and 18.9 metres at 3.1 g/t AuEq including 6.6m at 6.6 g/t AuEq) intersected two zones of mineralisation. The upper zone associated with the Magnata Fault follows the Limestone contact which demarcates the Magnata fault at that location. The lower zone is hosted in limestone and is a new domain of massive sulphide (manto) north of the Magnata Fault.

GNDD-348, which was collared 120 metres west of previous drilling on the Magnata Fault, successfully extended the Magnata Fault mineralisation 120 metres along strike. GNDD-348 intersected 23 metres of mineralisation from 227 metres until the end of the hole with the last two samples grading 6.0 g/t Au and 0.2 g/t Au. The hole has subsequently been extended with assays for the extension pending. Each of drill holes GNDD-343, GNDD313, GNDD-318, and GNDD-351, all collared west of GNDD-290 (the previous most westerly drill hole on the Magnata Fault), intersected mineralisation confirming the extension of consistent mineralisation another 120 metres west along the Magnata Fault. The mineralisation remains open along strike and at depth.

Additionally, drilling intersected a broad zone of near surface mineralisation in intrusive both above and surrounding the high-grade the Magnata Fault mineralisation. Examples include 21.7m at 1.1 g/t

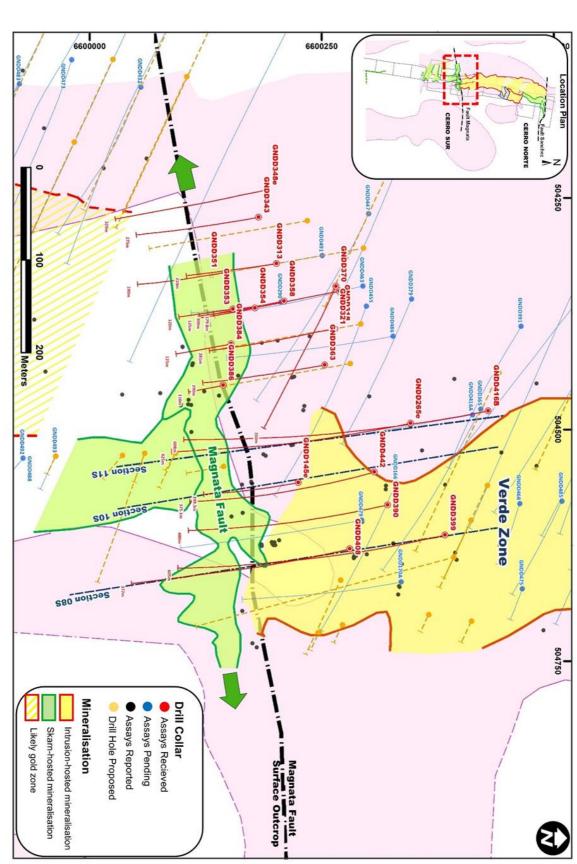


Figure 6 – Plan View showing current and pending Magnata Fault drilling

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

AuEq and **63m** at **0.5** g/t **AuEq** (GNDD-408) and **55.0m** at **0.7**g/t **AuEq** (GNDD 343). This confirms earlier intersections of substantial widths of near surface mineralisation above the Magnata Fault. This has the potential to be economically significant in the context of an open pit mining scenario.

Magnata Fault Zone

The Magnata and Sanchez Faults are two large east-west sub-vertical strike strip faults. The faults can be seen in outcrop and in magnetic data extending for tens of kilometres to the east and west of Hualilan. The Magnata Fault Zone is located at Cerro Sur 1.5 kilometres south of the Sanchez Fault and separates into the M1 and M2 Magnata Faults, both of which host high-grade mineralisation.

The Magnata and Sanchez Faults were historically recognised as major controls of the mineralisation at Hualilan. The mineralising fluids were interpreted to have migrated from a source below or along strike, within the faults forming steeply dipping zones of mineralisation within the Magnata and Sanchez Faults. These fluids migrating up the faults are also responsible for replacement massive sulphide Manto-style high grade bodies, oriented parallel to the limestone beds, dipping to the west adjacent to the faults.

This program of extension drilling on the Magnata Fault was designed as a series of fences of holes spaced at 40 metres along the Magnata Fault. The holes on each fence were collared to intersect the Magnata Fault approximately 40 metres below the previous hole. The drilling is targeting higher grade, thicker shoots within the fault zones. The location of the drill holes is shown in Figure 6.

GNDD-370

GNDD-370 was collared approximately 100 metres north of the Magnata Fault and drilled as a wildcat test in an area of limited drilling. The hole intersected two new zones of mineralisation. The upper zone returned 18.9m at 3.1 g/t AuEq (2.7 g/t gold, 9.9 g/t silver, 0.6% zinc) from 245.8m including 6.6m at 6.6 g/t AuEq (5.8 g/t gold, 17.9 g/t silver, 1.3% zinc) and 4.9m at 2.3 g/t AuEq (2.0 g/t gold, 10.1 g/t silver, 0.3% zinc). This mineralisation is associated with the contact between the sediments and intrusives with this boundary believed to be the Magnata Fault in this location.

The deeper intersection of **4.2m at 16.1 g/t AuEq (10.4 g/t gold, 61.5g/t silver, 11.4% zinc)** from 330.8m consists of high-grade skarn mineralisation hosted in limestone. A follow up hole GNDD-447 (assays pending) had been drilled to test 50 metres down dip from GNDD-370 and in other areas where this mineralisation may extend. This limestone hosted mineralisation occurs at a similar stratigraphic position as the Main Magnata Manto south of the Magnata Fault however additional drilling will be required to better define this new mineralised domain.

GNDD-442

GNDD-442 is one of the more significant holes in the current program. As Figure 7 (over the page) illustrates the hole was drilled underneath hole GNDD-175 (8.5 metres at 0.2 g/t AuEq) which had potentially indicated that mineralisation may be closing at depth in the central part of the Magnata Fault. The intersection in GNDD-442 of 29.0 metres at 5.3 g/t AuEq (3.2 g/t gold, 44.6 g/t silver, 3.6% zinc) from 306.0m including 2.6 metres at 24.7 g/t AuEq (17.6 g/t gold, 218.0 g/t silver, 10.1% zinc)

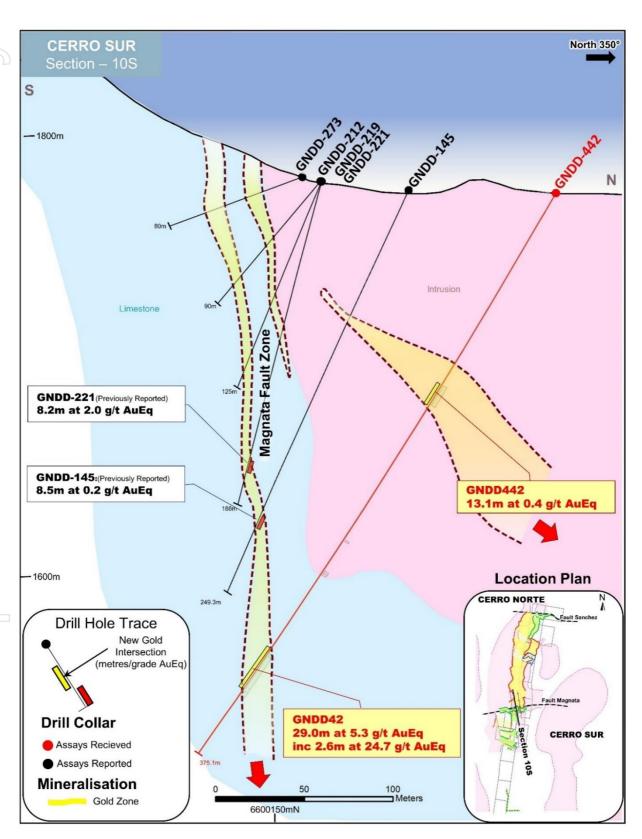


Figure 7 - Magnata Fault Cross Section 10S Showing GNDD-442 and earlier drilling

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

extended Magnata Fault high-grade mineralisation over 120 metres vertically below GNDD-221 (8.2 metres at 2.0 g/t AuEq) and 75 metres below GNDD-145. It confirms that thicker, higher grade mineralised shoots remains strong and open at depth in the central part of the Magnata fault as it does in the entire Magnata Fault.

Additionally, GND-442 intersected a number of zones of mineralisation above the Magnata Fault including 13.1 metres at 0.4 g/t AuEq (0.3 g/t gold, 1.4 g/t silver, 0.2% zinc) from 125.9 metres, 1.0 metres at 1.8 g/t AuEq (1.8 g/t gold, 4.0 g/t silver) from 229.0 metres, and 2.9 metres at 1.9 g/t AuEq (1.8 g/t gold, 1.9 g/t silver, 0.1% zinc) from 251.4.

GNDD-416

GNDD-416 was drilled on the section of drilling 40 metres west along strike from GNDD-442. Similar to GNDD-442, the hole was a deep test below GNDD-265 and GNDD-278 both of which had not recorded any significant intercept. At this stage the Company has received preliminary gold results only for GNDD-416 with silver and base metal results pending.

GNDD-416 returned an outstanding result extending the high grade Magnata Fault mineralisation 220 metres vertically below drillhole GNDD-227 (3.7m at 2.1 g/t AuEq and 8.0 metres at 5.7 g/t AuEq) with an intercept of **1.1 metres at 44.5 g/t gold** from 530.7m (silver and base metal results pending). This is the deepest intercept on the Magnata Fault and mineralisation has now been intersected over 500 metres vertical extent on the Magnata Fault. Additionally, GNDD-416 and more recent drilling shows that the Magnata Fault is near vertical and that drill hole GNDD-278 was stopped before it reached the Magnata Fault. GNDD-278 is now programmed to be extended 125 metres to test the Magnata fault 75 metres above GNDD-416.

GNDD-363, GNDD-386

Drillhole GNDD-363 and GNDD-386 were drilled approximately 100 metres west along strike from GNDD-416. The two holes are located on the same fence of drillholes as GNDD-014 (14.7m at 3.3 g/t AuEq) and GNDD-117 (10.0m at 2.7 g/t AuEq) GNDD-243 (7.1m at 3.6 g/t AuEq), GNDD-272 (11.1m at 20.0 g/t AuEq) and GNDD-286 (10.2m at 6.2 g/t AuEq), which are progressively deeper tests of the Magnata fault.

GNDD-386 was a shallow hole designed to test the Magnata Fault up dip of GNDD-272. GNDD-386 extended the Magnata Fault mineralisation another 35 metres up dip intersecting 31.9m at 0.7 g/t AuEq (0.6 g/t gold, 6.4g/t silver, 0.1% zinc) from 64.6 metres. This wide low grade intersection contained two higher grade zones of 2.0m at 6.4 g/t AuEq (6.3 g/t gold, 2.7 g/t silver) from 67.0m and 0.9m at 6.4 g/t AuEq (6.3 g/t gold, 2.7 g/t silver) from 67.0m and 0.9m at 2.5 g/t AuEq (0.9 g/t gold, 0.8 g/t silver, 1.1% zinc) from 81.5m, which are believed to be the near surface expression of the M1 and M2 Magnata faults.

GNDD-363 was designed to intersect the Magnata Fault 50 metres downdip of GNDD-243 the previous deepest hole at this location on the Magnata Fault deepest hole. GNDD-363 extended the Magnata Fault mineralisation intersecting 21.9m at 0.8 g/t AuEq (0.5 g/t gold, 5.9g/t silver, 0.3% zinc) from

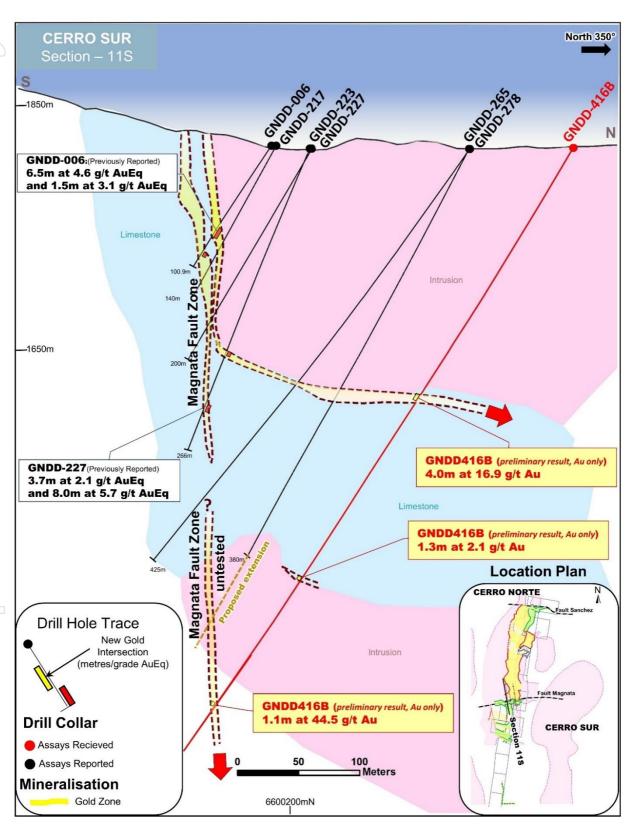


Figure 8 - Magnata Fault Cross Section 11S Showing GNDD-416

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

188.0 metres. This intersection contained two higher grade zones of 1.5m at 2.6 g/t AuEq (1.4 g/t gold, 19.5 g/t silver, 2.4% zinc) from and 5.1m at 1.2 g/t AuEq (1.0 g/t gold, 5.4 g/t silver, 0.2% zinc). Another hole is planned to test 100 metres below GNDD-363. GNDD-370 (discussed above) intersected the Magnata Fault 60m down dip of GNDD-363.

GNDD-318, GNDD-353, GNDD-354, GNDD-358, and GNDD-463 (assays pending)

GNDD-318, 353, 354 and 358 were drilled to follow up GNDD-290 which was previously the most westerly hole drilled on the Magnata Faulty. GNDD-290 intersected four separate zones of mineralisation, including 2.1 metres at 2.7 g/t AuEq from 139.5m and 4.0 metres at 4.6 g/t AuEq from 162.6 metres.

GNDD-353 and GNDD-354 were drilled as up-dip tests of GNDD-290 with both successfully intersecting consistent broad zones near surface mineralisation in intrusive. GNDD-353 intersected **29.0 metres at 0.9 g/t AuEq (0.4 g/t gold, 31.1 g/t silver, 0.2% zinc)** from 15.0m, including **4.0 metres at 1.5 g/t AuEq (0.8 g/t gold, 52.0 g/t silver, 0.2% zinc)** and **5.6 metres at 1.6 g/t AuEq (0.6 g/t gold, 68.3 g/t silver, 0.3% zinc)**. GNDD-354 intersected **41.0 metres at 0.5 g/t AuEq (0.3 g/t gold, 8.3 g/t silver, 0.1% zinc)** from 15.0m. This broad zone of low grade mineralisation is consistent with what is found near the Magnata Fault near surface and extending north and south within the intrusive . Additionally, both holes intersected zones of deeper mineralisation, including **20.9 metres at 0.6 g/t AuEq (0.4 g/t gold, 5.3 g/t silver, 0.2% zinc)** from 95.0m including **2.0 metres at 2.7 g/t AuEq (2.0 g/t gold, 22.3 g/t silver, 1.0% zinc)** within the shale which is part of a large domain of mineralisation in that rock type which extends north and south of the Magnata Fault.

GNDD-318 and GNDD-358 were drilled as down-dip tests of GNDD-290 with both intersecting mineralisation on the Magnata Fault. GNDD-318 the deepest hole on the fence of drill holes intersected 7.2 metres at 0.5 g/t AuEq (0.3 g/t gold, 2.4 g/t silver, 0.3% zinc) from 221.0m including 1.5 metres at 1.4 g/t AuEq (0.8 g/t gold, 8.2 g/t silver, 1.1% zinc) and 3.8 metres at 0.6 g/t AuEq (0.3 g/t gold, 7.1 g/t silver, 0.4% zinc) from 245.0m including 0.5 metres at 1.4 g/t AuEq (0.4 g/t gold, 10.5 g/t silver, 2.0% zinc). These two intersections are interpreted as the M1 and M2 Magnata Fault structures.

With all four follow up holes successfully intersecting mineralisation on this fence of Magnata Fault drilling the Magnata Fault drilling has been defined over 200 vertically from surface and remains open at depth.

Additionally, a deeper hole GNDD-463 (Photo 2 over the page) was drilled to test under GNDD-318 given that recent drilling has shown that strong mineralisation can continue at depth below holes that failed to intersect high-grade zones. GNDD-463 (assays pending) intersected 8 metres logged as massive to semi-massive sulphide containing 20% pyrite and 15% sphalerite in strong pyroxene-garnet (skarn) alteration. This is consistent with high-grade intercepts in other drill holes at the project. Subject to assays this indicates that high-grade mineralisation seems to be coming in at depth on the western portion of the Magnata Fault.

Photo 2 - GNDD-463 (assays pending) core photo showing 290.6-296.4 metres

GNDD-313 and GNDD-351 and GNDD-491 (assays pending)

GNDD-313 and 351 were 40 metre step-outs west of GNDD-290. GNDD-351 was drilled as a shallow test 50 metres up-dip from GNDD-313 and confirmed near surface mineralisation on the Magnata Fault intersecting three zones of lower grade mineralisation consistent with what is seen near surface on the Magnata Fault.

GND-313 was designed to intersect the Magnata Fault structure at around 100 metres subsurface. The hole intersected 24.0 metres at 0.7 g/t AuEq (0.5 g/t gold, 12.4 g/t silver) from 97.0m including 2.0 metres at 2.4 g/t AuEq (2.2 g/t gold, 14.1 g/t silver) and 14.8 metres at 0.9 g/t AuEq (0.9 g/t gold, 2.3 g/t silver, 0.1% zinc) from 143.0m including 2.5 metres at 4.5 g/t AuEq (4.3 g/t gold, 7.9 g/t silver, 0.2% zinc) These zones of mineralisation in GNDD-313 both consist of a lower grade halo around higher grade skarn mineralisation and are consistent with the M1 and M2 Magnata Fault structures.

GNDD-491 (assays pending) has been completed as a test 100 metres underneath GNDD-313 with the visual results supporting the thesis of higher-grade mineralisation at depth on the Western Magnata Fault. The hole (Photo 3 over the page) is logged as intersecting over 10 metres of massive and semi-massive sulphide mineralisation containing 10-15% Pyrite, 10 % sphalerite and strong garnet-

pyroxene (skarn) alteration which is consistent with high-grade mineralisation ween in other drill holes on the Magnata Fault. Drill holes GNDD-491, along with GNDD-463, are the only deeper tests of the western section of the Magnata Fault and, based on visual results, a series of deeper holes are planned to test this western section of the Magnata Fault at depth..

GNDD-343

GNDD-343 was a step out collared a further 40 metres west of GNDD-313 and GNDD-351. The hole intersected 55.0 metres at 0.7 g/t AuEq (0.5 g/t gold, 6.2 g/t silver, 0.2% zinc) from 193.0m including 2.0 metres at 1.2 g/t AuEq (1.1 g/t gold, 9.2 g/t silver, 0.1% zinc), 14.0 metres at 1.3 g/t AuEq (1.1 g/t gold, 13.6 g/t silver, 0.2% zinc), and 1.5 metres at 2.2 g/t AuEq (1.4 g/t gold, 18.8 g/t silver, 1.4% zinc). A deeper hole, designed to intersect the Magnata Fault 40 metres downdip of GNDD-343, is programmed.

Photo 3 - GNDD-491 (assays pending) core photo showing 253.7-262.4 metres

GNDD-348

GNDD-348 is the most westerly drill hole on the Magnata Fault stepping another 20 metres west of GNDD-343. The hole intersected 23 metres of mineralisation on the Magnata Fault from 227 metres to the end of the hole at 250 metres. Confirming mineralisation on the Magnata Fault remains open

to the west. The hole intersected 23.0 metres at 0.7 g/t AuEq (0.6 g/t gold, 7.9 g/t silver, 0.1% zinc) from 227.0m including 3.4 metres at 1.7 g/t AuEq (1.2 g/t gold, 28.2 g/t silver, 0.4% zinc) and 0.9 metres at 6.6 g/t AuEq (6.1 g/t gold, 28.8 g/t silver, 0.3% zinc) with the last two splits at the end of the hole assaying 6.0 g/t gold and 0.2 g/t gold. The hole has been extended 79 metres with assays for the 79 metre extension pending. Additional drilling under GNDD-348 is planned.

GNDD-399 and GNDD-408

GNDD-399 and GNDD-408 are the most easterly holes in this round of Magnata Fault drilling and were collared to test the Magnata fault approximately 100 metres below GNDD-288 (GNDD-399) and 100 metres above GNDD-288 (GNDD-408). GNDD-288 had intersected 27.8m at 7.3 g/t AuEq from 399.0m including a higher grade zone of 14.2m at 13.6 g/t AuEq above an intersection of 96 metres at 2.0 g/t AuEq from near surface.. The deeper zone of mineralisation in GNDD-288 was believed to potentially be a new, and third, zone of east-west mineralisation associated with the Magnata Fault. This series of holes is shown on Cross Section 10 (Figure 4).

GNDD-408 successfully confirmed the extension of the Magnata Fault mineralisation between GNDD-157 (130.8 metres at 2.5 g/t AuEq) and holes GNDD-297 and GNDD-298 which intersected wide zones of low grade mineralisation near surface on the Magnata Fault. An infill hole, designed to intersect the Magnata Fault between GNDD-408 and GNDD-297, is programmed to confirm that mineralisation is continuous over the 350 metres vertically from surface down to GNDD-288.

Additionally, GNDD-408 intersected the wide zone of near surface mineralisation which lies above the Magnata Fault that correlates to the southern extension of the Verde Zone. The intercept of 21.7 metres at 1.1 g/t AuEq (0.9 g/t gold, 9.3 g/t silver, 0.2% zinc) from 13.0 metres including 4.0 metres at 4.1 g/t AuEq (3.9 g/t gold, 15.7 g/t silver, 0.2% zinc) and 63.0 metres at 0.5 g/t AuEq (0.4 g/t gold, 2.8 g/t silver, 0.2% zinc) from 47.0 metres plus two further zones of mineralisation above the Magnata Fault. This extends the 66.0 metres at 0.6 g/t AuEq intercepted in GNDD-157 some 50 metres north.

GNDD-399 was designed to test the Magnata Fault 150 metres below GNDD-288. The hole encountered drilling problems and had to be reduced to NQ core from 548 metres downhole with the hole terminated at 605 metres. As figure 9 illustrates the Magnata Fault in this location appears to dip steeply to the south rather than the north and is postulated that GNDD-399 may have been stopped prior to reaching the Magnata Fault. GNDD-399 will be deepened or another hole will drilled, likely in the reverse orientation, to validly test the Magnata Fault at this location in due course.

Additionally, GNDD-399 successfully intersected the wide zone of near surface mineralisation which lies above the Magnata Fault that correlates to the southern extension of the Verde Zone. The intercept of 17.5 metres at 0.4 g/t AuEq (0.3 g/t gold, 2.5 g/t silver, 0.2% zinc) from 5.0 metres and 51.3 metres at 0.4 g/t AuEq (3.9 g/t gold, 15.7 g/t silver, 0.2% zinc) from 57.0 metres. GNDD-399 also extended a third zone of intrusion hosted mineralisation encountered in GNDD-157 and GNDD-288 75 metres down dip intersecting 14.0 metres at 0.4 g/t AuEq (0.3 g/t gold, 1.4 g/t silver) from 277.0 metres.

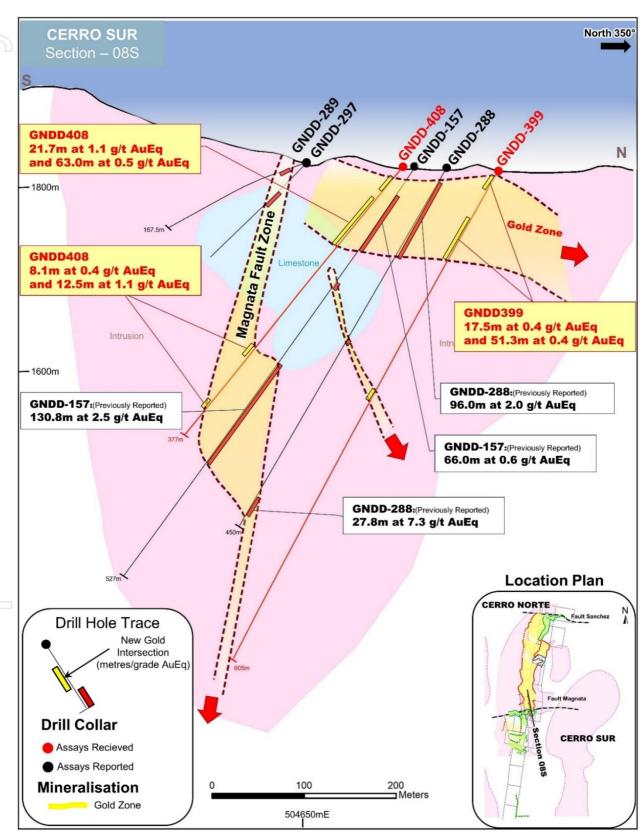


Figure 9 - Magnata Fault Cross Section 10 Showing GNDD-399 and GNDD-408

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

EXPLORATION DRILLING TEST NEW CONCEPTS

During the quarter in conjunction with resource drilling, CEL has completed a series of exploration holes designed to test new concepts and extend mineralisation away from existing boundaries. The program was highly successful with several significant intersections extending mineralisation well beyond its current boundaries and opening several new and material targets for drilling including:

- possible third high-grade east-west fault 400 metres north of the Sanchez Fault in GNDD-394
 (5.0m at 8.7g/t AuEq including 3.0m at 14.3 g/t AuEq)
- A new high-grade target on a second magnetic trend west of the current Hualilan mineralisation in GNDD-326 (2.0m at 7.5 g/t AuEq)
- An extension of the high-grade Verde Zone mineralisation 400 metres south of the existing mineralisation in GNDD-450 (97.8m at 2.2 g/t AuEq including 16.8m at 9.7 g/t AuEq)
- A new zone of high-grade mineralisation over 1000 metres downhole below the Verde Zone with GNDD-308e ending in **4.0m at 5.8 g/t AuEq**

Extension of Verde Zone south of the Magnata Fault (GNDD-450, GNDD-432)

GNDD-450 and GNDD-432 were drilled as a downdip test of GNDD-311 (22.0 metres at 0.5 g/t AuEq and 21.0 metres at 0.3 g/t AuEq) which had intersected lower grade mineralisation in sediments. This low-grade mineralisation in GNDD-311 was interpreted as being analogous to the lower grade sediment hosted halo mineralisation seen above the Verde Zone. Drillholes GNDD-311, GNDD432, and GNDD-450 form a fence of drill holes located on the projected extension of the Verde Zone approximately 400 metres south of the existing Verde Zone mineralisation on the southern side of the Magnata Fault Zone.

GNDD-432 was collared to test 100 metres downdip of GNDD-311 and intersected two main zones of mineralisation. The upper zone, hosted in intrusives, returned and intersection of 48 metres at 0.5 g/t AuEq (0.4 g/t gold, 7.9g/t silver, 0.1% zinc) from 50.0m. The lower intersection of 37.4 metres at 0.8 g/t AuEq (0.7 g/t gold, 6.2g/t silver, 0.1% zinc) from 246.0m was predominantly hosted in sediments. This zone is interpreted as being low-grade halo mineralisation in sediments seen above the higher-grade intrusion hosted mineralisation, albeit better developed than the mineralisation in GNDD-311 up-dip, as it is closer to the intrusion-hosted mineralisation.

GNDD-450 was collared to test 100 metres below GNDD-432, and successfully intersected a significant and wide zone of Verde style intrusion-hosted mineralisation. The hole intersected 97.8 metres at 2.2 g/t AuEq (1.7 g/t gold, 11.9g/t silver, 0.9% zinc) from 313.5m including 16.8 metres at 9.7 g/t AuEq (7.1 g/t gold, 50.7 g/t silver, 4.4% zinc) from 376.2m including 4.8 metres at 30.0 g/t AuEq (21.6 g/t gold, 9.3 g/t silver, 0.2% zinc) from 376.2m. As can be seen in Figure 10 (cross section) this possible extension of the Verde Zone is open and mineralisation appears to be getting stronger at depth.

GNDD-513 (in progress at 33 metres in transported cover) has been collared to test a further 100 metres down dip of GNDD-450. Additionally, several holes (completed assays pending) have been collared to test the 400 metres of strike north and south of GNDD-450 with several holes programmed to further test this new zone of mineralisation.

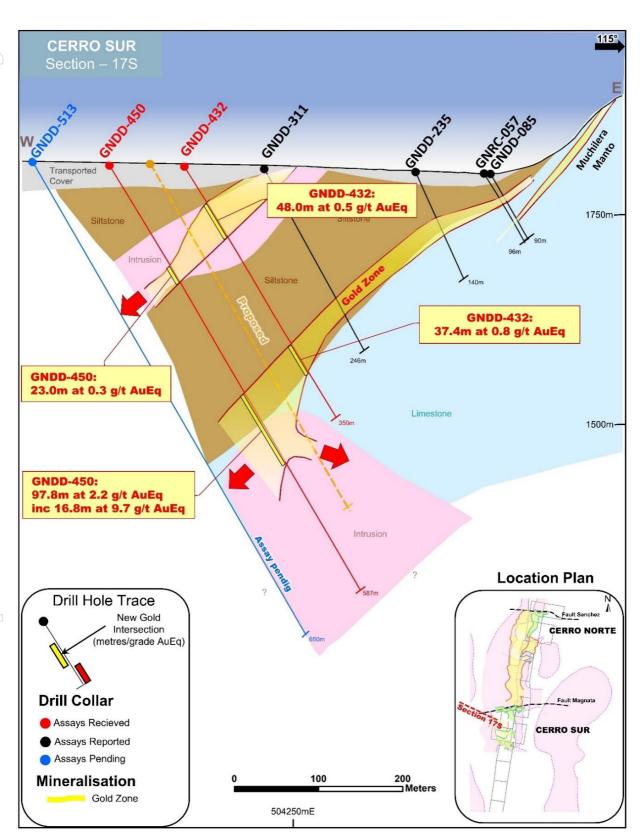


Figure 10 - Cross Section Showing GNDD-450 and potential Verde Zone southern extension

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

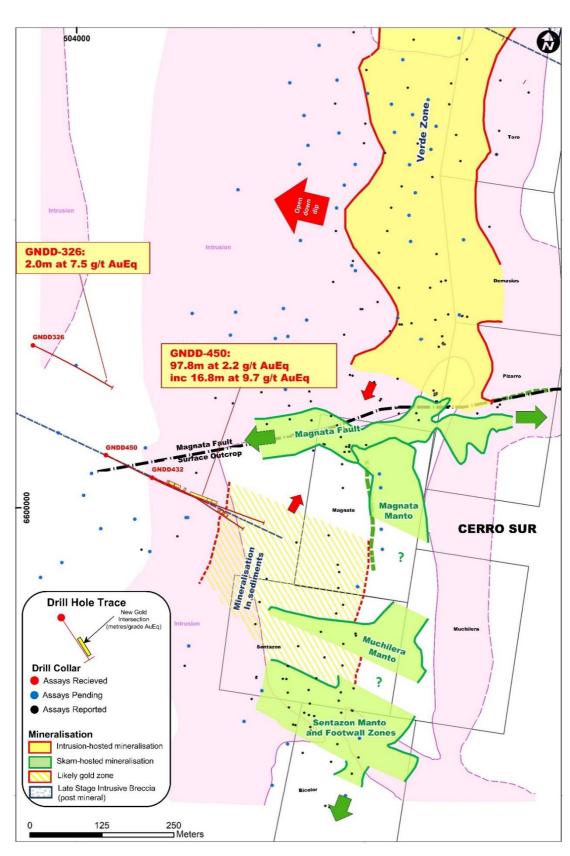


Figure 11 - Plan View showing GNDD-450 and GNDD-326 in relation to existing mineralisation

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

New zone of mineralisation on second north-south trending magnetic anomaly (GNDD-326)

GNDD-326 was collared west of previous drilling as an exploration hole designed to test a potential IP anomaly. The hole intersected **2.0 metres at 7.5 g/t AuEq (7.5 g/t gold, 1.4 g/t silver)** from 288.0m confirming the presence of high-grade skarn mineralisation almost 400 metres west of other drilling by the Company.

The mineralisation was hosted in shale, within a package of shale and intrusives, and as can be seen in Figure 12 (over the page) showing the Magnetic Analytical Signal, GNDD-326 is located at the south of a second major magnetic high with the same north-south orientation as the Hualilan mineralisation. The hole is programmed to be deepened to at least 600 metres to test the flanks of this magnetic high, as earlier drilling has indicated that mineralisation is associated with the demagnetised flanks of the magnetic highs rather than the magnetic high.

Extension of high-grade mineralisation 400 metres north of the Sanchez Fault (GNDD-394)

GNDD-394 was collared 400 metres north of the Sanchez Fault, the previous limit of the high-grade skarn mineralisation, as an exploration hole designed to test a potential IP anomaly. The hole intersected **5.0 metres at 8.7g/t AuEq (7.3 g/t gold, 29.4 g/t silver, 2.4% zinc)** from 224.0m including a higher-grade zone of **3.0 metres at 14.3 g/t AuEq (12.0 g/t gold, 46.4 g/t silver, 3.9% zinc)** from 224.0m.

The intersection is hosted at the shale - limestone contact in a fault breccia, which is typical at the contact. The mineralised contact is an indication of hydrothermal fluid flow from the west and down dip, providing a further exploration target. As can be seen on Figure 12 (Magnetic Analytical Signal), the magnetic data shows an east-west structure in the location of GNDD-394, which could be interpreted as another east-west feeder fault similar to the Magnata and Sanchez Faults. A series of five additional holes are planned to test this new zone of high-grade mineralisation. GNDD-394 has increased the strike extent of the high-grade mineralisation at the Hualilan Gold Project from 3.1 to 3.5 kilometres with mineralisation remaining open in both directions along strike.

Photo 4 - Showing the top of the new mineralised zone in GNDD-494

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

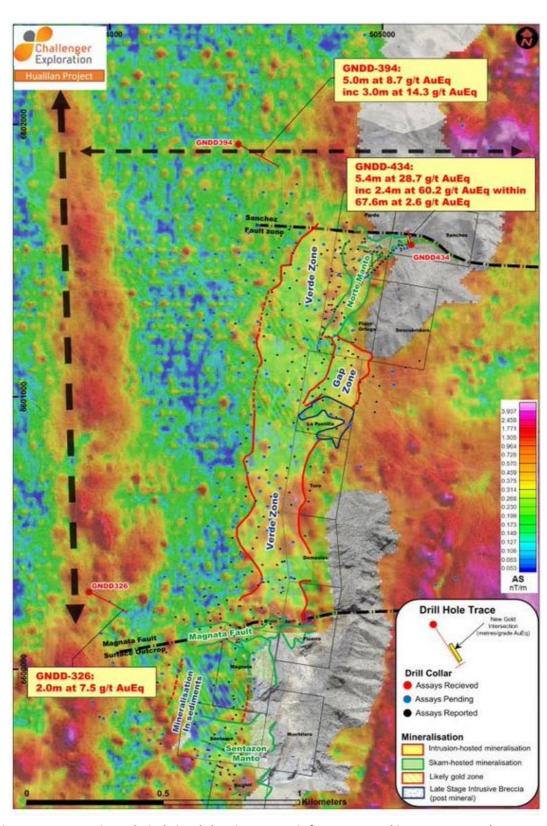


Figure 12 - Magnetic Analytical Signal showing magnetic features tested in GNDD-326 and GNDD-394

New zone of mineralisation below the Verde Zone (GNDD-308 extended)

Drillhole GNDD-308e was extended as the hole ended in mineralisation at 300 metres downhole. The hole intersected Verde Zone mineralisation and associated alteration in intrusives and limestones over 400 metres from 258 to 677 metres downhole indicating the significant scale of the mineralising system at Hualilan. Intercepts included 36.8 metres at 0.6g/t AuEq (0.5 g/t gold, 1.6 g/t silver, 0.2% zinc) from 224.0m and 45.0 metres at 0.4g/t AuEq (0.3 g/t gold, 1.2 g/t silver, 0.2% zinc) from 640.0m including 27.0 metres at 0.6 g/t AuEq (0.5 g/t gold, 1.3 g/t silver, 0.2% zinc). It should be noted that other holes in this section of the Verde Zone have generally recorded lower grade results indicating the 200 metres of strike surrounding GNDD-308e seems to be a lower grade section of the Verde Zone.

The hole was continued to 1013 metres downhole, the limit of drilling depth for HQ3 core, to gather deep stratigraphic information. The hole drilled out of the package of intrusive and limestone which hosts the Verde mineralisation into a deeper sequence of sandstone, previously not intersected at Hualilan, but exposed at surface on the eastern side of the Hualilan Hills. From 1009 metres downhole the hole was logged as intersecting a breccia or shear zone containing garnet alteration and 3% pyrite-sphalerite and possible clast of intrusives. This section returned intercept of 4.0 metres at 5.8 g/t AuEq (3.7 g/t gold, 44.9 g/t silver, 3.7% zinc) from 1009m to end of hole including 3.0m at 7.7 g/t AuEq (4.8 g/t gold, 58.9 g/t silver, 4.9% zinc) from 1010m to end of hole.

At this early stage it is not possible to determine the true width or orientation of this new deeper zone of mineralisation. The Company is, however, extremely encouraged by the intersection of mineralisation almost twice as deep as the previous deepest mineralisation as it again indicates the substantial scale of the mineralising system at Hualilan.

Photo 5 - Showing new mineralised zone from 1009 metres at the end of GNDD-308e

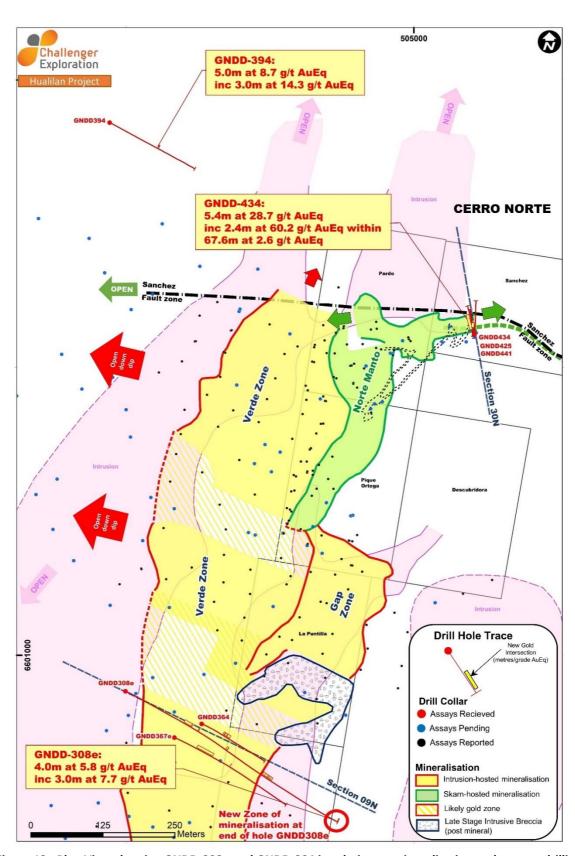


Figure 13 - Plan View showing GNDD-308e and GNDD-394 in relation to mineralisation and current drilling

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

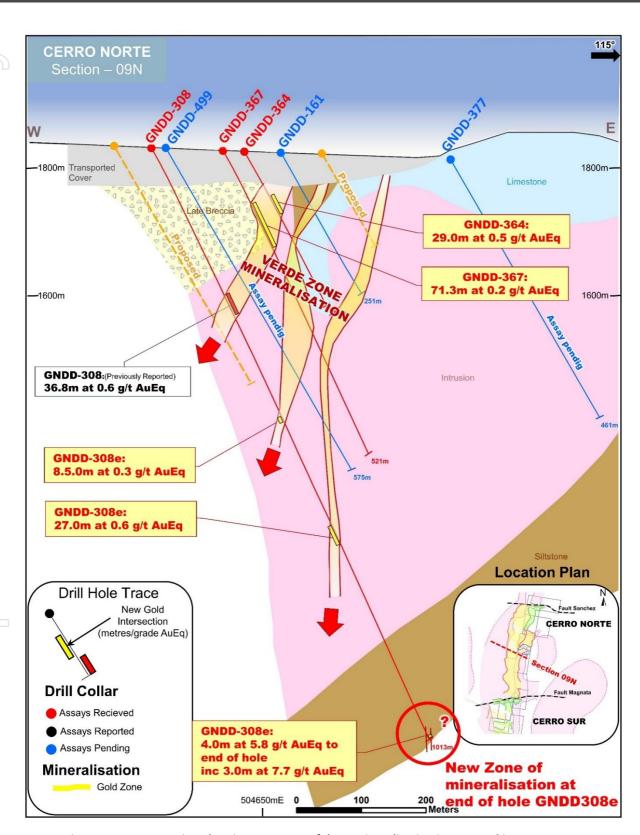


Figure 14 - Cross Section Showing new zone of deep mineralisation intersected in GNDD-308e

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

EL GUAYABO GOLD AND COLORADO V GOLD/COPPER PROJECT - ECUADOR

MAIDEN DRILL PROGRAM

The Company released the first results from the first two drillholes in maiden drill program in Ecuador during the quarter. The results confirm the discovery of a significant intrusion hosted gold-copper-silver-molybdenum system with both holes encountering wide zones of mineralisation associated with intrusives and intrusive breccias. The first two holes have intersected two zones of mineralisation extending over 800 metres of strike on a 1.8 kilometre long gold in soil anomaly.

The Company now has two HC 5000 drill rigs on site with a depth capacity of 1,200 metres using NQ core rods. The second rig was mobilised to site after the completion of the third drill hole, GYDD-21-003, due to the broad and consistent zones of mineralisation noted during logging. The Company is currently completing GYDD-21-007 and GYDD-21-008 with average drill metres per shift steadily increasing. Additionally, assay turn-around times in South America have improved significantly since December.

GYDD-21-001

GYDD-21-001 was collared to test a 1.8 kilometre long gold in soil anomaly defined in the Company's 100% owned El Guayabo concession. The hole encountered a significant zone of mineralisation from near surface to the end of the hole intersecting 784.3 metres at 0.4 g/t AuEq (0.2 g/t Au, 1.6 g/t Ag, 0.1 % Cu, 12 ppm Mo) from 16.2m. This mineralisation is hosted in intrusives and intrusive breccia and is consistent and pervasive throughout the length of the drill hole. The mineralisation included a higher grade core of 380.5 metres at 0.5 g/t AuEq (0.3 g/t Au, 2.0 g/t Ag, 0.1 % Cu, 18 ppm Mo) from 167.5m including 188.5 metres at 0.6 g/t AuEq (0.4 g/t Au, 2.3 g/t Ag, 0.1 % Cu, 30 ppm Mo) from 359.5m. This 188.5 metres central core containing higher-grade components of 21.0 metres at 1.1 g/t AuEq (0.8 g/t Au, 2.6 g/t Ag, 0.2 % Cu, 139 ppm Mo) from 403.0m and 30.0 metres at 1.1 g/t AuEq (0.8 g/t Au, 2.6 g/t Ag, 0.2 % Cu, 25 ppm Mo) from 468.5m.

As Figure 15 (over the page) shows GYDD-21-001 was located in a lower priority section of a 1.8 km long gold in soil anomaly with the high-grade 550 metre core of the anomaly starting 100 metres to the south-west of GYDD-21-001. The high-priority section of this 1.8 kilometre anomaly is being tested in following drillholes GYDD-21-003, GYDD-21-004, GYDD-21-005, GYDD-21-006 (assays pending) and GYDD-21-007 and GYDD-21-008 (in progress). The Company took the decision to start the program with two lower priority drill holes given these pad location provided the easiest access. Additionally, the geochemical anomaly currently being tested is the first of nine similar anomalies which will be tested. Drilling on the highest priority of these targets, located in Colorado V, is programmed to start in the current quarter.

In the context of its location, off the main high-grade section of the underlying gold in soil anomaly, drill hole GYDD-21-001 delivered an outstanding result. The mineralisation reflects the underlying soil geochemistry with consistent mineralisation across the hole and a higher-grade core that correlates with the central part of the soil anomaly in this location. The gold in soil values on the GDDD-21-001 location is approximately 30ppb with drill holes GYDD-003 and GYDD-004 (assays pending located 200

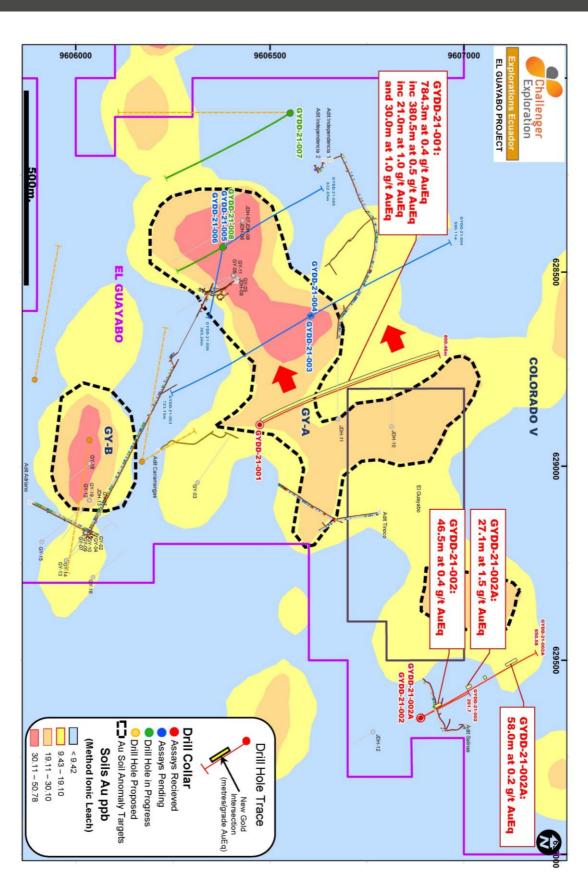


Figure 15 - High priority GY-A and GY-B Au in soil anomalies with finished, current, and pending drilling In the El Guaybo concession

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

metres south-west along strike) and GYDD-005 and GYDD-006 (assays pending located a further 250 metres south-west along strike) all collared over gold in soil values near double that of GYDD-21-001.

GYDD-21-002

GYDD-21-002 was drilled targeting underground workings in the Salinas Mine adit, where underground sampling of the historical workings has returned a channel sample interval of 69.4 metres at 0.3g/t AuEq (0.2 g/t Au, 8 g/t Ag, 0.1 % Cu, 4 ppm Mo), including 31.6 metres at 0.6g/t AuEq (0.3 g/t Au, 14 g/t Ag, 0.1 % Cu, 5 ppm Mo) with a central core of 10 metres at 0.9g/t AuEq (0.2 g/t Au, 36 g/t Ag, 0.2 % Cu, 4 ppm Mo).

GYDD-21-002 intersected several zones of mineralisation including 46.5 metres at 0.4 g/t AuEq (0.3 g/t Au, 4.0 g/t Ag, 0.04 % Cu, 6 ppm Mo) from 85.0m and 27.1 metres at 1.5 g/t AuEq (1.5 g/t Au, 0.8 g/t Ag, 0.02 % Cu, 2 ppm Mo) from 279.5m including 1.5 metres at 19.2 g/t AuEq (19.1/t Au, 1.9 g/t Ag, 0.03 % Cu, 3 ppm Mo) within a greater mineralised interval of 320.0 metres at 0.3 g/t AuEq (0.3 g/t Au, 1.2 g/t Ag, 0.02 % Cu, 2 ppm Mo) from 83.5m. This represents a new zone of mineralisation and is interpreted to lie stratigraphically above the mineralisation intersected in GYDD-21-001.

The decision was made to extend GYDD-21-002 to 650 metres to collect stratigraphic and structural information on the north-eastern extension of zone drilled in GYDD-21-001 (Figure 15). The extension of GYDD-21-002 was prognosed to intersect this zone 800 metres north-east of GYDD-21-001 at the extreme north-eastern end of the greater 1.8 kilometre long gold in soil anomaly tested in GYDD-21-001. Importantly, this extension of GYDD-21-002 encountered a zone of mineralisation hosted in intrusive breccia intersecting 58.0 metres at 0.2 g/t AuEq (0.1 g/t Au, 0.3 g/t Ag, .01 % Cu, 2 ppm Mo) from 499.8m containing several splits greater than 0.5 g/t AuEq.

This intercept near the end of hole in GYDD-21-002 is highly encouraging. Both holes drilled on the eastern half of this 1.8 kilometre gold in soil anomaly intersected mineralisation with the much higher-grade western half of the 1.8 kilometre gold in soil anomaly to be tested in drillholes GYDD-21-003, GYDD-21-004, GYDD-21-005, GYDD-21-006 (assays pending), and GYDD-21-007 and GYDD-21-008 (in progress).

Current Status of the El Guayabo and Colorado V drill program

In the two weeks since the Company released the results of GYDD-21-001 and GYDD-21-002 it has completed drillholes GYDD-21-007 and GYDD-21-008 (in addition to GYDD-21-003 to GYDD-21-006 previously completed assays pending) with core from both holes logged and submitted for assay.

GYDD-21-009 and GYDD-21-010 are nearing completion as daily metreage rates continue to improve. At the completion of these two holes approximately 6,000 of the initial 20,000 metre drill program will have been completed. An additional 3000 to 4000 metres of drilling are proposed on the El Guaybo concession prior to both drill rigs being located to Colorado V later in the current quarter.

KAROO BASIN - SOUTH AFRICA

The Company continues to pursue its application for shale gas exploration rights in South Africa. As previously reported, the Department of Mineral Resources is progressing a new petroleum resources development bill, and the Minister reportedly indicated during his address in the debate on the Presidential State of the Nation Address in June that the bill will soon undergo public participation, as part of the cabinet and parliamentary approval processes.

Ends

For further information contact:

Kris Knauer
Managing Director
+61 411 885 979
kris.knauer@challengerex.com

Scott Funston
Chief Financial Officer
+61 413 867 600
scott.funston@challengerex.com

About Challenger Exploration

Challenger Exploration Limited's (ASX: CEL) aspiration is to become a globally significant gold producer. The Company is developing two complementary gold/copper projects in South America. The strategy for the 100% owned Hualilan Gold project is for it to provide a high-grade low capex operation in the near term. This underpins CEL with a low risk, high margin source of cashflow while it prepares for a much larger bulk gold operation at both Hualilan and El Guaybo in Ecuador.

- 1. Hualilan Gold Project, located in San Juan Province Argentina, is a near term development opportunity. It has extensive historical drilling with over 150 drill-holes and a non-JORC historical resource (1) of 627,000 Oz @ 13.7 g/t gold which remains open in most directions. The project was locked up in a dispute for the past 15 years and as a consequence had seen no modern exploration until CEL acquired the project in 2019. In the past 2 years CEL has completed 400 drill holes for more than 95,000 metres of drilling. Results have included 6.1m @ 34.6 g/t Au, 21.9 g/t Ag, 2.9% Zn, 6.7m @ 14.3 g/t Au, 140 g/t Ag, 7.3% Zn and 10.3m @ 10.4 g/t Au, 28 g/t Ag, 4.6% Zn. This drilling intersected high-grade gold over 2.5 kilometres of strike and extended the known mineralisation along strike and at depth in multiple locations. Recent drilling has demonstrated the high-grade skarn mineralisation is underlain by a significant intrusion-hosted gold system with intercepts including 209.0m at 1.0 g/t Au, 1.4 g/t Ag, 0.1% Zn and 110.5m at 2.5 g/t Au, 7.4 g/t Au, 0.90% Zn in intrusives. CEL's current program which is fully funded includes a 120,000 metres of drilling, metallurgical test work of key ore types, and an initial JORC Compliant Resource and PFS.
- 2. El Guayabo Gold/Copper Project covers 35 sq kms in southern Ecuador and was last drilled by Newmont Mining in 1997 targeting gold in hydrothermal breccias. Historical drilling has demonstrated potential to host significant gold and associated copper and silver mineralisation. Historical intersections include 156m @ 2.6 g/t Au, 9.7 g/t Ag, 0.2% Cu and 112m @ 0.6 % Cu, 0.7 g/t Au, 14.7 g/t Ag which have never been followed up. The Project has multiple targets including breccia hosted mineralisation, an extensive flat lying late-stage vein system and an underlying porphyry system target, neither of which has been drill tested. CEL's first results confirm the discovery of large-scale gold system with over 250 metres of bulk gold mineralisation encountered in drill hole ZK-02 which contains a significant high-grade core of 134m at 1.0 g/t gold and 4.1 g/t silver including 63m at 1.6 g/t gold and 5.1 g/t silver. CEL Is currently undertaking its maiden 20,000 metre drill program at El Guayabo. About Challenger Exploration

Table 2: GNDD-378 Intercept and breakdown of Individual splits 108.3-147.9m

Drill Hole	From	То	Interva	Gold	Ag	Zn	AuEq	Comments	Total
Dilli Hole	FIOIII	10	l	Goid	Ag	211	AuEq	Comments	intercept
(#)	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(g/t)		(gram metres)
GNDD378	108.3	171.60		8.5	7.6		9.8	1 g/t AuEq cut	622.2
inc	113.58	137.66	63.3 24.1	8.5 20.4	15.9	2.8 6.2	23.3	10 g/t AuEq cut	560.6
inc	168.70	170.60	1.9	20. 4 13.5	23.1	7.8	23.3 17.2	10 g/t AuEq cut	32.7
and	317.50	318.60	1.1	0.4	7.2	1.64	1.2	1 g/t AuEq cut	1.3
anu	317.30	316.00	1.1	0.4	7.2	1.04	1.2	,	1.3
	108.30	108.93	0.63	2.612	26.72	1.72	3.70	n/a	
	108.93	110.00	1.07	0.007	0.17	0.03	0.02	n/a	
	110.00	111.80	1.80	<0.005	0.04	0.00	0.00	n/a	
	111.80	113.58	1.78	<0.005	0.11	0.01	0.00	n/a	
	113.58	114.57	0.99	8.237	19.23	8.58	12.21	n/a	
	114.57	115.08	0.51	0.996	2.24	1.42	1.64	n/a	
	115.08	116.24	1.16	14.200	10.10	4.28	16.19	n/a	
	116.24	117.20	0.96	0.034	0.08	0.03	0.05	n/a	
	117.20	118.20	1.00	8.011	16.44	7.03	11.27	n/a	
	118.20	119.20	1.00	22.500	14.24	11.2	27.53	n/a	
	119.20	120.45	1.25	29.900	24.31	16.4	37.34	n/a	
	120.45	121.40	0.95	31.200	10.70	4.35	33.23	n/a	
	121.40	122.30	0.90	39.300	22.24	13.7	45.53	n/a	
	122.30	123.80	1.50	0.207	0.80	0.29	0.34	n/a	
	123.80	124.70	0.90	5.385	16.41	10.9	10.31	n/a	
	124.70	126.30	1.60	0.030	0.29	0.07	0.07	n/a	
	126.30	127.20	0.90	1.017	9.01	4.07	2.90	n/a	
	127.20	127.73	0.53	131.10	52.79	23.6	142.0	n/a	
	127.73	128.73	1.00	0.057	0.11	0.02	0.07	n/a	
	128.73	130.00	1.27	0.220	0.27	0.08	0.26	n/a	
	130.00	131.00	1.00	0.075	0.06	0.03	0.09	n/a	
	131.00	132.22	1.22	5.515	1.99	0.93	5.94	n/a	
	132.22	134.00	1.78	32.100	33.03	8.79	36.34	n/a	
	134.00	135.00	1.00	31.400	18.63	8.2	35.20	n/a	
	135.00	136.00	1.00	119.80	68.57	8.72	124.5	n/a	
	136.00	137.00	1.00	26.900	50.19	12.6	32.99	n/a	
	137.00	137.66	0.66	22.200	11.72	11.4	27.30	n/a	
	137.66	139.00	1.34	0.063	0.33	0.14	0.13	n/a	
	139.00	141.00	2.00	0.018	0.04	0.01	0.02	n/a	
	141.00	143.00	2.00	<0.005	0.03	0.00	0.00	n/a	
	143.00	145.00	2.00	0.014	0.03	0.00	0.02	n/a	
	145.00	146.45	1.45	<0.005	0.12	0.00	0.00	n/a	
	146.45	147.00	0.55	4.824	4.14	0.72	5.19	n/a	
	147.00	147.90	0.90	0.074	0.68	0.51	0.30	n/a	

See below for information regarding AuEq's reported under the JORC Code.

² Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Assumed commodity prices for the calculation of AuEq is Au US\$1780 Oz, Ag US\$24 Oz, Zn US\$2,800 /t
- Metallurgical recoveries for Au, Ag and Zn are estimated to be 89%, 84% and 79% respectively (see JORC Table 1
 Section 3 Metallurgical assumptions) based on metallurgical test work.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

- The formula used: $AuEq(g/t) = Au(g/t) + [Ag(g/t) \times (24/1780) \times (0.84/0.89)] + [Zn(%) \times (28.00*31.1/1780) \times (0.79/0.89)]$
- CEL confirms that it is the Company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

Table 3: Portable Rig intercepts reported during the Quarter.

Drill Hole	From	To	Interval	Gold	Ag	Zn	AuEq	Comments	Total
(#)	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(g/t)		(gram x metres)
GNDD397	15.00	20.00	5.00	17.3	30.1	5.1	19.9	1.0 g/t AuEq cut	99.6
inc	15.00	18.00	3.00	28.3	49.8	8.3	32.5	10 g/t AuEq cut	97.5
and	50.00	54.00	4.00	0.25	9.4	0.12	0.4	0.2 g/t AuEq cut	1.7
and	98.00	102.00	4.00	0.61	0.26	0.00	0.6	0.2 g/t AuEq cut	2.5
GNDD425	19.8	70.2	50.4	0.3	3.7	0.1	0.3	0.2 g/t AuEq cut	17.5
inc	23.0	28.0	5.0	1.2	6.3	0.0	1.3	1.0 g/t AuEq cut	6.5
GNDD434	24.4	92.0	67.6	2.5	2.6	0.0	2.6	0.2 g/t AuEq cut	172.8
inc	24.4	29.8	5.4	28.6	11.1	0.0	28.7	1.0 g/t AuEq cut	155.2
inc	26.0	28.4	2.4	60.0	20.4	0.0	60.2	10 g/t AuEq cut	144.5
inc	62.0	64.0	2.0	2.4	0.7	0.0	2.4	1.0 g/t AuEq cut	4.8
and	120.0	122.3	2.3	0.6	0.1	0.0	0.6	0.2 g/t AuEq cut	1.3
GNDD441	15.1	27.0	11.9	3.2	9.3	0.8	3.7	0.2 g/t AuEq cut	43.7
inc	15.1	25.0	9.9	3.8	10.6	0.9	4.4	1.0 g/t AuEq cut	43.1
inc	20.5	21.7	1.2	13.3	45.3	0.6	14.1	10 g/t AuEq cut	16.9

See below for information regarding AuEq's reported under the JORC Code.

² Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Assumed commodity prices for the calculation of AuEq is Au US\$1780 Oz, Ag US\$24 Oz, Zn US\$2,800 /t
- Metallurgical recoveries for Au, Ag and Zn are estimated to be 89%, 84% and 79% respectively (see JORC Table 1
 Section 3 Metallurgical assumptions) based on metallurgical test work.
- The formula used: AuEq (g/t) = Au (g/t) + [Ag (g/t) x (24/1780) x (0.84/0.89)] + [Zn (%) x (28.00*31.1/1780) x (0.79/0.89)]
- CEL confirms that it is the Company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

Table 4: Magnata Fault intercepts reported during the Quarter.

=	Table 4. Magnata rault intercepts reported during the Quarter.										
Drill Hole (#)	From (m)	To (m)	Interval (m)	Gold (g/t)	Ag (g/t)	Zn (%)	AuEq (g/t)	Comments	Total intercept (gram metres)		
GNDD313	97.00	121.00	24.00	0.53	12.4	0.02	0.70	0.2 g/t AuEq cut	16.7		
inc	109.00	111.00	2.00	2.2	14.1	0.01	2.4	0.12 g/ 17 ta 2 q 0 a t	4.7		
and	143.00	157.80	14.80	0.86	2.3	0.07	0.92	0.2 g/t AuEq cut	13.7		
inc	148.50	151.00	2.50	4.3	7.9	0.24	4.5	0.12 g/ 17 ta 2 q 0 a t	11.3		
GNDD318	221.00	228.17	7.17	0.29	2.4	0.29	0.45	0.2 g/t AuEq cut	3.2		
inc	226.66	228.17	1.51	0.75	8.2	1.1	1.4	0.2 g/ t/tallq cat	2.0		
and	245.00	248.78	3.78	0.33	7.1	0.36	0.57	0.2 g/t AuEq cut	2.2		
inc	248.28	248.78	0.50	0.42	10.5	1.9	1.4	0.2 g/t Auly cut	0.7		
GNDD321	261.00	263.00	2.00	1.13	1.0	0.06	1.2		2.3		
GNDD343	190.00	245.00	55.00	0.51	6.2	0.16	0.66	0.2 g/t AuEq cut	36.5		
								0.2 g/t AuEq cut			
inc	190.00	192.00	2.00	1.1	9.2	0.07	1.2		2.5		
inc	204.00	218.00	14.00	1.1	13.6	0.15	1.3		18.5		
inc	224.00	225.50	1.50	1.4	18.8	1.38	2.2	0.2 // 1.5	3.4		
GNDD348	227.00	250.00	23.00	0.55	7.9	0.12	0.70	0.2 g/t AuEq cut	16.1		
inc	227.00	230.40	3.40	1.2	28.2	0.42	1.7		5.9		
inc	247.10	248.00	0.90	6.1	26.8	0.30	6.6		5.9		
GNDD351	62.00	66.00	4.00	0.26	17.4	0.03	0.49	0.2 g/t AuEq cut	2.0		
and	125.00	129.00	4.00	0.32	7.3	0.48	0.62	0.2 g/t AuEq cut	2.5		
and	164.50	170.50	6.00	0.17	1.1	0.04	0.21	0.2 g/t AuEq cut	1.2		
GNDD353	15.00	44.00	29.00	0.39	31.1	0.15	0.85	0.2 g/t AuEq cut	24.6		
inc	21.00	25.00	4.00	0.75	52.0	0.16	1.5		5.9		
inc	37.00	42.60	5.60	0.56	68.3	0.30	1.6		8.7		
and	95.00	98.00	3.00	0.12	3.4	0.36	0.32	0.2 g/t AuEq cut	1.0		
GNDD354	15.00	56.00	41.00	0.32	8.3	0.07	0.46	0.2 g/t AuEq cut	18.9		
inc	29.00	37.00	8.00	0.53	15.8	0.07	0.76		6.1		
and	95.00	115.85	20.85	0.42	5.3	0.23	0.59	0.2 g/t AuEq cut	12.2		
inc	101.00	103.00	2.00	2.0	22.3	1.0	2.7		5.5		
GNDD358	34.00	36.55	2.55	0.28	5.3	0.07	0.38	0.2 g/t AuEq cut	1.0		
and	137.00	157.00	20.00	0.26	2.0	0.11	0.33	0.2 g/t AuEq cut	6.6		
GNDD363	112.00	127.25	15.25	0.25	0.49	0.01	0.27	0.2 g/t AuEq cut	4.1		
and	188.00	209.85	21.85	0.53	5.9	0.34	0.76	0.2 g/t AuEq cut	16.5		
inc	188.00	189.50	1.50	1.4	19.5	2.35	2.6		4.0		
inc	203.50	208.55	5.05	1.0	5.4	0.15	1.2		5.9		
GNDD370	245.80	264.70	18.90	2.7	9.9	0.55	3.1	0.2 g/t AuEq cut	58.5		
inc	247.00	253.60	6.60	5.8	17.9	1.3	6.6		43.5		
inc	259.80	264.70	4.90	2.0	10.1	0.32	2.3		11.1		
and	330.80	335.00	4.20	10.4	61.5	11.4	16.1		67.8		
GNDD384	57.00	69.00	12.00	0.12	3.8	0.42	0.35	0.2 g/t AuEq cut	4.2		
								·			

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

GNDD386	64.60	96.50	31.90	0.56	6.4	0.09	0.68	0.2 g/t AuEq cut	21.8
inc	67.00	69.00	2.00	6.3	2.7	0.01	6.4		12.7
inc	81.50	82.40	0.90	0.84	90.8	1.1	2.5		2.2
GNDD390	238.00	240.00	2.00	0.36	15.0	1.3	1.1		2.2
GNDD399	5.00	22.50	17.50	0.30	2.5	0.20	0.42	0.2 g/t AuEq cut	7.3
and	57.00	108.25	51.25	0.30	2.1	0.08	0.36	0.2 g/t AuEq cut	18.6
and	277.00	291.00	14.00	0.32	1.4	0.04	0.36	0.2 g/t AuEq cut	5.0
GNDD408	13.00	34.70	21.70	0.88	9.3	0.18	1.1	0.2 g/t AuEq cut	23.4
inc	23.00	27.00	4.00	3.9	15.7	0.22	4.1		16.6
and	47.00	110.00	63.00	0.38	2.8	0.22	0.51	0.2 g/t AuEq cut	31.9
inc	86.00	87.40	1.40	3.1	43.3	1.6	4.4		6.2
inc	101.20	104.00	2.80	1.6	20.5	2.8	3.1		8.6
and	184.00	188.00	4.00	0.35	1.3	0.27	0.49	0.2 g/t AuEq cut	1.9
and	248.90	257.00	8.10	0.35	0.78	0.16	0.43	0.2 g/t AuEq cut	3.5
and	325.00	337.50	12.50	1.0	1.3	0.23	1.1	0.2 g/t AuEq cut	13.7
inc	325.00	330.00	5.00	2.2	1.6	0.19	2.3		11.5
GNDD416	61.00	67.00	6.00	0.26	0.49	0.02	0.28	0.2 g/t AuEq cut	1.7
and	240.00	244.00	4.00	16.90	n/a	n/a	n/a		68.0
and			1.10	44.5	n/a	n/a	n/a		49.5
GNDD442	125.90	139.00	13.10	0.30	1.4	0.16	0.39	0.2 g/t AuEq cut	5.1
and	229.00	230.00	1.00	1.8	4.0	0.04	1.8		1.8
and	250.00	252.85	2.85	1.8	1.9	0.13	1.9	0.2 g/t AuEq cut	5.3
inc	251.40	252.85	1.45	2.9	2.7	0.16	3.0		4.3
and	306.00	335.00	29.00	3.2	44.6	3.6	5.3	0.2 g/t AuEq cut	154.0
inc	308.00	335.00	27.00	3.4	47.6	3.8	5.7		152.8
inc	329.00	331.60	2.60	17.6	218.0	10.1	24.7		64.2
GNDD145e	200.00	208.50	8.50	0.11	3.5	0.1	0.22	0.2 g/t AuEq cut	1.9
GNDD265e	56.00	60.00	4.00	0.57	1.3	0.1	0.63	previously reported	2.5
	152.00	166.00	14.00	0.20	1.1	0.11	0.3	previously reported	3.6
							1		

See below for information regarding AuEq's reported under the JORC Code.

² Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Assumed commodity prices for the calculation of AuEq is Au US\$1780 Oz, Ag US\$24 Oz, Zn US\$2,800 /t
- Metallurgical recoveries for Au, Ag and Zn are estimated to be 89%, 84% and 79% respectively (see JORC Table 1 Section 3 Metallurgical assumptions) based on metallurgical test work.
- The formula used: $AuEq(g/t) = Au(g/t) + [Ag(g/t) \times (24/1780) \times (0.84/0.89)] + [Zn(%) \times (28.00*31.1/1780) \times (0.79/0.89)]$
- CEL confirms that it is the Company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

Table 5 New Exploration intercepts Reported during the quarter

Drill Hole	From	То	Interval	Gold	Ag	Zn	AuEq	Comments	Total intercept
(#)	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(g/t)		(gram metres)
GNDD308	258.3	295.0	36.8	0.5	1.6	0.2	0.6	previously reported	21.4
inc	291.0	295.0	4.0	2.6	5.6	0.8	3.1	previously reported	12.3
GNDD308e	458.5	466.5	8.1	0.4	1.7	0.4	0.6	0.2 g/t AuEq cut	4.9
inc	465.9	466.5	0.6	1.6	17.6	4.8	3.9	1.0 g/t AuEq cut	2.3
and	640.0	685.0	45.0	0.3	1.2	0.1	0.4	0.2 g/t AuEq cut	18.6
inc	650.0	677.0	27.0	0.5	1.3	0.2	0.6	0.2 g/t AuEq cut	16.7
inc	650.0	652.0	2.0	2.5	5.2	0.1	2.6	1.0 g/t AuEq cut	5.1
inc	661.5	662.2	0.7	1.1	1.9	0.1	1.2	1.0 g/t AuEq cut	0.8
inc	668.0	669.0	1.0	4.0	3.4	3.0	5.3	1.0 g/t AuEq cut	5.3
and	1009.0	1013.0	4.0	3.7	44.9	3.7	5.8	0.2 g/t AuEq cut	23.4
inc	1010.0	1013.0	3.0	4.8	58.9	4.9	7.7	1.0 g/t AuEq cut	23.1
GNDD326	288.0	290.0	2.0	7.5	1.4	0.0	7.5	1.0 g/t AuEq cut	15.1
GNDD394	224.0	229.0	5.0	7.3	29.4	2.4	8.7	0.2 g/t AuEq cut	43.5
inc	224.0	227.0	3.0	12.0	46.4	3.9	14.3	10 g/t AuEq cut	42.9
GNDD432	50.0	98.0	48.0	0.4	7.9	0.1	0.5	0.2 g/t AuEq cut	23.1
inc	54.6	58.0	3.4	2.7	15.0	0.2	3.0	1.0 g/t AuEq cut	10.2
inc	76.0	78.0	2.0	0.5	62.2	0.1	1.4	1.0 g/t AuEq cut	2.8
and	112.0	118.0	6.0	1.1	0.7	0.0	1.1	0.2 g/t AuEq cut	6.6
inc	112.0	114.0	2.0	2.7	1.0	0.0	2.8	1.0 g/t AuEq cut	5.5
and	246.0	283.4	37.4	0.7	6.2	0.1	0.8	0.2 g/t AuEq cut	28.7
inc	252.0	254.0	2.0	0.9	7.6	0.0	1.0	1.0 g/t AuEq cut	2.0
inc	264.0	265.3	1.3	3.5	25.5	0.0	3.8	1.0 g/t AuEq cut	5.0
inc	269.0	271.0	2.0	1.4	10.6	0.6	1.8	1.0 g/t AuEq cut	3.6
inc	282.1	283.4	1.3	6.7	7.4	0.3	7.0	1.0 g/t AuEq cut	8.7
GNDD450	75.9	79.0	3.1	0.4	0.4	0.0	0.4	0.2 g/t AuEq cut	1.2
and	138.0	161.0	23.0	0.2	1.2	0.0	0.3	0.2 g/t AuEq cut	6.0
and	314.5	412.2	97.8	1.7	11.9	0.9	2.2	0.2 g/t AuEq cut	214.2
inc	317.0	319.0	2.0	1.6	22.9	0.0	1.9	1.0 g/t AuEq cut	3.8
inc	328.4	330.0	1.6	1.5	7.2	0.1	1.6	1.0 g/t AuEq cut	2.6
inc	342.0	346.0	4.0	2.8	6.7	0.4	3.1	1.0 g/t AuEq cut	12.4
inc	360.1	360.7	0.5	10.0	51.8	8.4	14.3	10 g/t AuEq cut	7.9
inc	376.2	393.0	16.8	7.1	50.7	4.4	9.7	1.0 g/t AuEq cut	162.3
inc	376.2	381.0	4.8	21.6	159.8	14.6	30.0	10 g/t AuEq cut	142.3
inc	411.0	412.2	1.2	1.1	12.1	0.4	1.5	1.0 g/t AuEq cut	1.7

See below for information regarding AuEq's reported under the JORC Code.

² Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Assumed commodity prices for the calculation of AuEq is Au US\$1780 Oz, Ag US\$24 Oz, Zn US\$2,800 /t
- Metallurgical recoveries for Au, Ag and Zn are estimated to be 89%, 84% and 79% respectively (see JORC Table 1
 Section 3 Metallurgical assumptions) based on metallurgical test work.
- The formula used: AuEq (g/t) = Au (g/t) + [Ag (g/t) x (24/1780) x (0.84/0.89)] + [Zn (%) x (28.00*31.1/1780) x (0.79/0.89)]
- CEL confirms that it is the Company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

Table 6: New intercepts reported.

Drill Hole	From	То	Interval	Au	Ag	Cu	Мо	AuEq	Comments
(#)	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(ppm)	(g/t)	
GYDD-21-001	16.15	800.46	784.31	0.24	1.57	0.06	11.95	0.36	0.1 g/t AuEq cut off
inc	167.50	548.00	380.50	0.32	1.97	0.07	18.41	0.47	1.0 g/t AuEq cut off
inc	359.50	548.00	188.50	0.40	2.35	0.10	29.50	0.61	1.0 g/t AuEq cut off
inc	403.00	431.00	28.00	0.54	6.90	0.15	104.40	0.95	1.0 g/t AuEq cut off
inc	403.00	424.00	21.00	0.77	2.98	0.20	138.91	1.09	1.0 g/t AuEq cut off
and	468.50	498.50	30.00	0.76	2.61	0.15	24.80	1.06	1.0 g/t AuEq cut off
GYDD-21-002	85.00	131.50	46.50	0.32	3.99	0.04	5.72	0.43	0.1 g/t AuEq cut off
incl.	112.00	114.30	2.30	1.33	33.17	0.12	5.10	1.95	1.0 g/t AuEq cut off
incl.	129.75	131.50	1.75	2.05	7.36	0.01	1.29	2.16	1.0 g/t AuEq cut off
and	279.45	306.50	27.05	1.49	0.82	0.02	2.21	1.53	0.1 g/t AuEq cut off
incl.	305.00	306.50	1.50	19.16	1.89	0.03	3.21	19.23	10 g/t AuEq cut off
and	378.50	392.00	13.50	0.44	0.21	0.01	1.45	0.46	0.1 g/t AuEq cut off
and	447.90	448.80	0.90	0.74	4.85	0.06	1.92	0.89	0.1 g/t AuEq cut off
and	499.80	557.80	58.00	0.14	0.30	0.01	1.53	0.16	0.1 g/t AuEq cut off
incl.	547.80	554.80	7.00	0.39	0.21	0.01	1.74	0.41	0.5 g/t AuEq cut off
incl.	554.10	554.80	0.70	1.06	0.20	0.01	1.08	1.09	1.0 g/t AuEq cut off

See below for information regarding AuEq's reported under the JORC Code.

² Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Assumed commodity prices for the calculation of AuEq is Au US\$1780 Oz, Ag US\$22 Oz, Cu US\$9,650 /t, Mo US\$40,500
 /t.
- Metallurgical recovery factors for gold, silver, copper, and molybdenum are assumed to be equal. No metallurgical factors have been applied in calculating the Au Eq.
- The formula used: AuEq (g/t) = Au (g/t) + [Ag (g/t) x (22/1780)] + [Cu (%) x (9650/100*31.1/1780)] + [Mo (%) x (40500/100*31.1/1780)].
- CEL confirms that it is the Company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

Competent Person Statement – Exploration results

The information in this release provided under ASX Listing Rules 5.12.2 to 5.12.7 is an accurate representation of the available data and studies for the material mining project. The information that relates to sampling techniques and data, exploration results and geological interpretation has been compiled Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

Foreign Resource Estimate Hualilan Project

La Mancha Resources	La Mancha Resources 2003 foreign resource estimate for the Hualilan Project ^								
Category	Tonnes (kt)	Gold Grade (g/t)	Contained Gold (koz)						
Measured	218	14.2	100						
Indicated	226	14.6	106						
Total of Measured & Indicated	445	14.4	206						
Inferred	977	13.4	421						
Total of Measured, Indicated & Inferred	1,421	13.7	627						

[^] Source: La Mancha Resources Toronto Stock Exchange Release dated 14 May 2003 -Independent Report on Gold Resource Estimate.
Rounding errors may be present. Troy ounces (oz) tabled here

^{**}I For details of the foreign non-JORC compliant resource and to ensure compliance with LR 5.12 please refer to the Company's ASX Release dated 25 February 2019. These estimates are foreign estimates and not reported in accordance with the JORC Code. A competent person has not done sufficient work to clarify the foreign estimates as a mineral resource in accordance with the JORC Code. It is uncertain that following evaluation and/or further exploration work that the foreign estimate will be able to be reported as a mineral resource. The company is not in possession of any new information or data relating to the foreign estimates that materially impacts on the reliability of the estimates or CEL's ability to verify the foreign estimates estimate as minimal resources in accordance with Appendix 5A (JORC Code). The company confirms that the supporting information provided in the initial market announcement on February 25, 2019 continues to apply and is not materially changed

Appendix 1 - Schedule of Tenements

		Tenure Title	Interest	Area	DNPM No	Status of
Project	Property Name	Holder	%	(ha)	of Area	Tenure
El Guayabo	El Guayabo	Torata Mining Resources S.A	100%	281	COD225	Granted
El Guayabo	Colorado V	Goldking Mining Company S.A	earning 50%	2331	COD3363.1	Granted
El Guayabo	El Guaybo 2	Mr. Segundo Ángel Marín Gómez	earning 80%	957	COD300964	Granted
Hualilan	Divisadero	Golden Mining S.R.L.	100%	6	5448-M-1960	Granted
Hualilan	Flor de Hualilan	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Pereyra y Aciar	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Bicolor	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Sentazon	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Muchilera	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Magnata	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Pizarro	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	La Toro	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	La Puntilla	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Pique de Ortega	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Descrubidora	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Pardo	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Sanchez	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Andacollo	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	North of "Pizarro" Mine	Golden Mining S.R.L.	as above	1.9	195-152-C- 1981	Granted
Hualilan	South of "La Toro" Mine	CIA GPL S.R.L.	as above	1.9	195-152-C- 1981	Granted
Hualilan	Josefina	Golden Mining S.R.L.	as above	2570	30.591.654	Granted
Hualilan		Armando J. Sanchez	100% Option	721.90	414-998-M-05	Granted
Hualilan	Guillermina	Armando J. Sanchez	100% Option	2,921.05	1124-045-S-19	Granted
Hualilan	Agu 3	Armando J. Sanchez	100% Option	1,500.00	1124-114-S-14	Granted
Hualilan	Agu 5	Armando J. Sanchez	100% Option	1443.50	1124-343-S-14	Granted
Hualilan	Agu 6	Armando J. Sanchez	100% Option	1500.00	1124-623-S-17	Granted
Hualilan	Agu 7	Armando J. Sanchez	100% Option	1459.00	1124-622-S-17	Granted
Hualilan	El Petiso	Armando J. Sanchez	100% Option	18.00	2478-C-71	Granted

West Perth WA 6005

Appendix 3 - ASX Waivers

The ASX granted the Company a waiver from ASX Listing Rule 7.3.2 to permit the notice of meeting (the "Notice") seeking shareholder approval for the issue of up to 245,000,001 fully paid ordinary shares in the Company ("Waiver Securities") upon the Company satisfying the milestones in relation to each of the Projects ("Milestones") not to state that the Waiver Securities will be issued within 3 months of the date of the shareholder meeting.

The Waiver Securities must be issued no later than 60 months after the date of reinstatement of the Company's securities to official quotation.

All Waiver Securities agreements were amended, received shareholder approval and have been issued.

Performance Shares

The Company has 60,000,000 Class A Performance Shares and 60,000,000 Class B Performance Shares on Issue.

A summary of the terms and conditions of the Performance Shares are as follows:

The Performance Shares shall automatically convert into Shares, provided that if the number of Shares that would be issued upon such conversion is greater than 10% of the Company's Shares on issue as at the date of conversion, then that number of Performance Shares that is equal to 10% of the Company's Shares on issue as at the date of conversion under this paragraph will automatically convert into an equivalent number of Company Shares. The conversion will be completed on a pro rata basis across each class of Performance Shares then on issue as well as on a pro rata basis for each Holder. Performance Shares that are not converted into Shares under this paragraph will continue to be held by the Holders on the same terms and conditions.

(**No Conversion if Milestone not Achieved**): If the relevant Milestone is not achieved by the required date (being seven years from the date of the Proposed Acquisition or such other date as required by ASX), then all Performance Shares held by each Holder shall lapse.

(After Conversion): The Shares issued on conversion of the Performance Shares will, as and from 5.00pm (WST) on the date of issue, rank equally with and confer rights identical with all other Shares then on issue and application will be made by the Company to ASX for official quotation of the Shares issued upon conversion (subject to complying with any restriction periods required by the ASX). (Milestones):

The Performance Shares will, convert upon the satisfaction of the following milestones:

(Class A): A JORC Compliant Mineral Resource Estimate of at least Inferred category on either Project of the following:

a minimum 500,000 ounces of gold (AU) or Gold Equivalent (in accordance with clause 50 of the JORC Code) at a minimum grade of 6 grams per tonne Gold Equivalent; or a minimum 1,500,000 ounces of gold (AU) or Gold Equivalent (in accordance with clause 50 of the JORC Code) at a minimum grade of 2.0 grams per tonne Gold Equivalent; or a minimum 3,000,000 ounces of gold (AU) or Gold Equivalent (in accordance with clause 50 of the JORC Code) at a minimum grade of 1.0 grams per tonne Gold Equivalent.

(Class B): The Class B Performance Shares held by the holder will convert into an equal number of Shares upon the Company:

Completion and announcement by CEL (subject to the provision of information allowable at the time of completion) of a positive Scoping Study (as defined in the JORC Code) on either Project by an independent third-party expert which evidences an internal rate of return of US Ten Year Bond Rate plus 10% (using publicly available industry assumptions, including deliverable spot commodity / mineral prices, which are independently verifiable) provided that the total cumulative EBITDA over the project life is over US\$50m.

No Performance Milestones were met during the quarter.

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data -El Guayabo Project

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Newmont Mining Corp (NYSE: NEM) ("Newmont") and Odin Mining and Exploration Ltd (TSX: ODN) ("Odin") core drilled the property between February 1995 and November 1996 across two drilling campaigns. The sampling techniques were reviewed as part of a 43-101 Technical report on Cangrejos Property which also included the early results of the El Joven joint venture between Odin and Newmont, under which the work on the El Guayabo project was undertaken. This report is dated 27 May 2004 and found the sampling techniques and intervals to be appropriate with adequate QA/QC and custody procedures, core recoveries generally 100%, and appropriate duplicates and blanks use for determining assay precision and accuracy. Duplicates were prepared by the Laboratory (Bonder Cleg) which used internal standards. Newmont also inserted its own standards at 25 sample intervals as a control on analytical quality Diamond drilling produced core that was sawed in half with one half sent to the laboratory for assaying per industry standards and the remaining core retained on site. Cu assays above 2% were not re-assayed using a technique calibrated to higher value Cu results hence the maximum reported assay for copper is 2%. All core samples were analysed using a standard fire assay with atomic absorption finish on a 30 g charge (30 g FAA). Because of concerns about possible reproducibility problems in the gold values resulting from the presence of coarse gold, the coarse crusher rejects for all samples with results greater than 0.5 g/t were re-assayed using the "blaster" technique - a screen type fire analysis based on a pulverized sample with a mass of about 5 kg. Samples from most of these intersections were also analysed for Cu, Mo, Pb, Zn and Ag. CEL has re-sampled sections of the Newmont and Odin drill core. ½ drill core was cutover intervals that replicated the earlier sampling. Sample intervals ranged from 0.7 – 4.5m with an average of 2.0m. 53

Contact

T: +61 8 6380 9235

E: admin@challengerex.com

www.challengerex.com

Issued Capital

979.4m shares

48.0m options

16m perf rights

120m perf shares

Australian Registered Office

Level 1

1205 Hay Street

West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO

Mr Fletcher Quinn, Chairman

Mr Scott Funston, Finance Director

Mr Sergio Rotondo, Exec. Director

Challenger Exploration Limited

ACN 123 591 382

ASX: CEL

Criteria	JORC Code explanation	Commentary
Criteria	JORC Code explanation	Au by fire assay (50g) with AAS determination and gravimetric determination for values > 10 g/t Au and assay for 48 elements by 4-acid digest with ICP-MS determination. Rock chip samples are taken so as to be as representative as possible of the exposure being mapped. Colorado V: • Soil sampling: A database of 4,495 soil analyses has been provided by Goldking Mining Company S.A. (GK) which has yet to be fully evaluated. No information has been provided on the method of sample collection or assay technique. The soil analyses include replicate samples and second split analyses. Pulps have been securely retained by Goldking Mining Company and have been made available to CEL for check assaying. Check assaying is planned, including collection of field duplicates. • Rock chip sampling during regional mapping has been done on selected exposures. Sampling involves taking 2-3 kg of rock using a hammer from surface exposures that is representative of the exposure. • Selected intervals of drill core have been cut longitudinally and half core were submitted for gold determination at GK's on-site laboratory prior to CEL's involvement with the Project. • Re-sampling of the core involves taking ½ core (where the core has previously been sampled) or ½ core (where the core has not previously been sampled). The core is cut
		Project. Re-sampling of the core involves taking ¼ core (where the core has previously been
		Laboratories in Peru. • Underground development has been mapped and channel sampled. Channel samples have been taken by cutting a horizontal channel of approximately 5 cm width and 4 cm depth into the walls at a nominal height of 1m above the ground. The channel cuts were made with an angle grinder mounted with a diamond blade. Samples were extracted from the channel with a hammer and chisel to obtain a representative sample with a similar weight per metre as would be obtained from a drill core sample. Analysis of the samples has been done by ALS Laboratories in Peru using the same preparation and analysis as has been used

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235

Criteria	JORC Code explanation	Commentary
		for drill core samples.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 El Guayabo: Diamond core drilling HQ size from surface and reducing to NQ size as necessary. The historical records do not indicate if the core was oriented Colorado V: Diamond drilling was done using a rig owned by GK. Core size collected includes HQ, NC and NQ3. There is no indication that oriented core was recovered.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 In a majority of cases core recovery was 100%. In the historical drill logs where core recoveries were less than 100% the percentage core recovery was noted. No documentation on the methods to maximise sample recovery was reported in histori reports however inspection of the available core and historical drilling logs indicate that core recoveries were generally 100% with the exception of the top few metres of each dhole. No material bias has presently been recognised in core. Observation of the core from various drill holes indicate that the rock is generally fairly solid even where it has been subjected to intense, pervasive hydrothermal alteration and core recoveries are generally 100%. Consequently, it is expected that the samples obtain were not unduly biased by significant core losses either during the drilling or cutting processes
		 Colorado V: Core from Goldking has been re-boxed prior to sampling where boxes have deteriorated otherwise the original boxes have been retained. Core lengths have been measured and compared to the depth tags that are kept in the boxes from the drilling and recovered lengths have been recorded with the logging. Where re-boxing of the core is required, core has been placed in the new boxes, row-by row with care taken to ensure all of the core has been transferred. No relationship has been observed between core recovery and sample assay values.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	 Geological logging was completed at 1-3 m intervals which is appropriate given the exploration was reconnaissance in nature. All core was logged qualitatively at 1 to 3 m intervals depending on geology intercepted and core was photographed.
ger Exploration Limited	Issued Capital Australian Registered Office Directors	Contact

Mr Kris Knauer, MD and CEO

Mr Fletcher Quinn, Chairman

Mr Scott Funston, Finance Director

Mr Sergio Rotondo, Exec. Director

T: +61 8 6380 9235

E: admin@challengerex.com

www.challengerex.com

979.4m shares

48.0m options

120m perf shares 16m perf rights Level 1

1205 Hay Street

West Perth WA 6005

ACN 123 591 382

ASX: CEL

JORC Code explanation Criteria Commentary - The total length and percentage of the relevant intersections logged. Inspections of core and logging have concluded that the logging was representative. 100% of all core including all relevant intersections were logged Progress of El Guayabo core re-logging and re-sampling is summarized below: Logging Core Total Depth (m) Hole ID Status Photograph **Sampling Status** Samples GY-01 249.2 Complete 25 Complete **Partial** GY-02 272.9 Complete Complete **Partial** 88 295.99 GY-03 Pending Complete Pending GY-04 172.21 Pending Complete Pending GY-05 258.27 **Partial** 56 Complete **Partial** GY-06 101.94 Pending Complete Pending GY-07 127.0 Pending Complete Pending GY-08 312.32 Pending Complete Pending GY-09 166.25 Pending Complete Pending GY-10 194.47 Pending Pending Pending GY-11 241.57 Complete Complete **Partial** 84 GY-12 255.7 **Partial** Complete Pending GY-13 340.86 Pending Pending Pending GY-14 309.14 Pending Pending Pending GY-15 251.07 Pending Pending Pending **GY-16** 195.73 Pending Pending Pending GY-17 280.04 Complete Complete **Partial** 36 GY-18 160.35 Pending Complete Pending GY-19 175.42 Pending Complete Pending Logged (m) 1,043.71 Re-logged Samples Submitted 289 4,185.01 Total (m) Odin Drilled JDH-01 236.89 missing core missing core missing core JDH-02 257.62 missing core missing core missing core JDH-03 260.97 missing core missing core missing core

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary					
		JDH-04	219.00	missing core	missing core	missing core	
		JDH-05	210.37	missing core	missing core	missing core	
		JDH-06	302.74	Complete	Complete	Partial	98
		JDH-07	105.79	Pending	Pending	Pending	
		JDH-08	352.74	Pending	Pending	Pending	
		JDH-09	256.70	Complete	Complete	Partial	49
		JDH-10	221.64	Complete	Complete	Partial	43
		JDH-11	217.99	Pending	Complete	Pending	
		JDH-12	124.08	Complete	Complete	Partial	22
		JDH-13	239.33	Complete	Complete	Partial	21
		_ JDH-14	239.32	Complete	Complete	Partial	30
		Logged (m)	1,038.09	Re-logged		Samples Submitted	263
		Total (m)	3,245.18	Newmont Dri	lled		

Hole ID	Depth (m)	Logging Status	Core Photograph	Sampling Status	Total Samples
GYDD-21-001	800.5	Complete	Complete	Complete	581
GYDD-21-002	291.7	Complete	Complete	Complete	204
GYDD-21-002A	650.6	Complete	Complete	Complete	282
GYDD-21-003	723.2	Complete	Complete	Corô phepe ete	Complete Comp 545
GYDD-21-004	696.1	Complete	Complete	Cor 6phape ete	Complete3 Comp
GYDD-21-005	632.1	Complete	Complete	Cor 6phape ete	Complette5 Comp
GYDD-21-006	365.3	Complete	Complete	Cor 6phape ete	Comple 68 Comp
GYDD-21-007	Partial	Partial	Partial	Partial	Partial
GYDD-21-008	Partial	Partial	Partial	Partial	Partial

Colorado V:

Sorting, re-boxing and re-logging of available drill core is in progress. Core is being logged for lithology, alteration, mineralisation and structure. Where possible, logging is quantitative.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact

T: +61 8 6380 9235 E: admin@challengerex.com

JORC Code explanation	Commenta	ry				
	• Pro	gress of Colora	ado V core re-l	ogging and re-san	npling is summarized bel	ow:
	Hole_ID	Depth (m)	Logging Status	Core Photograph	Sampling Status	Total Sampl
	ZK0-1	413.6	Complete	Complete	Samples Submitted	
	ZK0-2	581.6	Complete	Complete	Samples Submitted	
	ZKO-3	463.0	Complete	Complete	Samples Submitted	
	ZKO-4	458.0	Complete	Complete	Samples Submitted	
	ZKO-5	624.0	Complete	Pending	Samples Submitted	
	ZK1-1	514.6	Complete	Pending	Samples Submitted	
	ZK1-2	403.1	Complete	Complete	Not Re-Sampled	
	ZK1-3	425.0	Complete	Complete	Samples Submitted	
	ZK1-4	379.5	Complete	Complete	Samples Submitted	
	ZK1-5	419.5	Complete	Complete	Samples Submitted	
	ZK1-6	607.5	Complete	Complete	Samples Submitted	
	ZK1-7	453.18	Complete	Complete	Samples Submitted	
	ZK1-8	556.0	Pending	Pending	Pending	
	ZK1-9	220.0	Complete	Complete	Samples Submitted	
	ZK2-1	395.5	Complete	Complete	Samples Submitted	
	ZK3-1	372.48	Complete	Complete	Samples Submitted	
	ZK3-1A	295.52	Pending	Pending	Pending	
	ZK3-2	364.80	Complete	Complete	Samples Submitted	
	ZK3-4	322.96	Complete	Complete	Samples Submitted	
	ZK4-1	434.0	Pending	Pending	Pending	
	ZK4-2	390.5	Pending	Pending	Pending	
	ZK4-3	650.66	Pending	Pending	Pending	
	ZK4-4	285.0	Pending	Pending	Pending	
	ZK5-1	321.90	Complete	Complete	Not Re-sampled	

ZK5-2

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

321.0 Complete

Complete

Not Re-sampled

Criteria	JORC Code explanation	Comm	nentary				
		ZK5-3	446.5	Pending	Pending	Pending	
		ZK5-4	508.0	Pending	Pending	Pending	
		ZK5-5	532.0	Complete	Complete	Samples Submitted	378
		ZK6-1	. 552.6	Pending	Complete	Pending	
		ZK6-2	531	Pending	Pending	Pending	
		ZK10-	1 454.0	Complete	Complete	Samples Submitted	229
		ZK10-	2 318.82	Complete	Complete	Samples Submitted	206
		ZK10-	3 331.52	Complete	Complete	Samples Submitted	220
		ZK11-	1 237.50	Complete	Complete	Not Re-sampled	
		ZK12-	1 531.50	Complete	Complete	Not Re-sampled	
		ZK12-	2 510.6	Complete	Complete	Not Re-sampled	
		ZK13-	1 394.0	Complete	Complete	Samples Submitted	246
		ZK13-	2 194.0	Pending	Complete	Pending	
		ZK13-	3 197.06	Pending	Pending	Pending	
		ZK13-	4 176.57	Pending	Pending	Pending	
		ZK13-	5 184.7	Pending	Pending	Pending	
		ZK16-	1 324.0	Complete	Complete	Samples Submitted	212
		ZK16-	2 385.83	Complete	Complete	Samples Submitted	223
		ZK18-	1 410.5	Complete	Complete	Samples Submitted	286
		ZK19-	548.60	Complete	Complete	Not Re-sampled	
		ZK100	0-1 415.0	Pending	Pending	Pending	
		ZK103	3-1 524.21	Pending	Pending	Pending	
		ZK105	5-1 404.57	Pending	Pending	Pending	
		ZK205	5-1 347.0	Complete	Complete	Samples Submitted	211
		SAZKO	O-1A 569.1	Complete	Complete	Samples Submitted	396
		SAZKO	O-2A 407.5	Complete	Complete	Samples Submitted	260
		SAZKZ	2-1 430.89	Complete	Complete	Samples Submitted	195
		SAZKZ CK2-1		Complete	Complete	Not Re-Sampled	
allenger Evaluation Limited	Issued Capital Australian Posistaved Office	CKZ-1	L 121.64	missing core	missing core	missing core	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact

T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary	7				
		CK2-2	171.85	missing core	missing core	missing core	
		CK2-3	116.4	missing core	missing core	missing core	
		CK2-4	146.12	missing core	missing core	missing core	
		CK2-5	357.56	Complete	Complete	Complete	
		CK2-6	392.56	Complete	Complete	Complete	
		CK3-1	185.09	missing core	missing core	missing core	
		CK3-2	21.75	missing core	missing core	missing core	
		CK3-3	138.02	missing core	missing core	missing core	
		CK5-1	273.56	Complete	Complete	Complete	
		CK5-2	273.11	Complete	Complete	Complete	
		CK13-1	227.1	Complete	Complete	Complete	
		CK13-2	231.16	Complete	Complete	Complete	
		CK13-3	197.06	Complete	Complete	Complete	
		CK13-4	176.57	Complete	Complete	Complete	
		CK13-5	184.70	Complete	Complete	Complete	
		CK21-1	143.47	Complete	Complete	Complete	
		Logged (m)	25,315.07	Re-logged		Samples Submitted	7,894
		Total (m)	23,315.07	Core Shack			
		Total (m)	26,528.26	Drilled			
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material 	 All di Samp was of pulve assay limit. Meas colle 	rilling was con ole preparation dried, crushed erized. A sub- y on a 30 g ch sures taken to cted is not ou	re drilling as sucton was approprid to a nominal - sample of the parge with an atop ensure that the itlined in the his	- 10 mesh (ca 2m ulp was then ser omic absorption e sampling is rep storical documen		ere split out and candard fire o Au detection naterial of re-assaying

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact

T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
	being sampled.	 The use of a 1-3 m sample length is appropriate for deposits of finely disseminated mineralisation where long mineralised intersections are to be expected. CEL ¼ core sampling was done by cutting the core with a diamond saw. Standards (CRN and blanks were inserted into the batched sent for preparation and analysis. No duplic samples were taken and ¼ core was retained for future reference. The sample size is appropriate for the style of mineralisation observed. CEL rock chip samples of 2-3 kg are crushed to a nominal 2mm and a 500 g sub-sample pulverized. The rock chips are collected from surface expose in creeks. Sampling is dor so as to represent the material being mapped. The sample size is appropriate for the g size of the material being sampled. Colorado V: No information is available on the method/s that have been used to collect the soil samples. Selected intervals of drill core have been cut longitudinally using a diamond saw and ½ has been sampled. Sample intervals range from 0.1m to 4.5m with an average length of 1.35m. The size of the samples is appropriate for the mineralisation observed in the core responsible to the samples of 1.35m. The size of the samples of 3 core (where previously sampled) or ½ core where not previously sampled. ¼ or ½ core over intervals of 1-3 metres provides an
Quality of assay data and laboratory tests	- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered	adequate sample size for the material being sampled. El Guayabo: The nature, quality and appropriateness of the assaying and laboratory procedures use
nuborutory tests	 partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Newmont and Odin are still in line with industry best practice with appropriate QA/QC chain of custody and are considered appropriate. Available historical data does not mention details of geophysical tools as such it is belie a geophysical campaign was not completed in parallel with the drilling campaign. Duplicates were prepared by the Laboratory (Bonder Cleg) which used internal standar Newmont also inserted its own standards at 25 sample intervals as a control on analyti quality. Later Odin undertook a re-assaying program of the majority of the higher-grad sections which confirmed the repeatability.
iger Exploration Limited	Issued Capital Australian Registered Office Directors	 Given the above, it is considered acceptable levels of accuracy and precision have been established CEL ¼ and ½ core samples were prepared for assay at SGS Del Ecuador S.A.in Quito, Ecuador with analysis completed by in Lima at SGS del in Peru S.A.C and by ALS Laboratories in Quito with analysis completed by ALS in Vancouver, Canada. Samples v

Mr Kris Knauer, MD and CEO

Mr Fletcher Quinn, Chairman

Mr Scott Funston, Finance Director

Mr Sergio Rotondo, Exec. Director

T: +61 8 6380 9235

E: admin@challengerex.com

www.challengerex.com

979.4m shares

48.0m options

16m perf rights

120m perf shares

Level 1

1205 Hay Street

West Perth WA 6005

ACN 123 591 382

ASX: CEL

crushed and a 500g sub-sample was pulverized to 85% passing 75 µm. The provides for a near total analysis of the economic elements of interest. • CEL rock chip samples were prepared for assay at ALS Laboratories (Quito) being completed at ALS Laboratories (Peru). The fire assay and 4-acid diges near-total analysis of the economic elements of interest. No standards or be submitted with the rock chip samples. Colorado V: • No information is available on the methods used to analyse the soil or drill Assay results are not provided in this report. Soil samples have been analysed by GK for Au, Cu, Ag, Zn, Pb, As, Mn, Ni, Cr, Co, B, Ba, Sb, Bi and Hg. Pulps have been securely retained and check assay. • Drill core was partially assayed for gold only with assays undertaken by Gollaboratory. • CEL samples of drill core re-sampled by CEL blanks and CRM (standards) adbatches to check sample preparation and analysis. 3 separate CRM's were included in the batches sent for analysis. All three I values. The results of the analysis of the CRM is shown below. With a few cRM has returned results within +/- 2 SD of the certified reference value. Tin the results returned from either SGS or ALS laboratories.
CRM3 analyses by fire assay at SGS did not include overlimit (>10 g/t).
SGS - CRM1 - Au (ppm) - mean +/- 2SD ALS - CRM1 - Au (ppm) - mean +/- 130 110 110 110 110 110 110 110 110 11

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street

Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

No duplicate samples have been submitted.

Two different blanks have been included randomly within the sample batches. A CRM

West Perth WA 6005

Mr Scott Funston, Finance Director Mr Sergio Rotondo, Exec. Director

JORC Code explanation Criteria Commentary blank with a value of <0.01 ppm (10 ppb) Au was used initially. More recent batches have used a blank gravel material which has no certified reference value. The results are shown below. The first 4 gravel blanks show elevated Au values which is believed to be due to contamination of the blank prior to submission and not due to laboratory contamination. With one exception, the blanks have returned values below 10 ppb. SGS - CRM Blank - Au (ppb) SGS - Gravel Blank - Au (ppb) ALS - Gravel Blank - Au (ppm) ALS - Cement Blank - Au (ppm) Verification of The verification of significant intersections by either independent or El Guavabo: sampling and All intersections with results greater than 0.5 g/t were re-assayed using the "blaster" alternative company personnel. assaying The use of twinned holes. technique - a screen type fire analysis based on a pulverised sample with a mass of about 5 Documentation of primary data, data entry procedures, data kg. Additionally, Odin re-assayed the many of the higher-grade sections with re-assay verification, data storage (physical and electronic) protocols. results demonstrating repeatability of the original results. Discuss any adjustment to assay data. Neither Newmont nor Odin attempted to verify intercepts with twinned holes Data was sourced from scanned copies of original drill logs and in some cases original paper copies of assay sheets are available. This data is currently stored in a drop box data base with the originals held on site. No adjustments to assay data were made. CEL assay data has not been independently verified or audited. Data is stored electronically in MS Excel and PDF format from the Laboratory and entered into a Project database for analysis. There has been no adjustment of the data. Colorado V: There is no information available on the verification of sample and assay results. No assay data is provided in this report. Soil replicate samples and second split assay results have been provided but not fully analysed at this stage. Of the 4,495 soil samples in the GK database, 166 are replicate samples and 140 are second split re-analyses. 37 samples have no co-ordinates in the database.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary
		 The remaining 4,152 have analyses for all 19 elements indicated above. Significant intersections have been internally checked against the assay data received. The data received has been archived electronically and a database of all drill information is being developed. There is no adjustment of the assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Newmont undertook survey to located drill holes in accordance with best practice at the time. No formal check surveying has been undertaken to verify drill collar locations at this stage Coordinate System: PSAD 1956 UTM Zone 17S Projection: Transverse Mercator Datum: Provisional S American 1956 Quality of topographic control appears to be+ - 1 meter which is sufficient for the exploration activities undertaken. Rock chip samples have been located using topographic maps with the assistance of handheld GPS. Colorado V: Coordinate System: PSAD 1956 UTM Zone 17S Projection: Transverse Mercator Datum:
		 Provisional S American 1956 No information is available on the collar and down-hole survey techniques used on the Colorado V concession. Rock chip sample locations are determined by using a handheld GPS unit which is appropriate for the scale of the mapping program being undertaken.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drilling on both concessions is exploration based and a grid was not considered appropriate at that time. A JORC compliant Mineral Resource has not been estimated Sample compositing was not used
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	A sampling bias is not evident.
Sample security	- The measures taken to ensure sample security.	El Guayabo: • Newmont sent all its field samples to the Bondar Clegg sample preparation facility in Quito

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
		for preparation. From there, approximately 100 grams of pulp for each sample was air freighted to the Bondar Clegg laboratory (now absorbed by ALS-Chemex) in Vancouver, for analysis. There is no record of any special steps to monitor the security of the samples during transport either between the field and Quito, or between Quito and Vancouver. However, Newmont did insert its own standards at 25 sample intervals as a control on analytical quality. • CEL samples are kept in a secure location and prepared samples are transported with appropriate paperwork, securely by registered couriers. Details of the sample security and chain of custody are kept at the Project office for future audits. Colorado V: • GK analysed samples in an on-site laboratory. It is understood that the samples have remained on site at all times. • CEL have collected samples at the core shed at El Guayabo and secured the samples in polyweave sacks for transport by courier to SGS Laboratories in Quito for preparation. SGS in Quito courier the prepared sample pulps to SGS in Peru for analysis. Photographs and documentation are retained to demonstrate the chain of custody of the samples at all stages.
Audits or reviews	- The results of any audits or reviews of sampling techniques and data.	El Guayabo:
Audits of reviews	The results of any addition reviews of sampling techniques and addition	 The sampling techniques were reviewed as part of a 43-101 Technical report on Cangrejos Property which also included the early results of the El Joven joint venture between Odin and Newmont, under which the work on the El Guayabo project was undertaken. This report is dated 27 May 2004 and found the sampling techniques and intervals to be appropriate with adequate QA/QC and custody procedures, core recoveries generally 100%, and appropriate duplicates and blanks use for determining assay precision and accuracy. There have been no audits of reviews of CEL data for the El Guayabo. Colorado V: No audits or reviews of sampling techniques and data is known. Goldking did twin two
		earlier holes with results still being compiled.

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, local ownership including agreements or issues with third parties such as join ventures, partnerships, overriding renative title interests, historical sites wilderness or national park and environmental settings. The security of the tenure held at the reporting along with any known impediments to obtaining a licence operate in the area. 	Mining Resources S.A (TMR S.A) and was granted in compliance with the Mining Act ("MA") in on April 27, 2010. There are no overriding royalties on the project other than normal Ecuadorian government royalties. The property has no historical sites, wilderness or national park issues. The mining title grants the owner an exclusive right to perform mining activities, including, exploration, exploitation and processing of minerals over the area covered by the prior title for a period of 25 years, renewable for a further 25 years. Under its option agreement, the owner has been granted a negative pledge (which is broadly equivalent to a
Exploration done by other parties	- Acknowledgment and appraisal exploration by other parties.	 El Guayabo: Previous exploration on the project has been undertaken by Newmont and Odin from 1994 to 1997. This included surface pit and rock chip geochemistry, followed by the drilling of 33 drill holes for a total of 7605.52 meters) to evaluate the larger geochemical anomalies. The collection of all exploration data by Newmont and Odin was of a high standard and had appropriate sampling techniques and intervals, adequate QA/QC and custody procedures, and appropriate duplicates and blanks used for determining assay precision and accuracy. The geological interpretation of this data, including core logging and follow up geology was designed and directed by in-country inexperienced geologists. It appears to have been focused almost exclusively for gold targeting surface gold anomalies or the depth extensions of higher-grade gold zones being exploited by the artisanal miners. The geologic logs for all drill holes did not record details that would have been typical, industry standards for porphyry
enger Exploration Limited 23 591 382	Issued Capital Australian Regist 979.4m shares Level 1	d Office Directors Contact Mr Kris Knauer, MD and CEO T: +61 8 6380 9235

Mr Scott Funston, Finance Director

Mr Sergio Rotondo, Exec. Director

Mr Fletcher Quinn, Chairman

E: admin@challengerex.com

www.challengerex.com

48.0m options

16m perf rights

120m perf shares

1205 Hay Street

West Perth WA 6005

ASX: CEL

Criteria	IORC Code explanation	Commentary
		 copper exploration at that time. Several holes which ended in economic mineralisation have never been followed up. In short, important details which would have allowed the type of target to be better explored were missed which in turn presents an opportunity to the current owner. Colorado V: All exploration known has been completed by GK. Drilling has been done from 2016 to 2019. 56 drill holes, totaling 21,471.83m have been completed by GK. El Guayabo 2: Exploration work undertaken by the previous owner was limited to field mapping and sampling including assaying of a small number of samples for gold, silver, copper, lead and zinc. The report is only available in Spanish and assays were conducted in a local laboratory in Ecuador with the majority of this work undertaken in 2017.
Geology -	Deposit type, geological setting and style of mineralisation.	 It is believed that the El Guayabo, El Guayabo 2, and Colorado V concessions contain a "Low Sulfide" porphyry gold copper system and intrusive-related gold. The host rocks for the intrusive complex is metamorphic basement and Oligocene – Mid-Miocene volcanic rocks. This suggests the intrusions are of a similar age to the host volcanic sequence, which also suggests an evolving basement magmatic system. Intrusions are described in the core logs as quartz diorite and dacite. Mineralisation has been recognized in: Steeply plunging breccia bodies and in the metamorphic host rock adjacent to the breccia (up to 200 m in diameter) Quartz veins and veinlets Disseminated pyrite and pyrrhotite in the intrusions and in the metamorphic host rock near the intrusions.
Drill hole - Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: o easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does	El Guayabo drill hole information is provided below.
nallenger Exploration Limited	Issued Capital Australian Registered Office	Directors Contact

Mr Kris Knauer, MD and CEO

Mr Fletcher Quinn, Chairman

Mr Scott Funston, Finance Director

Mr Sergio Rotondo, Exec. Director

T: +61 8 6380 9235

E: admin@challengerex.com

www.challengerex.com

979.4m shares

48.0m options

16m perf rights

120m perf shares

Level 1

1205 Hay Street

West Perth WA 6005

ACN 123 591 382

ASX: CEL

Criteria	JORC Code explanation	Commentary							
	not detract from the understanding of the	DRILLHOLE	EAST	NORTH	ELEVATION	AZIMUTH	DIP	FINAL	DRILLED
	report, the Competent Person should	CODE	(X)	(N)	(m.a.s.l)	(°)	(°)	DEPTHP	BY
	clearly explain why this is the case.	DDHGY 01	628928.09	9605517.20	839.01	360	-90.0	249.20	Odin
		DDHGY 02	629171.15	9606025.55	983.16	360.0	-90.0	272.90	Odin
		DDHGY 03	629041.84	9606312.81	1063.37	305.0	-60.0	295.94	Odin
		DDHGY 04	629171.68	9606025.18	983.2	125.0	-60.0	172.21	Odin
		DDHGY 05	628509.21	9606405.29	989.87	145.0	-60.0	258.27	Odin
		DDHGY 06	629170.56	9606025.97	983.11	305.0	-60.0	101.94	Odin
		DDHGY 07	629170.81	9606025.80	983.16	305.0	-75.0	127.00	Odin
		DDHGY 08	628508.95	9606405.74	989.86	145.0	-75.0	312.32	Odin
		DDHGY 09	629171.22	9606025.88	983.22	45.0	-75.0	166.25	Odin
		DDHGY 10	629170.77	9606025.24	983.12	225.0	-75.0	194.47	Odin
		DDHGY11	628507.97	9606405.33	989.83	160.0	-60.0	241.57	Odin
		DDHGY 12	629087.18	9606035.53	996.98	125.0	-60.0	255.7	Odin
		DDHGY 13	629242.46	9605975.42	997.292	320.0	-65.0	340.86	Odin
		DDHGY 14	629242.27	9605975.64	997.285	320.0	-75.0	309.14	Odin
		DDHGY 15	629194.67	9605912.35	977.001	320.0	-60.0	251.07	Odin
		DDHGY 16	629285.92	9606044.44	1036.920	320.0	-60.0	195.73	Odin
		DDHGY 17	629122.31	9606058.64	1021.053	125.0	-82.0	280.04	Odin
		DDHGY 18	628993.10	9606035.45	977.215	140.0	-60.0	160.35	Odin
		DDHGY 19	629087.23	9606034.98	997.332	45.0	-53.0	175.41	Odin

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235

E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary

DRILLHOLE	EAST	NORTH	ELEVATION	AZIMUTH	DIP	FINAL	DRILLED
CODE	(X)	(N)	(m.a.s.l)	(°)	(°)	DEPTHP	BY
JDH01	627185.78	9606463.27	933.47	280.0	-60.0	236.89	Newmont
JDH02	627260.37	9606353.12	921.56	280.0	-45.0	257.62	Newmont
JDH03	627191.61	9606200.35	952.82	280.0	-45.0	260.97	Newmont
JDH04	627429.81	9606324.00	933.80	280.0	-45.0	219.00	Newmont
JDH05	627755.97	9606248.70	1066.24	280.0	-45.0	210.37	Newmont
JDH06	628356.37	9606416.13	911.58	150.0	-45.0	302.74	Newmont
JDH07	628356.37	9606416.13	911.58	150.0	-75.0	105.79	Newmont
JDH08	628356.37	9606416.13	911.58	150.0	-60.0	352.74	Newmont
JDH09	628507.01	9606408.43	990.18	150.0	-45.0	256.70	Newmont
JDH10	628897.96	9606813.62	985.60	270.0	-45.0	221.64	Newmont
JDH11	628878.64	9606674.39	1081.96	270.0	-45.0	217.99	Newmont
JDH12	629684.61	9606765.31	993.45	150.0	-60.0	124.08	Newmont
JDH13	629122.61	9606058.49	1020.98	125.0	-60.0	239.33	Newmont
JDH14	628897.15	9605562.77	852.59	90.0	-45.0	239.32	Newmont

El Guavabo CEL drill hole information:

hole ID	East (m)	North (m)	Elevation	Azimuth (°)	Dip (°)	final depth	Driller
GYDD-21-001	628893.56	9606473.61	1074.98	330	-60	800.5	CEL
GYDD-21-002	629648.12	9606889.41	913.03	330	-60	291.7	CEL
GYDD-21-002A	629648.91	9606888.00	913.71	330	-60	650.6	CEL
GYDD-21-003	628613.31	9606603.66	1031.61	149	-60	723.2	CEL
GYDD-21-004	628612.17	9606605.66	1031.91	330	-60	696.1	CEL
GYDD-21-005	628433.90	9606380.35	962.07	329	-60	632.1	CEL
GYDD-21-006	628435.80	9606378.12	962.20	100	-60	365.3	CEL
GYDD-21-007	628090.04	9606551.67	839.68	150	-60	Drilling	CEL
GYDD-21-008	628435.62	9606377.74	962.24	150	-60	Drilling	CEL
GYDD-21-009	628932.60	9606035.43	987.81	100	-60	Planned	CEL
GYDD-21-010	628088.44	9606552.79	839.92	180	-60	Planned	CEL
GYDD-21-011	628987.88	9606169.64	1018.56	330	-60	Planed	CEL

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Comr	nentary						
			drill hole informat						
		hole ID	East (m)	North (m)	Elevatio	Azimuth	Dip	final	Driller
					n	(°)	(°)	depth	
		ZK0-1	626378.705	9608992.99	204.452	221	-60	413.60	Shandong Zhaojin
		ZK0-2	626378.705	9608992.99	204.452	221	-82	581.60	Shandong Zhaojin
		ZK0-3	626475.236	9609095.444	197.421	221	-75	463.00	Shandong Zhaojin
		ZK0-4	626476.119	9609098.075	197.225	221	-90	458.00	Shandong Zhaojin
		ZK0-5	626475.372	9609100.909	197.17	300	-70	624.00	Shandong Zhaojin
		ZK1-1	626310.629	9608865.923	226.385	61	-70	514.60	Shandong Zhaojin
		ZK1-2	626313.901	9608867.727	226.494	150	-70	403.10	Shandong Zhaojin
		ZK1-3	626382.401	9608894.404	229.272	61	-70	425.00	Shandong Zhaojin
		ZK1-4	626502.206	9608982.539	227.333	61	-70	379.50	Shandong Zhaojin
		ZK1-5	626497.992	9608979.449	227.241	241	-70	419.50	Shandong Zhaojin
		ZK1-6	626500.813	9608979.367	227.315	180	-70	607.50	Shandong Zhaojin
		ZK1-7	626498.548	9608979.541	227.28	241	-82	453.18	Shandong Zhaojin
		ZK1-8	626501.094	9608980.929	227.208	61	-85	556.00	Shandong Zhaojin
		ZK1-9	626416.4	9609040.6	202.416	203	-23	220.00	Lee Mining
		ZK2-1	626329.859	9609005.863	213.226	221	-90	395.50	Shandong Zhaojin
		ZK3-1	628295.833	9608947.769	309.987	279	-38	372.48	
		ZK3-1-A	626416.4	9609040.6	202.416	179	-29	295.52	Lee Mining
		ZK3-2	628295.833	9608947.769	309.987	205	-30	364.80	· ·
		ZK3-4	628295.833	9608947.769	309.987	170	-30	322.96	
		ZK4-1	626281.066	9609038.75	224.176	221	-90	434.00	Shandong Zhaojin
		ZK4-2	626281.066	9609038.75	224.176	221	-70	390.50	Shandong Zhaojin
		ZK4-3	626386.498	9609186.951	225.517	221	-70	650.66	Shandong Zhaojin
		ZK4-4	626287.7817	9609031.298	215	215	-05	285.00	
		ZK5-1	626377.846	9608790.388	273.43	221	-78	321.90	Shandong Zhaojin
		ZK5-2	626377.539	9608793.769	273.542	41	-78	319.00	Shandong Zhaojin
		ZK5-3	626383.556	9608800.999	273.622	330	-70	446.50	Shandong Zhaojin
		ZK5-4	626383.556	9608800.999	273.622	330	-78	508.00	Shandong Zhaojin
		ZK5-5	626432.795	9608847.735	242.572	61	-70	532.00	Shandong Zhaojin
		ZK6-1	626230.28	9609020.202	260.652	221	-70 -70	552.60	Shandong Zhaojin
		ZK6-2	626165.623	9608991.594	271.928	221	-70 -70	531.00	Shandong Zhaojin
		ZK10-1	626700.8538	9609675.002	126.617	221	-53	454.00	Lee Mining
		ZK10-1 ZK10-2	626744.7	9609711	110.817	310	-30	318.82	LCC IVIIIIII6
		ZK10-2	020744.7	2003/11	110.017	310	-50	310.02	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

ZK10-3

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

626744.7

9609711

Contact T: +61 8 6380 9235 E: admin@challengerex.com

110.817

310

-60

331.52

Criteria	JORC Code explanation	Comm	entary						
		ZK11-1	626446.263	9608705.238	290.028	221	-78	237.50	Shandong Zhaojin
		ZK12-1	626088.326	9609034.197	314.552	221	-70	531.50	Shandong Zhaojin
		ZK12-2	626019.538	9608961.409	294.649	221	-70	510.60	Shandong Zhaojin
		ZK13-1	627763.877	9609906.484	197.899	180	-70	394.00	Shandong Zhaojin
		ZK13-2	627757.925	9609713.788	234.34	0	-70	194.00	Shandong Zhaojin
		ZK13-3	TBA	TBA	TBA	TBA	TBA	197.06	
		ZK13-4	TBA	TBA	TBA	TBA	TBA	176.57	
		ZK13-5	TBA	TBA	TBA	TBA	TBA	184.70	
		ZK16-1	626432.95	9609539.705	207.288	153	-45	330.00	
		ZK16-2	626432.95	9609539.705	207.288	183	-45	394.00	
		ZK18-1	627123.327	9609846.268	142.465	180	-70	410.50	Shandong Zhaojin
		ZK19-1	626753.271	9608802.634	386.627	221	-70	548.60	Shandong Zhaojin
		ZK100-1	626170.882	9608923.778	251.177	131	-70	415.00	Shandong Zhaojin
		ZK103-1	628203.1453	9607944.85	535.324	215	-53	524.21	Lee Mining
		ZK105-1	628172.5923	9607826.055	541.244	183	-54	404.57	Lee Mining
		ZK205-1	626257.123	9608795.904	243.297	160	-70	347.00	Shandong Zhaojin
		SAZKO-1A	627477.062	9609865.618	217.992	180	-70	569.10	Shandong Zhaojin
		SAZK0-2A	627468.807	9609805.054	213.63	180	-70	407.50	Shandong Zhaojin
		SAZK2-1	627330.0126	9609556.466	201.145	76	-05	430.89	Lee Mining
		SAZK2-2	627330.0126	9609556.466	201.145	62	-05	354.47	Lee Mining
		CK2-1	626328.573	9609000.856	216.798	221	-45	121.64	Shandong Zhaojin
		CK2-2	626328.573	9609000.856	216.798	251	-45	171.85	Shandong Zhaojin
		CK2-3	626328.573	9609000.856	216.798	191	-45	116.40	Shandong Zhaojin
		CK2-4	626328.573	9609000.856	216.798	221	-70	146.12	Shandong Zhaojin
		CK2-5	626254.4315	9608931.693	190.593	342	-05	357.56	Lee Mining
		CK2-6	626298.1066	9608961.819	203.231	332	-18	392.56	Lee Mining
		CK3-1	626359.641	9608859.373	205.96	20	-15	185.09	Shandong Zhaojin
		CK3-2	626359.641	9608859.373	205.96	163	00	21.75	Shandong Zhaojin
		CK3-3	626359.641	9608859.373	205.96	50	-15	138.02	Shandong Zhaojin
		CK5-1	626460.1233	9608906.592	202.124	194	-74	273.56	Lee Mining
		CK5-2	626457.0999	96089.8.4999	202.126	251	-69	273.11	Lee Mining
		CK13-1	626610.0642	9608838.445	202.556	41	-05	227.10	Lee Mining
		CK13-2	626610.0642	9608838.445	202.556	41	-40	231.16	Lee Mining
		CK13-3	626605.2307	9608833.471	202.556	221	-59	197.06	Lee Mining
		CK13-4	626604.0848	9608836.544	203.013	209	-45	176.57	3
		CK13-5	626607.5245	9608832.296	203.013	136	-45	184.70	
		CK21-1	626693.536	9608691.062	204.927	41	00	143.47	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Minimum cut of grade of 0.2 g/t Au Equivalent (AuEq) was used for determining intercepts. Aggregate intercepts have been reported with higher grade inclusions to demonstrate the impact of aggregation. A bottom cut of 0.5 g/t Au Equivalent has been used to determine the higher-grade inclusions. Given the generally consistent nature of the mineralisation the impact of the aggregation of high-grade results and longer lengths of low-grade results does not have a large impact. For example, in the intercept of 156m @ 2.6 g.t Au in hole GGY-02: over half of the intercept comprises gold grades in excess of 1 g/t Au only 20% of the intercept includes grades between 0.2 and 0.5 g/t Au over one third includes gold grades in excess of 2 g/t Au. Au Eq assumes a gold price of USD 1,780/oz, a silver price of USD 22 /oz, a copper price of USD 9,650 /t, and a Molybdenum price of US\$45,500 Metallurgical recovery factors for gold, silver,copper, and Molybdenum are assumed to be equal. No metallurgical factors have been applied in calculating the Au Eq, hence the formula for calculating the Au Eq is: Au (g/t) + (Ag (g/t) x 22/1780) + (1.68604 x Cu (%) + (7.07612 x Mo (%)). CEL confirms that it is the company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Contact

Drillhole		Minerali	sed Inte	Total	(Gold		Ag			Cu		Au Equiv	Azimuth	Incl	TD
(#)		From	To	(m)		(g/t)		(g/t)			(%)		(g/t)	(deg)	(deg)	(m)
JDH-001	from	183	190.6	7.6	m @	0.3	g/t Au +		not a	ssa	yed		n/a	280	-60	236.9
JDH-002	from	7.6	152.9	145.3	m @	0.4	g/tAu+		not a	issa	yed		n/a	280	-45	257.5
	and	199	243	44.0	m @	0.4	g/t Au +		not a	ssa	yed		n/a			
JDH-003	from	35.95	71.6	35.7	m @	0.5	g/tAu+		not a	ssa	yed		n/a	280	-45	261
	and	120.4	254.6	134.2	m @	0.4	g/t Au +		not a	issa	yed		n/a			
	inc	146.81	224.08	77.3	m @	0.5	g/tAu+		not a	ssa	iyed		n/a			
JDH-004	from	3.96	21.95	18.0	m @	0.4	g/t Au +		not a	ssa	yed		n/a	280	-45	219
	and	79.74	120.42	40.7	m @	0.4	g/t Au +		not a	issa	yed		n/a			
	and	150.9	203.7	52.8	m @	0.7	g/tAu+		not a	ssa	ıyed		n/a			
JDH-005	from	5.2	81.4	76.2	m @	0.4	g/tAu+		not a	ssa	yed		n/a	280	-45	210.4
	and	169.7	208.5	38.8	m @	0.2	g/t Au +		not a	ssa	yed		n/a			
JDH-006	from	17.99	89.6	71.6	m @	0.2	q/t Au +	2.0	g/t Ag	+	0.10	% Cu	0.42	150	-45	302.7
	and	164.8	281	116.2		0.6	g/t Au +									
	inc	227.8	281.09	53.3	m @	1.2	g/t Au +	13.2	g/t Ag	+	0.62	% Cu	2.39			
JDH-007	from	39.7	84.45	44.8	m @	0.3	g/t Au +	1.4	g/t Ag	+	0.04	% Cu	0.38	150	-75	105.8
JDH-008	from	104.7	136.7	32.0	m @	0.1	g/t Au +	3.6	g/t Ag	+	0.13	% Cu	0.41	150	-60	352.7
	and	249.08	316.15	67.1	m @	0.2	g/t Au +	5.7	g/t Ag	+	0.21	% Cu	0.62			
	and	291.76	316.15	24.4	m @	0.5	g/tAu+	9.2	g/t Ag	+	0.34	% Cu	1.13			
JDH-009	from	10.3	122.03	111.7	m @	0.7	g/t Au +	14.6	g/t Ag	+	0.58	% Cu	1.85	150	-45	256.7
	inc	34.6	91.54	56.9	m @	0.2	g/t Au +	19.1	g/t Ag	+	0.82	% Cu	1.80			
	and	201.4	205.4	4.0	m @	11.4	g/t Au +	9.7	g/t Ag	+	0.01	% Cu	11.54			
	and	255.1	eoh	1.5	m @	0.7	g/tAu+	1.5	g/t Ag	+	0.02	% Cu	0.75			
JDH-10	from	1.5	50.9	49.4	m @	0.5	g/t Au +	2.5	g/t Ag	+	0.09	% Cu	0.68	270	-45	221.6
	and	90.54	119	28.5	m @	0.2	g/t Au +	3.0	g/t Ag	+	0.10	% Cu	0.40			
	and	140	203	81.6	m @	0.4	g/t Au +	1.3	g/t Ag	+	0.07	% Cu	0.53			
JDH-011	from	100.7	218	117.3	m @	0.4	g/tAu+	4.6	g/t Ag	+	0.10	% Cu	0.62	270	-45	218.0
JDH-012	from	12.2	53.96	41.8	m @	0.6	g/tAu+	6.5	g/t Ag	+	0.02	% Cu	0.67	150	-60	124.1
JDH-013	from	53.35	69.6	16.3	m @	0.5	g/t Au +	1.2	g/t Ag	+	0.01	% Cu	0.48	150	-60	239.3
	and	89.9	154.9	65.0	m @	1.4	g/t Au +	2.8	g/t Ag	+	0.06	% Cu	1.53			
	inc	114.32	142.76	28.4	m @	2.8	g/tAu+	4.9	g/t Ag	+	0.10	% Cu	3.03			
JDH-014	from	26.96	75.69	48.7	m @	0.4	g/t Au +	5.2	g/t Ag	+	0.10	% Cu	0.63	90	-60	239.4
	and	85.84	116.32	30.5	m @	0.2	g/t Au +		g/t Ag			% Cu				
	and	128.52	175.3	46.8	m @	0.5	g/t Au +	3.3	g/t Ag	+	0.08	% Cu	0.63			
	and	179.35	217.98	38.6	m @	0.1	g/t Au +	2.5	α/t Δα	+	0.08	% Cu	0.26			

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

T: +61 8 6380 9235

E: admin@challengerex.com

Drillhole		Mineral	ised Inte	Total		Gold		Ag			Cu		Au Equiv	Azimuth	Incl	TD
(#)		From	То	(m)		(g/t)		(g/t)			(%)		(g/t)	(deg)	(deg)	(m)
GGY-001	from	10	69	59.0	m @	0.2	g/t Au ⊣	2.8	g/t Ag	+	0.07	% Cu	0.35	360	-90	249.2
	and	139	249.2	110.2	m @	0.4	g/t Au ⊣	1.1	g/t Ag	1 +	0.06	% Cu	0.51			
	inc	141	174	33.0	m @	0.6	g/t Au ⊣	2.0	g/t Ag	+	0.08	% Cu	0.76			
GGY-002	from	9.7	166	156.3	m @	2.6	g/t Au ⊣	9.7	g/t Ag	+	0.16	% Cu	2.99	360	-90	272.9
	inc	27	102	75.0	m @		g/t Au ⊣					% Cu				
	and	114	166		m @		g/t Au ⊣		g/t Ag			% Cu				
	plus	244	272.9	28.9	m @	0.3	g/t Au +	2.4	g/t Ag	+	0.04	% Cu	0.37			
GGY-003	from	40	260.75	220.8	m @	0.2	g/t Au ⊣	2.9	g/t Ag	+	0.06	% Cu	0.36	305	-60	295.9
GGY-004	from	1	42	41.0	m @	0.5	g/t Au ⊣	2.3	g/t Ag	۱ +	0.03	% Cu	0.56	125	-60	172.2
GGY-005	from	12	162	150.0	m @	0.4	g/t Au ⊣	11.0	g/t Ag	+	0.30	% Cu	0.99	145	-60	258.3
	inc	14	54		m @		g/t Au ⊣					% Cu				
	and	180	194	14.0	m @	0.2	g/t Au ⊣	6.1	g/t Ag	+	0.22	% Cu	0.64			
GGY-006	from	72	101.9	49.0	m @	0.4	g/t Au ⊣	2.3	g/t Ag	+	0.03	% Cu	0.45	305	-60	101.9
GGY-007	from	0.9	41	40.1	m @	1.1	g/t Au ⊣	2.6	g/t Ag	+	0.04	% Cu	1.20	305	-75	127
	inc	110	127	17.0	m @	0.9	g/t Au ⊣	1.2	g/t Ag	+	0.04	% Cu	0.98			
GGY-008	from	16	271	255.0	m @	0.1	g/t Au +	6.5	g/t Ag	+	0.24	% Cu	0.62	145	-75	312.3
	inc	235	271	36.0	m @	0.4	g/t Au ⊣	11.5	g/t Ag	+	0.50	% Cu	1.32			
GGY-009	from	1.65	45	43.4	m @	1.7	g/t Au ⊣	3.0	g/t Ag	+	0.06	% Cu	1.80	45	-75	166.2
GGY-010	from	0	69	69.0	m @	1.6	g/t Au +	2.3	g/t Ag	+	0.03	% Cu	1.67	225	-75	194.5
	inc	21	50	29.0	m @	2.9	g/t Au ⊣	2.7	g/t Ag	+	0.03	% Cu	2.98			
	and	75	95	20.0	m @	0.3	g/t Au ⊣	0.8	g/t Ag	+	0.01	% Cu	0.33			
GGY-011	from	14	229	215.0	m @	0.2	g/t Au ⊣	9.6	g/t Ag	+	0.36	% Cu	0.89	160	-60	241.6
	inc	14	97	83.0	m @		g/t Au ⊣		J. J		0.50	% Cu	1.24			
	inc	202	229	27.0	m @	0.4	g/t Au ⊣	15.2	g/t Ag	+	0.80	% Cu	1.90			
GGY-012	from	57	192	135.0	m @		g/t Au ⊣		g/t Ag		0.06	% Cu	0.39	125	-60	256
	and	156	192	36.0	m @	0.2	g/t Au ⊣	⊦ 3.3	g/t Ag	+	0.13	% Cu	0.44			
GGY-013	from	229.7	280	50.3	m @	0.2	g/t Au ⊣	2.2	g/t Ag	+	0.05	% Cu	0.31	320	-65	340.9
GGY-014				nsi									0.00	320	-75	309.1
GGY-015	from	110	132.4	22.4	m @	0.4	g/t Au +	0.5	g/t Ag	+	0.03	% Cu	0.41	320	-60	251.1
	and	157	225.5	68.5	m @	0.3	g/t Au +	1.5	g/t Ag	+	0.10	% Cu	0.45			
GGY-016	from	8	30	22.0	m @	0.2	g/t Au ⊣	- 0.7	g/t Ag	+	0.01	% Cu	0.26	320	-60	195.7
	and	42	57	15.0	m @	0.3	g/t Au -	0.5	g/t Ag	+	0.02	% Cu	0.34			
	and	105	118	13.0	m @	0.2	g/t Au ⊣	0.7	g/t Ag	+	0.01	% Cu	0.26			
	and	185	188	3.0	m @	1.0	g/t Au ⊣	⊦ 0.8	g/t Ag	+	0.02	% Cu	1.04			
GGY-017	from	0	24	24.0	m @	0.5	g/t Au ⊣	1.3	g/t Ag	+	0.01	% Cu	0.49	125	-82	280.4
	and	69	184	115.0	_		g/t Au +		g/t Ag			% Cu				
	inc	125	147		m @		g/t Au		g/t Ag			% Cu				
	and	206 254	241 277		m @		g/t Au +		g/t Ag			% Cu % Cu				
	and				_		g/t Au +		g/t Ag					110		460:
GGY-018	from	81	136		m @		g/t Au -		g/t Ag			% Cu		140	-60	160.4
GGY-019	from	89	155	66.0	m @		g/t Au ⊣	2.0	g/t Ag	+	0.03	% Cu	0.36	45	-53	175.4
Dire	ctors					C	ontact									

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commenta	ry							
		Comparison	showing historic and re-a	ssayed in	tercepts fo	or El Guayabo	o drill holes	are shown	below:	
		Drill hole				Total	Au	Ag	Cu	Au E
		(#)		From	To	(m)	(g/t)	(g/t)	(%)	(g/t)
		GGY-001	historical intercept	139	249.2	110.2m	0.4	1.1	0.06	0.5
			(re-assayed section)	141	177	36.0m	0.54	2.30	0.08	0.7
			(original assays)	•	1	36.0m	0.56	1.51	0.08	0.7
			(re-assayed section)	205	236	31.0m	0.19	0.89	0.03	0.3
			(original assays)	•	1	31.0m	0.21	0.13	0.03	0.3
		GGY-002	historical intercept	9.7	166	156.3m	2.6	9.7	0.16	3.0
			(re-assayed section)	40	102	62.0m	5.22	21.33	0.25	5.
			(original assays)	•	,	62.0m	4.83	19.96	0.23	5.
			historical intercept	114	166	52.0m	1.3	3.3	0.18	1.
			(re-assayed section)	114	171	57.0m	1.20	3.44	0.18	1.
			(original assays)	•	1	57.0m	1.24	3.53	0.17	1.0
		GGY-005	historical intercept	12	162	150.0m	0.4	11.0	0.30	1.
			(re-assayed section)	10	60	50.0m	0.45	19.23	0.33	1.
			(original assays)	•	1	50.0m	0.51	21.74	0.44	1.
			(re-assayed section)	64	98	34.0m	0.10	5.25	0.16	0.
			(original assays)	•	1	34.0m	0.84	6.22	0.16	1.
			(re-assayed section)	132	162	30.0m	0.10	6.35	0.33	0.
			(original assays)	•	,	30.0m	0.07	6.18	0.31	0.
		GGY-011	historical intercept	14	229	215.0m	0.2	9.6	0.36	0.
			(re-assayed section)	14	126	112.0m	0.17	10.89	0.30	0.
			(original assays)	•	,	112.0m	0.18	11.73	0.36	0.
			(re-assayed section)	166	206	40.0m	0.09	5.08	0.22	0.
			(original assays)	,	,	40.0m	0.09	4.90	0.22	0.
			(re-assayed section)	218	231	13.0m	0.22	8.52	0.41	1.
			(original assays)	,	,	13.0m	0.34	19.48	0.96	2.:
		GGY-017	historical intercept	69	184	115.0m	0.5	2.1	0.03	0.
		33. 327	(re-assayed section)	94	129	35.0m	0.45	2.76	0.04	0.
			(original assays)	,	,	35.0m	0.30	4.01	0.03	0.
			(re-assayed section)	206	258	52.0m	0.37	2.00	0.06	0.
			(original assays)		,	52.0m	0.26	1.42	0.06	0.
		JDH-006	historical intercept	17.99	89.6	71.6m	0.2	2.0	0.10	0.
		3211 000	(re-assayed section)	10.3	81.3	71.0m	0.18	1.38	0.03	0.
			(original assays)	,	01.5	71.0m	0.20	1.59	0.03	0.:

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

riteria	JORC Code explanation	Commentar	у							
			historical intercept	164.8	281	116.2m	0.6	8.9	0.40	1.4
			(re-assayed section)	150.6	281.1	130.5m	0.26	7.21	0.26	0.8
			(original assays)	,	,	130.5m	0.42	8.02	0.36	1.1
		JDH-009	historical intercept	10.3	122	111.7m	0.7	14.6	0.58	1.8
			(re-assayed section)	6.7	107.8	101.1m	0.21	13.80	0.36	1.0
			(original assays)	•	•	101.1m	0.22	15.08	0.59	1.4
		JDH-10	historical intercept	1.5	50.9	49.4m	0.5	2.5	0.09	0.7
			(re-assayed section)	15.2	50.9	35.7m	0.44	2.88	0.10	0.6
			(original assays)	′	′	35.7m	0.41	2.96	0.10	0.6
			historical intercept	140	203	81.6m	0.4	1.3	0.07	0.5
			(re-assayed section)	150.5	203.4	52.9m	0.36	1.34	0.07	0.5
			(original assays)	′	′	52.9m	0.39	1.24	0.06	0.5
		JDH-012	historical intercept	12.2	53.96	41.8m	0.6	6.5	0.02	0.7
			(re-assayed section)	18.3	54	35.7m	0.68	7.62	0.02	0.8
			(original assays)	′	,	35.7m	0.69	7.36	0.02	0.8
		JDH-013	historical intercept	89.9	154.9	65.0m	1.4	2.8	0.06	1.5
			(re-assayed section)	112.3	155	42.7m	2.11	2.84	0.05	2.2
			(original assays)	′	,	42.7m	2.00	3.70	0.08	2.2
		JDH-014	historical intercept	26.96	75.69	48.7m	0.4	5.2	0.10	0.6
			(re-assayed section)	27	61.5	34.5m	0.64	5.99	0.13	0.9
			(original assays)	′	,	34.5m	0.52	6.25	0.13	0.8
			historical intercept	128.52	175.3	46.8m	0.46	3.3	0.08	0.6
			(re-assayed section)	140.7	167.2	26.5m	0.26	2.24	0.07	0.4
			(original assays)	′	,	26.5m	0.65	2.91	0.08	0.8

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1

Level 1 1205 Hay Street West Perth WA 6005 Directors

Hole id

ZK0-1

and

and

and

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

From

(m)

9.4

66.5

105.7

167.5

Contact

Colorado V drill hole results from re-sampling of available core:

Interval

(m)

28.1

23.0

24.0

46.5

Au

(g/t)

0.4

0.9

0.3

0.4

Ag

(g/t)

1.0

4.7

1.0

7.1

Cu

(ppm)

Mo

(ppm)

Note

To

(m)

37.5

89.5

129.7

214.0

T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary	/							
		ZK1-3	46.0	103.7	57.7	0.5	1.9			
		inc	56.0	85.7	29.7	0.8	3.1			
		from	127.0	163.0	36.0	0.5	3.5			
		and	290.5	421.0	130.5	0.5	3.1			
		inc	302.5	380.5	78.0	0.7	3.5			
		ZK1-5	211.4	355.0	145.6	1.5	1.7			
		inc	253.0	340.0	87.0	2.1	1.9			
		ZK0-2	13.3	108.2	94.9	0.3	1.7			
		inc	75.7	108.2	32.5	0.4	2.6			
		and	172.7	193.1	20.4	0.3	2.1			
		and	225.0	376.4	151.4	0.9	3.8			
		inc	227.0	361.0	134.0	1.0	4.1			
		inc	227.0	290.0	63.0	1.6	5.1			
		ZK3-4	26	38	12	0.3	1.5	513	5	
		and	50	114	64	0.2	1.5	549	5	
		inc	86	88	2	1.5	1.4	458	3	1 g/t Au cut off
		and	180	250	70	0.2	1.6	777	3	
		ZK3-1	49.5	112.5	63	0.1	1.7	654	5	
		inc	94.5	96	1.5	1.5	1.4	3126	7	1 g/t Au cut off
		and	94.5	174	79.5	0.1	2	662	4	
		inc	171	172.5	1.5	1.4	2.6	771	7	1 g/t Au cut off
		SAZK0-1	31.2	90.8	59.6	0.2	1.4	392	3	
		and	131.5	179.5	48	0.1	4.3	824	6	
		and	229.8	292.8	63	0.2	1	325	8	
		and	319	490.8	171.8	0.2	1.5	616	12	,
		inc	352	446.5	94.5	0.3	2.4	996	15	1 g/t Au cut off
		SAK2-1	66.5	275	208.5	0.3	1.5	626	5	
		inc	122	185	63	0.6	2.1	825	3	1 g/t Au cut off
		and	225.5	227	1.5	1.6	1.4	638	2	1 g/t Au cut off
		and	288.5	330.5	42	0.2	2	454	1	
		inc	288.5	291.5	3	1.3	5.6	1136	1	1 g/t Au cut off
		SAZK0-2	0	80.7	80.7	0.4	1.9	478	3	- 1
		inc	30.7	51.2	20.5	1	2.5	460	5	1 g/t Au cut off
		and	136	148	12	0.6	0.4	61	14	4 /
		inc	137.5	140.5	3	1.4	0.3	10	4	1 g/t Au cut off
		and	200.5	403.8	203.3	0.3	1.3	588	15	Hole ends in
										mineralisation

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary								
		inc	293.5	399.3	105.8	0.5	1.3	635	16	
		inc	214	215.5	1.5	1.8	2.1	681	12	1 g/t Au cut off
		inc	344.5	399.3	54.8	0.7	1.5	767	12	
		inc	361.8	366.3	4.5	5.5	0.8	502	61	1 g/t Au cut off
		and	397.8	399.3	1.5	1.3	2.3	770	2	1 g/t Au cut off
		ZK1-13	46.2	73.2	27	0.1	0.8	306	1	
		and	140	141.5	1.5	1.9	0.7	236	1	1 g/t Au cut off
		and	161	196	35	0.1	1.4	391	2	
		ZK0-5	6.1	19.8	13.7	0.2	1.3	313	10	
			46.3	130.1	83.8	0.5	1.2	356	7	
		inc	67	118	51	0.7	1.4	409	5	0.5 g/t Au cut off
		inc	75.7	76.8	1.1	1.2	1.4	483	2	1 g/t Au cut off
		and	80.7	81.7	1	1.8	2.2	549	4	1 g/t Au cut off
		and	93.7	94.7	1	13.9	3.4	354	7	1 g/t Au cut off
		and	146.5	296.5	150	0.2	1	310	3	
		and	370	371.5	1.5	0.9	5.2	1812	3	
		and	414.3	415.8	1.5	1.2	0.3	127	1	
		and	560.5	562	1.5	2.3	0.6	189	2	
		and	596	598.2	2.2	1.7	2.1	391	4	
		and	607	608.5	1.5	2	0.8	190	2	
		ZK18-1	NSI							
		ZK0-4	3.70	458.00	454.30*	0.20	1.3	0.04	5.9	
		inc	42.60	154.25	111.65	0.39	1.9	0.05	7.6	0.5 g/t AuEq cut off
		inc	69.70	97.20	27.50	0.66	1.7	0.05	8.6	1.0 g/t AuEq cut off
		ZK10-1	25.02	151.00	125.98	0.16	1.1	0.06	17.9	0.1 g/t AuEq cut off
		and	309.00	326.00	17.00	0.16	0.91	0.07	6.1	0.1 g/t AuEq cut off
		and	354.02	451.00	96.98*	0.17	1.2	0.06	15.8	•
		inc	435.02	451.00	15.98*	0.32	1.8	0.07	2.6	
		ZK16-2	19.00	267.31	248.31	0.33	2.7	0.07	2.6	0.1 g/t AuEq cut off
		inc	140.00	254.00	114.00	0.53	2.9	0.09	3.3	0.5 g/t AuEq cut off
		inc	224.00	254.00	30.00	0.85	3.6	0.12	3.4	1.0 g/t AuEq cut off
		* Mineralisation	n to end of	hole						<u> </u>
			channel sa	mple results		-				
		Channel_id	From (m)	Interval (m)	•	Au (g/t)	Ag (g/t)	Cu (%)	Mo (ppm)	Comment
		Main Adit	0.0	264.0		0.30	2.1	0.05	9.4	0.1 g/t AuEq cut off

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary								
		inc	0.0	150.0	0.60	0.46	2.4	0.07	9.8	0.5 g/t AuEq cut off
		inc	0.0	112.0	0.71	0.55	2.7	0.08	9.3	1 g/t AuEq cut off
		_ and	276.0	32.0	0.29	0.21	1.4	0.04	5.1	0.1 g/t AuEq cut off
		Main Adit	20.0	39.1	0.30	0.28	2.3	0.03	4.5	0.1 g/t AuEq cut off
		(west drive)								
		and	74.0	56.0	0.69	0.64	1.8	0.01	2.8	0.5 g/t AuEq cut off
		inc	84.0	46.0	0.81	0.76	2.1	0.01	3.0	1.0 g/t AuEq cut off

Drill Hole	From (m)	Interval (m)	AuEq (g/t)	Au (g/t)	Ag (g/t)	Cu (%)	Mo (ppm)	Comment
GYDD-21-	(,	(,	(8/ -/	(8/ -/	(8/ -/	(/0)	(PP)	
001	16.15	784.31	0.36	0.24	1.57	0.06	11.95	0.1 g/t AuEq cut off
inc	167.50	380.50	0.47	0.32	1.97	0.07	18.41	1.0 g/t AuEq cut off
inc	359.50	188.50	0.61	0.40	2.35	0.10	29.50	1.0 g/t AuEq cut off
inc	403.00	28.00	0.95	0.54	6.90	0.15	104.40	1.0 g/t AuEq cut off
inc	403.00	21.00	1.09	0.77	2.98	0.20	138.91	1.0 g/t AuEq cut off
and	468.50	30.00	1.06	0.76	2.61	0.15	24.80	1.0 g/t AuEq cut off
GYDD-21-								
002	85.00	46.50	0.43	0.32	3.99	0.04	5.72	0.1 g/t AuEq cut off
incl.	112.00	2.30	1.95	1.33	33.17	0.12	5.10	1.0 g/t AuEq cut off
incl.	129.75	1.75	2.16	2.05	7.36	0.01	1.29	1.0 g/t AuEq cut off
and	279.45	27.05	1.53	1.49	0.82	0.02	2.21	0.1 g/t AuEq cut off
incl.	305.00	1.50	19.23	19.16	1.89	0.03	3.21	10 g/t AuEq cut off
and	378.50	13.50	0.46	0.44	0.21	0.01	1.45	0.1 g/t AuEq cut off
and	447.90	0.90	0.89	0.74	4.85	0.06	1.92	0.1 g/t AuEq cut off
and	499.80	58.00	0.16	0.14	0.30	0.01	1.53	0.1 g/t AuEq cut off
incl.	547.80	7.00	0.41	0.39	0.21	0.01	1.74	0.5 g/t AuEq cut off
incl.	554.10	0.70	1.09	1.06	0.20	0.01	1.08	1.0 g/t AuEq cut off

Relationship between mineralisation These relationships are particularly important in the reporting of

The geometry of the breccia hosted mineralisation appears to be predominantly vertical pipes while the geometry of the intrusive hosted mineralisation is not yet clear. The owner cautions that only and only the down hole lengths are reported and the true width of mineralisation is not known.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

JORC Code explanation Commentary Criteria widths and Exploration Results. The preliminary interpretation is that the breccia hosted mineralisation occurs in near vertical breccia pipes. Thus, intersections in steeply intercept *If the geometry of the* inclined holes may not be representative of the true width of this breccia hosted mineralisation. The relationship between the drilling lenaths mineralisation with orientation and some of the key mineralised structures and possible reporting bias in terms of true width is illustrated in the figure below. respect to the drill hole Interbedded metasediments and HYDROTHERMAL BRECCIA QUARTZ DIORITE hydrothermal breccias Disseminated Sulphides (Cpy, some Py, Po) angle is known, its Silicification and Chlorite / Sericite alteration 116 m @ 0.3 g/t Au (Au assays only 116 m @ 0.6 g/t Au + 8.9 g/t Ag + 0.4% Cu 112 m @ 0.7 g/t Au + 4.6 g/t Ag + 0.6% Cu 221 m @ 0.2 g/t Au + 3 g/t Ag + 0.1% Cu Note: combined intercept nature should be reported. Metasediments Altered GREY, QUARTZITIC BRECC 112 m @ 0.4 g/t Au (Au assays only and DACITE intrusive Note: combined intercept If it is not known and Mod to strong alteration (quartz, serici carbonate, Po - Cpy - Sph - Aspy, only the down hole hydrothermal fracturing) Andalusite rich metasediments 69.0 m @ 1.6 g/t Au+2.3 g/t Ag+ 0.03% 156.0 m @ 2.6 g/t Au+9.7 g/t Ag+ 0.2% 145 m @ 0.4 g/t Au (Cpy- Au assays only) lengths are reported, and 44 m @ 0.4 g/t Au (Cpy- Au assays only) there should be a clear statement to this effect 900m (eg 'down hole length, true width not known'). 800 QUARTZ - DIORITE (Sulphide Po - Py - Aspy - Sph 700 on fractures and as specks) 134 m @ 0.4 g/t Au (no other assays done) 600 400 600m 200 Legend **Breccias** Pophyritic Qtz Diorite Quartz Diorite Intrusive Metamorphic Undifferentiated Intrusive Drill Hole Appropriate maps and sections (with scales) Diagrams See section above and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary
	locations and appropriate sectional views.	
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	- The reporting is fair and representative of what is currently understood of the geology of the project.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	El Guayabo: Quantec Geophysical services conducted a SPARTAN Broadband Magnetotelluric and TITAN IP/EMAP surveys completed February 3rd to April 1st, 2019 over the El Guayabo property by Quantec Geoscience Ltd. on behalf of AAR Resources. The survey covered 16 square kilometersa with data collected on 300m 3D spacing on a gride oriented at 10 degerees and 100 degerees. The grid was moved 10 degrees so the survey could be orineted perpendicu;lar to the main geological srtuctures. The survey involved a total of 205 Magnetotelluric (MT) sites and 2 test TITAN IP/EMAP profiles were surveyed The final survey results to which will be delivered will consist of: Inversion 2D products DC resistivity model; IP chargeability model using the DC resistivity model as a reference; MT(EMAP) resistivity model; Joint MT+DC resistivity model; IP chargeability model using the MT+DC resistivity model; Inversion 3D products MI model; Cross-sections and Elevation Plan maps of the 3D MT models;
		Figures showing Survey Locations and Results are included in the boidy of this release
		DCIP INVERSION PROCEDURES DCIP is an electrical method that uses the injection of current and the measurement of voltage difference along with its rate of decay to determine subsurface resistivity and chargeability respectively. Depth of investigation is mainly controlled by the array geometry but may also be limited by the received signal (dependent on transmitted current) and ground resistivity. Chargeability is particularly susceptible to data with a low signal-to-noise ratio. The differences in penetration depth between DC resistivity and chargeability are a function of relative property contrasts and relative signal-to-noise levels between the two measurements. A detailed introduction to DCIP is given in Telford, et al. (1976). The primary tool for evaluating data is through the inversion of the data in two or three dimensions. An inversion model depends not only on the data collected, but also on the associated data errors in the reading and the "model norm". Inversion models are not unique

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

JORC Code explanation Criteria Commentary and may contain "artefacts" from the inversion process. The inversion model may not accurately reflect all the information apparent in the actual data. Inversion models must be reviewed in context with the observed data, model fit, and with an understanding of the model norm used. The DC and IP inversions use the same mesh. The horizontal mesh is set as 2 cells between electrodes. The vertical mesh is designed with a cell thickness starting from 20 m for the first hundred metres to accommodate the topographic variation along the profiles, and then increases logarithmically with depth. The inversions were generally run for a maximum of 50 iterations. The DC data is inverted using an unconstrained 2D inversion with a homogenous half-space of average input data as starting model. For IP inversions, the apparent chargeability is computed by carrying out two DC resistivity forward models with conductivity distributions $\sigma(xi,zj)$ and $(1-\eta)\sigma(xi,zj)$ (Oldenburg and Li, 1994), where (xi,zj) specifies the location in a 2D mesh. The conductivity distributions used in IP inversions can be the inverted DC model or a half space of uniform conductivity. Two IP inversions are then calculated from the same data set and parameters using different reference models. The first inversion of the IP data uses the previously calculated DC model as the reference model and is labelled the IP dcref model. The second IP inversion uses a homogeneous half-space resistivity model as the reference model and is labelled IP hsref model. This model is included to test the validity of chargeability anomalies, and to limit the possibility of inversion artefacts in the IP model due to the use of the DC model as a reference. The results of this second IP inversion are presented on the digital archived attached to this report. MAGNETOTELLURIC INVERSIONS The Magnetotelluric (MT) method is a natural source EM method that measures the variation of both the electric (E) and magnetic (H) field on the surface of the earth to determine the distribution at depth of the resistivity of the underlying rocks. A complete review of the method is presented in Vozoff (1972) and Orange (1989). The measured MT impedance Z, defined by the ratio between the E and H fields, is a tensor of complex numbers. This tensor is generally represented by an apparent resistivity (a parameter proportional to the modulus of Z) and a phase (argument of Z). The variation of those parameters with frequency relates the variations of the resistivity with depth, the high frequencies sampling the sub-surface and the low frequencies the deeper part of the earth. However, the apparent resistivity and the phase have an opposite behaviour. An increase of the phase indicates a more conductive zone than the host rocks and is associated with a decrease in apparent resistivity. The objective of the inversion of MT data is to compute a distribution of the resistivity of the surface that explains the variations of the MT parameters, i.e. the response of the model that fits the observed data. The solution however is not unique and different inversions must be performed (different programs, different conditions) to test and compare solutions for artefacts versus a target anomaly. An additional parameter acquired during MT survey is the Tipper. Tipper parameters Tzx and Tzy (complex numbers) represent the transfer function between the vertical magnetic field and the horizontal X (Tzx), and Y (Tzy) magnetic fields respectively (as the impedance Z represent the transfer function between the electric and magnetic fields). This tipper is a 'local' effect, mainly defined by the lateral contrast of the resistivity. Consequently, the tipper can be used to estimate the geological strike direction. Another important use of the tipper is to display its components as vectors, named induction vectors. The induction vectors (defined by the real components of Tzx and Tzy) plotted following the Parkinson-Real-Reverse-Angle convention will point to conductive zones. The tipper is then a good mapping tool to delineate more conductive zones.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Cı	riteria	JORC Code explanation	Commentary				
			The depth of investigation is determined primarily by the individual sounding may easily exceed 20 km. However, the array is comparable to the depth of investigation. The inversion model is dependent on the data, but also models are not unique, may contain artefacts of the ir information apparent in the actual data. Inversion model The user must understand the model norm used and eva For this project, 2D inversions were performed on the TI direction is perpendicular to the profile for all sites: the field); no TE mode (crossline E-field) were used in the 2D The 2D inversions were performed using the TM-mode r assuming 10% and 5% error for the resistivity and phas component Z. No static shift of the data has been applied The 3D inversion was carried out using the CGG RLM-3D over an area of approximately 5km x 3.5km. All MT sites The 3D inversion was completed using a sub sample of the measured data from 10 kHz to 0.01 Hz with a nominal impedance tensors (Zxx, Zxy, Zyx, and Zyy) were used as The measured tipper data (Tzx, Tzy) were also used as in homogenous half space with resistivity of 100 Ohm-m v mesh with 75 m x 75 m cell size was used in horizontal docover the first 4 km. Padding cells were added in each dir 3D inversion was run for a maximum of 50 iterations. In addition a total of 129 samples distributed along 12 I chargeability properties (Chargeability M and Susceptib Sample Core IP Tester, manufactured by Instrumentation only as first order estimate, and not as "absolute" (true) v subject to some errors (i.e. wrong size of the core entered	on the assoversion proversion proversion proversion proversions. Proversions. Proversions are respectived on the data with as used as the rection to according to the data with as used as the rection to according the proversion of the data with as used as the rection to according the data with as used as the rection to according the data with a sused as the rection to according to the data with a sused as the rection to according to the data with a sused as the rection to according to the data with a sused as the rection to according to the data with a sused as the rection to according to the data with a sused as the rection to according to the data with a sused as the data with a sused as the rection to according to the data with a sused as the data with a suse	ciated data errors a reess and may not to reviewed in context for the model is geol profiles data. For each then defined by the identification of the model is equivalent. The survey were used that a maximum of 2 dies per decade. At each with an associated error the starting model for the resistivity model commodate the investigation of the starting model for the st	interpreted when the append the model norm. The herefore accurately reflevant the observed data, ogically plausible. The profile, we assume the inline E-field (and cross liberated at 6 frequencies pent to 5% error on the interpretate of the MT data were of the MT data were of the set to 5% on each part of the set to 5% on each part this 3D MT inversion. The vertical mesh was or this 3D MT inversion. The vertical mesh was or the resistivity (Rho (Ohinent used for the analyse at these measures should the resistivity (Rho (Ohinent used for the analyse at these measures should with the resistivity (Rho (Ohinent used for the analyse at these measures should with the resistivity (Rho (Ohinent used for the analyse at these measures should with the resistivity (Rho (Ohinent used for the analyse at these measures should with the resistivity (Rho (Ohinent used for the analyse at these measures should with the resistivity (Rho (Ohinent used for the analyse at these measures should with the resistivity (Rho (Ohinent used for the analyse at these measures should with the resistivity (Rho (Ohinent used for the analyse at these measures should with the resistivity (Rho (Ohinent used for the analyse at these measures should with the resistivity (Rho (Ohinent used for the analyse at these measures should with the resistivity (Rho (Ohinent used for the analyse at these measures should with the resistivity (Rho (Ohinent used for the analyse at these measures should with the resistivity (Rho (Ohinent used for the analyse at the an	einversion ect all the model fit. e strike ine H- er decade, mpedance completed e covering T complex arameter. A A uniform defined to itions. The m*m) and es was the d be taken
			Exploration Target: An Exploration Target for two mineralized zones on the or soil anomalies, drill hole geological and assay information		-	_	ce gold in
			Exploration Target Anomaly A	Unit	Low estimate	High Estimate	
			Surface area (100 ppb Au in soil envelope):	m^2	250000	250000	
			Depth	m	400	400	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary				
		Bulk Density	kg/m³	2600	2750	
		Tonnage	Mt	260	275	
		Grade Au	g/t	0.4	0.7	
		Grade Ag	g/t	1.5	2.5	
		tonnage above cut-off	%	70%	90%	
		Contained Au	Moz	2.3	5.6	
		Contained Ag	Moz	8.8	19.9	
		Exploration Target Anomaly B	Unit	Low estimate	High Estimate	
		Surface area (100 ppb Au in soil envelope):	m^2	175000	175000	
		Depth	m	400	400	
		Bulk Density	kg/m³	2600	2750	
		Tonnage	Mt	182	193	
		Grade Au	g/t	0.4	0.7	
		Grade Ag	g/t	1.5	2.5	
		% Tonnage above cut-off	%	70%	90%	
		Contained Au	Moz	1.6	3.9	
		Contained Ag	Moz	6.1	13.9	
		Total of Target A & B	Unit	Low estimate	High Estimate	
		Tonnage	Mt	442	468	
		Contained Au	Moz	4.0	9.5	
		Contained Ag	Moz	14.9	33.8	
		The potential quantity and grade of the Colorado V Exemploration to estimate a Mineral Resource and that Mineral Resource.				
		The following is an explanation of the inputs used in f • Surface Area: The surface area of the target ha			hole gold significant in	iterse

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary
		 vertically to the surface. The surface projection of the intersections in the drill holes coincides with the 100 ppb Au gold-in-soil anomaly contour. This area has been used to estimate the horizontal extent of the mineralization. Depth: A depth of 400 metres from surface has been used as an estimate of the depth that an open pit and underground bulk tonnage mining project would be expected to extend. The mineralization at Colorado V is controlled by steeply plunging / dipping intrusions and breccia which is expected to extend to at least 400m depth from surface. Bulk Density: The bulk density is based on geological observations of the rocks that host the mineralization. Typical bulk densities for these rock types are in the range used. Gold and Silver grades: The gold and silver grade range has been estimated from the weighted average and median sample grades and deviations from mean from drill core and underground panel sampling. Proportion of tonnage above cut-off grade: These values are estimates based on drill hole intersection grade continuity down-hole assuming that not all of the Target volume, if sampled would be above the economic cut-off grade.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 El Guaybo Project Re-logging and re-assaying core including SWIR/alteration mapping to better vector on the porphyry and breccia targets – available assays 6 elements only, no SWIR, and not logged by porphyry experts. Helicopter magnetic survey on east-west flight lines with 50m spacing, processing and interpretation of these data. Channel sampling of the adit and artisanal workings - > 1km of underground exposure of the system which has never been systematically mapped or sampled. Sampling of additional breccia bodies – only 2 of the 10 known breccias have been systematically defined and properly sampled. Complete interpretation of the 3D MT survey (with IP lines) covering 16 sq. This will include integration of all the geological data and constrained inversion modelling The aim of the program above is to define targets for a drilling program
		 Colorado V Project Re-logging and re-assaying of drill core where only partial gold assays are available. Helicopter magnetic survey on east-west flight lines with 50m spacing, processing and interpretation of these data. Channel sampling of mineralized exposures in the adits and underground workings. Surface mapping and sampling. Compile and integrate existing soil survey data with CEL's MMI soil survey covering 16 sq kms. Additional soil geochemical sampling (MMI and C-horizon) to be completed near main anomalies The aim of the program above is to further test the Exploration Targets and identify targets for drilling.

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61.8.6380

JORC Code, 2012 Edition – Table 1 report template **Section 1 Sampling Techniques and Data - Hualilan Project**

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, 	For historic exploration data, there is little information provided by previous explorers to detail sampling techniques. Drill core was cut with a diamond saw longitudinally and one half submitted for assay. Assay was generally done for Au. In some drill campaigns, Ag and Zn were also analysed. There is limited multielement data available. No information is available for RC drill techniques and sampling.
	such as down hole gamma sondes, or handheld XRF instruments, etc).	For CEL drilling, diamond core (HQ3) was cut longitudinally on site using a diamond saw. Samples lengths are from 0.5m to 2.0m in length (average 1m), taken according to lithology, alteration, and mineralization contacts.
	These examples should not be taken as limiting the broad meaning of	For CEL reverse circulation (RC) drilling, 2-4 kg sub-samples from each 1m drilled are collected from a face sample recovery cyclone mounted on the drill machine.
	 sampling. Include reference to measures taken to ensure sample representivity and 	CEL channel samples are cut into underground or surface outcrop using a hand-held diamond edged cutting tool. Parallel saw cuts 3-5cm apart are cut 2-4cm deep into the rock which allows for the extraction of a representative sample using and hammer and chisel. The sample is collected onto a plastic mat and collected into a sample bag.
	 the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to 	Core and channel samples were crushed to approximately 85% passing 2mm. A 500g or a 1 kg sub-sample was taken and pulverized to 85% passing 75 μ m. A 50g charge was analysed for Au by fire assay with AA determination. Where the fire assay grade is > 10 g/t gold, a 50g charge was analysed for Au by Fire assay with gravimetric determination.
	 the Public Report. In cases where 'industry standard' work has been done this would be 	A 10g charge was analysed for at least 48 elements by 4-acid digest and ICP-MS determination. Elements determined were Ag, As, Ba, Be, Bi, Ca, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr.
	relatively simple (eg 'reverse	$Ag > 100 \ g/t, Zn, Pb \ and \ Cu > 10,000 \ ppm \ and \ S > 10\% \ were \ re-analysed \ by \ the \ same \ method \ using \ a \ different \ calibration.$
	circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other	Sample intervals were selected according to geological boundaries. There was no coarse or visible gold observed in any of the core or channel samples.
	cases, more explanation may be required, such as where there is	
	coarse gold that has inherent	
	sampling problems. Unusual	
	commodities or mineralisation types (eg submarine nodules) may	
	warrant disclosure of detailed	
	information.	

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Criteria

JORC Code explanation

Commentary

Drilling techniques

 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc). Collar details for diamond core drilling (DD) and reverse circulation (RC) historic drilling campaigns is provided below from archival data cross checked with drill logs and available plans and sections where available. Collars shown below are in WGS84, zone 19s which is the standard projection used by CEL for the Project. Collar locations have been check surveyed using differential GPS (DGPS) by CEL to verify if the site coincides with a marked collar or tagged drill site. In most cases the drill collars coincide with historic drill site, some of which (but not all) are tagged. The collar check surveys were reported in POSGAR (2007) projection and converted to WGS84.

Hole_id	Туре	East (m)	North (m)	Elevation (m ASL)	Azimuth (°)	Dip (°)	Depth (m)	Date
AG01	DD	2504908.0	6602132.3	1807.6	000	-90	84.5	Jan-84
AG02	DD	2504846.5	6602041.1	1803.4	112	-70	60.0	Jan-84
AG03	DD	2504794.5	6601925.6	1803.1	080	-55	110.0	Jan-84
AG04	DD	2504797.1	6602065.5	1806.6	000	-90	168.0	Jan-84
AG05	DD	2504843.5	6601820.3	1798.1	000	-90	121.8	Jan-84
AG06	DD	2504781.9	6601922.8	1803.8	000	-90	182.2	Jan-84
AG07	DD	2504826.3	6601731.0	1796.9	000	-90	111.5	Jan-84
AG08	DD	2504469.8	6600673.7	1779.7	090	-57	80.2	Jan-84
AG09	DD	2504455.7	6600458.5	1772.6	000	-90	139.7	Jan-84
AG10	DD	2504415.5	6600263.9	1767.7	000	-90	200.8	Jan-84
AG11	DD	2504464.8	6600566.5	1775.9	000	-90	141.0	Jan-84
AG12	DD	2504847.6	6602161.7	1808.8	000	-90	171.4	Jan-84
AG13	DD	2504773.6	6601731.3	1798.7	000	-90	159.5	Jan-84
AG14	DD	2504774.7	6601818.8	1801.2	000	-90	150.2	Jan-84
AG15	DD	2504770.7	6601631.4	1796.7	000	-90	91.3	Jan-84
AG16	DD	2504429.5	6600665.8	1779.8	000	-90	68.8	Jan-84

Hole_id	Туре	East (m)	North (m)	Elevation (m ASL)	Azimuth (°)	Dip (°)	Depth (m)	Date
MG01	RC	2504825.5	6602755.4	1800.0	100	-60	51.0	Jan-95
MG01A	RC	2504810.5	6602755.4	1800.0	100	-60	116.0	Jan-95
MG02	RC	2504835.5	6602805.4	1800.0	100	-60	90.0	Jan-95
MG03	RC	2504853.5	6602880.4	1795.0	100	-60	102.0	Jan-95
MG04	RC	2504843.5	6602975.4	1800.0	100	-60	120.0	Jan-95
MG05	RC	2506130.5	6605055.4	1750.0	85	-60	96.0	Jan-95
MG06	RC	2506005.5	6605115.4	1750.0	100	-60	90.0	Jan-95
MG07	RC	2506100.5	6605015.4	1750.0	100	-60	96.0	Jan-95
MG08	RC	2505300.5	6603070.4	1740.0	95	-70	66.0	Jan-95
MG09	RC	2505285.5	6603015.4	1740.0	0	-90	102.0	Jan-95

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact

Criteria	JORC Code explanation	Commenta	ry							
		MG10	RC	2505025.5	6600225.4	1724.0	100	-60	120.0	Jan-95
		MG11	RC	2503380.5	6598560.5	1740.0	100	-60	78.0	Jan-95
		MG12	RC	2503270.5	6597820.5	1740.0	100	-60	66.0	Jan-95
				East	North	Elevation	Azimuth	Din	Donth	
		Hole_id	Type	(m)	(m)	(m ASL)	(°)	Dip (°)	Depth (m)	Date
		Hua01	RC	2504845.3	6602041.2	1809.7	117	-50		1999
		Hua02	RC	2504889.5	6602081.1	1809.7	125	-55		1999
		Hua03	RC	2505003.3	6602158.6	1810.7	000	-90		1999
		Hua04	RC	2504873.3	6602169.1	1809.7	000	-90		1999
		Hua05	RC	2505003.2	6602152.6	1810.7	180	-60		1999
		Hua06	RC	2505003.2	6602161.6	1810.7	360	-60		1999
		Hua07	RC	2504967.7	6602153.2	1810.2	000	-90		1999
		Hua08	RC	2504973.2	6602153.7	1810.2	000	-90		1999
		Hua09	RC	2504940.7	6602150.3	1809.7	180	-60		1999
		Hua10	RC	2504941.8	6602156.8	1809.7	360	-60		1999
		Hua11	RC	2504913.3	6602167.4	1809.7	360	-60		1999
		Hua12	RC	2504912.8	6602165.9	1809.7	000	-90		1999
		Hua13	RC	2504912.3	6602156.9	1809.7	180	-60		1999
		Hua14	RC	2504854.3	6602168.2	1809.7	360	-60		1999
		Hua15	RC	2504854.8	6602166.2	1809.7	117	-60		1999
		Hua16	RC	2504834.2	6601877.8	1800.7	000	-90	100.0	1999
		Hua17	RC	2504865.9	6602449.8	1814.1	90	-50		1999
		Hua20	RC	2504004.1	6600846.4	1792.7	000	-90		1999
		Hua21	RC	2504552.9	6600795.0	1793.9	000	-90	54.0	1999
		-								
				East	North	Elevation	Azimuth	Dip	Depth	
		Hole_id	Type	(m)	(m)	(m ASL)	(°)	(°)	(m)	Date
		DDH20	DD	2504977.3	6602133.3	1804.8	116	-54	49.1	1999-00
		DDH21	DD	2504978.3	6602118.3	1804.8	000	-90	88.6	1999-00
		DDH22	DD	2504762.9	6601587.1	1769.8	116	-65	66.0	1999-00
		DDH23	DD	2504920.4	6601994.3	1767.9	000	-90	58.8	1999-00
		DDH24	DD	2504821.0	6601938.8	1802.0	116	-80	100.3	1999-00
		DDH25	DD	2504862.6	6601964.5	1803.7	116	-74	49.2	1999-00
		DDH26	DD	2504920.4	6601975.3	1795.0	312	-60	80.3	1999-00
		DDH27	DD	2504752.7	6601565.1	1806.6	116	-60	43.2	1999-00
		DDH28	DD	2505003.6	6602174.3	1806.6	116	-50	41.7	1999-00

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact

Criteria	JORC Code explanation	Commenta	ry							
		DDH29	DD	2504964.1	6602136.6	1810.0	350	-52	113.5	1999-00
		DDH30	DD	2505004.1	6602156.3	1809.3	059	-85	62.1	1999-00
		DDH31	DD	2504897.6	6602112.7	1808.1	116	-75	41.4	1999-00
		DDH32	DD	2504939.4	6602139.2	1809.1	350	-51	100.7	1999-00
		DDH33	DD	2504939.4	6602139.2	1809.1	350	-65	62.9	1999-00
		DDH34	DD	2504826.5	6601920.2	1801.3	116	-70	69.4	1999-00
		DDH35	DD	2505003.9	6602156.7	1808.8	310	-85	174.6	1999-00
		DDH36	DD	2504637.5	6600777.3	1799.9	330	-50	45.5	1999-00
		DDH37	DD	2504826.5	6601920.2	1809.4	000	-90	121.0	1999-00
		DDH38	DD	2504820.8	6601912.2	1801.1	116	-75	67.7	1999-00
		DDH39	DD	2504820.8	6601912.2	1801.1	116	-81	90.7	1999-00
		DDH40	DD	2504832.3	6601928.1	1801.7	116	-70	85.7	1999-00
		DDH41	DD	2504837.8	6601937.5	1801.6	116	-70	64.2	1999-00
		DDH42	DD	2504829.2	6601952.5	1801.8	116	-60	65.1	1999-00
		DDH43	DD	2504829.2	6601952.5	1801.8	116	-70	70.8	1999-00
		DDH44	DD	2504811.3	6601895.1	1802.0	116	-60	102.2	1999-00
		DDH45	DD	2504811.3	6601895.1	1802.0	116	-83	95.3	1999-00
		DDH46	DD	2504884.4	6601976.3	1805.9	116	-45	71.6	1999-00
		DDH47	DD	2504884.4	6601976.3	1805.9	116	-65	71.0	1999-00
		DDH48	DD	2504866.9	6601962.7	1803.1	116	-47	30.7	1999-00
		DDH49	DD	2504866.9	6601962.7	1803.1	116	-72	41.9	1999-00
		DDH50	DD	2504821.4	6601913.9	1801.1	116	-77	87.5	1999-00
		DDH51	DD	2504821.4	6601913.9	1801.1	116	-80	87.5	1999-00
		DDH52	DD	2504825.5	6601901.1	1800.9	116	-83	74.0	1999-00
		DDH53	DD	2504504.1	6600714.0	1788.7	090	-62	85.7	1999-00
		DDH54	DD	2504504.1	6600714.0	1788.7	090	-45	69.1	1999-00
		DDH55	DD	2504997.9	6602163.5	1808.6	360	-53	63.1	1999-00
		DDH56	DD	2504943.1	6602171.3	1810.5	360	-75	50.6	1999-00
		DDH57	DD	2504943.1	6602171.3	1810.5	000	-90	66.2	1999-00
		DDH58	DD	2504970.3	6602153.3	1809.1	360	-71	62.0	1999-00
		DDH59	DD	2504970.3	6602153.3	1809.1	000	-90	66.3	1999-00
		DDH60	DD	2504997.9	6602162.5	1809.0	360	-67	59.9	1999-00
		DDH61	DD	2504997.9	6602162.5	1809.0	000	-90	58.1	1999-00
		DDH62	DD	2504751.4	6601602.6	1789.2	170	-45	68.4	1999-00
		DDH63	DD	2504751.4	6601602.6	1789.2	170	-70	131.5	1999-00
		DDH64	DD	2504776.3	6601596.9	1789.1	170	-45	66.7	1999-00
		DDH65	DD	2504552.7	6600792.0	1793.8	194	-45	124.8	1999-00
		DDH66	DD	2504552.7	6600792.0	1793.8	194	-57	117.0	1999-00

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Contact

Criteria	JORC Code explanation	Commenta	iry							
		DDH67	DD	2504552.7	6600792.0	1793.8	194	-66	126.1	1999-00
		DDH68	DD	2504623.9	6600779.0	1800.7	000	-90	79.5	1999-00
		DDH69	DD	2504623.9	6600779.0	1800.7	194	-60	101.5	1999-00
		DDH70	DD	2504595.5	6600797.7	1798.1	190	-81	128.0	1999-00
		DDH71	DD	2504631.6	6600797.4	1799.0	194	-63	136.3	1999-00
		DDH72	DD	2504547.2	6600764.1	1799.6	194	-45	75.6	1999-00
		DDH73	DD	2504593.4	6600766.5	1807.5	190	-57	70.8	1999-00
		DDH74	DD	2504598.2	6600831.8	1795.3	190	-62	190.9	1999-00
		DDH75	DD	2504731.2	6600784.7	1821.4	194	-45	40.2	1999-00
		DDH76	DD	2504731.2	6600784.7	1821.4	180	-60	138.7	1999-00
		DDH77	DD	2504734.1	6600785.0	1821.6	000	-90	85.6	1999-00
		DDH78	DD	2504731.2	6600784.7	1821.4	180	-75	132.9	1999-00
		DDH79	DD	2504721.6	6600790.1	1820.4	060	-70	38.6	1999-00
		_		Fact	North	Flevati	on Azim	urth Din	Den	+h

Hole_id	Туре	East (m)	North (m)	Elevation (m ASL)	Azimuth (°)	Dip (°)	Depth (m)
03HD01A	DD	2504627.8	6600800.1	1798.4	180	-60	130.2
03HD02	DD	2504457.9	6600747.8	1782.9	180	-60	130.5
03HD03	DD	2504480.1	6600448.6	1774.0	360	-45	100.2
04HD04	DD	2504436.6	6600439.3	1773.4	360	-60	104.6
04HD05	DD	2504420.9	6600256.8	1769.5	110	-68	122.6
04HD06	DD	2504428.6	6600236.6	1768.1	110	-68	136.0
04HD07	DD	2504415.7	6600277.7	1769.0	100	-63	108.2
04HD08	DD	2504826.5	6601920.2	1801.3	116	-70	70.0
04HD09	DD	2504832.3	6601928.1	1801.7	116	-70	75.9
04HD10	DD	2504648.5	6600788.9	1801.5	205	-60	120.0
04HD11	DD	2504462.0	6600428.3	1773.6	075	-62	95.1
04HD12	DD	2504449.3	6600648.9	1779.6	360	-60	77.4
04HD13	DD	2504434.5	6600646.6	1779.7	360	-60	74.0
04HD14	DD	2504461.1	6600748.4	1783.1	180	-70	130.6
04HD15	DD	2504449.9	6600646.2	1779.6	360	-64	160.0
04HD16C	DD	2504457.1	6600311.7	1770.3	195	-65	225.5
04HD17	DD	2504417.5	6600256.6	1769.5	110	-72	213.2
04HD18	DD	2504528.5	6600792.0	1791.9	170	-50	140.7
04HD19	DD	2504648.5	6600788.9	1801.5	205	-77	120.0
04HD20	DD	2504648.5	6600788.9	1801.5	205	-80	120.0
04HD21	DD	2504648.5	6600788.9	1801.5	205	-60	120.0
04HD23	DD	2504441.0	6600456.0	1772.5	075	-82	499.7

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary	/						
		04HD24	DD	2504389.0	6600252.0	1766.5	090	-81	188.2
		04HD25	DD	2504456.0	6600294.0	1768.5	155	-84	500.8
		04HD26	DD	2504424.0	6600409.0	1771.5	180	-69	464.9
		04HD27	DD	2504461.0	6600428.0	1773.0	100	-45	60.0
		04HD28	DD	2504461.0	6600428.0	1773.0	100	-60	63.7
		04HD29	DD	2504438.0	6600087.0	1764.5	108	-45	265.0
		04HD30	DD	2504421.0	6600044.0	1764.0	108	-45	128.2
		04HD31	DD	2504687.0	6601326.0	1794.0	045	-60	242.9
		04HD32	DD	2504828.0	6601916.0	1801.3	116	-70	68.4
		05HD33	DD	2505410.0	6601983.0	1765.0	000	-60	81.4
		05HD34	DD	2505451.0	6602079.0	1763.0	273	-60	269.0
		05HD35	DD	2504905.0	6601689.0	1794.0	140	-65	350.0
		05HD36	DD	2504880.0	6601860.0	1802.0	295	-70	130.0
		05HD37	DD	2504866.0	6601888.0	1797.0	295	-70	130.0
		05HD38	DD	2504838.0	6601937.0	1796.0	115	-70	70.0
		05HD39	DD	2504964.0	6602128.0	1814.0	030	-70	217.5
		05HD40	DD	2504964.0	6602128.0	1814.0	030	-50	150.0
		05HD41	DD	2504931.0	6602125.0	1812.0	022	-60	142.5
		05HD42	DD	2504552.7	6600791.5	1797.0	194	-57	120.0
		05HD43	DD	2504552.7	6600791.5	1797.0	194	-45	95.5
		05HD44	DD	2504603.0	6600799.0	1798.0	190	-61.5	130.5
		05HD45	DD	2504362.0	6600710.0	1767.0	088	-60	121.5
		05HD46	DD	2504405.0	6600282.0	1766.0	090	-75	130.7
		05HD47	DD	2504212.0	6599177.0	1729.0	065	-45	181.5
		05HD48	DD	2504160.0	6599164.0	1728.0	065	-60	100.7

commonly too broken to allow accurate core orientation.

CEL drilling of reverse circulation (RC) drill holes was done using a track-mounted LM650 universal drill rig set up for reverse circulation drilling. Drilling is being done using a 5.25 inch hammer bit.

Collar details for DD drill holes and RC drill holes completed by CEL are shown below in WGS84, zone 19s projection. Collar locations for drill holes are surveyed using DGPS. Interim collar locations are surveyed with a handheld GPS to be followed up with DGPS when the hole is completed.

			Elevation	Dip	Azimuth	Depth
Hole_id	East (m)	North (m)	(m)	(°)	(°)	(m)

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary							
		GNDD001	504803.987	6601337.067	1829.289	-57	115	109.0	
		GNDD002	504793.101	6601312.095	1829.393	-60	115	25.6	
		GNDD002A	504795.405	6601311.104	1829.286	-60	115	84.5	
		GNDD003	504824.427	6601313.623	1827.768	-70	115	90.2	
		GNDD004	504994.416	6601546.302	1835.345	-60	115	100.0	
		GNDD005	504473.042	6600105.922	1806.448	-55	090	110.0	
		GNDD006	504527.975	6600187.234	1817.856	-55	170	100.9	
		GNDD007	504623.738	6600196.677	1823.447	-68	190	86.3	
		GNDD007A	504624.021	6600198.394	1823.379	-68	190	219.0	
		GNDD008	504625.047	6600198.059	1823.457	-60	184	109.4	
		GNDD008A	504625.080	6600199.718	1823.264	-60	184	169.0	
		GNDD009	504412.848	6599638.914	1794.22	-55	115	147.0	
		GNDD010	504621.652	6600196.048	1823.452	-68	165	146.5	
		GNDD011	504395.352	6599644.012	1794.025	-64	115	169.2	
		GNDD012	504450.864	6599816.527	1798.321	-55	115	120.0	
		GNDD013	504406.840	6599613.052	1792.378	-58	112	141.0	
		GNDD014	504404.991	6599659.831	1793.728	-59	114	140.0	
		GNDD015	504442.039	6600159.812	1808.700	-62	115	166.7	
		GNDD016	504402.958	6599683.437	1794.007	-60	115	172.0	
		GNDD017	504460.948	6600075.899	1806.143	-55	115	132.6	
		GNDD018	504473.781	6600109.152	1806.458	-60	115	130.0	
		GNDD019	504934.605	6601534.429	1834.720	-70	115	80.0	
		GNDD020	504463.598	6600139.107	1807.789	-58	115	153.0	
		GNDD021	504935.804	6601567.863	1835.631	-60	115	120.0	
		GNDD022	504835.215	6601331.069	1828.015	-60	113	100.0	
		GNDD023	504814.193	6601336.790	1828.535	-55	117	100.0	
		GNDD024	504458.922	6600123.135	1807.237	-70	115	150.0	
		GNDD025	504786.126	6601137.698	1823.876	-60	115	141.0	
		GNDD026	504813.588	6601444.189	1831.810	-55	115	100.0	
		GNDD027	504416.311	6599703.996	1794.702	-55	115	139.2	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary							
		GNDD028	504824.752	6601321.020	1827.837	-57	115	100.0	
		GNDD029	504791.830	6601316.140	1829.344	-71	115	120.2	
		GNDD030	504454.538	6599860.757	1799.266	-60	115	148.0	
		GNDD031	504622.013	6600198.726	1823.191	-60	130	149.0	
		GNDD032	504619.803	6600203.906	1822.790	-55	097	166.6	
		GNDD033	504830.792	6601385.842	1829.315	-55	115	62.0	
		GNDD034	504862.613	6601524.893	1834.263	-60	115	60.0	
		GNDD035	504782.969	6601234.234	1827.709	-78	115	119.5	
		GNDD036	504303.325	6599128.637	1779.458	-55	115	131.0	
		GNDD037	504462.875	6599831.674	1798.456	-55	115	83.5	
		GNDD038	504465.362	6600097.111	1806.580	-55	115	87.7	
		GMDD039	504815.800	6601318.000	1829.100	-70	115	80.0	
		GMDD040	504402.100	6599641.500	1794.800	-55	115	135.5	
		GMDD041	504473.000	6600104.000	1806.400	-55	095	428.0	
		GNDD042	504392.551	6599574.224	1790.603	-60	115	140.0	
		GMDD043	504815.800	6601320.000	1829.100	-67	115	80.0	
		GNDD044	504380.090	6599622.578	1791.934	-65	115	185.0	
		GNDD045	504366.823	6599679.058	1793.712	-57	115	311.0	
		GNDD046	504364.309	6599702.621	1794.533	-60	115	191.0	
		GNDD047	504459.642	6599644.133	1793.422	-60	115	101.0	
		GNDD048	504792.642	6601286.638	1828.497	-74	115	95.0	
		GNDD049	504807.030	6601419.483	1831.588	-60	115	90.0	
		GNDD050	504826.614	6601509.677	1833.357	-60	115	80.0	
		GNDD051	504766.792	6601032.571	1823.273	-60	115	120.0	
		GNDD060	504801.654	6601066.131	1822.596	-60	115	200.0	
		GNDD073	504367.546	6599724.992	1795.493	-57	115	150.2	
		GNDD074	504366.299	6599725.496	1795.450	-73	115	152.0	
		GNDD077	504821.005	6601145.026	1823.951	-60	115	222.0	
		GNDD079	504636.330	6600286.824	1823.053	-60	115	181.4	
		GNDD082	504769.532	6601169.127	1825.621	-60	115	266.0	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary							
		GNDD083	504646.604	6600336.172	1823.893	-60	115	181.0	
		GNDD085	504456.068	6599888.509	1799.895	-60	115	90.0	
		GNDD088	504815.0	6601194	1825.2	-60	115	237.0	
		GNDD088A	504815.621	6601193.811	1825.210	-60	115	265.0	
		GNDD089	504635.811	6600285.352	1823.032	-55	133	200.1	
		GNDD092	504839.792	6601208.375	1824.849	-60	115	300.0	
		GNDD093	504679.396	6600332.075	1827.365	-55	115	209.0	
		GNDD095	504804.597	6601219.844	1826.834	-67	115	203.0	
		GNDD096	504666.622	6600602.793	1820.371	-60	115	215.0	
		GNDD099	504384.933	6599759.693	1796.525	-60	115	150.0	
		GNDD100	504424.250	6599784.711	1796.728	-60	115	120.0	
		GNDD101	504781.691	6600986.509	1821.679	-60	115	220.0	
		GNDD102	504787.340	6601285.049	1828.549	-57	115	260.0	
		GNDD103	504432.004	6599482.162	1788.500	-55	115	299.0	
		GNDD105	504701.392	6601025.961	1824.818	-60	115	300.0	
		GNDD106	504438.745	6599613.089	1792.511	-55	115	300.0	
		GNDD108	504893.480	6601156.138	1824.948	-60	115	200.0	
		GNDD109	504788.659	6601026.581	1822.675	-60	115	209.0	
		GNDD112	504893.408	6601198.421	1825.402	-60	115	188.0	
		GNDD113	504704.700	6601067.100	1826.300	-60	115	230.0	
		GNDD113A	504705.888	6601065.628	1825.877	-60	115	461	
		GNDD114	504430.719	6600110.231	1807.080	-50	115	116.0	
		GNDD115	504860.469	6601289.558	1826.422	-60	115	251.0	
		GNDD116	504441.894	6599558.746	1790.917	-65	115	269.0	
		GNDD117	504428.815	6600110.985	1807.008	-60	115	120.0	
		GNDD118	505085.614	6601107.067	1811.275	-60	295	300.0	
		GNDD119	504827.094	6601535.651	1835.088	-66	115	115.0	
		GNDD120	504411.171	6600099.998	1806.316	-60	110	164.0	
		GNDD121	504863.473	6601140.462	1821.954	-57	115	181.0	
		GNDD122	504659.288	6600648.314	1819.643	-60	115	250.0	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary							
	·	GNDD123	504823.784	6601510.706	1833.612	-63	130	130.0	
		GNDD124	504410.706	6600099.603	1806.296	-70	115	160.0	
		GNDD125	505135.977	6601131.034	1809.281	-60	295	300.0	
		GNDD126	504716.358	6601149.031	1827.257	-60	115	196.0	
		GNDD127	504889.851	6601503.430	1834.161	-55	115	300.0	
		GNDD128	504715.660	6601106.719	1826.595	-60	115	230.0	
		GNDD129	504637.632	6600284.287	1805.395	-55	185	291.0	
		GNDD130	504838.247	6601093.352	1821.556	-60	115	227.0	
		GNDD131	504650.672	6600737.758	1821.134	-60	115	280.0	
		GNDD132	504819.319	6601357.930	1829.373	-55	115	300.0	
		GNDD133	504869.366	6601639.665	1835.213	-60	170	182.0	
		GNDD134	504639.057	6600284.444	1805.499	-55	154	290.0	
		GNDD135	504845.188	6601547.554	1834.906	-64	350	135.0	
		GNDD136	504837.721	6601445.719	1830.128	-55	115	310.0	
		GNDD137	504647.268	6600701.174	1820.549	-60	115	370.0	
		GNDD138	504883.975	6601540.420	1835.042	-65	350	237.0	
		GNDD139	504755.726	6601084.848	1824.694	-60	115	200.0	
		GNDD140	504991.396	6601549.750	1835.464	-60	60	230.0	
		GNDD141	504779.587	6601255.947	1828.225	-70	115	270.0	
		GNDD142	504433.887	6599629.407	1792.717	-62	115	360.0	
		GNDD143	504902.285	6601209.174	1826.545	-20	115	120.0	
		GNDD144	504961.182	6601524.651	1835.687	-70	40	410.0	
		GNDD145	504557.511	6600224.447	1818.092	-64	170	243.0	
		GNDD146	504772.849	6601212.611	1827.389	-70	115	350.0	
		GNDD147	504959.171	6601525.259	1835.597	-60	355	240.0	
		GNDD148	504845.962	6601442.396	1831.403	-24	115	85.5	
		GNDD149	504847.402	6601441.816	1832.186	-5	115	88.1	
		GNDD150	504848.651	6601525.476	1834.636	-65	350	251.0	
		GNDD151	504673.689	6601219.059	1830.640	-60	115	430.0	
		GNDD152	504901.725	6601465.446	1834.787	-15	115	165.0	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary							
		GNDD153	504690.458	6600986.257	1824.840	-70	115	326.0	
		GNDD154	504891.810	6601503.838	1834.134	-65	350	212.0	
		GNDD155	504779.116	6601123.548	1823.862	-60	115	420.0	
		GNDD156	504842.752	6601402.888	1830.505	-37	115	59.0	
		GNDD157	504638.216	6600284.907	1805.408	-55	170	527.0	
		GNDD158	504807.600	6601535.300	1837.000	-60	350	170.0	
		GNDD159	504910.382	6601145.345	1825.562	-40	115	202.0	
		GNDD160	504980.539	6601546.905	1835.243	-55	350	170.0	
		GNDD161	504664.113	6600816.520	1822.385	-60	115	251.00	
		GNDD162	504723.843	6601279.506	1830.376	-60	115	180.00	
		GNDD163	504749.611	6601575.347	1837.394	-60	115	180.00	
		GNDD164	504672.435	6601526.078	1836.853	-60	115	311.00	
		GNDD165	504488.377	6599862.768	1803.486	-10	115	253.80	
		GNDD166	504557.654	6600330.511	1817.438	-60	115	327.00	
		GNDD167	504727.540	6600880.315	1820.767	-60	115	251.00	
		GNDD168	504559.923	6600382.723	1816.844	-60	115	314.00	
		GNDD169	504683.848	6601565.336	1837.928	-60	115	416.00	
		GNDD170	504663.000	6600335.000	1822.900	-60	170	123.50	
		GNDD170A	504664.576	6600335.390	1826.501	-60	170	380.00	
		GNDD171	504674.659	6600904.137	1823.445	-70	115	350.00	
		GNDD172	504487.566	6599863.343	1802.727	-45	115	119.70	
		GNDD173	504697.019	6601339.596	1833.656	-60	115	191.00	
		GNDD174	504474.118	6600097.716	1807.933	-11	115	329.50	
		GNDD175	504653.221	6601093.209	1828.285	-60	115	353.00	
		GNDD176	504733.851	6600655.255	1817.503	-60	115	350.00	
		GNDD177	504759.610	6601481.663	1834.257	-60	115	160.00	
		GNDD178	504625.984	6600185.259	1824.078	-60	185	145.20	
		GNDD179	504406.541	6600185.242	1809.531	-55	170	192.10	
		GNDD180	504678.044	6600779.784	1821.026	-60	115	341.00	
		GNDD181	504669.174	6600332.942	1809.056	-60	160	401.00	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary						
	·	GNDD182	504669.526	6601127.040	1828.630	-60	115	332.00
		GNDD183	504775.514	6601523.887	1835.124	-65	115	146.00
		GNDD184	504670.292	6601174.696	1829.453	-60	115	321.50
		GNDD185	504730.718	6601405.556	1832.739	-60	115	180.00
		GNDD186	504735.990	6600742.990	1818.290	-60	115	209.00
		GNDD187	504621.493	6601546.173	1839.975	-67	115	470.00
		GNDD188	504658.832	6601043.631	1826.939	-60	115	277.00
		GNDD189	504473.828	6600097.778	1807.415	-29	115	320.00
		GNDD190	504894.932	6601473.630	1833.192	-65	350	269.00
		GNDD191	504602.016	6601426.850	1837.553	-70	115	260.00
		GNDD192	504617.912	6600575.207	1820.347	-60	115	260.00
		GNDD193	504686.491	6601425.894	1834.934	-60	115	293.00
		GNDD194	504670.153	6600333.303	1808.999	-60	140	300.00
		GNDD195	504473.117	6600098.042	1807.172	-44	115	370.00
		GNDD196	504633.370	6600393.771	1822.260	-60	115	296.00
		GNDD197	504860.921	6601483.879	1831.591	-68	350	72.00
		GNDD198	504787.448	6601250.012	1827.763	-60	115	161.00
		GNDD199	504812.268	6601468.783	1832.487	-56	350	266.00
		GNDD200	504966.362	6601074.292	1816.847	-60	295	280.00
		GNDD201	504310.496	6599798.094	1798.387	-65	115	170.00
		GNDD202	504524.999	6600443.375	1816.607	-60	115	320.00
		GNDD203	504597.900	6600292.924	1820.443	-60	170	361.50
		GNDD204	504858.596	6601037.331	1820.096	-60	295	190.10
		GNDD205	504368.667	6599653.253	1792.808	-60	115	320.00
		GNDD206	504502.882	6600109.342	1814.752	-45	90	315.60
		GNDD207	504522.884	6600357.893	1816.137	-60	115	365.00
		GNDD208	504919.928	6601011.763	1817.683	-60	295	299.00
		GNDD209	504455.248	6599665.027	1793.655	-60	115	212.00
		GNDD210	504462.426	6600034.696	1804.674	-55	115	404.00
		GNDD211	504918.046	6601053.056	1818.575	-60	295	260.00

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary							
		GNDD212	504556.481	6600173.681	1823.158	-50	170	90.00	
		GNDD213	504437.719	6599952.199	1801.892	-55	115	401.00	
		GNDD214	504479.068	6599647.469	1794.866	-25	115	185.30	
		GNDD215	504841.586	6601002.965	1820.301	-60	295	215.50	
		GNDD216	504575.288	6600730.335	1823.004	-60	115	260.00	
		GNDD217	504528.620	6600189.318	1817.887	-60	170	140.00	
		GNDD218	504744.099	6601001.774	1823.249	-60	295	250.00	
		GNDD219	504559.700	6600171.900	1821.200	-67	170	125.00	
		GNDD220	504503.489	6600761.157	1825.667	-60	115	269.00	
		GNDD221	504559.700	6600171.900	1821.200	-75	170	165.00	
		GNDD222	504740.575	6600963.697	1822.322	-60	295	251.00	
		GNDD223	504516.675	6600218.714	1815.407	-60	170	200.00	
		GNDD224	504450.361	6600481.295	1818.275	-60	115	338.00	
		GNDD225	504526.735	6601150.967	1834.202	-60	115	299.00	
		GNDD226	504649.341	6601710.086	1842.687	-60	115	281.00	
		GNDD227	504517.120	6600217.001	1815.363	-66	170	266.00	
		GNDD228	504776.100	6601210.300	1827.900	-61	115	330.00	
		GNDD229	504632.614	6601318.236	1833.884	-60	115	255.00	
		GNDD230	504658.776	6601614.082	1840.047	-60	115	284.00	
		GNDD231	504919.069	6602642.725	1840.857	-60	110	240.00	
		GNDD232	504317.901	6599836.390	1799.881	-65	115	179.30	
		GNDD233	504669.895	6601527.348	1836.811	-50	115	236.00	
		GNDD234	504822.913	6601277.432	1827.472	-60	115	116.00	
		GNDD235	504381.663	6599939.975	1802.201	-65	115	140.00	
		GNDD236	504595.397	6601384.531	1836.630	-60	115	260.00	
		GNDD237	504628.160	6601590.640	1839.508	-60	115	450.00	
		GNDD238	504906.977	6602616.887	1841.656	-60	110	250.00	
		GNDD239	504477.711	6599648.097	1794.358	-50	115	91.00	
		GNDD240	504474.701	6600231.137	1813.421	-55	170	200.00	
		GNDD241	504489.556	6599566.448	1793.976	-45	115	146.50	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary						
		GNDD242	504577.073	6601302.101	1835.696	-60	115	340.20
		GNDD243	504443.175	6600220.099	1811.582	-60	170	161.00
		GNDD244	504840.051	6602586.818	1845.192	-60	110	281.00
		GNDD245	504682.392	6601564.613	1837.879	-50	115	306.00
		GNDD246	504304.458	6599841.564	1800.364	-72	115	212.00
		GNDD247	504467.820	6599499.478	1797.272	-35	115	180.00
		GNDD248	504663.877	6601484.106	1837.295	-60	115	320.00
		GNDD249	504565.561	6601221.295	1834.153	-60	115	280.00
		GNDD250	504330.009	6599876.638	1800.342	-60	115	197.00
		GNDD251	504477.971	6599538.205	1794.923	-45	115	170.50
		GNDD252	504831.382	6600924.214	1818.699	-60	295	308.00
		GNDD253	504457.312	6599611.851	1792.452	-60	115	277.90
		GNDD254	504619.880	6601545.848	1839.946	-60	115	413.00
		GNDD255	504614.456	6601152.752	1830.734	-60	115	229.00
		GNDD256	504439.108	6599479.931	1789.382	-40	115	200.00
		GNDD257	504846.070	6600960.942	1819.000	-60	295	290.00
		GNDD258	504479.202	6600229.965	1813.512	-64	170	270.00
		GNDD259	504891.047	6601156.539	1824.952	-78	295	209.00
		GNDD260	504686.229	6601779.816	1843.684	-60	115	281.00
		GNDD261	504735.261	6600179.706	1847.318	-45	120	140.00
		GNDD262	504907.951	6600975.057	1817.254	-60	295	290.00
		GNDD263	504874.653	6601167.487	1825.604	-60	295	152.00
		GNDD264	504404.218	6600202.470	1810.311	-60	170	229.80
		GNDD265	504493.431	6600345.518	1815.122	-55	170	425.00
		GNDD266	504730.982	6600175.224	1847.381	-40	170	90.00
		GNDD267	504886.046	6601114.747	1820.458	-65	295	221.00
		GNDD268	504445.758	6600392.598	1815.641	-60	115	360.00
		GNDD269	504696.082	6600164.192	1843.123	-45	170	112.60
		GNDD270	504888.213	6601199.370	1825.457	-80	295	155.30
		GNDD271	504560.712	6600319.000	1817.861	-60	130	281.00

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary							
		GNDD272	504444.186	6600217.869	1811.622	-52	170	191.00	
		GNDD273	504559.651	6600163.955	1825.649	-20	170	80.00	
		GNDD274	504564.640	6600318.832	1818.105	-55	175	340.00	
		GNDD275	504887.265	6601199.716	1825.475	-55	295	131.00	
		GNDD276	504464.535	6600301.076	1814.073	-60	115	340.00	
		GNDD277	504848.561	6601090.785	1821.157	-60	295	155.00	
		GNDD278	504496.144	6600345.519	1815.221	-62	170	380.00	
		GNDD279	504590.000	6600164.000	1829.600	-45	155	90.00	
		GNDD280	504570.040	6601132.497	1831.818	-60	115	266.00	
		GNDD281	504599.717	6600293.500	1820.179	-67	170	470.00	
		GNDD282	504462.194	6600299.930	1814.097	-60	170	370.00	
		GNDD283	504590.0	6600164.0	1829.6	-5	155	95.00	
		GNDD284	504625.209	6600441.245	1819.581	-60	115	130.00	
		GNDD285	504527.110	6601149.718	1834.062	-70	115	401.00	
		GNDD286	504399.531	6600237.020	1811.846	-60	170	260.00	
		GNDD287	504539.531	6600481.313	1817.200	-60	115	265.00	
		GNDD288	504624.000	6600326.000	1819.400	-60	170	450.00	
		GNDD289	504647.461	6600176.710	1826.744	-45	170	278.30	
		GNDD290	504362.544	6600205.890	1810.788	-60	170	200.00	
		GNDD291	504546.405	6600521.755	1818.103	-60	115	203.00	
		GNDD292	504535.726	6600616.837	1820.761	-60	115	270.00	
		GNDD293	504660.200	6601397.535	1835.529	-60	115	215.00	
		GNDD294	504430.474	6600252.930	1811.867	-60	170	290.00	
		GNDD295	504564.607	6600558.819	1818.945	-60	115	221.00	
		GNDD296	504376.030	6599623.403	1791.894	-60	115	299.00	
		GNDD297	504647.466	6600176.787	1827.647	-20	170	167.50	
		GNDD298	504640.941	6601452.982	1837.368	-60	115	350.00	
		GNDD299	504310.496	6599705.054	1795.176	-60	115	170.00	
		GNDD300	504592.422	6600633.313	1820.584	-60	115	200.00	
		GNDD301	504634.840	6600298.360	1823.974	-25	115	90.20	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary							
		GNDD302	504110.500	6599843.600	1800.000	-60	115	572.00	
		GNDD303	504500.891	6600847.913	1827.602	-60	115	240.00	
		GNDD304	504745.198	6601445.416	1833.684	-60	115	158.00	
		GNDD305	504501.385	6600667.874	1822.845	-60	115	299.00	
		GNDD306	504175.078	6599950.641	1808.993	-62	115	320.00	
		GNDD307	504640.906	6600395.069	1823.493	-20	115	100.00	
		GNDD308	504499.434	6600937.779	1829.704	-60	115	1013.00	
		GNDD309	504597.494	6601511.123	1839.515	-60	115	390.00	
		GNDD310	504499.108	6600633.828	1821.946	-60	115	299.00	
		GNDD311	504218.233	6600014.914	1805.770	-60	115	246.00	
		GNDD312	504481.013	6599686.467	1798.612	-25	115	80.50	
		GNDD313	504320.983	6600200.995	1811.622	-60	170	210.00	
		GNDD314	504303.920	6599667.855	1794.313	-60	115	350.00	
		GNDD315	504505.360	6600720.169	1824.165	-60	115	497.00	
		GNDD316	504112.640	6599927.547	1805.311	-60	115	342.60	
		GNDD317	504284.373	6599072.783	1780.353	-10	110	155.00	
		GNDD318	504350.761	6600268.662	1813.067	-60	170	300.00	
		GNDD319	504647.143	6600701.925	1820.363	-60	295	240.00	
		GNDD320	504978.974	6600981.597	1814.818	-60	295	374.00	
		GNDD321	504391.793	6600263.900	1812.719	-60	170	281.10	
		GNDD322	504832.587	6600881.904	1817.644	-60	295	442.60	
		GNDD323	503850.645	6599923.562	1808.172	-60	115	479.00	
		GNDD324	504662.863	6601262.021	1832.385	-60	115	255.00	
		GNDD325	504485.093	6599778.228	1801.333	-41	115	83.50	
		GNDD326	503924.156	6600282.705	1820.784	-60	115	320.00	
		GNDD327	504460.883	6601268.457	1838.203	-60	115	480.00	
		GNDD328	504484.378	6599781.645	1801.594	-30	55	100.70	
		GNDD329	504481.146	6600826.822	1827.636	-60	115	458.00	
		GNDD330	504972.655	6600942.875	1814.522	-60	295	380.00	
		GNDD331	503963.429	6599824.291	1803.625	-70	115	301.60	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary						
	·	GNDD332	504587.327	6601349.860	1836.123	-60	115	320.00
		GNDD333	504584.299	6600901.853	1825.624	-60	115	464.00
		GNDD334	504989.070	6601040.241	1816.049	-60	295	371.00
		GNDD335	503974.284	6599905.019	1806.353	-70	115	300.00
		GNDD336	504449.105	6600702.650	1825.158	-60	115	422.00
		GNDD337	504489.082	6601123.736	1833.786	-60	115	395.00
		GNDD338	504207.674	6600061.020	1808.048	-60	115	299.00
		GNDD339	504366.331	6599589.784	1790.480	-60	115	300.00
		GNDD340	505041.328	6601043.067	1813.901	-60	295	380.00
		GNDD341	504585.297	6600813.792	1824.256	-60	115	311.00
		GNDD342	504310.285	6601451.069	1848.178	-60	115	472.80
		GNDD343	504271.168	6600181.786	1811.314	-60	170	275.00
		GNDD344	504583.430	6600683.591	1821.675	-60	115	320.00
		GNDD345	505037.018	6601091.528	1813.669	-60	295	344.60
		GNDD346	504358.1	6599705.9	1795.3	-75	115	173.00
		GNDD347	504500.466	6601427.054	1840.795	-60	115	330.00
		GNDD348	504241.279	6600191.024	1812.160	-60	170	329.00
		GNDD349	504421.003	6600803.859	1828.548	-60	115	401.00
		GNDD350	504529.203	6601199.425	1834.382	-60	115	395.00
		GNDD351	504330.343	6600145.731	1809.579	-60	170	190.00
		GNDD352	504312.347	6599706.594	1795.178	-62	115	359.00
		GNDD353	504370.143	6600154.088	1808.140	-60	170	120.00
		GNDD354	504369.024	6600177.667	1808.905	-60	170	125.00
		GNDD355	504848.197	6601265.380	1825.624	-60	115	135.00
		GNDD356	504477.148	6601483.299	1842.911	-60	115	384.70
		GNDD357	504359.420	6600524.722	1821.211	-60	115	429.30
		GNDD358	504361.672	6600209.193	1810.791	-63	170	179.80
		GNDD359	504409.444	6601164.646	1838.317	-60	115	380.00
		GNDD360	504840.785	6601177.453	1823.601	-60	115	448.20
		GNDD361	504447.820	6601233.311	1837.867	-60	115	452.00

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary							
		GNDD362	504187.572	6599725.588	1798.878	-55	115	449.00	
		GNDD363	504430.474	6600252.930	1811.867	-60	170	290.00	
		GNDD364	504631.797	6600881.153	1824.044	-60	115	270.00	
		GNDD365	504477.996	6600421.245	1816.461	-60	115	410.00	
		GNDD366	504557.330	6601491.763	1841.003	-60	115	392.00	
		GNDD367	504584.367	6600857.252	1825.551	-60	115	521.00	
		GNDD368	504373.447	6601219.024	1840.835	-63	115	662.00	
		GNDD369	504584.103	6601255.061	1834.586	-60	115	289.70	
		GNDD370	504345.724	6600265.013	1812.842	-60	115	350.00	
		GNDD371	505138.063	6600280.515	1781.401	-60	170	300.00	
		GNDD372	504546.389	6601627.940	1843.754	-60	115	452.00	
		GNDD373	504881.845	6600896.065	1816.414	-60	295	452.00	
		GNDD374	505269.209	6600332.952	1783.566	-60	170	400.00	
		GNDD375	504200.643	6600337.960	1818.060	-60	115	370.00	
		GNDD376	504698.174	6601601.907	1838.970	-60	115	238.10	
		GNDD377	504919.607	6600743.155	1811.978	-60	115	461.00	
		GNDD378	504405.967	6599619.280	1792.369	-60	115	332.00	
		GNDD379	504359.152	6600346.594	1815.828	-60	115	350.00	
		GNDD380	504483.845	6600597.029	1821.531	-60	115	371.00	
		GNDD381	504810.676	6600935.545	1819.579	-60	295	290.00	
		GNDD382	504290.645	6599628.977	1792.364	-60	115	350.00	
		GNDD383	504352.0	6601761.2	1858.6	-60	115	461.00	
		GNDD384	504411.0	6600152.1	1809.7	-60	170	125.00	
		GNDD385	504459.4	6600651.9	1824.7	-60	115	401.00	
		GNDD386	504453.4	6600142.0	1808.4	-70	170	110.00	
		GNDD387	504453.3	6600522.3	1820.7	-60	115	344.00	
		GNDD388	505196.0	6600307.0	1769.8	-60	170	250.00	
		GNDD389	504917.0	6601503.0	1836.0	-24	115	100.00	
		GNDD390	504581.621	6600320.789	1818.609	-65	170	480.00	
		GNDD391	504388.708	6600464.603	1818.855	-60	115	554.00	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary							
		GNDD392	504566.471	6600779.044	1823.588	-60	115	251.00	
		GNDD393	504194.600	6599760.100	1804.000	-60	112	469.00	
		GNDD394	504471.923	6601926.255	1852.819	-60	115	401.00	
		GNDD395	504280.280	6600552.983	1824.092	-60	115	731.00	
		GNDD396	505056.631	6599621.549	1757.542	-60	115	211.50	
		GNDD397	504926.000	6601422.000	1855.900	-50	170	120.00	
		GNDD398	504901.411	6599438.800	1762.014	-60	115	200.00	
		GNDD399	504614.100	6600382.600	1818.200	-59	170	605.00	
		GNDD400	504921.643	6599372.092	1765.037	-60	115	300.00	
		GNDD401	504194.600	6599760.100	1804.000	-50	115	503.00	
		GNDD402	504628.400	6601676.400	1845.700	-60	115	320.00	
		GNDD403	504925.187	6601428.623	1852.431	-50	130	104.90	
		GNDD404	505020.0	6599331.0	1752.0	-60	115	220.00	
		GNDD405	504784.9	6601558.9	1839.7	-60	115	170.00	
		GNDD406	504509.289	6601601.067	1844.919	-60	112	701.00	
		GNDD407	504321.626	6599682.241	1794.314	-60	115	315.00	
		GNDD408	504629.050	6600279.989	1822.832	-50	170	377.00	
		GNDD409	504931.958	6601437.154	1852.930	-50	115	129.90	
		GNDD410	505178.7	6600404.0	1774.0	-60	170	346.40	
		GNDD411	504944.0	6601440.0	1855.5	-15	115	70.50	
		GNDD412	504465.0	6600561.0	1821.2	-60	115	320.00	
		GNDD413	504694.7	6600718.7	1816.1	-60	115	92.00	
		GNDD414	504142.5	6599740.4	1800.0	-60	112	572.00	
		GNDD415	504614.5	6600712.0	1819.8	-60	115	152.00	
		GNDD416	504487.5	6600407.8	1816.9	-60	170	236.00	
		GNDD416A	504487.5	6600411.0	1816.9	-60	170	213.40	
		GNDD416B	504480.000	6600429.152	1816.145	-60	170	608.00	
		GNDD417	504368.5	6600738.4	1830.3	-60	112	575.00	
		GNDD418	504894.0	6601243.6	1826.0	-60	115	140.00	
		GNDD419	505292.0	6601995.0	1785.8	-60	115	300.0	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary							
		GNDD420	504824.0	6601232.1	1827.8	-60	115	176.00	
		GNDD421	504724.3	6601212.4	1829.5	-60	115	212.00	
		GNDD422	504695.0	6601600.0	1841.9	-60	115	341.00	
		GNDD423	505106.0	6601553.0	1880.2	-60	040	23.70	
		GNDD424	504712.9	6601195.7	1829.8	-60	115	170.00	
		GNDD425	505106.0	6601553.0	1880.2	-57	350	80.00	
		GNDD426	504550.1	6600962.6	1828.6	-60	112	701.00	
		GNDD427	504730.1	6601673.1	1844.2	-60	115	230.00	
		GNDD428	504151.9	6599780.2	1803.5	-60	115	290.00	
		GNDD429	504738.0	6601360.5	1834.3	-60	115	182.00	
		GNDD430	505398.0	6601916.0	1776.0	-55	115	312.00	
		GNDD431	504770.3	6601345.5	1832.5	-60	115	116.00	
		GNDD432	504130.5	6600054.9	1811.4	-60	115	350.00	
		GNDD433	504664.9	6601747.7	1848.0	-60	115	318.00	
		GNDD434	505106.0	6601553.0	1880.2	-70	350	126.70	
		GNDD435	504752.7	6601309.5	1832.6	-60	115	150.00	
		GNDD436	504438.0	6601721.0	1855.2	-60	112	701.00	
		GNDD437	504403.7	6600633.7	1825.7	-60	115	584.00	
		GNDD438	504452.2	6600743.5	1826.8	-60	115	500.00	
		GNDD439	504724.4	6601322.7	1833.8	-60	115	182.00	
		GNDD440	503936.9	6599879.7	1804.3	-60	115	778.00	
		GNDD441	505106.0	6601553.0	1880.2	-45	010	81.20	
		GNDD442	504546.1	6600306.6	1816.5	-60	170	375.10	
		GNDD443	505050.0	6601544.0	1860.6	-50	340	114.60	
		GNDD444	504540.9	6600702.1	1823.0	-60	115	395.00	
		GNDD445	504624.4	6600663.2	1818.7	-60	115	296.00	
		GNDD446	504508.1	6601379.5	1841.9	-60	115	431.0	
		GNDD447	504267.1	6600300.3	1819.3	-60	115	450.00	
		GNDD448A	505050.0	6601544.0	1860.6	-15	130	85.00	
		GNDD449	505050.0	6601544.0	1860.6	-65	130	89.30	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary						
		GNDD450	504051.0	6600092.0	1810.0	-60	115	587.00
		GNDD451	504692.6	6601469.9	1839.1	-60	115	272.00
		GNDD452	504394.9	6600682.0	1827.5	-60	112	542.00
		GNDD453	504386.9	6600597.4	1825.9	-60	115	514.20
		GNDD454	505062.0	6601571.0	1864.0	-45	350	86.00
		GNDD455	504367.0	6600298.0	1815.6	-60	115	473.00
		GNDD456	504543.5	6601274.6	1837.8	-60	112	551.00
		GNDD457	505062.0	6601571.0	1864.0	-65	350	189.50
		GNDD458	504472.7	6601087.0	1831.4	-60	112	650.00
		GNDD459	504463.3	6601665.1	1846.2	-60	115	482.00
		GNDD460	504466.3	6600869.3	1830.8	-60	112	491.00
		GNDD461	504042.0	6599964.0	1806.0	-60	115	530.00
		GNDD462	505091.0	6601545.0	1875.0	-65	120	129.50
		GNDD463	504345.1	6600294.3	1816.7	-60	170	320.00
		GNDD464	504575.5	6601083.2	1830.2	-60	115	230.00
		GNDD465	504026.0	6600060.0	1811.0	-60	115	602.00
		GNDD466	504578.1	6600596.5	1818.2	-60	115	203.00
		GNDD467	505091.0	6601545.0	1875.0	-30	120	121.00
		GNDD468	504580.1	6600463.2	1816.5	-60	115	137.00
		GNDD469	504934.7	6602328.0	1844.7	-55	115	320.00
		GNDD470	504615.4	6600623.2	1818.9	-45	115	152.00
		GNDD471	503999.0	6600247.6	1815.9	-60	115	596.00
		GNDD472	504380.6	6601306.5	1839.7	-60	112	550.00
		GNDD473	504101.0	6599980.4	1806.2	-60	112	458.00
		GNDD474	504588.2	6600547.7	1818.6	-45	115	110.00
		GNDD475	504672.0	6600466.0	1822.6	-75	115	146.00
		GNDD476	505106.0	6601553.0	1880.2	-10	115	55.50
		GNDD477	503644.0	6600028.0	1818.4	-60	112	320.00
		GNDD478	504563.1	6601750.2	1847.7	-60	115	401.00
		GNDD479	504597.9	6600292.9	1820.4	-50	170	305.00

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary							
		GNDD480	504012.0	6600022.0	1807.0	-60	115	632.00	
		GNDD481	505106.0	6601553.0	1880.2	-65	115	95.10	
		GNDD482	504343.9	6601279.5	1842.4	-60	115	620.00	
		GNDD483	504127.1	6599924.1	1804.4	-50	115	380.00	
		GNDD484	504388.6	6601523.4	1844.9	-60	115	482.00	
		GNDD485	504577.4	6600508.6	1819.1	-45	115	161.00	
		GNDD486	504399.4	6600326.6	1817.0	-60	170	362.00	
		GNRC052	504443.927	6599554.145	1790.676	-60	115	90	
		GNRC053	504452.888	6599589.416	1791.660	-60	115	96	
		GNRC054	504458.908	6599679.484	1794.408	-60	115	90	
		GNRC055	504461.566	6599726.253	1795.888	-60	115	102	
		GNRC056	504463.187	6599763.817	1796.276	-60	115	102	
		GNRC057	504453.440	6599901.106	1800.270	-60	115	96	
		GNRC058	504716.992	6600488.640	1825.624	-60	115	102	
		GNRC059	504785.101	6600721.845	1817.042	-60	115	84	
		GNRC061	504963.888	6601521.567	1835.635	-60	115	30	
		GNRC062	504943.260	6601531.855	1834.917	-60	115	30	
		GNRC063	504914.884	6601499.583	1833.781	-60	115	36	
		GNRC064	504895.067	6601472.101	1833.039	-60	115	36	
		GNRC065	504865.673	6601481.570	1831.536	-60	115	60	
		GNRC066	504896.480	6601506.894	1834.226	-60	115	48	
		GNRC067	504911.268	6601541.124	1836.127	-60	115	50	
		GNRC068	504990.546	6601552.694	1835.287	-60	030	114	
		GNRC069	504934.855	6601579.782	1836.179	-60	115	120	
		GNRC070	504925.545	6601566.505	1835.127	-60	350	84	
		GNRC071	504878.397	6601572.030	1833.873	-60	350	54	
		GNRC072	504877.872	6601568.814	1833.843	-70	350	72	
		GNRC075	504842.742	6601573.984	1835.428	-60	350	60	
		GNRC076	504828.279	6601539.638	1835.244	-60	115	76	
		GNRC078	504842.744	6601450.106	1830.180	-60	115	70	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary							
		GNRC080	504864.734	6601560.758	1834.333	-60	115	86	
		GNRC081	504815.835	6601460.850	1832.033	-73	115	86	
		GNRC084	504965.730	6601530.280	1836.056	-55	030	145	
		GNRC086	504838.724	6601402.481	1829.645	-60	115	60	
		GNRC087	504858.585	6601345.400	1828.417	-60	115	30	
		GNRC090	504821.284	6601359.986	1829.379	-60	115	60	
		GNRC091	504789.111	6601376.410	1830.448	-60	115	80	
		GNRC094	504852.454	6601307.187	1827.304	-60	115	60	
		GNRC097	504831.396	6601289.723	1827.153	-60	115	70	
		GNRC098	504784.865	6601253.409	1827.869	-76	115	96	
		GNRC104	504780.186	6601228.313	1827.663	-64	115	150	
		GNRC107	504623.1	6600197.1	1823.3	-60	185	120	
		GNRC110	504502.0	6600107.0	1814.0	-62	90	60	
		GNRC111	504427.8	6599739.8	1796.4	-60	115	120	
recovery	core and chip sample recoveries and results assessed. - Measures taken to maximise sample recovery and ensure representative nature of the samples. - Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Triple tube drilling RC sub-samples a collected for each splitter to split outconsistency in sar A possible relation recoveries have requantify this. Con	is are reconciled by g has been being do re collected from a n metre of RC drilling at a 2-4 kg sub-samp appling. In this pass been observed the collection of the collection	ne by CEL to maxim rotary splitter moung. Duplicate sample le. The whole sample erved between histo prting of grade. Insinced by the intensit	nise core recover nted to the faces are taken at pole recovered in portic sample recoufficient information	ery. e sample r the rate of s weighed overy and nation is no	ecovery cyclo f I every 25-3 to measure s Au Ag or Zn g ot yet availab the rock. A p	O samples using a ricample recovery and grade whereby low le to more accurate positive correlation	iffle d ely bet
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation mining studies and metallurgical studies. 	from the historic have been found. For CEL drilling, a level that is suital	available for most of drilling have been for Il the core is logged ple for geological mo an and mineralisatio	ound. No drill core for recovery, RQD, odelling resource es	has survived do weathering, lit stimation and r	ue to poor hology, alt netallurgio	storage and eration, mine cal test work.	neglect. No RC same eralization, and stru RC drill chips are lo	nple

Mr Kris Knauer, MD and CEO

Mr Fletcher Quinn, Chairman

Mr Scott Funston, Finance Director

Mr Sergio Rotondo, Exec. Director

T: +61 8 6380 9235

E: admin@challengerex.com

www.challengerex.com

979.4m shares

48.0m options

16m perf rights

120m perf shares

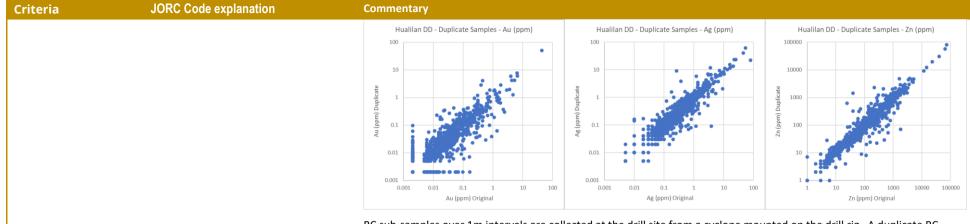
Level 1

1205 Hay Street

West Perth WA 6005

ACN 123 591 382

ASX: CEL


Criteria	JORC Code explanation	Commentary	/									
	 Whether logging is qualitative or quantitative in nature. Core (or costean channel etc) photography. The total length and percentage of the relevant intersections logged. 	-						ological loggi sample and a	_	MS Excel in a	format that ca	
Sub-sampling techniques and sample preparation	 If core whether cut or sawn and whether quarter half or all core taken. 	whether quarter half or all core blade chisel or a manual core split press. The geologist logging the o										
	If non-core whether riffled tube sampled rotary split etc and whether sampled wet or dry.	Sample intervals are selected based on lithology alteration and mineralization boundaries. Sample lengths average 1.38 No second-half core samples have been submitted. The second half of the core samples has been retained in the core trays for future reference.										
	 For all sample types the nature quality and appropriateness of the sample preparation technique. Quality control procedures adopted 	From hole GNDD073, duplicate diamond core samples have been collected for every 25-30m drilled. The duplicate diamond core samples are $\frac{1}{2}$ core samples. Duplicate core sample results and correlation plots (log scale for Au, Ag and Zn) are shown below:										
	for all sub-sampling stages to maximise representivity of samples.		n	RSQ	mean		median		variance			
	- Measures taken to ensure that the				original	duplicate	original	duplicate	original	duplicate		
	sampling is representative of the in-	Au (ppm)	1667	0.969	0.109	0.112	0.008	0.007	1.304	1.674		
	situ material collected including for	Ag (ppm)	1667	0.696	0.69	0.59	0.18	0.17	15.23	5.99		
	instance results for field	Cd (ppm)	1667	0.981	2.09	1.94	0.11	0.11	311.62	278.12		
	duplicate/second-half sampling.	Cu (ppm)	1667	0.405	16.55	14.31	3.30	3.20	7.8E+03	3.4E+03		
	 Whether sample sizes are appropriate to the grain size of the 	Fe (%)	1667	0.983	1.771	1.759	1.650	1.660	3.0	2.9		
	material being sampled.	Pb (ppm)	1667	0.967	83.5	83.2	15.2	14.6	3.4E+05	4.5E+05		
	material being sumplea.		1667	0.981	0.343	0.337	0.130	0.120	0.572	0.540		
		S (%) Zn (ppm) n=count RSQ = R squa	1667	0.978	360	340	79	77	7.4.E+06	6.8.E+06		

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact

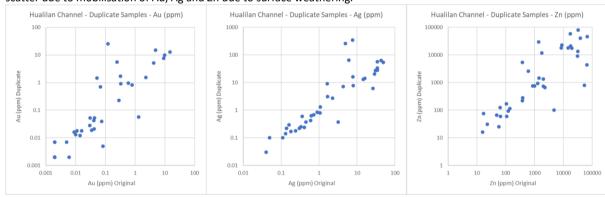
RC sub-samples over 1m intervals are collected at the drill site from a cyclone mounted on the drill rig. A duplicate RC sample is collected for every 25-30m drilled.

The duplicate RC sample results and correlation plots (log scale for Au, Ag and Zn) are shown below:

	n	RSQ	mean		median		variance	
			original	duplicate	original	duplicate	original	duplicate
Au (ppm)	85	0.799	0.101	0.140	0.017	0.016	0.041	0.115
Ag (ppm)	85	0.691	1.74	2.43	0.59	0.58	13.59	64.29
Cd (ppm)	85	0.989	15.51	16.34	0.41	0.44	4189	4737
Cu (ppm)	85	0.975	47.74	53.86	5.80	5.70	2.4E+04	3.1E+04
Fe (%)	85	0.997	1.470	1.503	0.450	0.410	7.6	7.6
Pb (ppm)	85	0.887	296.0	350.6	26.3	32.4	6.0E+05	7.4E+05
S (%)	85	0.972	0.113	0.126	0.020	0.020	0.046	0.062
Zn (ppm)	85	0.977	3399	3234	158	177	2.5.E+08	2.1.E+08
n=count								
RSQ = R squa	ared							

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005


DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

JORC Code explanation Criteria Commentary 2020 Hualilan RC - Duplicate Samples - Ag (ppm) 2020 Hualilan RC - Duplicate Samples - Au (ppm) 2020 Hualilan RC - Duplicate Samples - Zn (ppm) 100000 10000 0.1 100 0.01 0.001 100 100 100000 0.1 0.01 10 1000 10000 0.001 Au (ppm) Original Ag (ppm) Original Zn (ppm) Original

CEL samples have been submitted to the MSA laboratory in San Juan and the ALS laboratory in Mendoza for sample preparation. The sample preparation technique is considered appropriate for the style of mineralization present in the Project.

Sample sizes are appropriate for the mineralisation style and grain size of the deposit.

39 duplicate channel sample assays have been collected from the underground sampling program. These data show more scatter due to mobilisation of Au, Ag and Zn due to surface weathering.

Quality of assay data and laboratory tests The nature quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered

The MSA laboratory used for sample preparation in San Juan has been inspected by Stuart Munroe (Exploration Manager) and Sergio Rotondo (COO) prior to any samples being submitted. The laboratory procedures are consistent with international best practice and are suitable for samples from the Project. The SGS laboratory in San Juan and the ALS laboratory in Mendoza has not yet been inspected by CEL representatives.

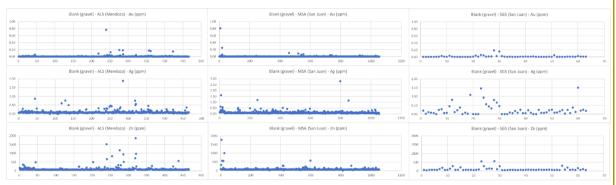
Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact
T: +61 8 6380 9235
E: admin@challengerex.com

Criteria JORC Code explanation


partial or total.

- For geophysical tools spectrometers handheld XRF instruments etc the parameters used in determining the analysis including instrument make and model reading times calibrations factors applied and their derivation etc.
- Nature of quality control procedures adopted (eg standards blanks duplicates external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.

Commentary

Internal laboratory standards were used for each job to gauge precision and accuracy of assays reported.

CEL submit blank samples (cobble and gravel material from a quarry nearby to Las Flores, San Yuan) with drill core, RC subsamples and channel sample to the MSA laboratory, ALS laboratory and SGS laboratory. The blank samples are strategically placed in the sample sequence immediately after samples that were suspected of containing high grade Au Ag Zn or Cu to test the lab preparation contamination procedures. The values received from the blank samples suggest rare cross contamination of samples during sample preparation.

For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted with samples of drill core to test the precision and accuracy of the analytic procedures and determination of the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . 26 reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned an Au value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned an Au value < 2SD below the certified value. For CRM 3 (graphs below) one sample returned a Cu value > 2SD above the certified value. All other analyses are within 2SD of the expected value. The standards demonstrate suitable precision and accuracy of the analytic process. No systematic bias is observed.


For drill holes from GNDD011 and unsampled intervals from the 2019 drilling, 18 different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Zn and 7 different CRM's with known values for Au only have been submitted with samples of drill core to test the precision and accuracy of the analytic procedures of the MSA and ALS laboratories. In the results received to date there has been no observed bias in results of the CRM. The standards demonstrate suitable precision and accuracy of the analytic process. No systematic bias is observed. A summary of the standard deviations from the expected values for CRM's used is summarised below. Generally, an average of standard deviations close to zero indicates a high degree of accuracy and a low range of standard deviations with a low fail count indicates a high degree of precision.

37 standard (CRM) sample assays submitted with the channel samples have been finalised. The results are consistent with

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

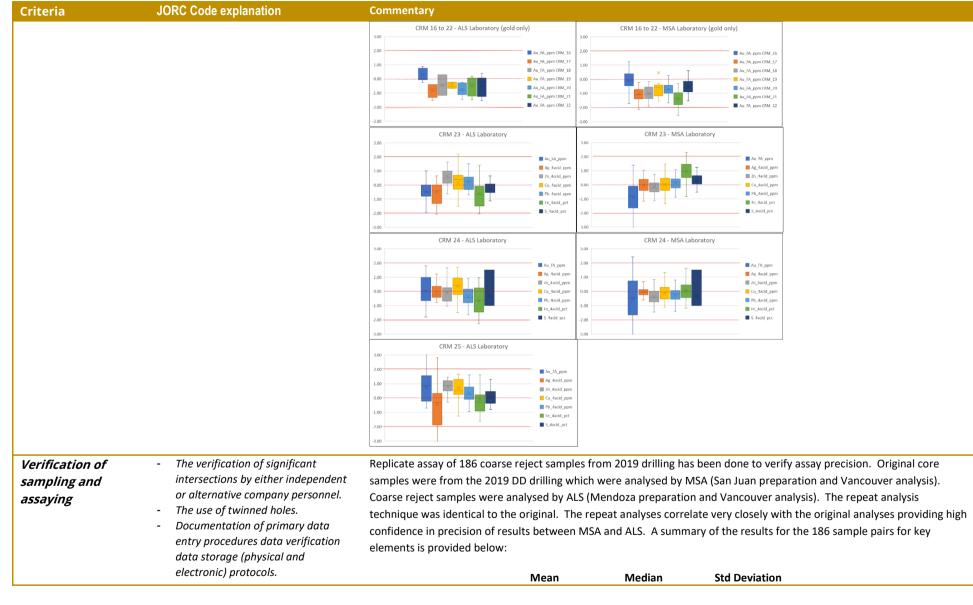
West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com



Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact
T: +61 8 6380 9235
E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary							
	 Discuss any adjustment to assay data. 	Element	MSA	ALS	MSA	ALS	MSA	ALS	Correlation coefficient
		Au (FA and GFA ppm)	4.24	4.27	0.50	0.49	11.15	11.00	0.9972
		Ag (ICP and ICF ppm)	30.1	31.1	5.8	6.2	72.4	73.9	0.9903
		Zn ppm (ICP ppm and ICF %)	12312	12636	2574	2715	32648	33744	0.9997
		Cu ppm (ICP ppm and ICF %)	464	474	74	80	1028	1050	0.9994
		Pb ppm (ICP ppm and ICF %)	1944	1983	403	427	6626	6704	0.9997
		S (ICP and ICF %)	2.05	1.95	0.05	0.06	5.53	5.10	0.9987
		Cd (ICP ppm)	68.5	68.8	12.4	12.8	162.4	159.3	0.9988
		As (ICP ppm))	76.0	79.5	45.8	47.6	88.1	90.6	0.9983
		Fe (ICP %)	4.96	4.91	2.12	2.19	6.87	6.72	0.9994
		REE (ICP ppm)	55.1	56.2	28.7	31.6	98.2	97.6	0.9954
		Cd values >1000 are set at 1000).						

Some replicate assay of 192 coarse reject samples from 2021 drilling has been done to verify assay precision. Original core samples were from the 2021 DD drilling which were analysed by SGS Laboratories (San Juan preparation and Lima analysis). Coarse reject samples were prepared and analysed by ALS (Mendoza preparation and Lima analysis). The repeat analysis technique was identical to the original. The repeat analyses correlate closely with the original analyses providing confidence in precision of results between SGS and ALS. A summary of the results for the 192 sample pairs for key elements is provided below:

		Mean		Med	ian	Std Devi	ation	0
Element	count	MSA	ALS	MSA	ALS	MSA	ALS	Correlation coefficient
Au (FA and GFA ppm)	192	1.754	1.680	0.432	0.441	20.8	21.5	0.9837
Ag (ICP and ICF ppm)	192	12.14	11.57	0.93	1.03	7085	5925	0.9995
Zn (ICP and ICF ppm)	192	6829	7052	709	685	4.54E+08	5.34E+08	0.9942
Cu (ICP and ICF ppm)	192	203.4	202.9	25.7	24.5	3.30E+05	3.35E+05	0.9967
Pb (ICP and ICF ppm)	192	1768	1719	94.7	91.6	5.04E+07	4.39E+07	0.9959
S (ICP and ICF %)	192	2.23	2.10	0.94	0.87	16.51	15.56	0.9953
Cd (ICP ppm)	192	43.9	42.4	4.1	4.0	19594	18511	0.9956

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary								
		As (ICP ppm))	192	45.4	45.2	16.0	16.9	10823	9893	0.9947
		Fe (ICP %)	189	3.07	3.30	2.38	2.31	4.80	9.28	0.9781
		REE (ICP ppm)	192	63.5	72.8	39.4	44.3	3414	4647	0.9096
		Mo (ICP and ICF ppm)	192	7.69	1.68	6.74	0.97	85.83	10.33	0.3026
		Values below detection we Limit of detection for Fe we REE is the sum off Ce, La, See CEL have sought to twin so twin holes has yet to be concentrated by the concentration of th	as exceed for Y. Value one of the completed. HD08	ed for 3 sa es below of historic d The holes ived by dia geological	amples su detection Irill holes are: gital file ir modellin	bmitted to were set to check to n PDF and g.	at zero he results o CSV forma	of previous ex	ploration. A	cked-up and the o
Location of data	Accuracy and quality of surveys used to locate drill holes (collar and	Assay results summarised data have been otherwise Following completion of d survey. The locations have	adjusted. rilling colla	ars are sur	veyed usi	ng a diffe	rential GPS	(DGPS) relati	ve into the A	rgentinian SGM
pec	down-hole surveys) trenches mine workings and other locations used in Mineral Resource estimation. - Specification of the grid system	Following completion of the survey mark at the entran in POSGAR 2007 zone 2 ar	ce to the u	ındergrou	nd which	is located				
	used.	The drill machine is set-up	on the dr	ill pad usir	ng hand-h	eld equip	ment accor	ding to the p	roposed hole	design.
	 Quality and adequacy of topographic control. 	Diamond core drill holes a hole every 10 metres using							RC drill holes	are surveyed do
		All current and previous d provide topographic contr			s corner p	egs and s	trategic sui	rface points h	ave been sur	veyed using DGPS
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and 	No regular drill hole spacing applied to infill and extens extend mineralisation alor	ion drillin	g where a	ppropriate	e. The cui	rrent drillin	g is designed	to check prev	vious exploration

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
	distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied Whether sample compositing has been applied.	potential. No Mineral Resource Estimate to JORC 2012 reporting standards has been made at this time. Samples have not been composited.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias this should be assessed and reported if material. 	As far as is currently understood and where practicable, the orientation of sampling achieves unbiased sampling of structures and geology controlling the mineralisation. For underground channel sampling, the orientation of the sample is determined by the orientation of the workings. Where the sampling is parallel with the strike of the mineralisation, plans showing the location of the sampling relative to the orientation of the mineralisation, weighted average grades and estimates of true thickness are provided to provide a balanced report of the mineralisation that has been sampled. Drilling has been designed to provide an unbiased sample of the geology and mineralisation targeted.
Sample security	The measures taken to ensure sample security.	Samples were under constant supervision by site security, senior personnel and courier contractors prior to delivery to the preparation laboratories in San Juan and Mendoza.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	There has not yet been any independent reviews of the sampling techniques and data.

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61.8.6380

T: +61 8 6380 9235 E: admin@challengerex.com

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria Mineral

status

tenement and

land tenure

JORC Code explanation

Type reference name/number location and ownership including agreements or material issues with third parties such as joint ventures partnerships overriding royalties native title interests historical sites wilderness or national park and environmental settings.

The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.

Commentary

The current Hualilan project comprises 15 Minas (equivalent of mining leases) and 2 Demasias (mining lease extensions), an additional 8 Minas and 3 exploration licences (Cateos) under a farmin agreement and a further 4 Cateos directly held. This covers all of the currently defined mineralization and surrounding prospective ground. There are no royalties on the project. CEL is earning a 75% interest in the Project by funding exploration to a Definitive Feasibility Study (DFS).

Granted mining leases (Minas Otorgadas) at the Hualilan Project

Name	Number	Current Owner	Status	Grant Date	Area (ha)
Cerro Sur					
Divisadero	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Flor de Hualilan	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Pereyra y Aciar	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Bicolor	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Sentazon	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Muchilera	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Magnata	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Pizarro	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Cerro Norte					
La Toro	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
La Puntilla	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary					
		Pique de Ortega	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Descrubidora	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Pardo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Sanchez	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Andacollo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6

Mining Lease extensions (Demasias) at the Hualilan Project

Name	Number	Current Owner	Status	Grant date	Area (ha)
Cerro Sur					
North of "Pizarro" Mine	195-152-C-1981	Golden Mining S.R.L.	Granted	05/12/2014	1.9
Cerro Norte					
South of "La Toro" Mine	195-152-C-1981	CIA GPL S.R.L.	Granted	05/12/2014	1.9

Mining Lease Farmin Agreements

Name	Number	Transfrred to CEL	Status	Grant Date	Area (ha)
Marta Alicia	2260-S-58	Yes	Current		23.54
Marta	339.154-R-92	Yes	Current		478.50
Marta 1	339.153-R-92	Yes	Current		163.42
AK4	1124.299-R-18	Yes	Current		1500.00
Solitario 1-5	545.604-C-94	Yes	Current		685.00
Solitario 1-4	545.605-C-94	Yes	Current		310.83
Solitario 1-1	545.608-C-94	Yes	Subject to Approval		ТВА
Solitario 6-1	545.788-C-94	Yes	Subject to Approval		ТВА

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code ex	planation	Commentary						
			Exploration Licen	ce Farmin Agreement	s				
			Name	Number	Transfrred to CEL	Status	Grant Date	Area (ha)]
				295.122-R-1989	Yes	Current		1882.56	
				228.441-R-1993	Yes	Subject to Approval		2800.00	
				545.880-O-1994	Yes	Current		149.99	
			Exploration Licen	ces Held (Direct Awar	d)				_
			Name	Number	Transfrred to CEL	Status	Grant Date	Area (ha)	
			Ayen	1124.495-I-20	Yes	Current		2059.60	
				1124-248G-20	Yes	Current		933.20	
				1124-188-G-20	Yes	Current		267.40	
				1124-188-G-20	Yes	Current		600.00	
			There are no kno	w impediments to ob	taining the exploration l	icense or opera	ating the Project.	1	
Exploration done by other parties		ment and appraisal of by other parties.	geologic maps re	ports trenching data (ations and detailed st	r 500 years has produce underground workings o udies by several geologi	rill hole results	geophysical surv	veys resource e	estimate
			sampling have be	en compiled and digi	s that pass through min tised as are sample data rys exist but have largely	geological map	oping trench dat	a adit exposure	
			-	nalilan Project (Cerro s ng and sampling resul	Sur and Cerro Norte con ts are listed below.	nbined) extends	s to over 150 dril	I holes. The ke	y histori
			1995 - P1998 - Csampling	lata Mining Limited (T Chilean consulting firn B	pling & 16 RC holes (AG SE: PMT) 33 RC holes (F n EPROM (on behalf of F Colorado SA ("CMEC") 59	lua- 1 to 33) + 1 lata Mining) sy	L500 samples stematic underg		
nger Exploration Limited 3 591 382	Issued Capital 979.4m shares	Australian Registered Office Level 1	Directors Mr Kris Knauer, N		ontact +61 8 6380 9235				

Mr Scott Funston, Finance Director

Mr Sergio Rotondo, Exec. Director

Mr Fletcher Quinn, Chairman

E: admin@challengerex.com

www.challengerex.com

48.0m options

16m perf rights

120m perf shares

1205 Hay Street

West Perth WA 6005

ASX: CEL

Criteria	JORC Code explanation	Commentary						
		- 2003 – 2005 –	La Mancha (T	SE Listed) undert	ook 7447m o	f DDH core dr	illing (HD-01 to	HD-48)
		 Detailed resou 	ırce estimatior	n studies were ur	ndertaken by	EPROM Ltda.	(EPROM) in 199	6 and CMEC (1999 revised
		2000) both of	which were wi	ritten to professi	onal standard	ds and La Man	cha 2003 and 2	006.
		 The collection 	of all explorat	ion data by the v	arious operat	tors was of a h	nigh standard ar	nd had appropriate
		sampling tech	niques interval	ls and custody pr	ocedures we	re used.		
Geology	 Deposit type geological setting and style of mineralisation. 	Mineralisation occurs i zones and in fracture n		•		ces limestone,	shale and sand	stone and occurs in fault
			een divided in	to three phases	– prograde sk	arn retrograd	e skarn and a la	vith vein-hosted Au-Ag ute quartz–galena event ed geometallurgical work.
		Gold occurs in native for pyrite, chalcopyrite sph						o commonly contains
		Mineralisation is either intrusions, at lithology angle. The faults have parallel mineralisation	contacts or in thicknesses of	east-west strikin 1–4 m and conta	g steeply dippain abundant	oing siliceous t sulphides. Th	faults that cross e intersection b	the bedding at a high between the bedding-
Drill hole	- A summary of all information material	The following significar	nt intersections	s have been repo	rted by previ	ous explorers	. A cut-off grad	e of 1 g/t Au equivalent
Information	to the understanding of the exploration	has been used with up	to 2m of interi	nal diltion or a cu	ut-off grade o	f 0.2 g/t Au ec	quivalent and up	to 4m of internal diltion
	results including a tabulation of the	has been allowed. No	metallurcial or	recovery factors	s have been u	sed. Drill colla	ar location is pro	ovided in the previous
	following information for all Material	section.						
	drill holes:	Hole_id	From (m)	Interval (m)	Au (g/t)	Ag (g/t)	Zn (%)	
	- easting and northing of the drill hole	AG16	38.6	1.2	0.1	28.6	1.7	
	collar	MG10	108.0	3.0	1.3	No assay	No assay	
	- elevation or RL (Reduced Level –	DDH36	24.7	9.3	1.6	46.3	1.2	
	elevation above sea level in metres) of	DDH53	17.3	1.4	1.0	1.7	0.00	
	the drill hole collar	DDH53	24.0	8.9	3.7	239.5	0.03	
	- dip and azimuth of the hole	DDH53	35.7	3.9	3.9	87.8	0.06	
	- down hole length and interception	DDH53	41.0	3.0	2.6	7.6	0.20	
	depth	DDH54	20.0	1.1	1.2	0.7	0.00	
	- hole length.	DDH54	31.1	8.3	3.9	32.1	0.80	
	- If the exclusion of this information is	DDH65	62.0	8.2	11.0	60.6	1.2	
	justified on the basis that the	DDH65	82.0	1.0	1.8	33.4	0.30	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

information is not Material and this

exclusion does not detract from the

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

DDH66

DDH66

Contact T: +61 8 6380 9235 E: admin@challengerex.com

7.2

2.4

23.7

69.9

42.9

114.4

2.4

2.2

83.1

87.9

understanding of the report the Competent Person should clearly	DDH66					
Competent Person should clearly	001100	104.9	2.8	1.8	29.0	0.10
Competent Person should clearly	DDH67	98.7	1.3	0.2	7.8	1.3
explain why this is the case.	DDH68	4.0	17.9	2.2	6.3	0.20
, ,	DDH68	73.7	0.5	0.8	9.0	1.2
	DDH69	4.0	16.1	2.3	1.6	0.10
	DDH69					28.0
						4.5
						0.70
						0.06
						0.03
						0.60
						7.9
						1.3
						0.04
						0.60
						2.6
						0.50
						0.30
						2.0
						1.9
						2.4
						2.3
						0.02
						0.04
						0.01
						0.05
						1.2
						0.50
						0.01
						1.2
						7.7
						0.90
						5.6
						0.46
						2.4
						1.4
						0.10
		DDH69 DDH69 DDH69 DDH70 DDH71 DDH71 DDH71 DDH71 DDH72 DDH72 DDH72 DDH73 DDH74 DDH76 DDH76 DDH76 DDH78 03HD01A 03HD03 04HD05 04HD05 04HD05 04HD05 04HD05 04HD06 04HD06 04HD06 04HD06 04HD06 04HD06 04HD07 04HD10 04HD10 04HD11	DDH69 76.9 DDH69 79.7 DDH70 84.0 DDH71 11.0 DDH71 39.9 DDH71 45.5 DDH71 104.0 DDH72 26.0 DDH72 52.7 DDH73 62.5 DDH74 119.9 DDH76 61.3 DDH76 74.4 DDH76 74.4 DDH78 109.1 O3HD01A 90.1 O3HD01A 90.1 O3HD05 80.3 O4HD05 80.3 O4HD05 106.0 O4HD05 106.0 O4HD05 108.0 O4HD06 65.4 O4HD06 75.0 O4HD06 75.0 O4HD06 104.5 O4HD06 104.5 O4HD07 98.3 O4HD10 44.3 O4HD10 55.5 O4HD10 55.5	DDH69 76.9 0.3 DDH69 79.7 0.8 DDH70 84.0 7.0 DDH71 11.0 2.0 DDH71 11.0 2.0 DDH71 39.9 1.0 DDH71 45.5 1.1 DDH71 104.0 10.0 DDH72 26.0 11.7 DDH72 52.7 6.3 DDH73 62.5 3.5 DDH74 119.9 0.5 DDH76 61.3 0.7 DDH76 61.3 0.7 DDH76 74.4 4.0 DDH76 74.4 4.0 DDH78 109.1 0.7 O3HD01A 90.1 1.7 O3HD01A 90.1 1.7 O3HD05 80.3 2.0 O4HD05 97.5 1.8 O4HD05 97.5 1.8 O4HD05 102.0 1.0 O4HD05 106.0 1.0 O4HD05 108.0 5.6 O4HD06 65.4 1.2 O4HD06 75.0 1.0 O4HD06 115.1 0.9 O4HD06 104.5 7.6 O4HD06 115.1 0.9 O4HD06 115.1 0.9 O4HD07 98.3 2.2 O4HD10 44.3 0.2 O4HD10 55.5 0.5 O4HD10 78.6 1.7	DDH69 76.9 0.3 0.1 DDH69 79.7 0.8 1.3 DDH70 84.0 7.0 5.2 DDH71 11.0 2.0 0.5 DDH71 39.9 1.0 1.3 DDH71 45.5 1.1 0.4 DDH71 104.0 10.0 33.5 DDH72 26.0 11.7 3.8 DDH72 52.7 6.3 1.5 DDH73 62.5 3.5 0.5 DDH74 119.9 0.5 7.3 DDH76 61.3 0.7 4.0 DDH76 64.3 0.7 4.0 DDH76 84.8 1.2 1.4 DDH78 10.91 0.7 1.1 03HD01A 90.1 1.7 2.1 03HD03 55.0 2.4 2.5 04HD05 80.3 2.0 0.9 04HD05 97.5 1.8 1.9 04HD05 108.0 5.6 2.8 04HD06 65.4 1.2 46.6 04HD06 104.5 7.6 1.8 04HD06 104.5 7.6 1.8 04HD07 98.3 2.2 1.4 04HD0 105.5 0.5 1.3 04HD07 98.3 2.2 1.4 04HD0 78.6 1.7 4.8 04HD10 78.6 1.7 4.8 04HD11 28.0 1.0 0.1	DDH69 76.9 0.3 0.1 7.0

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary					
		04HD13	61.5	1.0	0.8	7.9	0.20
		04HD15	103.7	0.3	1.7	32.9	0.80
		04HD16C	107.5	6.8	8.6	117.1	9.1
		04HD16C	111.8	2.5	7.6	75.6	11.5
		04HD16C	144.9	1.9	9.1	31.2	5.5
		04HD16C	171.1	0.4	0.5	9.4	1.7
		04HD17	134.9	0.7	2.5	14.3	4.1
		04HD17	139.1	0.5	10.5	9.4	0.20
		04HD17	199.6	0.2	0.8	3.5	5.9
		04HD17	202.1	1.9	4.5	1.5	0.70
		04HD20	43.2	1.8	0.9	83.9	0.20
		04HD21	70.1	0.2	4.8	60.6	6.4
		04HD21	141.1	0.6	12.9	105.0	4.8
		04HD24	72.0	2.0	2.5	3.2	0.04
		04HD24	83.0	2.0	3.1	25.3	0.04
		04HD24	94.0	4.2	0.7	21.2	0.10
		04HD25	92.0	1.7	2.4	51.5	6.3
		04HD26	21.7	2.3	1.5	32.5	3.0
		04HD28	42.8	0.4	1.9	4.5	0.10
		04HD29	37.0	1.0	0.1	112.0	0.01
		05HD42	90.5	1.0	1.9	6.1	0.03
		05HD42	115.0	3.0	29.0	103.1	0.20
		05HD43	69.0	1.0	1.8	2.3	0.01
		05HD43	81.0	3.0	2.8	51.5	0.50
		05HD43	90.7	2.3	1.4	29.6	0.30
		05HD44	87.5	1.1	3.8	3.4	0.01
		05HD44	91.2	1.4	0.0	3.6	2.8

Drilling in 2019 Significant Results:

Hole_id	Interval (m)	From	Au (g/t)	Ag (g/t)	Zn (%)	AuEq (g/t)	
GNDD001	10.00	27.00	0.94	4.9	0.33	1.1	(2)
inc	3.00	32.00	2.3	5.8	0.50	2.6	
GNDD002A	5.00	31.00	0.74	2.7	0.67	1.1	
and	3.00	81.50	3.1	8.6	5.8	5.7	
GNDD003	6.10	55.00	34.6	22	2.9	36.2	(1)

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary							
		GNDD004	20.50	5.50	1.1	5.3	0.45	1.4	(2)
		inc	8.47	6.03	2.0	7.8	0.68	2.4	
		and	3.43	18.67	1.2	3.2	0.26	1.3	
		GNDD005	19.00	29.00	1.3	8.1	0.62	1.6	(2)
		inc	2.00	29.00	0.79	18	3.3	2.5	
		and	4.00	43.00	5.1	22	0.49	5.6	
		and	7.00	59.00	7.8	72	1.4	9.3	
		inc	3.00	61.00	16.5	135	1.6	18.9	(1)
		and	10.00	75.00	0.75	38	0.27	1.4	(2)
		inc	3.00	77.00	1.7	39	0.43	2.3	
		inc	1.00	83.00	1.2	156	0.72	3.5	
		GNDD006	6.50	78.50	4.2	21	0.29	4.6	
		inc	3.80	78.50	6.8	34	0.41	7.4	
		and	1.45	90.00	2.1	41	0.92	3.1	
		GNDD007	45.92	13.00	0.43	7.8	0.12	0.58	(2)
		inc	3.00	45.00	1.9	5.2	0.26	2.0	
		inc	3.00	55.00	2.3	35	0.54	2.9	
		GNDD007A	27.00	25.00	0.43	7.2	0.09	0.56	(2)
		inc	1.80	46.00	2.4	3.1	0.12	2.5	
		and	0.70	60.30	0.8	25	0.21	1.2	
		and	6.70	149.00	14.3	140	7.3	19.3	
		inc	3.06	150.60	27.5	260	12.9	36.5	(1)
		and	0.60	176.40	1.9	6.7	0.99	2.4	
		GNDD008	35.50	16.50	0.33	8.1	0.10	0.47	(2)
		inc	1.00	36.00	1.7	6.2	0.08	1.9	
		inc	1.63	43.37	1.7	8.4	0.14	1.9	
		inc	1.15	47.85	1.2	16	0.56	1.7	
		and	5.70	91.00	12.3	182	0.67	15.0	(1)
		and	1.00	99.70	0.93	43	0.52	1.7	
		and	2.40	107.00	6.3	222	1.9	10.0	
		GNDD008A	35.50	17.50	0.24	13	0.08	0.43	(2)
		and	20.00	95.00	3.3	45	0.55	4.1	(2)
		inc	2.64	96.60	22.8	218	0.68	25.9	(1)
		inc	10.00	105.00	0.6	28.2	0.71	1.2	
		GNDD009	7.00	72.00	2.3	102	0.08	3.6	
		and	3.00	100.00	0.85	50	0.02	1.5	
		and	10.32	109.10	10.4	28	4.6	12.7	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary							
		inc	4.22	115.20	21.9	58	8.7	26.4	(1)
		GNDD010	32.00	27.00	0.29	8.6	0.13	0.46	(2)
		inc	5.00	30.00	0.65	21	0.09	0.95	
		and	1.30	55.00	1.1	30	0.80	1.8	
		and	7.22	136.00	7.5	60	1.1	8.8	(2)
		inc	3.00	139.00	17.7	143	2.5	20.6	

- (1) cut-off of 10 g/t AuEq
- (2) cut-off of 0.2 g/t AuEq

Drilling in 2020-21 Significant Results:

Hole_id	from	interval	Au	Ag	Zn (%)	AuEq	Cu (%)	Pb (%)	Note
	(m)	(m)	(g/t)	(g/t)		(g/t)			
GNDD011	81.00	1.00	1.9	43	0.13	2.5	0.01	0.06	
and	139.80	4.80	1.4	5.7	2.6	2.6	0.02	0.02	
and	147.20	0.70	9.4	13	6.6	12.4	0.07	0.00	1
and	151.40	0.50	1.2	5.5	0.25	1.4	0.00	0.00	
GNDD012	40.70	1.00	6.3	290	0.12	10.1	0.18	1.2	
GNDD013	116.40	6.93	1.3	12	2.7	2.6	0.05	0.18	
inc	122.50	0.83	4.0	61	10.1	9.1	0.21	1.2	
GNDD014	118.50	7.55	2.4	15	3.6	4.2	0.05	0.16	
GNDD015	54.00	1.00	0.69	8.6	0.39	1.0	0.03	0.24	
and	156.00	1.90	1.0	31	2.8	2.6	0.02	0.79	
GNDD016	64.00	1.00	0.80	27	0	1.1	0.02	0.06	
and	109.50	5.00	1.8	27	8.3	5.8	0.16	0.01	
and	116.55	4.45	6.0	83	3.9	8.8	0.13	0.02	
GNDD017	34.30	1.7	0.31	24	2.0	1.5	0.06	1.0	
GNDD018	37.75	0.85	1.1	3.6	0.1	1.2	0.01	0.05	
and	63.20	3.75	7.1	78	3.6	9.6	0.28	3.6	
inc	64.40	2.55	10.3	114	4.9	13.9	0.41	5.2	1
GNDD019	24.00	1.90	1.0	5.3	5.3	3.4	0.12	0.03	
GNDD020	71.25	8.25	17.7	257	0.30	21.1	0.60	0.68	
inc	74.00	5.50	26.0	355	0.42	30.7	0.05	0.21	1
and	83.30	0.65	0.03	2.7	10.70	4.7	0.00	0.02	
GNDD021	14.80	1.20	11.0	9.0	0.39	11.3	0.01	0.08	1
and	31.50	0.35	28.1	104	5.8	31.9	0.35	0.12	1
and	98.20	19.80	0.29	2.2	3.4	1.8	0.01	0.04	2

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

riteria	JORC Code explanation	Commentary									
		inc	98.20	9.80	0.40	4.4	6.8	3.4	0.01	0.07	
		inc	104.20	0.80	0.88	13	22.7	10.9	0.02	0.30	1
		GNDD022	NSI								
		GNDD023	58.00	5.00	0.32	3.7	0.1	0.41	0.01	0.09	
		GNDD024	85.00	6.00	2.5	19	0.15	2.8	0.40	1.4	
		inc	88.00	1.00	14.9	107	0.46	16.5	2.4	8.3	1
		GNDD025	53.00	88.00	0.94	2.3	0.10	1.0	0.00	0.08	2
		inc	61.00	14.00	3.1	5.3	0.19	3.2	0.01	0.11	
		inc	79.00	11.00	1.3	4.1	0.16	1.4	0.00	0.25	
		inc	93.00	1.00	1.1	2.5	0.09	1.1	0.00	0.37	
		inc	113.00	2.00	1.2	4.4	0.02	1.2	0.00	0.01	
		inc	139.00	2.00	0.99	0.50	0.01	1.0	0.00	0.00	
		GNDD026	NSI								
		GNDD027	NSI								
		GNDD028	41.40	18.60	0.21	3.2	2.0	1.1	0.08	0.01	2
		inc	52.00	8.00	0.42	6.0	3.8	2.2	0.18	0.02	
		GNDD029	36.00	12.00	0.17	2.1	0.39	0.36	0.01	0.16	2
		GNDD030	33.00	3.00	0.95	53	0.05	1.6	0.01	0.05	
		GNDD031	32.00	28.00	0.43	5.7	0.15	0.56	0.01	0.04	2
		inc	48.00	1.10	3.3	17	0.34	3.7	0.02	0.33	
		inc	53.00	1.00	4.2	54	0.92	5.3	0.12	0.22	
		GNDD032	9.00	20.00	0.16	6.7	0.09	0.29	0.00	0.02	2
		and	49.00	116.00	1.05	4.0	0.20	1.2	0.01	0.07	2
		inc	77.00	3.00	0.93	33.7	2.1	2.3	0.09	0.02	
		and	101.00	10.00	6.1	18.1	0.11	6.4	0.04	0.47	
		inc	101.00	6.00	9.6	18.7	0.15	9.9	0.05	0.61	1
		and	136.00	4.00	9.8	18.5	1.5	10.7	0.06	0.27	
		GNDD033	NSI								
		GNDD034	47.60	0.30	0.03	1.4	24.4	10.6	0.34	0.04	
		GNDD035	88.75	5.75	9.5	28.7	3.5	11.4	0.10	0.44	
		inc	88.75	3.15	17.1	28.8	5.6	19.9	0.14	0.56	1
		GNDD036	NSI								
		GNDD037	NSI								
		GNDD038	71.50	2.85	0.53	15.6	2.8	1.9	0.06	0.13	
		GNDD042	NSI								
		GNDD044	213.00	4.60	24.3	23.0	2.2	25.6	0.28	0.00	1
		and	230.00	10.20	12.5	10.6	3.5	14.2	0.10	0.02	_

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

riteria	JORC Code explanation	Commentary									
		inc	233.00	4.50	23.6	14.1	4.3	25.6	0.11	0.01	1
		and	291.15	0.60	5.4	8.3	0.1	5.6	0.07	0.00	
		GNDD045	85.90	2.10	1.4	28.8	0.1	1.8	0.01	0.02	
		GNDD046	82.90	0.45	4.1	27	0.06	4.5	0.01	0.03	
		and	124.15	2.85	29.5	522	10.8	40.8	0.41	0.25	1
		GNDD047	61.00	38.50	1.3	1.2	0.04	1.3	0.00	0.02	2
		inc	62.50	6.00	6.3	3.5	0.15	6.4	0.01	0.10	
		and	74.10	1.50	1.0	1.9	0.00	1.0	0.00	0.00	
		and	83.55	0.45	7.3	12.2	0.00	7.5	0.00	0.00	
		and	98.50	1.00	1.2	0.8	0.00	1.2	0.00	0.00	
		GNDD048	36.00	19.00	0.6	5.0	0.25	0.81	0.01	0.06	2
		inc	38.00	3.15	2.7	12.1	0.09	2.9	0.03	0.14	
		GNDD049	NSI								
		GNDD050	21.00	22.00	0.21	2.9	0.53	0.48	0.01	0.15	2
		inc	21.00	2.00	1.4	4.8	0.07	1.5	0.01	0.07	
		GNRC051	NSI								
		GNRC052	69	6	1.7	4.4	0.32	1.9	0.03	0.00	
		GNRC053	NSI								
		GNRC054	13	7	0.22	3.9	0.03	0.28	0.00	0.01	2
		and	66	15	0.53	4.0	0.66	0.87	0.01	0.13	2
		inc	77	3	1.3	8.5	1.9	2.3	0.02	0.31	
		GNRC055	18	7	0.28	6.9	0.04	0.38	0.00	0.01	2
		GNRC056	56	1	2.3	138	0.08	4.1	0.01	0.07	
		GNRC057	37	12	0.06	2.4	0.58	0.34	0.01	0.06	2
		GNRC058	NSI								
		GNRC059	NSI								
		GNDD060	NSI								
		GNRC061	NSI								
		GNRC062	17	3	3.8	7.9	2.7	5.0	0.24	0.17	
		GNRC063	19	1	0.01	0.46	2.8	1.2	0.04	0.01	
		GNRC064	22	1	0.01	4.2	3.8	1.7	0.00	0.00	
		and	27	1	0.69	27	1.2	1.6	0.35	0.23	
		GNRC065	33	6	0.00	2.1	4.9	2.1	0.05	0.01	
		GNRC066	NSI								
		GNRC067	NSI								
		GNRC068	9	69	3.4	8.3	2.8	4.7	0.23	0.08	2
		inc	9	27	7.9	16	7.0	11.2	0.59	0.16	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		and	51	1	1.0	40	0.93	1.9	0.08	0.12	
		and	59	1	1.3	4.9	0.09	1.4	0.00	0.02	
		and	66	2	1.6	1.2	0.02	1.7	0.01	0.00	
		and	72	4	1.9	3.0	0.06	1.9	0.01	0.04	
		GNRC069	18	7	0.62	3.0	0.11	0.71	0.01	0.16	2
		inc	19	1	2.2	8.6	0.15	2.4	0.03	0.59	
		and	53	10	0.65	5.7	0.37	0.88	0.01	0.03	2
		inc	59	3	1.7	11	0.84	2.3	0.03	0.07	
		and	84	15	0.54	2.4	0.13	0.63	0.01	0.00	2
		inc	84	4	0.90	5.2	0.36	1.1	0.02	0.01	
		and	96	1	1.0	1.4	0.06	1.0	0.03	0.00	
		GNRC070	41	1	6.6	3.1	0.36	6.8	0.02	0.21	
		GNRC071	48	2	0.45	5.4	2.1	1.4	0.01	0.12	
		GNRC072	43	19	0.16	4.9	0.13	0.28	0.00	0.09	2
		GNDD073	NSI								
		GNDD074	41	2	1.2	20.5	0.04	1.4	0.00	0.02	
		and	47	2	8.0	16.7	0.13	1.1	0.03	0.03	
		GNRC075	31	18	0.78	1.6	0.07	0.83	0.01	0.22	2
		inc	37	2	2.2	1.6	0.08	2.2	0.01	0.32	
		and	46	2	1.8	2.4	0.08	1.9	0.00	0.07	
		GNRC076	35	5	12.2	7.2	0.02	12.3	0.01	0.10	
		inc	35	1	53.1	18	0.00	53.3	0.00	0.02	1
		GNDD077	168.50	14.00	0.68	5.9	0.64	1.0	0.01	0.01	2
		inc	168.50	1.00	1.5	59.3	6.6	5.2	0.13	0.08	
		inc	180.60	1.90	1.8	4.9	0.78	2.2	0.02	0.01	
		and	192.90	1.10	0.70	5.5	0.61	1.0	0.02	0.00	
		GNRC078	11	17	0.13	1.7	0.43	0.34	0.01	0.09	2
		inc	12	1	0.74	4.8	0.91	1.2	0.03	0.33	
		GNDD079	21.00	61.00	1.1	1.1	0.11	1.1	0.00	0.02	2
		inc	21.00	9.00	1.9	1.9	0.09	2.0	0.00	0.02	
		inc	40.00	2.00	2.7	1.7	0.08	2.8	0.00	0.06	
		inc	46.00	6.00	5.0	1.2	0.07	5.1	0.00	0.01	
		inc	74.00	3.00	1.0	0.86	0.17	1.1	0.00	0.12	
		GNRC080	NSI								
		GNRC081	23	30	0.28	2.0	0.33	0.45	0.01	0.10	2
		inc	32	5	1.0	3.6	0.73	1.4	0.01	0.20	
		GNDD082	168.00	15.00	0.68	0.39	0.04	0.70	0.00	0.01	2

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Contact

T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		inc	168.00	1.00	2.4	0.46	0.11	2.4	0.00	0.02	
		inc	175.00	0.50	10.0	5.6	0.44	10.2	0.01	0.20	
		and	193.40	34.10	1.45	1.0	0.25	1.6	0.02	0.13	2
		inc	193.40	1.00	2.2	7.9	1.6	3.0	0.14	1.7	
		inc	203.50	0.90	2.6	10.6	2.9	4.0	0.16	1.4	
		inc	209.80	2.20	0.59	4.5	0.74	1.0	0.03	0.25	
		and	235.00	31.00	0.4	0.6	0.08	0.43	0.00	0.00	
		inc	242.50	1.50	1.0	2.1	0.21	1.1	0.01	0.01	
		GNDD083	11.00	21.00	0.22	10.0	0.15	0.41	0.00	0.01	2
		inc	19.20	1.80	1.0	6.1	0.10	1.1	0.00	0.00	
		and	170.00	1.00	1.3	3.6	0.22	1.4	0.02	0.26	
		GNRC084	4	1	1.2	2.0	0.07	1.2	0.00	0.06	
		and	41	3	5.2	6.4	5.0	7.5	0.08	0.14	
		and	60	4	3.6	11.6	5.0	6.0	0.02	0.05	
		and	78	21	0.81	2.6	0.08	0.88	0.00	0.00	2
		inc	91	1	6.7	10.7	0.42	7.0	0.01	0.00	
		and	97	2	1.6	1.2	0.03	1.6	0.01	0.00	
		and	143	2	0.67	4.9	0.87	1.1	0.00	0.01	
		GNDD085	22.50	1.30	5.47	75.6	0.08	6.5	0.01	0.09	
		and	39.30	2.20	2.11	2.4	0.55	2.4	0.01	0.24	
		GNRC086	3	21	0.38	1.5	0.33	0.55	0.01	0.08	2
		inc	4	1	0.85	3.4	0.89	1.3	0.03	0.27	
		and	22	2	2.9	1.9	0.08	3.0	0.01	0.03	
		GNRC087	22	4	0.65	15.9	0.26	1.0	0.00	0.04	
		GNDD088A	45.05	23.45	0.07	0.23	0.53	0.31	0.00	0.01	2
		and	90.50	1.50	1.8	0.10	0.01	1.8	0.00	0.00	
		and	224.00	39.00	5.5	2.0	0.30	5.6	0.01	0.00	2
		incl	231.50	14.40	14.4	3.3	0.67	14.8	0.00	0.00	
		incl	238.50	7.40	23.4	5.7	1.27	24.1	0.01	0.01	1
		GNDD089	20.00	30.00	0.95	1.69	0.09	1.0	0.00	0.02	2
		inc	22.00	2.00	1.4	2.7	0.18	1.5	0.00	0.00	
		inc	30.50	1.70	2.9	2.3	0.12	3.0	0.00	0.01	
		inc	40.00	10.00	1.4	0.55	0.09	1.4	0.00	0.02	
		and	94.50	21.70	0.88	1.59	0.43	1.1	0.00	0.04	2
		inc	94.50	5.10	2.4	1.6	0.06	2.4	0.01	0.07	
		inc	102.50	1.50	1.9	1.5	0.15	2.0	0.01	0.03	
		inc	109.00	1.50	1.8	11.3	0.32	2.1	0.01	0.16	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		GNRC090	7	13	0.35	2.7	0.25	0.49	0.01	0.07	2
		inc	14	1	1.1	7.3	0.45	1.4	0.02	0.21	
		GNRC091	30	24	0.38	3.7	0.20	0.51	0.01	0.10	2
		inc	43	4	1.4	3.5	0.40	1.6	0.01	0.36	
		GNDD092	164.50	9.00	0.29	0.72	0.12	0.35	0.00	0.05	2
		and	213.00	17.00	0.23	0.63	0.06	0.26	0.00	0.04	2
		and	257.50	1.00	3.6	5.9	0.60	3.9	0.05	0.21	
		GNDD093	75.30	1.40	2.1	10.6	7.8	5.6	0.18	0.22	
		and	153.65	0.50	1.4	7.3	0.17	1.6	0.11	0.03	
		GNRC094	13	12	0.83	4.6	0.44	1.1	0.01	0.06	2
		inc	13	1	1.1	6.3	0.17	1.2	0.02	0.12	
		inc	17	1	8.3	20.6	0.27	8.7	0.06	0.52	
		inc	23	1	0.21	4.5	3.8	1.9	0.01	0.03	
		GNDD095	47.00	17.47	0.28	1.0	0.44	0.49	0.02	0.09	2
		inc	50.00	1.30	1.0	0.92	2.8	2.3	0.18	0.61	
		and	121.00	1.00	2.6	1.7	0.01	2.6	0.00	0.00	
		GNDD096	NSI								
		GNRC097	49	8	0.39	2.2	0.04	0.44	0.00	0.02	2
		inc	50	1	1.1	2.8	0.03	1.2	0.00	0.03	
		GNRC098	40	19	0.21	1.8	0.19	0.32	0.01	0.16	2
		and	88	8	4.9	4.5	0.76	5.3	0.02	0.07	2
		inc	88	2	15.6	15.9	2.8	17.0	0.07	0.20	2
		inc	94	2	2.6	1.2	0.13	2.7	0.00	0.03	
		GNDD099	53.00	2.80	0.42	19.8	2.0	1.5	0.09	0.33	
		and	64.00	0.90	3.1	9.7	0.22	3.3	0.01	0.01	
		and	101.00	1.00	2.9	64.4	0.04	3.7	0.01	0.04	
		GNDD100	NSI								
		GNDD101	NSI								
		GNDD102	36.00	11.00	0.59	3.2	0.18	0.71	0.01	0.11	2
		inc	36.00	2.00	1.5	5.9	0.13	1.6	0.01	0.14	
		and	77.40	8.90	0.10	2.5	0.82	0.49	0.01	0.06	2
		inc	84.30	0.90	-	1.3	3.3	1.4	0.02	0.03	
		GNDD103	NSI								
		GNRC104	141	1	45.6	40.0	2.6	47.2	0.25	3.4	1
		GNDD105	NSI								
		GNDD106	100.00	25.00	0.66	0.29	0.01	0.67	0.00	0.00	2
		inc	114.00	1.50	1.8	1.7	0.01	1.8	0.00	0.00	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary										
		inc	121.00	4.00	2.6	0.34	0.01	2.6	0.00	0.00		
		and	141.35	1.05	1.2	2.8	0.84	1.6	0.01	0.01		
		and	205.00	8.00	0.48	1.0	0.02	0.50	0.00	0.00	2	
		inc	211.00	2.00	1.1	2.2	0.03	1.1	0.00	0.00		
		GNRC107	16	27	3.6	14.8	0.25	3.9	0.01	0.1	2	
		inc	23	1	0.17	74.4	0.07	1.1	0.01	0.1		
		inc	29	2	1.2	12.2	0.06	1.3	0.01	0.1		
		inc	35	7	13.3	12.6	0.80	13.8	0.02	0.3		
		and	52	1	0.18	73.2	0.11	1.2	0.00	0.1		
		and	93	1	0.12	51.2	3.1	2.1	0.03	0.65		
		GNDD108	NSI									
		GNDD109	NSI									
		GNRC110	11	44	2.8	62.7	0.05	3.7	0.01	0.25	2	
		inc	12	1	1.7	1.0	0.00	1.7	0.00	0.04		
		inc	20	11	1.8	37.2	0.02	2.3	0.01	0.37		
		inc	36	12	8.3	190	0.12	10.7	0.02	0.51		
		inc	41	3	27.3	613	0.05	35.1	0.03	0.87	1	
		GNRC111	31	18	0.31	12.2	0.13	0.52	0.01	0.03	2	
		inc	33	1	1.3	59.4	0.02	2.1	0.01	0.27		
		inc	41	1	2.1	82.7	0.01	3.2	0.01	0.10		
		GNDD112	95.00	0.40	0.5	26.6	6.0	3.5	0.10	1.9		
		GNDD113	149.50	37.50	0.59	17.0	0.12	0.86	0.01	0.08	2	
		inc	151.00	9.00	1.3	56.2	0.17	2.1	0.05	0.11		
		inc	170.50	1.50	1.7	5.7	0.33	2.0	0.01	0.11		
		and	219.00	11.00	0.79	2.2	0.08	0.86	0.00	0.08	2	
		inc	223.00	7.00	1.1	2.5	0.09	1.1	0.00	0.05		
		GNDD113A	61.00	2.00	0.59	2.6	0.74	0.95	0.03	0.07		
		and	139.00	107.00	0.30	3.0	0.09	0.37	0.00	0.04	2	
		inc	185.00	1.40	1.6	2.5	0.07	1.7	0.00	0.05		
		inc	197.00	2.00	1.2	0.94	0.17	1.3	0.00	0.04		
		inc	202.00	1.50	3.2	2.4	0.90	3.6	0.02	0.16		
		inc	209.00	2.00	1.2	1.9	0.25	1.3	0.01	0.25		
		and	262.00	104.00	1.5	2.7	0.39	1.7	0.01	0.12	2	
		inc	266.00	2.00	1.0	1.8	0.22	1.1	0.00	0.02		
		inc	274.00	2.00	1.3	1.4	0.06	1.3	0.00	0.01		
		inc	280.00	15.00	3.6	6.9	0.56	3.9	0.04	0.73		
		inc	289.45	3.65	6.7	20.2	1.5	7.6	0.15	2.6	1	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

riteria	JORC Code explanation	Commentary									
		inc	298.65	7.45	2.9	3.7	0.63	3.2	0.02	0.01	
		inc	315.50	1.20	1.0	1.4	0.13	1.1	0.00	0.02	
		inc	333.80	4.20	11.3	22.8	5.3	13.9	0.12	0.04	
		inc	333.80	0.70	60.8	133	31.4	76.1	0.70	0.22	1
		inc	354.00	4.00	1.4	0.8	0.02	1.4	0.00	0.00	
			274.00	84.00	1.7	3.3	0.48	2.0	0.02	0.14	4
		and	390.00	30.00	0.35	0.36	0.05	0.38	0.00	0.00	2
		inc	394.00	2.00	1.2	0.33	0.04	1.2	0.00	0.00	
			139.00	227.00	0.83	2.7	0.22	1.0	0.01	0.07	3
			139.00	281.00	0.71	2.2	0.19	0.82	0.01	0.06	3
			106.00	314.00	0.65	2.1	0.17	0.75	0.01	0.05	
		GNDD114	64.00	14.70	3.2	3.3	0.08	3.3	0.01	0.06	
		inc	77.80	0.90	50.3	27.2	0.18	50.7	0.03	0.65	
		GNDD115	68.70	1.10	0.62	9.2	2.0	1.6	0.04	0.36	
		and	144.00	2.00	0.30	16.2	1.2	1.0	0.07	0.38	
		and	176.50	34.50	0.28	0.68	0.01	0.29	0.00	0.03	2
		GNDD116	27.50	4.50	1.3	14.6	0.06	1.5	0.00	0.02	2
		inc	27.50	1.00	3.7	41.4	0.13	4.3	0.01	0.05	
		and	73.70	0.80	2.4	3.9	0.26	2.5	0.00	0.00	
		GNDD117	30.00	54.80	0.58	4.2	0.13	0.69	0.01	0.07	2
		inc	61.00	10.00	2.5	10.2	0.16	2.7	0.01	0.14	
		inc	84.20	0.60	1.4	4.1	0.11	1.5	0.01	0.02	
		and	106.70	0.40	8.5	43.4	3.3	10.5	0.25	2.92	1
		GNDD118	NSI								
		GNDD119	52.40	0.80	0.21	17.4	4.2	2.3	0.03	0.25	
		GNDD120	NSI								
		GNDD121	NSI								
		GNDD122	11.50	18.10	0.64	2.2	0.03	0.68	0.00	0.01	2
		inc	21.00	6.00	1.1	3.2	0.04	1.2	0.00	0.01	
		and	54.00	21.00	0.41	0.80	0.12	0.47	0.00	0.04	2
		inc	71.00	2.00	1.2	1.0	0.14	1.2	0.00	0.09	
		and	191.00	1.50	1.6	24.4	0.95	2.3	0.10	1.24	
		and	213.80	3.20	1.7	2.1	0.23	1.8	0.01	0.02	
		and	236.00	1.50	4.8	4.9	0.63	5.1	0.03	0.16	
		GNDD123	21.00	30.00	0.11	1.6	0.32	0.27	0.01	0.04	2
		GNDD124	44.00	7.00	0.08	3.6	0.65	0.40	0.02	0.13	2
		GNDD125	NSI								

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

riteria	JORC Code explanation	Commentary									
		GNDD126	107.30	1.10	12.8	10.3	0.74	13.3	0.00	0.16	1
		and	120.00	2.00	3.2	3.6	0.16	3.4	0.01	0.00	
		and	157.30	0.50	1.0	22.1	2.2	2.2	0.11	2.3	
		and	179.00	2.00	1.7	0.62	0.01	1.7	0.00	0.00	
		GNDD127	NSI								
		GNDD128	63.00	20.00	0.49	0.42	0.02	0.50	0.00	0.00	2
		inc	77.50	1.50	4.1	0.36	0.04	4.1	0.00	0.00	
		GNDD129	15.00	21.00	0.72	1.8	0.10	0.79	0.00	0.05	2
		inc	24.00	10.00	1.0	2.1	0.13	1.1	0.00	0.04	
		and	132.50	0.70	6.7	14.1	0.15	7.0	0.01	0.12	
		GNDD130	NSI								
		GNDD131	NSI								
		GNDD132	14.50	18.10	0.12	2.5	0.18	0.23	0.01	0.04	2
		GNDD133	95.70	4.30	1.3	2.2	0.23	1.40	0.01	0.13	2
		inc	95.70	1.05	3.8	5.3	0.52	4.1	0.02	0.22	
		and	163.00	11.50	0.3	1.0	0.01	0.31	0.00	0.00	2
		GNDD134	17.70	15.30	0.80	7.5	0.07	0.92	0.00	0.11	2
		inc	19.00	10.00	1.04	9.9	0.08	1.2	0.01	0.12	
		and	47.00	39.75	0.26	0.5	0.10	0.31	0.00	0.04	2
		and	129.50	7.50	0.45	0.5	0.06	0.48	0.00	0.02	2
		and	161.00	20.00	0.29	3.6	0.23	0.44	0.01	0.03	2
		inc	177.50	0.50	3.79	29.8	5.23	6.4	0.16	0.10	
		and	196.00	4.00	5.3	86.2	10.60	11.0	0.24	0.57	
		and	240.00	2.00	6.2	1.3	0.02	6.2	0.00	0.00	
		and	272.00	50.00	0.22	0.5	0.14	0.28	0.00	0.00	2
		and	500.10	0.95	2.3	8.1	0.16	2.5	0.21	0.00	
		and	519.00	20.00	0.73	0.7	1.80	1.5	0.02	0.00	2
		inc	529.50	2.90	4.7	3.6	11.6	9.8	0.12	0.00	
		and	560.25	17.75	0.20	0.7	0.38	0.37	0.01	0.00	2
		inc	560.25	0.75	0.09	2.0	4.94	2.3	0.05	0.00	
		inc	570.20	0.50	1.22	9.6	2.36	2.4	0.17	0.02	
		and	630.30	0.70	0.9	1.6	0.21	1.0	0.18	0.00	
		GNDD135	31.00	22.55	0.44	1.1	0.07	0.48	0.01	0.07	2
		inc	41.00	2.00	1.6	0.70	0.07	1.7	0.00	0.02	
		and	78.00	27.20	0.52	2.6	0.37	0.72	0.01	0.07	2
		inc	79.60	3.40	1.4	3.9	0.29	1.6	0.00	0.05	
		inc	95.00	2.00	1.9	2.0	0.16	2.0	0.01	0.09	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		inc	104.30	0.90	0.08	5.3	3.2	1.5	0.01	0.02	
		GNDD137	27.00	38.00	0.38	1.1	0.05	0.42	0.00	0.02	2
		inc	33.00	4.00	1.70	1.2	0.13	1.8	0.00	0.02	
		and	186.25	1.35	8.12	29.5	7.3	11.6	0.12	0.03	
		GNDD138	43.00	54.00	0.28	2.2	0.20	0.40	0.01	0.09	2
		GNDD139	80.00	207.50	0.75	1.7	0.10	0.82	0.00	0.02	2
		inc	80.00	32.00	1.6	2.5	0.06	1.6	0.00	0.03	
		inc	148.00	4.25	1.2	3.8	0.15	1.3	0.00	0.09	
		inc	167.00	14.00	1.5	0.32	0.01	1.5	0.00	0.01	
		inc	243.00	9.00	2.4	3.7	0.62	2.8	0.00	0.01	
		inc	266.00	6.00	1.6	0.61	0.01	1.6	0.00	0.00	
			243.00	29.00	1.2	1.6	0.24	1.3	0.00	0.00	4
		GNDD141	101.50	6.50	14.3	43.6	3.4	16.3	0.15	1.6	2
		inc	101.50	2.50	36.8	111	8.6	41.9	0.30	4.2	1
		GNDD142	55.8	0.7	0.7	13.3	4.0	2.7	0.05	0.03	
		and	81.5	27.5	2.4	11.1	0.9	2.9	0.03	0.06	2
		inc	92.0	11.5	5.4	19.9	2.0	6.5	0.08	0.13	
		inc	107.0	2.0	0.9	5.3	0.2	1.0	0.00	0.03	
		and	125.0	11.0	0.3	3.2	0.1	0.39	0.00	0.01	2
		inc	132.9	1.1	1.6	4.6	0.1	1.7	0.01	0.08	
		and	152.0	40.0	5.1	11.7	1.9	6.1	0.05	0.12	2
		inc	153.1	1.0	23.4	40.1	13.5	29.8	0.34	0.00	1
		inc	160.0	10.7	10.7	28.4	4.9	13.2	0.13	0.15	
		inc	166.2	4.5	23.9	41.3	11.0	29.2	0.29	0.27	1
		inc	177.2	12.8	5.2	9.3	0.7	5.6	0.02	0.24	
		inc	187.1	1.0	44.0	53.8	6.5	47.5	0.15	2.1	1
		and	237.0	0.5	1.1	2.7	0.1	1.2	0.01	0.17	
			81.5	110.5	2.5	7.4	0.9	3.0	0.03	0.06	3
		GNDD143	NSI								
		GNDD145	200.00	8.50	0.11	3.5	0.1	0.22	0.01	0.05	2
		GNDD146	110.00	17.75	0.36	1.1	0.17	0.44	0.01	0.08	2
		inc	118.00	2.00	2.0	6.6	1.5	2.7	0.07	0.69	
		GNDD148	16.00	7.00	0.14	1.7	0.43	0.35	0.01	0.18	2
		and	59.00	2.00	0.00	1.0	2.7	1.2	0.01	0.01	
		GNDD149	8.00	4.00	0.63	1.5	0.28	0.77	0.01	0.07	
		GNDD150	40.00	22.00	0.29	0.91	0.08	0.33	0.00	0.07	2
		and	76.00	35.90	0.24	2.6	0.44	0.46	0.00	0.10	2

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

iteria	JORC Code explanation	Commentary									
		and	180.29	1.31	16.8	26.1	2.9	18.4	0.10	0.27	
		GNDD151	379.75	0.50	0.71	18.6	8.9	4.8	0.17	0.17	
		GNDD152	23.50	4.10	0.5	2.7	0.1	0.55	0.00	0.03	2
		GNDD153	NSI								
		GNDD154	125.90	2.60	4.6	34.6	3.0	6.3	0.11	0.24	
		and	146.00	22.00	0.21	1.0	0.04	0.24	0.00	0.00	2
		inc	146.00	1.00	1.8	12.6	0.12	2.0	0.00	0.01	
		GNDD155	59.00	209.00	1.0	1.4	0.09	1.1	0.00	0.02	2
		inc	59.00	34.00	3.8	4.6	0.20	3.9	0.02	0.03	
		inc	81.00	4.00	13.4	10.5	0.06	13.5	0.05	0.02	
		inc	102.00	6.00	1.2	1.1	0.10	1.2	0.00	0.03	
			59.00	49.00	2.8	3.6	0.16	3.0	0.01	0.02	4
		inc	151.55	0.45	7.7	2.9	4.5	9.6	0.00	0.10	
		inc	182.00	1.00	8.8	17.1	2.2	10.0	0.07	0.89	
		inc	224.00	2.00	2.0	0.29	0.01	2.0	0.00	0.00	
		inc	244.00	11.00	1.1	0.56	0.04	1.1	0.00	0.00	
		inc	266.00	0.55	1.8	1.2	0.02	1.8	0.00	0.00	
		and	338.00	9.00	0.41	0.33	0.05	0.43	0.00	0.00	2
		GNDD156	5.00	7.00	0.68	3.0	0.70	1.0	0.02	0.15	
		GNDD157	20.00	66.00	0.52	1.1	0.08	0.57	0.00	0.07	2
		inc	54.00	10.00	2.2	1.8	0.14	2.3	0.00	0.24	
		and	132.90	10.00	0.18	6.6	0.52	0.48	0.01	0.08	2
		inc	132.90	0.50	0.88	13.1	1.4	1.6	0.03	0.67	
		inc	142.30	0.60	1.0	29.1	6.6	4.2	0.11	0.33	
		and	237.20	130.80	2.3	1.6	0.37	2.5	0.00	0.01	2
		inc	237.20	0.80	1.7	59.1	5.6	4.9	0.18	1.2	
		inc	255.80	1.20	0.63	5.3	9.4	4.8	0.01	0.01	
		inc	289.00	12.00	20.4	4.8	1.0	20.9	0.00	0.00	
		inc	290.50	4.06	55.7	12.9	2.1	56.8	0.01	0.01	1
		inc	321.00	2.00	1.3	0.6	0.01	1.3	0.00	0.00	_
		inc	331.00	6.00	2.5	1.9	0.61	2.8	0.01	0.01	
		inc	343.00	9.00	1.7	0.6	0.10	1.7	0.00	0.00	
		and	407.50	0.50	2.2	1.2	0.37	2.4	0.00	0.00	
		GNDD158	107.00	19.00	0.59	1.0	0.12	0.65	0.00	0.03	2
		inc	120.05	0.95	2.8	4.2	0.31	2.9	0.00	0.13	-
		and	139.00	6.00	0.43	0.78	0.25	0.55	0.00	0.03	2
		GNDD159	NSI	0.00	0.15	0.70	0.25	0.55	0.00	0.00	_

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		GNDD161	93.00	1.10	0.58	5.7	1.4	1.2	0.02	0.66	
		and	224.75	8.25	0.61	1.6	0.04	0.65	0.00	0.09	
		inc	230.00	1.20	2.6	3.5	0.02	2.6	0.00	0.19	
		and	245.65	1.35	1.1	0.54	0.05	1.1	0.00	0.03	
		GNDD162	98.00	14.80	2.0	3.5	0.29	2.2	0.01	0.09	
		inc	102.10	6.90	3.9	6.4	0.51	4.2	0.03	0.15	
		GNDD163	93.00	45.00	0.38	1.7	0.26	0.51	0.01	0.08	2
		inc	101.00	3.00	1.3	7.9	0.51	1.6	0.01	0.19	
		inc	125.20	1.65	1.7	3.7	0.88	2.2	0.02	0.13	
		GNDD164	136.00	22.00	0.38	0.8	0.14	0.45	0.00	0.03	2
		inc	141.50	0.50	1.1	1.1	0.29	1.2	0.00	0.03	
		inc	150.00	1.60	1.4	1.2	0.06	1.4	0.00	0.02	
		and	171.00	10.00	0.48	0.23	0.01	0.48	0.00	0.00	2
		inc	171.00	2.00	1.1	0.23	0.01	1.1	0.00	0.00	
		and	239.00	37.00	0.75	2.1	0.46	1.0	0.02	0.00	2
		inc	239.00	4.45	4.9	14.9	3.4	6.5	0.14	0.01	
		GNDD167	NSI								
		GNDD168	50.00	58.00	0.17	2.2	0.16	0.27	0.00	0.02	2
		and	139.70	0.60	1.5	9.5	0.94	2.0	0.01	0.29	
		and	164.00	27.75	0.15	1.4	0.10	0.21	0.00	0.02	2
		GNDD169	120.00	60.80	0.78	0.74	0.15	0.86	0.01	0.01	2
		inc	152.00	28.80	1.5	1.22	0.31	1.70	0.01	0.02	
		inc	152.00	1.50	1.8	3.8	0.91	2.3	0.02	0.02	
		inc	176.00	4.80	8.4	5.3	1.5	9.2	0.05	0.09	
		inc	180.05	0.75	52.5	33.2	9.6	57.1	0.32	0.60	
		and	208.00	125.50	1.1	3.6	0.09	1.1	0.00	0.03	2
		inc	208.00	71.00	1.7	6.0	0.15	1.8	0.01	0.05	2
		inc	228.80	29.00	3.7	12.5	0.26	4.0	0.02	0.11	
		inc	302.50	9.00	0.92	0.46	0.02	0.94	0.00	0.00	2
		inc	307.70	1.30	4.7	0.80	0.01	4.7	0.00	0.00	
		inc	321.00	12.50	0.26	0.92	0.02	0.28	0.00	0.00	2
		GNDD170A	13.00	10.00	0.57	5.2	0.29	0.76	0.01	0.07	
		and	174.00	6.00	0.67	0.28	0.02	0.68	0.00	0.00	
		GNDD171	126.00	10.75	0.37	1.9	0.15	0.46	0.00	0.08	2
		inc	134.00	1.40	1.1	5.9	0.76	1.5	0.01	0.39	
		and	193.00	3.90	0.32	0.42	0.01	0.33	0.00	0.00	2
		and	270.00	0.50	1.3	2.5	0.65	1.6	0.01	0.01	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
	<u> </u>	and	327.00	2.60	1.9	6.1	1.1	2.4	0.04	0.09	
		GNDD173	83.00	66.00	0.54	3.1	0.07	0.61	0.00	0.04	2
		inc	87.00	6.00	2.0	18.8	0.28	2.4	0.02	0.23	
		inc	116.00	6.00	1.4	2.8	0.13	1.5	0.01	0.05	
		inc	130.40	0.60	8.9	23.9	0.07	9.3	0.00	0.04	
		GNDD174	24.00	76.00	1.0	31.0	0.91	1.8	0.04	0.13	2
		inc	60.90	11.25	6.4	64.1	5.3	9.5	0.23	0.58	
		inc	60.90	5.95	10.7	109	7.9	15.5	0.38	0.95	1
		inc	96.00	4.00	0.20	359	0.26	4.9	0.02	0.22	
		and	163.00	39.50	0.47	2.3	0.31	0.63	0.02	0.02	2
		inc	167.55	4.20	1.5	15.0	2.5	2.8	0.11	0.02	
		inc	199.00	2.00	1.5	0.17	0.01	1.5	0.00	0.00	
		GNDD175	176.00	6.00	0.34	6.3	0.12	0.47	0.00	0.07	2
		GNDD176	73.90	2.95	0.86	3.3	0.16	1.0	0.00	0.15	2
		inc	76.10	0.75	2.5	1.7	0.18	2.6	0.00	0.04	
		and	247.20	1.25	0.29	98.9	0.06	1.6	0.00	0.04	
		GNDD177	41.50	63.35	0.58	1.8	0.24	0.70	0.01	0.07	2
		inc	55.00	1.30	1.3	3.5	0.08	1.4	0.02	0.15	
		inc	60.00	2.00	1.0	1.2	0.19	1.1	0.01	0.01	
		inc	71.80	0.50	1.3	7.3	0.19	1.5	0.01	0.06	
		inc	86.00	11.20	2.1	3.0	0.64	2.4	0.01	0.14	
		GNDD178	14.00	28.00	0.22	17.5	0.26	0.56	0.01	0.04	2
		inc	20.00	2.00	0.20	118	0.11	1.7	0.01	0.11	
		inc	39.00	1.30	0.80	4.8	3.9	2.6	0.04	0.04	
		and	53.00	2.00	0.05	81.0	0.04	1.1	0.00	0.03	
		and	65.15	1.85	1.1	3.3	0.81	1.5	0.01	0.12	
		and	89.15	0.85	4.9	302	0.40	8.9	0.11	0.67	
		GNDD179	76.00	8.00	0.12	4.53	0.47	0.38	0.01	0.33	2
		GNDD180	80.00	1.00	1.3	4.78	0.49	1.5	0.02	0.02	
		and	218.75	3.25	1.0	6.6	0.56	1.4	0.02	0.37	2
		inc	218.75	1.25	1.6	11.0	1.09	2.2	0.03	0.70	
		GNDD181	7.70	3.60	0.66	22.2	1.0	1.4	0.03	0.19	2
		inc	7.70	1.45	1.1	45.3	1.5	2.3	0.07	0.36	
		and	180.60	7.40	0.46	0.54	0.03	0.48	0.00	0.00	2
		inc	180.60	0.55	1.2	0.83	0.07	1.2	0.00	0.00	
		GNDD182	92.00	34.00	0.28	1.1	0.09	0.33	0.00	0.01	2
		inc	92.00	19.00	0.37	1.0	0.07	0.41	0.00	0.01	2

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		inc	96.00	2.00	2.0	1.9	0.01	2.0	0.01	0.01	
		and	148.70	4.30	31.8	96.5	8.1	36.6	0.55	5.3	
		inc	148.70	3.45	39.6	118	10.0	45.4	0.68	6.5	1
		GNDD183	35.00	55.50	1.0	1.5	0.43	1.2	0.01	0.10	2
		inc	37.00	2.00	1.1	1.0	0.09	1.1	0.00	0.11	
		inc	57.00	2.00	0.95	0.44	0.11	1.0	0.00	0.03	
		inc	72.00	15.00	3.2	3.5	0.88	3.6	0.02	0.21	
		and	112.00	24.00	0.16	6.8	1.1	0.71	0.02	0.01	2
		inc	119.00	1.20	2.6	95.1	17.1	11.3	0.34	0.20	
		GNDD184	NSI	55.50	1.0	1.5	0.43	1.2	0.01	0.10	
		GNDD185	59.00	60.00	0.59	1.5	0.27	0.73	0.01	0.08	2
		inc	67.00	4.45	1.8	3.3	0.37	2.0	0.02	0.08	
		inc	83.00	10.00	1.0	1.7	0.21	1.1	0.00	0.04	
		inc	114.00	5.00	1.4	2.0	1.09	1.9	0.01	0.12	
		and	138.00	7.10	1.0	8.9	1.08	1.6	0.02	0.12	
		GNDD186	104.00	2.00	0.92	0.55	0.00	0.92	0.00	0.00	2
		GNDD187	145.00	16.00	0.40	0.61	0.14	0.47	0.00	0.06	2
		inc	149.00	2.00	1.6	2.5	0.64	1.9	0.02	0.29	
		and	192.00	15.00	0.46	0.93	0.16	0.54	0.01	0.03	2
		and	302.50	5.50	1.7	26.0	0.69	2.4	0.03	0.36	
		inc	302.50	2.50	3.7	55.9	1.2	5.0	0.07	0.72	
		GNDD188	198.00	66.00	0.29	6.6	0.13	0.43	0.00	0.05	2
		inc	212.00	4.00	0.89	21.9	0.19	1.3	0.00	0.08	
		inc	252.00	4.55	1.1	4.5	0.38	1.3	0.01	0.03	
		GNDD189	58.60	5.20	16.7	129	6.1	21.0	0.23	1.05	
		inc	60.00	3.80	21.1	148	6.6	25.8	0.21	0.06	1
		and	174.00	6.65	0.15	2.0	0.22	0.27	0.01	0.00	2
		and	191.00	6.00	0.21	2.1	0.30	0.37	0.02	0.24	2
		GNDD190	47.30	7.70	0.12	4.6	4.9	2.3	0.26	0.02	
		and	161.10	1.90	0.19	5.7	0.2	0.35	0.01	0.02	2
		and	186.00	5.00	0.22	0.1	0.0	0.23	0.00	0.00	2
		and	200.00	4.00	0.31	0.1	0.01	0.31	0.00	0.00	2
		GNDD191	188.35	21.15	0.52	3.2	0.43	0.74	0.02	0.02	
		and	217.35	0.50	2.5	16.8	2.5	3.8	0.09	0.05	
		and	238.00	2.00	0.36	3.5	0.81	0.75	0.02	0.01	2
		GNDD192	15.00	50.00	0.28	0.60	0.06	0.31	0.00	0.01	2
		inc	28.00	20.00	0.44	0.59	0.06	0.47	0.00	0.01	2

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		and	107.45	1.75	0.53	8.2	0.09	0.68	0.04	0.01	2
		and	176.00	0.60	1.2	24.8	7.0	4.6	0.24	0.01	
		GNDD193	96.30	83.45	0.66	1.3	0.20	0.77	0.01	0.03	2
		inc	96.30	9.50	1.51	2.7	0.14	1.6	0.03	0.05	
		inc	121.35	13.85	1.34	1.7	0.48	1.6	0.01	0.04	
		inc	147.75	1.20	0.85	1.8	1.9	1.7	0.01	0.06	
		inc	160.50	11.10	0.99	2.1	0.35	1.2	0.01	0.06	
		and	191.00	7.50	1.30	9.3	0.47	1.6	0.01	0.01	2
		inc	194.70	3.80	2.08	16.6	0.88	2.7	0.02	0.01	
		and	218.00	1.50	0.05	72.3	0.06	1.0	0.01	0.07	
		and	251.00	1.90	1.1	7.6	0.18	1.3	0.04	0.01	
		GNDD194	3.00	8.65	0.48	2.6	0.73	0.83	0.01	0.08	2
		inc	8.70	2.95	1.2	3.9	1.7	2.01	0.01	0.13	
		and	286.00	2.00	0.59	0.11	0.03	0.61	0.00	0.00	2
		GNDD195	29.00	2.55	1.3	1.1	0.02	1.4	0.00	0.01	2
		inc	30.00	1.55	1.6	1.4	0.02	1.7	0.00	0.01	
		and	60.00	3.85	5.3	48.6	8.0	9.4	0.14	0.15	
		inc	60.80	3.05	6.1	52.0	8.1	10.2	0.13	0.13	1
		and	346.30	3.70	0.89	0.75	0.04	0.92	0.02	0.00	2
		inc	346.30	0.50	5.2	1.3	0.01	5.2	0.08	0.00	
		GNDD196	9.00	69.20	3.3	4.8	0.10	3.4	0.01	0.07	2
		inc	17.00	12.00	1.7	0.69	0.06	1.8	0.00	0.03	
		inc	69.00	9.20	21.9	16.0	0.38	22.2	0.03	0.38	
		inc	69.00	1.30	137	47.6	0.21	137.2	0.01	1.2	1
		and	279.50	0.60	2.0	0.22	0.00	2.0	0.00	0.00	
		GNDD197	25.00	4.00	0.46	2.5	0.30	0.62	0.01	0.06	2
		and	70.45	1.55	1.0	12.3	1.4	1.7	0.06	0.03	
		GNDD198	48.80	2.20	0.50	0.49	0.17	0.58	0.00	0.00	2
		and	82.00	4.00	1.6	11.8	0.33	1.91	0.03	0.20	2
		inc	84.00	2.00	2.7	22.4	0.44	3.20	0.04	0.38	
		and	99.00	2.00	0.54	0.39	0.09	0.58	0.00	0.03	2
		and	111.00	2.00	1.2	1.0	0.06	1.27	0.01	0.04	
		and	157.00	1.00	0.01	68.1	0.09	0.91	0.00	0.08	2
		GNDD199	26.00	146.00	0.40	1.1	0.23	0.51	0.01	0.07	2
		inc	26.00	60.00	0.63	1.5	0.18	0.72	0.01	0.09	2
		inc	36.00	2.00	1.6	1.3	0.06	1.6	0.01	0.06	
		inc	44.00	1.00	1.8	5.4	0.15	1.9	0.00	0.06	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		inc	58.00	10.00	1.4	1.2	0.23	1.5	0.00	0.10	
		inc	169.00	3.00	1.0	7.9	1.8	1.9	0.06	0.07	
		and	187.00	41.00	0.19	0.70	0.06	0.23	0.00	0.01	2
		GNDD200	168.25	66.75	0.61	0.56	0.07	0.65	0.00	0.00	2
		inc	176.45	7.15	1.0	0.59	0.03	1.1	0.00	0.00	
		inc	208.00	6.00	1.1	0.62	0.05	1.1	0.00	0.00	
		inc	232.00	1.00	4.7	5.6	1.3	5.3	0.05	0.00	
		GNDD201	99.00	3.00	0.48	7.9	0.17	0.66	0.04	0.07	2
		and	130.20	0.60	1.4	2.6	0.07	1.5	0.01	0.03	
		GNDD202	33.00	110.00	0.26	3.1	0.12	0.35	0.00	0.01	2
		inc	71.75	59.25	0.35	4.7	0.20	0.50	0.01	0.01	2
		inc	98.00	10.00	1.0	21.7	0.70	1.6	0.03	0.02	
		inc	127.00	2.00	1.2	1.1	0.02	1.2	0.00	0.01	
		and	238.00	6.00	0.57	1.0	0.03	0.59	0.00	0.01	2
		inc	240.55	1.45	1.5	0.57	0.05	1.5	0.00	0.01	
		GNDD203	46.00	37.00	0.30	13.9	0.16	0.55	0.01	0.09	2
		inc	68.00	9.10	0.44	42.6	0.35	1.1	0.03	0.26	
		and	210.50	0.60	3.6	81.9	10.2	9.0	0.38	3.93	
		and	227.00	2.00	1.4	4.3	0.12	1.5	0.01	0.04	
		and	299.00	21.80	2.4	22.2	4.0	4.5	0.06	0.45	2
		inc	300.25	20.55	2.6	23.1	4.2	4.7	0.07	0.48	
		inc	300.25	3.55	9.3	96.8	13.1	16.2	0.31	2.0	2
		GNDD204	95.00	44.00	3.2	4.5	0.11	3.3	0.00	0.04	2
		inc	97.38	20.62	6.4	6.4	0.11	6.6	0.00	0.06	
		and	183.00	1.00	1.2	6.7	0.44	1.5	0.01	0.33	
		GNDD205	214.20	0.70	15.2	7.1	4.2	17.1	0.03	0.00	
		GNDD206	31.55	10.45	3.6	6.3	0.06	3.7	0.01	0.08	2
		inc	34.65	3.90	9.5	14.9	0.03	9.7	0.03	0.21	
		and	263.00	2.00	0.88	0.37	0.10	0.93	0.00	0.00	2
		and	277.00	4.00	0.54	0.65	0.01	0.55	0.00	0.00	2
		GNDD207	114.00	0.90	2.0	1.9	0.09	2.1	0.02	0.06	
		and	122.55	2.45	8.5	15.5	1.0	9.1	0.04	0.90	
		and	169.50	3.50	0.16	68.2	0.13	1.1	0.01	0.12	2
		inc	170.70	2.30	0.20	98.2	0.17	1.5	0.01	0.16	
		and	217.40	25.60	0.36	0.93	0.05	0.39	0.00	0.01	2
		inc	233.00	4.00	1.4	0.64	0.01	1.4	0.00	0.01	
		and	269.35	1.95	1.7	3.4	0.35	1.9	0.01	0.11	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		GNDD208	170.00	73.65	0.51	1.4	0.21	0.62	0.01	0.04	2
		inc	180.00	2.00	2.2	0.88	0.01	2.2	0.00	0.00	
		inc	208.00	35.65	0.85	2.6	0.41	1.1	0.01	0.07	2
		inc	212.00	13.00	1.9	5.0	0.78	2.3	0.03	0.20	
		GNDD209	33.60	4.40	0.18	14.2	0.08	0.40	0.00	0.06	2
		and	45.65	0.75	0.77	10.7	1.4	1.5	0.03	0.13	
		and	65.00	17.10	1.9	16.2	1.1	2.6	0.02	0.18	
		and	148.00	2.00	1.0	28.5	0.01	1.3	0.00	0.01	
		GNDD210	8.00	2.00	0.86	17.9	0.02	1.1	0.00	0.17	
		and	28.00	6.00	0.04	1.4	0.47	0.26	0.00	0.03	2
		and	308.00	2.00	1.3	3.8	0.71	1.6	0.02	0.02	
		GNDD211	168.80	23.20	0.51	0.82	0.12	0.57	0.00	0.02	2
		inc	177.10	4.35	1.5	2.0	0.27	1.6	0.00	0.00	
		GNDD212	15.00	1.80	0.5	1.1	0.12	0.53	0.00	0.01	2
		and	42.20	1.40	1.2	8.1	0.08	1.4	0.00	0.01	
		GNDD214	48.25	3.75	22.1	125	2.6	24.8	0.05	0.09	
		GNDD215	126.20	14.60	1.4	2.4	0.35	1.6	0.01	0.03	2
		inc	132.50	8.30	2.1	2.1	0.40	2.3	0.01	0.01	
		and	159.00	41.00	0.15	3.1	0.08	0.23	0.01	0.04	2
		GNDD216	81.00	4.00	0.30	0.29	0.0	0.30	0.00	0.00	2
		and	204.00	2.00	0.61	3.5	0.2	0.75	0.03	0.07	2
		GNDD217	111.00	21.00	5.7	32.1	3.4	7.6	0.03	0.16	2
		inc	114.65	11.70	10.1	54.8	5.9	13.3	0.06	0.26	
		inc	116.65	4.35	23.1	139	11.7	29.9	0.14	0.58	
		GNDD218	198.00	5.05	0.39	0.16	0.01	0.39	0.00	0.00	2
		GNDD219	12.00	8.00	0.13	0.46	0.02	0.15	0.00	0.01	2
		and	68.90	39.35	0.04	10.8	0.08	0.22	0.00	0.02	2
		GNDD220	86.00	108.00	0.38	1.6	0.05	0.42	0.01	0.00	2
		inc	88.00	2.00	1.1	10.5	0.50	1.4	0.01	0.03	
		inc	137.00	49.00	0.59	1.3	0.05	0.63	0.01	0.00	2
		inc	146.00	4.00	1.2	1.4	0.10	1.2	0.01	0.00	
		inc	158.30	3.70	1.8	1.9	0.02	1.8	0.01	0.01	
		inc	182.00	2.00	1.7	2.8	0.0	1.7	0.01	0.00	
		GNDD221	82.80	1.20	1.1	6.7	0.10	1.2	0.00	0.04	
		and	156.85	8.15	1.5	7.5	0.83	2.0	0.03	0.13	
		GNDD222	NSI								
		GNDD223	26.00	2.00	0.60	0.41	0.02	0.61	0.00	0.01	2

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		GNDD224	134.00	38.00	0.28	0.94	0.02	0.30	0.00	0.01	2
		inc	134.00	1.00	6.7	1.4	0.06	6.7	0.00	0.00	
		and	313.00	1.25	0.91	4.9	0.39	1.1	0.00	0.04	
		GNDD225	79.00	9.15	0.19	0.79	0.02	0.21	0.00	0.01	2
		and	207.00	2.00	4.3	1.1	0.0	4.3	0.01	0.00	
		and	235.00	9.20	0.93	0.63	0.0	1.0	0.00	0.04	
		GNDD226	109.00	16.00	0.49	2.4	0.33	0.67	0.02	0.27	2
		inc	116.00	7.35	0.71	4.0	0.54	1.0	0.03	0.45	
		and	146.00	44.00	0.41	0.65	0.10	0.46	0.00	0.04	2
		inc	170.00	2.00	1.3	0.84	0.06	1.4	0.00	0.04	
		inc	188.00	2.00	3.8	1.1	0.17	3.9	0.01	0.06	
		GNDD227	81.00	2.00	0.77	0.52	0.0	0.78	0.00	0.00	2
		and	179.15	3.70	1.2	16.8	1.6	2.1	0.03	0.43	2
		inc	181.95	0.90	4.2	64.5	6.6	7.9	0.13	1.8	
		and	222.00	8.00	4.2	53.6	1.7	5.7	0.06	0.05	2
		inc	223.40	6.60	5.1	64.2	2.1	6.8	0.07	0.06	
		GNDD228	84.00	19.00	0.29	0.60	0.03	0.31	0.00	0.01	2
		inc	84.00	2.00	1.0	0.25	0.03	1.0	0.00	0.00	
		and	132.00	10.00	0.32	0.47	0.06	0.36	0.00	0.03	2
		and	279.00	42.00	0.27	0.85	0.07	0.31	0.00	0.03	2
		inc	280.00	1.65	1.9	10.1	0.82	2.4	0.05	0.67	
		inc	311.00	2.00	1.2	0.17	0.01	1.2	0.00	0.00	
		GNDD229	167.00	38.25	0.65	6.5	0.34	0.88	0.02	0.07	2
		inc	171.00	6.00	1.7	30.1	1.5	2.7	0.09	0.21	_
		inc	204.50	0.75	4.8	5.9	0.34	5.0	0.02	0.05	
		GNDD230	211.00	6.00	0.18	2.5	0.04	0.23	0.00	0.00	2
		and	227.00	15.00	0.19	1.1	0.09	0.24	0.00	0.01	2
		and	256.00	4.00	0.48	0.72	0.05	0.51	0.00	0.02	2
		GNDD232	139.85	2.50	0.65	15.2	0.56	1.1	0.03	0.10	2
		and	174.00	4.00	1.7	45.3	0.21	2.4	0.02	0.11	2
		inc	176.00	2.00	2.9	71.1	0.38	4.0	0.04	0.20	_
		GNDD233	113.00	2.00	0.52	0.60	0.09	0.56	0.00	0.01	2
		and	180.10	2.35	0.39	0.46	0.04	0.42	0.00	0.01	2
		GNDD236	175.00	52.00	1.1	4.1	0.26	1.2	0.01	0.02	2
		inc	177.00	2.00	2.9	9.6	0.44	3.3	0.02	0.01	_
		inc	201.00	2.00	1.0	5.6	1.9	1.9	0.02	0.29	
		inc	216.60	4.40	8.4	33.6	0.19	8.9	0.01	0.00	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		GNDD237	139.00	12.00	0.32	1.2	0.28	0.46	0.01	0.21	2
		and	201.55	155.45	0.61	2.1	0.11	0.69	0.00	0.01	2
		inc	201.55	72.45	0.55	3.8	0.16	0.66	0.01	0.01	2
		inc	234.00	9.00	1.2	14.2	0.24	1.5	0.01	0.02	
		inc	254.50	1.75	6.7	10.8	0.51	7.1	0.03	0.02	
		and	298.00	59.00	0.91	1.0	0.06	1.0	0.01	0.01	2
		inc	302.00	2.00	3.3	0.3	0.00	3.3	0.00	0.00	
		inc	336.00	2.00	1.3	11.4	1.5	2.1	0.13	0.10	
		inc	349.65	1.95	17.5	2.9	0.00	17.5	0.00	0.00	
		GNDD239	13.00	6.00	0.25	1.8	0.10	0.31	0.00	0.00	2
		and	26.40	0.85	3.3	54.7	2.5	5.1	0.05	0.07	
		and	47.00	2.35	1.9	7.3	1.5	2.6	0.02	0.22	2
		inc	48.30	1.05	4.2	16.2	0.71	4.7	0.03	0.50	
		GNDD240	114.00	2.00	1.4	0.31	0.01	1.5	0.00	0.00	
		and	167.00	3.45	2.7	50.2	2.9	4.6	0.07	0.86	2
		inc	169.20	1.25	6.6	116	7.6	11.3	0.19	2.3	1
		GNDD241	NSI								
		GNDD242	185.45	8.55	0.54	0.45	0.05	0.57	0.00	0.02	2
		inc	185.45	1.60	1.0	1.2	0.25	1.1	0.00	0.09	
		and	306.50	0.70	2.3	0.89	0.00	2.3	0.00	0.00	
		GNDD243	136.00	7.10	2.2	27.2	2.6	3.6	0.06	0.31	2
		inc	138.00	5.10	2.1	25.9	2.5	3.5	0.06	0.30	
		inc	142.00	1.10	9.0	126	14.0	16.7	0.33	1.8	1
		GNDD245	139.00	43.70	1.0	1.8	0.35	1.1	0.01	0.09	2
		inc	143.00	2.00	3.6	3.0	0.82	4.0	0.00	0.05	
		inc	181.27	1.43	18.7	38.0	6.8	22.1	0.18	1.8	1
		GNDD246	179.50	2.50	4.5	9.0	2.9	5.9	0.05	0.01	2
		inc	179.50	0.85	12.7	25.0	7.8	16.4	0.12	0.04	
		GNDD248	136.00	43.00	0.22	0.50	0.12	0.28	0.00	0.02	2
		and	199.00	83.00	0.46	2.5	0.09	0.53	0.00	0.01	2
		inc	213.00	2.00	1.3	0.45	0.02	1.3	0.00	0.00	
		inc	225.00	1.00	4.7	1.4	0.01	4.7	0.00	0.00	1
		inc	237.10	0.70	24.8	31.0	5.9	27.7	0.23	0.01	-
		inc	254.00	1.40	0.44	114	0.76	2.2	0.04	0.09	
		GNDD249	207.00	15.30	0.68	1.5	0.16	0.77	0.01	0.13	2
		inc	207.00	2.60	3.0	7.9	0.87	3.5	0.05	0.75	-
		and	237.00	14.60	1.1	1.3	0.14	1.2	0.01	0.04	2
		unu	237.00	14.00		1.5	0.17	1.2	0.01	0.04	_

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

iteria	JORC Code explanation	Commentary									
		inc	251.00	0.60	21.9	16.0	2.2	23.1	0.05	0.68	
		GNDD250	80.00	30.00	0.26	3.5	0.17	0.38	0.01	0.07	2
		inc	98.00	5.00	0.88	9.2	0.63	1.3	0.02	0.22	
		GNDD252	104.00	10.00	0.60	2.3	0.25	0.73	0.01	0.05	2
		inc	107.00	5.00	0.95	3.3	0.40	1.2	0.01	0.09	
		and	128.00	12.15	0.76	1.3	0.27	0.90	0.00	0.01	2
		inc	134.00	4.00	1.7	2.4	0.64	2.0	0.01	0.02	
		and	264.57	33.43	0.57	6.1	0.65	0.93	0.02	0.36	2
		inc	281.70	2.90	2.7	36.3	6.1	5.8	0.16	3.4	
		inc	290.00	2.00	1.1	4.6	0.14	1.2	0.01	0.08	
		GNDD253	112.00	2.00	1.0	1.1	0.1	1.0	0.01	0.0	
		and	133.00	50.00	1.8	1.0	0.1	1.9	0.00	0.0	2
		inc	139.00	38.00	2.2	1.2	0.2	2.3	0.01	0.0	
		inc	151.55	2.37	17.2	3.7	0.3	17.3	0.01	0.0	1
		and	201.40	25.13	0.8	0.3	0.0	0.9	0.00	0.0	2
		inc	211.00	3.64	2.4	1.3	0.1	2.4	0.01	0.1	
		inc	220.00	2.00	3.4	0.5	0.0	3.4	0.00	0.0	
		GNDD254	173.00	62.00	1.7	20.3	0.33	2.1	0.01	0.08	2
		inc	173.00	17.00	3.2	4.4	0.49	3.5	0.02	0.17	
		inc	197.00	4.00	9.4	292	2.6	14.3	0.09	0.43	
		and	249.00	18.00	0.80	4.3	0.27	1.0	0.02	0.06	2
		inc	255.45	1.00	6.5	19.0	1.4	7.3	0.06	0.01	
		inc	266.55	0.45	7.3	28.0	5.7	10.1	0.44	1.9	
		and	298.25	1.75	0.27	73.9	0.29	1.3	0.02	0.11	2
		and	312.00	12.00	0.82	0.07	0.00	0.82	0.00	0.00	2
		inc	314.00	6.00	1.0	0.05	0.00	1.0	0.00	0.00	
		and	363.00	26.75	1.7	2.8	0.44	1.9	0.02	0.01	2
		inc	363.00	6.00	4.6	1.9	0.19	4.7	0.01	0.00	
		inc	385.00	4.75	2.1	8.1	1.5	2.9	0.07	0.01	
		GNDD255	158	36.65	0.19	0.75	0.04	0.22	0.00	0.01	2
		inc	192	2.65	1.0	2.5	0.12	1.1	0.01	0.05	
		GNDD257	233.00	44.25	0.32	2.5	0.17	0.43	0.01	0.07	2
		inc	259.00	2.00	2.4	3.5	0.18	2.6	0.00	0.07	
		inc	275.00	2.25	1.2	1.9	0.14	1.3	0.00	0.01	
		GNDD258	250.00	2.00	0.26	17.7	2.9	1.7	0.09	1.7	
		GNDD259	128.00	16.00	0.32	0.81	0.10	0.38	0.00	0.09	2
		inc	143.00	1.00	0.82	5.5	0.85	1.3	0.03	0.61	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		GNDD260	159.00	2.00	0.19	9.1	1.4	0.90	0.05	0.16	2
		GNDD261	22.00	4.00	1.1	5.2	0.56	1.4	0.01	0.00	2
		inc	22.00	0.50	7.5	17.6	4.2	9.6	0.11	0.10	
		GNDD262	183.00	39.00	0.19	1.2	0.06	0.23	0.00	0.02	2
		GNDD263	59.00	9.00	0.05	0.08	0.57	0.30	0.00	0.00	2
		and	110.00	2.00	1.3	0.56	0.00	1.32	0.00	0.00	
		GNDD264	70.00	2.40	0.16	6.1	1.0	0.66	0.03	0.47	2
		inc	71.50	0.90	0.36	12.0	2.0	1.4	0.04	1.0	
		and	104.95	22.05	1.4	16.7	1.7	2.3	0.05	0.43	
		GNDD265	56.00	4.00	0.57	1.3	0.08	0.63	0.01	0.04	2
		and	152.00	14.00	0.20	1.1	0.11	0.26	0.01	0.09	2
		and	237.00	1.00	8.97	19.7	2.48	10.30	0.04	0.38	1
		GNDD266	34.00	16.00	0.4	9.0	0.6	0.8	0.03	0.1	2
		inc	38.82	5.18	0.9	23.1	1.6	1.9	0.07	0.2	
		GNDD267	169.00	9.00	0.3	1.2	0.2	0.4	0.01	0.02	2
		GNDD268	NSI								
		GNDD269	6.00	6.00	1.1	12.2	0.1	1.3	0.01	0.2	2
		inc	10.00	2.00	2.8	34.4	0.3	3.4	0.01	0.5	
		and	48.00	2.00	0.2	87.3	0.4	1.5	0.01	0.0	
		and	86.00	10.00	0.3	1.1	0.0	0.3	0.00	0.0	2
		GNDD270	NSI		-					-	
		GNDD272	35.00	22.00	0.17	2.7	0.1	0.25	0.00	0.03	2
		and	96.50	51.60	3.9	11.8	1.0	4.5	0.04	0.19	2
		inc	137.00	11.10	17.4	51.1	4.5	20.0	0.15	0.79	_
		inc	139.00	7.90	23.8	65.2	6.0	27.2	0.20	1.0	
		GNDD273	31.50	2.50	0.61	3.6	0.8	1.0	0.00	0.75	2
		inc	31.50	0.87	1.5	6.5	2.0	2.4	0.00	1.9	_
		and	50.33	9.17	0.07	5.9	0.6	0.42	0.01	0.10	2
		GNDD274	298.00	19.00	0.74	9.6	0.5	1.1	0.01	0.2	2
		inc	305.00	2.00	6.58	48.8	3.5	8.7	0.11	2.2	-
		GNDD275	55.00	2.00	1.1	1.9	0.05	1.1	0.01	0.01	
		GNDD276	49.00	1.45	0.76	9.1	0.48	1.1	0.02	0.26	
		and	112.15	2.85	0.38	0.57	0.02	0.39	0.00	0.20	2
		and	139.00	14.90	0.47	1.9	0.02	0.57	0.01	0.13	2
		inc	143.00	2.00	1.3	2.5	0.13	1.5	0.01	0.15	2
		and	188.30	4.85	0.32	0.59	0.22	0.38	0.00	0.10	2
		and	212.00	4.00	0.46	1.8	0.15	0.60	0.01	0.22	2

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		GNDD277	63.00	35.00	2.2	3.0	0.11	2.3	0.00	0.03	2
		inc	63.00	29.00	2.6	2.7	0.09	2.7	0.00	0.03	
		GNDD278	221.00	11.75	0.43	1.0	0.09	0.48	0.00	0.05	2
		inc	223.00	1.00	1.0	1.3	0.07	1.1	0.00	0.03	
		inc	228.00	1.00	1.4	1.9	0.19	1.5	0.01	0.12	
		GNDD279	49.00	10.30	0.66	1.7	0.08	0.71	0.00	0.02	2
		inc	50.65	1.35	1.04	0.6	0.0	1.1	0.00	0.0	
		inc	58.00	1.30	1.81	9.1	0.5	2.1	0.01	0.1	
		GNDD280	239.35	15.05	3.7	38.6	0.68	4.5	0.01	0.06	
		inc	242.25	2.75	18.4	29.8	0.66	19.1	0.03	0.03	1
		GNDD281	42.50	23.50	1.1	8.9	0.27	1.3	0.01	0.19	2
		inc	42.50	17.50	1.3	11.3	0.29	1.6	0.01	0.23	
		and	196.30	2.60	1.1	26.2	3.1	2.8	0.09	0.91	2
		inc	196.30	1.65	1.4	37.7	4.7	4.0	0.13	1.4	
		and	224.00	12.00	0.28	4.9	0.37	0.51	0.01	0.04	2
		inc	231.10	1.25	0.72	16.0	3.0	2.2	0.08	0.14	
		and	292.00	1.20	3.0	80.4	0.32	4.2	0.01	0.11	
		and	309.00	3.85	0.43	4.3	0.10	0.53	0.00	0.01	2
		and	426.00	1.55	0.27	24.6	1.6	1.3	0.03	0.03	
		GNDD282	11.00	8.00	0.20	1.7	0.07	0.25	0.00	0.03	2
		and	187.00	10.00	0.45	1.7	0.02	0.48	0.00	0.03	2
		and	216.50	7.50	0.20	2.7	0.11	0.28	0.01	0.08	2
		GNDD283	7.00	4.00	2.9	17.8	0.15	3.2	0.01	0.06	2
		inc	8.50	1.20	9.4	49.7	0.26	10.1	0.02	0.13	1
		GNDD284	69.55	17.05	2.4	4.7	0.66	2.7	0.02	0.14	2
		inc	75.00	5.20	7.4	13.9	2.0	8.5	0.06	0.45	
		inc	77.80	1.20	21.4	34.4	5.5	24.2	0.17	0.86	1
		GNDD285	173.60	1.65	1.0	1.5	0.50	1.2	0.02	0.03	
		and	312.00	11.30	3.0	11.4	1.38	3.7	0.06	0.03	
		and	362.40	10.60	0.6	1.2	0.05	0.6	0.01	0.01	2
		inc	362.40	1.15	3.7	8.8	0.42	4.0	0.05	0.04	
		and	393.00	2.00	6.7	12.1	0.09	6.9	0.07	0.01	
		GNDD286	95.00	6.00	0.22	1.5	0.27	0.36	0.01	0.06	2
		and	112.10	3.80	0.38	0.57	0.02	0.40	0.01	0.00	2
		and	169.00	10.20	4.2	52.5	3.0	6.2	0.10	0.09	2
		inc	169.00	7.45	5.8	71.4	4.0	8.4	0.13	0.12	
		inc	174.25	2.20	11.5	171	11.1	18.5	0.37	0.31	1

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

JORC Code explanation	Commentary									
	GNDD287	26.00	126.00	0.37	2.1	0.17	0.47	0.00	0.01	2
	inc	67.00	5.50	1.8	6.6	0.35	2.0	0.01	0.01	
	inc	82.00	2.00	1.5	4.4	0.59	1.8	0.00	0.00	
	and	202.00	7.00	0.13	1.8	0.16	0.22	0.00	0.02	2
	GNDD288	13.00	96.00	1.8	2.9	0.31	2.0	0.01	0.04	2
	inc	65.00	44.00	3.7	4.6	0.63	4.1	0.01	0.07	
	inc	98.20	4.30	27.6	35.4	5.9	30.6	0.11	0.33	1
	and	216.00	4.50	3.3	31.2	4.0	5.4	0.15	0.55	2
	inc	217.76	1.90	7.6	68.7	8.7	12.2	0.32	1.2	
	inc	218.55	1.11	11.7	101	12.5	18.4	0.48	2.1	1
	and	399.00	27.80	5.5	12.9	3.9	7.3	0.05	0.02	2
	inc	403.00	4.00	1.3	2.1	0.62	1.6	0.01	0.00	
	inc	410.00	14.20	10.1	20.6	7.3	13.6	0.09	0.04	
	GNDD289	23.00	39.20	0.23	2.1	0.13	0.31	0.00	0.01	2
	inc	27.00	2.00	1.0	16.9	0.07	1.3	0.00	0.04	
	inc	60.90	1.30	0.32	7.1	2.6	1.5	0.08	0.04	
	and	132.00	4.00	0.68	0.41	0.02	0.69	0.00	0.00	2
	and	165.00	14.00	0.27	1.6	0.03	0.30	0.00	0.01	2
	and	201.00	6.00	0.17	1.7	0.23	0.29	0.01	0.15	2
	GNDD290	27.45	8.55	0.20	6.0	0.07	0.30	0.01	0.00	2
	and	70.00	4.00	0.71	13.4	1.1	1.4	0.02	0.01	2
	inc	70.00	2.00	1.0	16.1	2.0	2.1	0.04	0.01	
	and	139.50	11.66	0.31	12.1	0.82	0.82	0.02	0.29	2
	inc	139.50	2.10	1.4	25.3	2.1	2.7	0.10	1.3	
	and	162.60	3.96	1.9	19.9	5.5	4.6	0.05	0.31	
	GNDD291	18.20	11.80	0.46	7.5	0.10	0.60	0.01	0.04	2
	inc	24.00	2.00	1.0	5.7	0.05	1.1	0.01	0.05	
	and	62.00	77.00	0.19	5.3	0.10	0.29	0.00	0.02	2
	and	165.00	25.00	0.13	3.5	0.06	0.20	0.00	0.02	2
	inc	179.00	2.00	0.81	6.3	0.34	1.0	0.00	0.09	
	GNDD292	69.00	12.50	0.25	1.7	0.03	0.29	0.00	0.01	2
	inc	69.00	1.00	1.0	3.2	0.04	1.0	0.00	0.04	
	and	99.00	42.00	0.22	1.5	0.07	0.26	0.00	0.01	2
	inc	110.80	2.00	1.0	7.7	0.25	1.2	0.00	0.00	
	and	159.00	63.00	0.61	8.6	0.75	1.0	0.01	0.26	2
	inc	196.75	1.05	1.5	187	16.9	11.2	0.20	0.12	
	inc	210.70	2.70	2.0	62.0	9.6	6.9	0.22	4.9	
	JORG Gode explanation	GNDD287 inc inc and GNDD288 inc inc and inc inc GNDD289 inc inc and and and and and and and and and inc	GNDD287 26.00 inc 67.00 inc 82.00 and 202.00 GNDD288 13.00 inc 98.20 and 216.00 inc 98.20 and 216.00 inc 217.76 inc 218.55 and 399.00 inc 403.00 inc 403.00 inc 400.00 inc 27.00 inc 60.90 and 132.00 and 165.00 and 201.00 GNDD290 27.45 and 70.00 inc 70.00 inc 139.50 inc 139.50 inc 139.50 inc 139.50 inc 24.00 and 162.60 GNDD291 18.20 inc 24.00 and 62.00 and 165.00 inc 179.00 GNDD292 69.00 inc 69.00 inc 69.00 inc 69.00 inc 10.80 inc 110.80 and 99.00 inc 69.00 inc 110.80 and 99.00 inc 110.80 and 159.00 inc 110.80 and 159.00 inc 110.80 and 159.00 inc 110.80	GNDD287 26.00 126.00 inc 67.00 5.50 inc 82.00 2.00 and 202.00 7.00 GNDD288 13.00 96.00 inc 65.00 44.00 inc 98.20 4.30 and 216.00 4.50 inc 217.76 1.01 inc 217.76 1.01 inc 218.55 1.11 and 399.00 27.80 inc 403.00 4.00 inc 410.00 14.20 GNDD289 23.00 39.20 inc 27.00 2.00 inc 60.90 1.30 and 165.00 14.00 and 201.00 6.00 GNDD290 27.45 8.55 and 70.00 4.00 inc 139.50 21.00 and 139.50 11.66 inc 139.50 2.10 and 162.60 3.96 GNDD291 18.20 11.80 inc 24.00 2.00 and 62.00 77.00 and 62.00 70.00 and 63.00 10.00 and 99.00 42.00 and 99.00 12.50 inc 69.00 1.00 and 99.00 42.00 and 99.00 42.00 and 159.00 63.00 inc 110.80 2.00 and 159.00 63.00 inc 110.80 2.00 and 159.00 63.00 inc 150.00 63.00 inc	GNDD287 26.00 126.00 0.37 inc 67.00 5.50 1.8 inc 82.00 2.00 1.5 and 202.00 7.00 0.13 GNDD288 13.00 96.00 1.8 inc 65.00 44.00 3.7 inc 98.20 4.30 27.6 and 216.00 4.50 3.3 inc 217.76 1.90 7.6 inc 218.55 1.11 11.7 and 399.00 27.80 5.5 inc 403.00 4.00 1.3 inc 410.00 14.20 10.1 GNDD289 23.00 39.20 0.23 inc 27.00 2.00 1.0 inc 60.90 1.30 0.32 and 132.00 4.00 0.68 and 132.00 4.00 0.68 and 155.00 14.00 0.27 and 201.00 6.00 0.17 GNDD290 27.45 8.55 0.20 and 70.00 4.00 0.71 inc 70.00 4.00 0.71 inc 70.00 4.00 0.71 inc 70.00 4.00 0.71 inc 139.50 11.66 0.31 inc 139.50 11.66 0.31 inc 139.50 2.10 1.4 and 162.60 3.96 1.9 GNDD291 18.20 11.80 0.46 inc 24.00 2.00 1.0 and 155.00 25.00 0.13 inc 179.00 2.00 1.0 and 162.60 3.96 1.9 GNDD291 18.20 11.80 0.46 inc 24.00 2.00 1.0 and 155.00 25.00 0.13 inc 179.00 2.00 0.10 and 155.00 25.00 0.13 inc 179.00 2.00 0.13 inc 179.00 2.00 0.10 and 155.00 25.00 0.13 inc 179.00 2.00 0.10 and 99.00 42.00 0.22 inc 110.80 2.00 1.00 inc 110.80 2.00 1.00 and 159.00 63.00 0.61 inc 179.00 2.00 0.30 inc 179.00 2.00 inc 110.80 2.00 1.00 inc 11	GNDD287 26.00 126.00 0.37 2.1 inc 67.00 5.50 1.8 6.6 inc 82.00 2.00 1.5 4.4 and 202.00 7.00 0.13 1.8 GNDD288 13.00 96.00 1.8 2.9 inc 65.00 44.00 3.7 4.6 inc 98.20 4.30 27.6 35.4 and 216.00 4.50 3.3 31.2 inc 217.76 1.90 7.6 68.7 inc 217.76 1.90 7.6 68.7 inc 403.00 4.00 1.3 2.1 inc 403.00 4.00 1.3 2.1 inc 403.00 4.00 1.3 2.1 inc 410.00 14.20 10.1 20.6 GNDD289 23.00 39.20 0.23 2.1 inc 60.90 1.30 0.32 7.1 and 132.00 4.00 0.68 0.41 and 165.00 14.00 0.27 1.6 and 201.00 6.00 0.17 1.7 GNDD290 27.45 8.55 0.20 6.0 and 70.00 4.00 0.71 13.4 inc 70.00 4.00 0.71 13.4 inc 139.50 11.66 0.31 12.1 inc 139.50 2.10 1.4 25.3 and 162.60 3.96 1.9 19.9 GNDD291 18.20 11.80 0.46 7.5 inc 24.00 2.00 1.0 5.3 and 62.00 77.00 0.19 5.3 and 62.00 77.00 0.19 5.3 and 62.00 77.00 0.19 5.3 and 62.00 77.00 1.0 15.9 inc 69.90 12.50 0.25 1.7 inc 69.90 1.00 1.0 1.0 3.2 and 99.90 42.00 0.22 1.5 inc 110.80 2.00 1.0 7.7 and 159.00 6.90 0.20 1.0 7.7 inc 69.90 12.50 0.25 1.7 inc 69.90 12.50 0.61 8.6 inc 110.80 2.00 1.0 7.7	GNDD287 26.00 126.00 0.37 2.1 0.17 inc 67.00 5.50 1.8 6.6 0.35 inc 82.00 2.00 1.5 4.4 0.59 and 202.00 7.00 0.13 1.8 0.16 GNDD288 13.00 96.00 1.8 2.9 0.31 inc 65.00 44.00 3.7 4.6 0.63 inc 98.20 4.30 27.6 35.4 5.9 and 216.00 4.50 3.3 31.2 4.0 inc 217.76 1.90 7.6 68.7 8.7 inc 218.55 1.11 11.7 101 12.5 and 399.00 27.80 5.5 12.9 3.9 inc 403.00 4.00 1.3 2.1 0.62 inc 410.00 14.20 10.1 20.6 7.3 GNDD289 23.00 39.20 0.23 2.1 0.13 inc 27.00 2.00 1.0 16.9 0.07 inc 60.90 1.30 0.32 7.1 2.6 and 132.00 4.00 0.37 1.7 2.6 and 132.00 4.00 0.77 1.7 0.23 GNDD290 27.45 8.55 0.20 6.0 0.07 and 70.00 4.00 0.17 1.7 0.23 GNDD290 27.45 8.55 0.20 6.0 0.07 and 139.50 2.10 1.0 16.1 2.0 and 139.50 11.66 0.31 12.1 0.82 inc 139.50 2.10 1.0 12.0 8.2 inc 139.50 2.10 1.0 1.0 1.2 0.6 inc 139.50 2.10 1.0 15.7 0.82 inc 139.50 2.10 1.0 15.7 0.82 inc 139.50 2.10 1.0 15.7 0.83 and 139.50 11.66 0.31 12.1 0.82 inc 139.50 2.10 1.0 5.7 0.05 and 62.00 7.70 0.19 3.5 0.10 inc 24.00 2.00 0.10 5.7 0.05 and 62.00 7.70 0.19 3.5 0.10 inc 24.00 2.00 0.13 3.5 0.10 and 155.00 2.10 1.0 5.7 0.05 and 62.00 7.70 0.19 3.5 0.10 inc 24.00 2.00 0.13 3.5 0.10 inc 27.90 2.00 0.13 3.5 0.06 inc 179.00 2.00 0.10 3.2 0.04 and 99.00 42.00 0.22 1.5 0.07 inc 110.80 2.00 1.00 7.7 0.25 and 99.00 42.00 0.22 1.5 0.07 inc 110.80 2.00 1.00 7.7 0.25 and 99.00 42.00 0.22 1.5 0.07 inc 110.80 2.00 1.00 7.7 0.25 and 99.00 42.00 0.20 1.0 7.7 0.25 and 99.00 42.00 0.20 1	GNDD287 26.00 126.00 0.37 2.1 0.17 0.47 inc 67.00 5.50 1.8 6.6 0.35 2.0 inc 82.00 2.00 1.5 4.4 0.59 1.8 and 202.00 7.00 0.13 1.8 0.16 0.22 GND288 13.00 96.00 1.8 2.9 0.31 2.0 inc 65.00 44.00 3.7 4.6 0.63 4.1 inc 98.20 4.30 27.6 35.4 5.9 30.6 and 216.00 4.50 3.3 31.2 4.0 5.4 inc 217.76 1.90 7.6 68.7 8.7 12.2 inc 218.55 1.11 11.7 101 12.5 18.4 and 399.00 27.80 5.5 12.9 3.9 7.3 inc 403.00 4.00 1.3 2.1 0.62 1.6 inc 410.00 14.20 10.1 20.6 7.3 13.6 GNDD289 23.00 39.20 0.23 2.1 0.13 0.31 inc 60.90 1.30 0.32 7.1 2.6 1.5 and 132.00 4.00 1.3 2.1 0.69 1.5 and 132.00 4.00 1.3 2.1 0.69 0.69 and 165.00 27.45 8.55 0.20 6.0 0.07 0.30 and 70.00 4.00 0.71 13.4 1.1 1.4 inc 70.00 2.74 8.55 0.20 6.0 0.07 0.30 and 70.00 4.00 0.71 13.4 1.1 1.4 inc 70.00 2.00 1.0 16.1 2.0 2.1 and 139.50 11.66 0.31 12.1 0.69 0.82 inc 139.50 11.66 0.31 12.1 0.69 0.30 and 70.00 4.00 0.71 13.4 1.1 1.4 inc 70.00 2.00 1.0 16.1 2.0 2.2 2.1 and 139.50 11.66 0.31 12.1 0.82 0.82 inc 139.50 11.66 0.31 3.5 0.06 0.20 inc 140.00 2.00 1.0 5.7 0.05 1.1 and 62.00 3.90 0.77 0.30 3.30 0.30 0.30 0.30 0.30 0.3	GNDD287 26.00 126.00 0.37 2.1 0.17 0.47 0.00	GNDD287 26.00 126.00 0.37 2.1 0.17 0.47 0.00 0.01 inc 67.00 5.50 1.8 6.6 0.35 2.0 0.01 0.01 inc 82.00 2.00 1.5 4.4 0.59 1.8 0.00 0.00 and 202.00 7.00 0.13 1.8 0.16 0.22 0.00 0.02 GNDD288 13.00 96.00 1.8 2.9 0.31 2.0 0.01 0.01 inc 65.00 44.00 3.7 4.6 0.63 4.1 0.01 0.07 inc 98.20 4.30 27.6 35.4 5.9 30.6 0.11 0.33 and 216.00 4.50 3.3 31.2 4.0 5.4 0.15 0.55 inc 217.76 1.90 7.6 68.7 8.7 12.2 0.32 1.2 inc 217.76 1.90 7.6 68.7 8.7 12.2 0.32 1.2 inc 217.76 1.90 7.6 68.7 8.7 12.2 0.32 1.2 inc 218.55 1.11 11.7 101 12.5 18.4 0.48 2.1 and 39.00 27.80 5.5 12.9 3.9 7.3 0.05 0.02 inc 40.30 4.00 1.3 2.1 0.62 1.6 0.01 0.00 inc 40.00 1.420 1.01 20.6 7.3 13.6 0.09 0.04 inc 40.00 1.420 1.01 20.6 7.3 13.6 0.09 0.04 inc 60.00 1.30 0.32 7.1 2.6 1.5 0.09 0.04 inc 60.00 1.30 0.32 7.1 2.6 1.5 0.08 0.04 and 150.00 4.00 0.68 0.41 0.02 0.69 0.00 0.01 and 20.10 6.00 0.17 1.7 0.23 0.9 0.01 0.00 and 20.10 6.00 0.17 1.7 0.23 0.9 0.01 0.15 GNDD290 27.45 8.55 0.20 6.0 0.07 0.30 0.01 0.05 and 70.00 27.45 8.55 0.20 1.0 1.3 2.1 0.62 1.0 0.00 0.01 inc 70.00 2.00 1.0 1.0 0.00 0.01 inc 70.00 0.00 0.00 0.00 0.00 0.00 0.00 0.

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		inv	219.05	2.95	2.2	1.8	0.01	2.2	0.00	0.00	
		GNDD293	130.00	66.00	0.48	1.0	0.09	0.53	0.00	0.02	2
		inc	130.00	5.50	1.4	3.4	0.19	1.5	0.01	0.03	
		inc	143.00	2.00	1.9	2.4	0.03	2.0	0.00	0.01	
		inc	179.50	9.35	0.79	1.8	0.23	0.91	0.01	0.03	
		GNDD294	35.83	9.17	0.29	4.1	0.18	0.42	0.04	0.24	2
		GNDD295	58.00	42.00	0.20	2.7	0.08	0.27	0.00	0.01	2
		GNDD296	59.00	13.00	0.31	5.0	0.10	0.42	0.01	0.06	2
		inc	70.00	2.00	1.7	21.5	0.09	2.0	0.00	0.04	
		and	173.00	10.00	0.39	1.6	1.2	0.95	0.01	0.00	
		and	193.00	16.90	14.1	18.3	5.8	16.9	0.18	0.00	
		inc	194.20	7.10	28.1	36.1	8.3	32.2	0.31	0.00	
		inc	207.05	2.85	13.1	13.0	12.6	18.8	0.26	0.00	
		GNDD297	16.00	14.00	0.47	5.1	0.03	0.55	0.00	0.02	2
		inc	20.00	2.00	1.4	21.6	0.01	1.7	0.00	0.00	
		and	71.00	3.60	0.11	34.0	0.03	0.55	0.00	0.03	2
		GNDD298	148.00	21.00	0.63	1.1	0.23	0.75	0.01	0.13	2
		inc	148.00	7.00	1.1	2.3	0.39	1.3	0.02	0.26	
		and	205.00	2.00	1.5	0.15	0.01	1.5	0.00	0.00	
		and	230.50	1.70	0.60	4.2	0.42	0.83	0.01	0.01	2
		and	281.00	5.00	0.06	19.7	0.11	0.36	0.00	0.04	2
		and	300.00	9.00	0.57	2.6	0.47	0.80	0.01	0.00	2
		inc	308.00	1.00	3.1	17.9	3.87	5.0	0.12	0.01	
		GNDD299	141.00	1.00	1.1	9.5	0.88	1.6	0.03	0.09	
		and	147.50	9.85	3.4	44.0	5.3	6.2	0.11	0.20	
		GNDD300	27.00	18.00	0.36	2.0	0.13	0.44	0.00	0.00	2
		and	87.00	33.10	0.36	0.94	0.04	0.39	0.00	0.01	2
		inc	108.00	2.00	1.6	0.73	0.01	1.6	0.00	0.00	
		and	173.85	0.50	0.23	12.6	2.42	1.4	0.07	0.01	
		and	188.00	0.60	1.5	22.3	2.9	3.0	0.11	0.90	
		GNDD301	13.20	48.80	0.41	6.1	0.08	0.52	0.00	0.05	2
		inc	26.10	15.90	0.75	11.7	0.06	0.92	0.00	0.05	
		GNDD303	139.00	4.00	0.42	1.3	0.01	0.44	0.00	0.01	2
		GNDD304	66.00	47.00	0.23	1.1	0.21	0.33	0.00	0.06	2
		inc	66.00	2.00	1.2	3.4	0.11	1.3	0.01	0.14	
		inc	94.00	2.00	0.72	1.7	0.99	1.2	0.00	0.34	
		GNDD305	128.00	48.00	0.22	1.4	0.02	0.25	0.00	0.01	2

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		inc	175.00	1.00	1.2	14.2	0.00	1.3	0.09	0.00	
		and	226.70	12.10	0.37	1.9	0.11	0.44	0.00	0.10	2
		inc	237.50	1.30	0.93	7.4	0.50	1.2	0.02	0.54	
		GNDD306	78.00	25.00	0.49	5.8	0.08	0.60	0.02	0.04	2
		inc	84.00	8.00	1.0	13.9	0.20	1.2	0.04	0.09	
		and	213.25	28.75	0.45	8.2	0.30	0.69	0.02	0.03	2
		inc	213.25	1.75	1.0	18.1	0.03	1.2	0.00	0.02	
		inc	222.70	1.70	2.5	63.1	3.0	4.6	0.19	0.08	
		inc	234.00	2.00	1.7	21.5	1.0	2.4	0.04	0.03	
		GNDD307	0.00	23.00	0.33	4.8	0.05	0.41	0.00	0.02	2
		and	57.00	22.00	0.28	0.50	0.03	0.30	0.00	0.00	2
		inc	57.00	2.00	1.5	0.24	0.01	1.5	0.00	0.00	
		GNDD308	258.25	36.75	0.49	1.6	0.16	0.58	0.00	0.06	2
		inc	291.00	4.00	2.6	5.6	0.84	3.1	0.02	0.05	
		GNDD309	185.00	23.10	0.62	1.6	0.12	0.70	0.00	0.04	2
		inc	191.00	2.00	1.0	11.9	0.11	1.2	0.00	0.11	
		inc	206.00	2.10	2.8	1.9	0.77	3.1	0.02	0.17	
		GNDD310	30.00	19.00	2.3	1.7	0.01	2.3	0.00	0.00	2
		inc	30.00	2.00	20.3	11.5	0.02	20.5	0.00	0.00	
		and	186.00	40.00	0.60	0.92	0.02	0.62	0.00	0.00	2
		inc	188.00	2.00	1.7	1.9	0.06	1.8	0.00	0.00	
		inc	204.00	8.00	1.1	1.0	0.00	1.1	0.00	0.00	
		inc	222.00	2.00	1.0	0.75	0.01	1.0	0.00	0.00	
		and	288.00	2.00	1.1	6.5	0.16	1.3	0.02	0.15	
		GNDD311	5.00	22.00	0.44	0.84	0.02	0.46	0.00	0.01	2
		inc	23.00	2.00	2.3	1.2	0.04	2.3	0.00	0.02	
		and	45.00	4.00	0.57	0.31	0.01	0.58	0.00	0.01	2
		and	176.00	21.00	0.20	3.2	0.13	0.29	0.01	0.01	2
		inc	191.00	4.50	0.31	6.5	0.44	0.59	0.02	0.01	
		GNDD313	97.00	24.00	0.53	12.4	0.02	0.70	0.00	0.00	2
		inc	109.00	2.00	2.2	14.1	0.01	2.4	0.00	0.00	
		and	143.00	14.80	0.86	2.3	0.07	0.92	0.01	0.03	2
		inc	148.50	2.50	4.3	7.9	0.24	4.5	0.01	0.11	
		GNDD314	102.00	4.00	0.34	11.8	0.22	0.58	0.01	0.06	2
		and	115.35	2.65	1.5	13.8	0.06	1.7	0.00	0.01	2
		inc	116.59	1.41	2.4	21.3	0.08	2.7	0.00	0.01	
		and	205.00	17.50	0.71	11.5	2.4	1.9	0.04	0.22	2

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		inc	205.00	5.50	1.6	25.1	4.6	4.0	0.08	0.42	
		inc	205.00	2.15	3.7	33.6	11.4	9.1	0.18	0.88	
		inc	216.00	6.50	0.51	9.6	2.4	1.7	0.04	0.24	2
		inc	217.00	5.50	0.56	10.5	2.7	1.9	0.04	0.27	
		inc	217.00	3.00	0.83	14.3	3.9	2.7	0.06	0.32	
		and	284.00	2.00	0.83	0.2	0.01	0.84	0.00	0.00	2
		and	296.90	2.75	59.0	25.8	7.2	62.5	0.27	0.00	1
		GNDD315	219.00	2.00	0.95	0.75	0.01	1.0	0.00	0.01	2
		GNDD316	102.00	4.00	0.29	11.2	0.30	0.56	0.07	0.09	2
		and	286.00	34.00	0.32	4.7	0.10	0.42	0.01	0.03	2
		inc	286.00	2.00	1.3	28.0	0.05	1.7	0.00	0.00	
		inc	306.00	2.00	0.64	9.6	0.93	1.2	0.05	0.21	
		inc	316.00	2.00	1.4	4.4	0.03	1.5	0.01	0.01	
		GNDD318	221.00	7.17	0.29	2.4	0.29	0.45	0.01	0.09	2
		inc	226.66	1.51	0.75	8.2	1.1	1.4	0.05	0.27	
		and	245.00	3.78	0.33	7.1	0.36	0.57	0.01	0.10	2
		inc	248.28	0.50	0.42	10.5	1.9	1.4	0.03	0.47	
		GNDD319	108.00	104.00	0.48	1.1	0.03	0.51	0.00	0.01	2
		inc	128.00	2.00	1.7	1.2	0.02	1.7	0.00	0.00	
		inc	140.00	2.00	1.5	0.88	0.01	1.6	0.00	0.01	
		inc	154.00	2.00	1.3	3.7	0.00	1.3	0.00	0.00	
		inc	164.00	4.00	1.2	5.5	0.27	1.4	0.02	0.12	
		inc	196.00	12.00	1.3	0.53	0.01	1.3	0.00	0.00	
		GNDD320	181.75	36.25	0.4	2.52	0.25	0.55	0.01	0.03	2
		inc	197.00	7.85	1.0	5.77	0.61	1.4	0.03	0.04	
		inc	213.50	1.50	1.2	4.09	0.68	1.6	0.03	0.04	
		and	254.00	29.00	0.3	0.26	0.02	0.34	0.00	0.00	2
		and	301.00	32.50	0.76	0.6	0.04	0.78	0.00	0.00	2
		inc	303.50	15.50	1.32	8.0	0.06	1.4	0.00	0.00	
		GNDD321	261.00	2.00	1.13	1.0	0.06	1.2	0.00	0.03	
		GNDD322	132.00	50.00	0.85	1.9	0.27	1.0	0.00	0.01	2
		inc	143.60	2.40	12.2	28.5	4.46	14.5	0.05	0.15	
		inc	159.40	1.40	1.1	1.1	0.21	1.2	0.01	0.03	
		inc	180.00	2.00	1.4	0.26	0.01	1.4	0.00	0.00	
		and	295.60	3.40	0.75	0.69	0.01	0.76	0.01	0.00	2
		inc	295.60	1.40	1.4	0.64	0.01	1.4	0.01	0.00	
		and	382.15	8.85	1.3	10.9	1.45	2.0	0.06	0.01	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		GNDD324	128.00	2.00	1.0	1.0	0.01	1.0	0.01	0.05	
		and	144.00	2.00	1.9	1.4	0.01	2.0	0.01	0.01	
		and	152.00	10.00	0.27	0.81	0.11	0.32	0.00	0.01	2
		GNDD327	229.00	28.00	0.25	0.20	0.01	0.25	0.00	0.01	2
		and	307.00	0.60	1.4	4.4	1.1	1.9	0.03	0.83	
		and	354.70	1.00	13.2	22.1	2.0	14.4	0.11	0.01	
		and	386.00	1.70	0.57	0.21	0.01	0.57	0.00	0.00	2
		and	459.00	3.00	0.34	1.1	0.01	0.36	0.00	0.00	2
		GNDD329	104.00	14.00	1.1	1.4	0.02	1.2	0.00	0.00	2
		inc	106.60	1.65	7.3	4.1	0.02	7.4	0.00	0.01	
		and	282.00	68.00	0.48	0.87	0.03	0.51	0.01	0.01	2
		inc	284.00	2.50	2.9	6.4	0.72	3.3	0.04	0.30	
		inc	312.00	1.10	3.0	2.0	0.00	3.1	0.00	0.00	
		inc	331.00	2.00	1.0	0.7	0.00	1.0	0.01	0.00	
		inc	337.00	2.00	1.2	1.1	0.00	1.2	0.00	0.00	
		inc	345.00	2.00	1.3	1.0	0.00	1.3	0.01	0.00	
		GNDD330	286	49.70	0.39	0.88	0.08	0.43	0.00	0.01	2
		inc	316	1.00	1.4	0.89	0.03	1.5	0.00	0.01	
		inc	329	6.70	1.3	1.5	0.06	1.3	0.00	0.00	
		and	375.2	1.80	0.41	2.6	3.7	2.1	0.03	0.01	2
		inc	375.2	0.50	1.3	8.2	12.3	6.7	0.11	0.02	
		GNDD333	164.20	16.80	0.32	1.3	0.07	0.37	0.00	0.02	2
		and	224.00	5.00	0.50	9.1	0.31	0.75	0.01	0.13	
		and	248.00	1.45	1.2	3.8	0.43	1.4	0.02	0.19	
		and	262.00	10.30	0.17	2.6	0.65	0.49	0.01	0.03	2
		inc	265.80	1.20	0.68	3.0	0.73	1.0	0.02	0.04	
		inc	271.50	0.80	0.22	7.2	2.0	1.2	0.04	0.00	
		and	284.00	13.00	0.27	3.19	0.32	0.44	0.01	0.04	2
		GNDD334	220.00	29.00	0.33	0.19	0.02	0.34	0.00	0.00	2
		inc	222.00	1.50	1.2	0.43	0.01	1.2	0.00	0.00	
		inc	230.00	1.50	1.4	0.09	0.01	1.4	0.00	0.00	
		and	275.00	20.00	0.25	0.12	0.01	0.25	0.00	0.00	2
		and	317.00	18.65	0.25	0.74	0.06	0.29	0.00	0.03	2
		GNDD336	146.00	35.00	0.35	5.3	0.23	0.52	0.00	0.04	2
		inc	150.00	2.00	1.3	15.8	0.88	1.8	0.01	0.31	
		inc	174.00	1.00	2.2	26.8	1.68	3.2	0.03	0.08	
		and	282.00	3.00	0.40	0.61	0.04	0.42	0.00	0.05	2

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		and	310.00	49.00	1.5	10.4	1.67	2.4	0.05	0.06	2
		inc	312.00	2.92	13.8	55.1	7.22	17.7	0.16	0.49	
		inc	327.45	2.40	0.20	6.9	1.16	0.79	0.03	0.09	
		inc	341.45	17.55	1.8	18.2	3.24	3.5	0.11	0.05	
		GNDD337	90.00	7.00	0.38	0.70	0.07	0.41	0.00	0.05	2
		inc	90.00	1.10	1.7	2.1	0.22	1.9	0.01	0.19	
		and	195.50	34.00	0.16	3.0	0.01	0.21	0.00	0.01	2
		and	258.60	13.90	2.0	6.0	0.74	2.4	0.02	0.04	2
		inc	262.20	10.30	2.7	7.9	0.95	3.2	0.03	0.04	
		and	312.00	2.00	1.8	3.2	0.27	2.0	0.01	0.02	
		GNDD338	9.00	4.00	0.36	2.55	0.02	0.40	0.00	0.01	2
		and	190.00	20.00	0.40	6.12	0.08	0.51	0.01	0.02	2
		GNDD341	60.60	110.40	0.52	0.60	0.08	0.56	0.00	0.00	2
		inc	78.00	47.00	1.0	0.95	0.18	1.1	0.01	0.01	2
		inc	81.50	5.50	6.4	2.2	0.63	6.7	0.01	0.01	
		GNDD343	190.00	55.00	0.51	6.2	0.16	0.66	0.01	0.03	2
		inc	190.00	2.00	1.1	9.2	0.07	1.2	0.02	0.00	
		inc	204.00	14.00	1.1	13.6	0.15	1.3	0.01	0.02	
		inc	224.00	1.50	1.4	18.8	1.38	2.2	0.08	0.13	
		GNDD346	77.00	4.70	0.67	4.1	0.45	0.92	0.04	0.27	2
		inc	80.00	1.70	1.8	2.1	0.16	1.9	0.02	0.04	
		GNDD348	227.00	23.00	0.55	7.9	0.12	0.70	0.00	0.01	2
		inc	227.00	3.40	1.2	28.2	0.42	1.7	0.01	0.00	
		inc	247.10	0.90	6.1	26.8	0.30	6.6	0.01	0.07	
		GNDD351	62.00	4.00	0.26	17.4	0.03	0.49	0.00	0.00	2
		and	125.00	4.00	0.32	7.3	0.48	0.62	0.03	0.16	2
		and	164.50	6.00	0.17	1.1	0.04	0.21	0.00	0.02	2
		GNDD352	143.50	11.30	5.4	76.9	5.5	8.8	0.18	0.42	
		inc	146.00	4.00	10.6	141	11.7	17.4	0.27	0.43	1
		and	301.00	3.00	0.42	4.4	0.35	0.63	0.01	0.07	2
		inc	302.00	1.00	1.0	9.9	0.63	1.4	0.02	0.15	
		inc	325.00	1.00	8.9	5.4	3.0	10.3	0.10	0.00	1
		GNDD353	15.00	29.00	0.39	31.1	0.15	0.85	0.00	0.01	2
		inc	21.00	4.00	0.75	52.0	0.16	1.5	0.01	0.02	
		inc	37.00	5.60	0.56	68.3	0.30	1.6	0.01	0.03	
		and	95.00	3.00	0.12	3.4	0.36	0.32	0.02	0.20	2
		GNDD354	15.00	41.00	0.32	8.3	0.07	0.46	0.00	0.00	2

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		inc	29.00	8.00	0.53	15.8	0.07	0.76	0.00	0.00	
		and	95.00	20.85	0.42	5.3	0.23	0.59	0.01	0.05	2
		inc	101.00	2.00	2.0	22.3	1.0	2.7	0.02	0.14	
		GNDD358	34.00	2.55	0.28	5.3	0.07	0.38	0.01	0.01	2
		and	137.00	20.00	0.26	2.0	0.11	0.33	0.00	0.04	2
		GNDD362	191.00	17.00	0.19	8.3	0.04	0.31	0.00	0.01	2
		and	237.90	2.50	2.1	77.6	11.1	7.9	0.36	0.36	2
		inc	239.1	1.3	3.8	138	21.2	14.7	0.70	0.65	
		and	401.60	3.50	5.4	9.4	3.9	7.2	0.12	0.00	2
		inc	402.25	2.20	8.4	12.1	6.1	11.2	0.18	0.00	
		and	415.30	1.15	2.2	6.7	1.3	2.8	0.05	0.00	
		and	423.55	2.75	0.19	4.2	1.7	1.0	0.09	0.00	2
		inc	425.00	0.60	0.13	7.5	5.8	2.8	0.23	0.00	
		GNDD363	112.00	15.25	0.25	0.49	0.01	0.27	0.00	0.00	2
		and	188.00	21.85	0.53	5.9	0.34	0.76	0.01	0.04	2
		inc	188.00	1.50	1.4	19.5	2.35	2.6	0.03	0.29	
		inc	203.50	5.05	1.0	5.4	0.15	1.2	0.00	0.02	
		GNDD370	245.80	18.90	2.7	9.9	0.55	3.1	0.02	0.21	2
		inc	247.00	6.60	5.8	17.9	1.3	6.6	0.05	0.46	
		inc	259.80	4.90	2.0	10.1	0.32	2.3	0.01	0.13	
		and	330.80	4.20	10.4	61.5	11.4	16.1	0.42	0.68	
		GNDD378	108.30	63.30	8.5	7.6	2.8	9.8	0.05	0.00	
		inc	113.58	24.08	20.4	15.9	6.2	23.3	0.11	0.01	1
		inc	168.7	1.90	13.5	23.1	7.8	17.2	0.21	0.00	1
		and	317.5	1.10	0.39	7.2	1.6	1.2	0.07	0.04	
		GNDD384	57.00	12.00	0.12	3.8	0.42	0.35	0.01	0.14	2
		GNDD386	64.60	31.90	0.56	6.4	0.09	0.68	0.00	0.02	2
		inc	67.00	2.00	6.3	2.7	0.01	6.4	0.00	0.01	
		inc	81.50	0.90	0.84	90.8	1.1	2.5	0.03	0.11	
		GNDD390	238.00	2.00	0.4	15.0	1.3	1.1	0.07	0.61	
		GNDD397	15.00	5.00	17.3	30.1	5.1	19.9	0.08	0.14	
		inc	15.00	3.00	28.3	49.8	8.3	32.5	0.14	0.24	1
		and	50.00	4.00	0.25	9.4	0.12	0.42	0.01	0.14	2
		and	98.00	4.00	0.61	0.26	0.00	0.62	0.00	0.00	2
		GNDD399	5.00	17.50	0.30	2.5	0.20	0.42	0.01	0.14	2
		and	57.00	51.25	0.30	2.1	0.08	0.36	0.00	0.05	2
		and	277.00	14.00	0.32	1.4	0.04	0.36	0.00	0.00	2

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

riteria	JORC Code explanation	Commentary									
		GNDD408	13.00	21.70	0.88	9.3	0.18	1.1	0.01	0.19	2
		inc	23.00	4.00	3.9	15.7	0.22	4.1	0.03	0.39	
		and	47.00	63.00	0.38	2.8	0.22	0.51	0.00	0.12	2
		inc	86.00	1.40	3.1	43.3	1.6	4.4	0.10	0.07	
		inc	101.20	2.80	1.6	20.5	2.8	3.1	0.03	1.92	
		and	184.00	4.00	0.35	1.3	0.27	0.49	0.00	0.00	2
		and	248.90	8.10	0.35	0.78	0.16	0.43	0.00	0.00	2
		and	325.00	12.50	1.0	1.3	0.23	1.1	0.00	0.00	2
		inc	325.00	5.00	2.2	1.6	0.19	2.3	0.00	0.00	
		GNDD416A	61.00	6.00	0.26	0.49	0.02	0.28	0.00	0.00	2
		GNDD442	125.90	13.10	0.30	1.4	0.16	0.39	0.01	0.09	2
		and	229.00	1.00	1.8	4.0	0.04	1.8	0.00	0.21	
		and	250.00	2.85	1.8	1.9	0.13	1.9	0.01	0.13	2
		inc	251.40	1.45	2.9	2.7	0.16	3.0	0.02	0.16	
		and	306.00	29.00	3.2	44.6	3.6	5.3	0.06	0.38	2
		inc	308.00	27.00	3.4	47.6	3.8	5.7	0.06	0.40	
		inc	329.00	2.60	17.6	218	10.1	24.7	0.18	0.21	1
		Holes specifica	ally drilled for	r metallur	gical tes	t sample	material:				
		GMDD039	18.00	8.00	0.15	1.9	0.60	0.43	0.01	0.07	2
		and	67.60	1.00	24.5	58	3.9	26.9	0.27	1.8	1
		GMDD040	116.72	8.68	5.5	12	2.2	6.7	0.06	0.00	
		inc	122.50	2.90	11.8	24	4.2	14.0	0.14	0.00	1
		GMDD041	31.00	16.0	2.6	4.9	0.27	2.8	0.01	0.25	2
		inc	41.70	2.0	20.0	29	1.2	20.8	0.06	1.7	
		and	63.50	5.1	7.9	83	7.9	12.3	0.47	0.21	
		and	306.10	1.6	8.0	9.2	3.6	9.7	0.11	0.00	
		and	338.40	4.6	0.09	1.7	0.5	0.31	0.01	0.00	2
		GMDD043	18.00	10.00	0.09	1.7	0.48	0.32	0.01	0.10	2
		and	70.50	0.30	25.9	81	9.4	31.0	0.33	3.1	1
		(1) cut off	f 10 g/t Au eq	uivalent							
			f 0.2 g/t Au ec								
		• •	ined zones wi	•	Au cut o	ff (grades	s include ir	nternal dilu	tion from	between :	zones)
			ined zones wi	_							
			nificant inters	_		(8)					,
		Channel Sample									
		Channel_id	from	interva		_	Zn (%)	AuEq	Cu (%)	Pb (%)	Note
			(m)	(m)	(g/t)	(g/t)		(g/t)			

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary							_		
		RNNV09-01	1.17	10.71	6.4	40.9	1.5	7.5	0.17	0.92	
		RNNV09-01A	0.00	12.34	12.0	34.9	0.51	12.7	0.05	0.40	
		inc	2.00	8.41	17.2	39.5	0.41	17.8	0.06	0.51	1
		RNNV09-01B	0.00	13.94	3.5	29.8	0.80	4.2	0.04	0.53	
		inc	10.04	1.95	15.0	84.0	2.5	17.2	0.16	2.3	1
		RNNV09-01C	0.00	24.11	16.9	37.8	5.8	19.8	0.25	0.58	
		inc	6.24	13.79	23.3	59.0	7.8	27.4	0.18	0.48	1
		RNNV09-01D	0.00	8.16	10.0	23.3	0.68	10.6	0.30	0.13	
		inc	0.00	6.56	12.4	21.9	0.8	13.0	0.33	0.15	1
		RNNV09-02	0.00	4.77	0.84	15.5	3.1	2.4	0.44	1.0	
		RNNV09-03	0.00	3.55	7.1	45.5	1.1	8.2	1.1	1.3	
		RNNV10-01	NSI								
		RNNV10_02	0.00	1.98	8.8	62.9	1.2	10.1	0.04	0.28	1
		RNNV10_03A	0.00	3.21	1.0	39.1	12.6	7.0	0.52	0.25	
		inc	1.60	1.60	2.0	54.8	20.7	11.7	0.65	0.50	1
		RNNV10_03B	0.00	7.31	22.6	60.5	5.6	25.8	0.38	0.26	
		inc	1.65	5.66	28.5	54.1	3.6	30.8	0.24	0.32	1
		RNNV10_04A	2.25	29.73	19.5	22.8	5.9	22.4	0.10	0.09	2
		inc	2.25	23.60	24.6	27.9	7.3	28.1	0.12	0.11	
		inc	4.37	5.89	96.0	85.1	3.7	98.7	0.20	0.12	1
		RNNV10_04B	99.56	4.32	0.05	2.5	2.8	1.3	0.06	0.03	2
		inc	101.88	2.00	0.08	3.2	5.4	2.4	0.11	0.06	
		and	117.23	34.00	0.77	20.7	2.5	2.1	0.13	0.10	2
		inc	118.18	2.07	0.19	160	23.2	12.3	1.7	0.88	
		inc	124.86	2.08	0.36	1.0	2.8	1.6	0.06	0.00	
		inc	131.64	11.91	1.9	25.5	1.6	3.0	0.05	0.13	
		inc	146.46	0.92	0.72	6.2	2.6	1.9	0.04	0.03	
		and	168.53	0.96	0.85	14.6	0.48	1.2	0.0	0.41	
		and	215.15	6.45	0.30	6.2	0.80	0.73	0.02	0.17	2
		inc	218.81	1.76	0.60	7.9	1.8	1.5	0.06	0.28	
		RNNV10_04C	18.78	2.79	1.0	1.2	0.09	1.1	0.01	0.04	2
		inc	20.62	0.95	1.7	2.5	0.11	1.8	0.01	0.05	
		GN23-831	0.00	0.00	0.31	9.8	1.5	1.1	0.04	0.13	
		RNNV10_06	0.00	9.28	1.4	87.1	7.6	5.8	0.92	0.23	2
		inc	0.00	8.28	1.5	96.1	8.4	6.4	0.92	0.26	
		inc	6.33	1.06	0.05	36.5	30.0	13.5	0.17	0.18	1
		RNNV10_07	0.00	3.87	0.16	4.5	1.1	0.69	0.06	0.05	2

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary										
		inc	2.87	1.00	0.33	14.8	3.2	1.9	0.21	0.17		
		RNNV10_08	0.94	2.82	19.4	87.6	3.8	22.2	0.14	2.5	2	
		inc	0.94	1.80	30.2	135	5.6	34.4	0.21	3.9	1	
		RNNV10_09	NSI									
		RNNV10_10	0.00	1.13	0.20	3.3	0.31	0.38	0.00	0.04	2	
		RNNV11-01	0.0	96.5	9.8	81.8	10.6	15.4	0.62	0.99		
		RNNV11-02	2.0	55.3	4.7	172	3.59	8.4	0.21	0.62		
		inc	3.9	20.6	7.9	352	3.29	13.8	0.30	0.99	1	
		RNNV11-03	0.0	10.2	0.19	6.4	3.21	1.7	2.0	0.04		
		RNNV11-04	0.0	5.4	2.3	6.6	4.87	4.5	0.15	0.07		
		RNNV11-05	0.0	4.7	3.7	24.6	4.20	5.9	0.03	0.14		
		RNNV12-01	0.0	35.2	3.2	18.2	8.0	6.9	0.09	0.07		
		RNNV12-02	0.0	6.0	1.9	41.4	10.5	6.9	0.22	0.05		
		RNNV12-03	0.0	12.8	8.7	16.9	5.2	11.2	0.59	0.02		
		RNNV12-04	0.0	21.1	12.7	37.7	7.1	16.3	0.11	0.40		
		inc	0.0	5.2	13.4	41.0	18.2	21.8	0.18	0.43	1	
		inc	14.7	6.5	29.1	51.3	4.7	31.8	0.19	0.89	1	
		RNNV12-05	0.0	64.8	23.4	104	8.3	28.3	0.20	1.5		
		inc	7.6	8.8	45.2	88.7	6.8	49.3	0.34	0.68	1	
		inc	20.1	26.5	29.3	114	8.2	34.4	0.24	2.9	1	
		inc	49.7	3.1	13.3	337	13.1	23.3	0.24	0.80	1	
		inc	56.9	3.3	67.7	268	11.5	76.0	0.24	1.3	1	
		RNNV12-06	0.0	5.0	1.3	156	7.5	6.6	0.08	0.21		
		RNNV12-07	0.0	3.1	10.9	19.4	4.8	13.3	0.09	0.30		
		RNNV12-08	0.0	3.5	17.6	37.3	0.31	18.2	0.02	0.10		
		RNNV12-09	0.0	5.4	30.9	83.9	8.4	35.6	0.34	1.8	1	
		RNNV12-10	0.0	8.7	3.8	837	1.4	15.0	0.22	0.76	1	
		RNNV12-11	0.0	2.3	29.7	70.8	0.86	30.9	0.07	0.14	1	
		RNNV12-12	0.0	19.8	13.7	102	3.0	16.3	0.11	0.41	1	
		MUNV10-01	0.00	15.28	0.19	9.0	0.12	0.35	0.02	0.16	2	
		MUNV10-02	4.16	24.91	2.0	12.1	2.4	3.2	0.11	0.30		
		MUNV10-03	0.00	3.81	3.1	55.2	8.0	7.3	0.43	1.1		
		MUNV10-04	0.00	4.28	2.1	109	2.8	4.7	2.8	1.6		
		MGNV10-01	2.00	44.34	0.33	5.2	0.19	0.48	0.01	0.04	2	
		inc	44.67	1.66	5.9	96.9	2.3	8.1	0.13	0.16		
		MGNV10-02	0.00	22.47	9.8	21.0	6.5	12.9	0.11	0.45		
		inc	0.00	4.21	34.7	29.4	22.1	44.7	0.32	1.9	1	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		inc	8.39	2.54	14.1	93.7	0.67	15.6	0.13	0.29	1
		inc	15.92	2.77	8.2	18.1	0.15	8.5	0.03	0.25	1
		MGNV10-03	0.00	35.04	2.5	41.0	0.72	3.3	0.04	0.16	2
		inc	0.00	20.49	4.2	67.7	1.1	5.5	0.07	0.26	
		MGNV10-04	0.00	4.79	0.14	1.7	0.26	0.28	0.05	0.05	2
		MGNV10-05	0.00	12.00	13.8	105	3.0	16.5	0.05	0.21	
		inc	0.00	3.70	33.2	298	4.2	38.9	0.06	0.09	
		MGNV10-06	0.00	9.91	4.2	25.3	4.5	6.5	0.07	0.20	
		MGNV10-07	0.00	9.59	3.6	57.3	6.4	7.1	0.35	4.8	
		MGNV10-07	19.80	2.02	0.23	5.1	3.0	1.6	0.03	0.04	
		MGNV10-08	0.00	4.21	3.0	17.6	2.5	4.2	0.04	0.20	
		MGNV10-09	0.00	6.48	5.5	44.3	6.4	8.9	0.14	0.07	
		MGNV10-10	0.00	1.00	1.1	3.3	0.94	1.6	0.01	0.14	
		SZNV10-01	2.0	30.4	1.2	8.8	1.9	2.2	0.06	0.01	2
		inc	23.6	8.7	3.9	28.8	6.3	7.0	0.19	0.02	
		SZNV10-02	0.0	52.0	1.3	7.9	4.5	3.4	0.40	0.06	2
		inc	0.0	6.3	2.6	27.5	1.9	3.7	0.33	0.08	
		inc	11.3	25.7	2.0	8.1	7.7	5.5	0.48	0.07	
		inc	18.7	6.2	7.0	17.0	3.0	8.5	0.14	0.13	1
		inc	41.5	1.8	0.03	0.34	3.2	1.4	0.12	0.02	
		SZNV10-03	0.0	4.4	8.2	63.2	0.8	9.4	0.05	0.09	
		SZNV10-04	0.0	3.5	9.1	27.4	3.7	11.1	0.20	0.08	
		SZNV11-01	0.0	14.9	0.34	2.3	4.0	2.1	0.19	0.01	2
		inc	0.0	11.2	0.43	2.3	5.0	2.6	0.25	0.01	
		SZNV11-02	0.0	3.4	4.0	27.5	2.5	5.4	0.37	0.04	
		SZNV11-03	0.0	9.3	2.1	34.1	2.4	3.6	0.53	0.07	2
		inc	1.0	8.3	2.3	37.6	2.5	3.9	0.56	0.07	
		SZNV11-04	0.0	6.1	0.08	2.0	7.6	3.4	0.33	0.04	2
		inc	0.0	4.3	0.06	1.4	10.3	4.6	0.24	0.02	
		SZNV11-05	0.0	3.3	0.53	20.1	4.0	2.5	0.68	0.15	2
		inc	2.0	1.3	1.2	44.9	8.6	5.5	0.89	0.22	
		SZNV11-06	0.0	17.2	0.06	5.0	11.4	5.1	0.68	0.12	
		SZNV11-07	0.0	3.8	0.03	1.2	8.9	3.9	0.46	0.06	
		SZNV11-08	0.0	7.1	3.8	18.7	9.6	8.1	0.62	1.2	
		SZNV11-09	0.0	30.7	0.91	70.2	13.5	7.7	0.74	0.74	
		SZNV11-10	0.0	3.1	0.38	55.8	14.8	7.5	0.47	0.16	
		SZNV11-11	0.0	4.6	0.26	9.1	12.6	5.8	1.0	0.16	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary										
		inc	0.0	3.6	0.32	11.2	15.9	7.4	1.3	0.21	<u> </u>	
		SZNV11-12	0.0	12.0	8.3	28.9	1.4	9.3	0.11	0.13		
		L5NV10-01	8.55	9.40	0.26	5.5	0.10	0.38	0.01	0.04	2	
		L5NV10-02	0.00	6.30	1.7	32.8	0.48	2.3	0.01	0.08	2	
		inc	2.00	4.30	2.4	42.7	0.28	3.1	0.01	0.11		
		L5NV10-03	0.00	1.44	1.2	11.3	0.11	1.3	0.01	0.48	2	
		L5NV10-04	0.00	9.04	26.0	50.8	0.10	26.7	0.03	1.1		
		inc	2.20	6.85	33.1	60.9	0.13	34.0	0.03	1.2	1	
		L5NV10-05	0.00	2.69	20.1	268	0.08	23.5	0.02	1.0	1	
		L6NV10-01	0.00	5.21	10.4	19.1	0.18	10.7	0.02	0.48	2	
		inc	2.00	1.79	27.3	39.3	0.22	27.9	0.01	0.84		
		L6NV10-02	0.00	3.77	0.70	4.5	0.41	0.93	0.01	0.07	2	
		and	14.44	10.46	11.2	215	0.31	14.0	0.03	0.98	2	
		inc	18.10	6.81	17.0	329	0.16	21.3	0.03	1.5		
		BCNV10-02	2.82	1.92	0.32	2.2	0.43	0.54	0.01	0.00	2	
		FHNV10-01A	6.40	1.78	0.09	2.9	0.35	0.28	0.01	0.01	2	
		FHNV10-01B	0.00	9.21	3.0	89.6	2.2	5.1	0.13	3.5	2	
		inc	1.92	4.63	5.6	175	3.8	9.5	0.23	6.8		
		FHNV10-02	0.00	13.01	12.0	80.2	5.6	15.5	0.40	4.8		
		inc	0.00	8.49	17.8	114	6.2	21.9	0.53	6.9	1	
		FHNV10-03	0.00	12.71	2.1	64.2	3.5	4.4	0.28	1.6		
		FHNV10-04	0.00	4.24	3.1	136	7.7	8.1	0.57	7.0		
		FHNV10-05	0.00	1.67	6.4	360	12.7	16.4	0.69	9.7		
		FHNV10-06	0.00	3.83	3.8	156	20.2	14.6	0.61	4.2		
		FHNV10-07	3.45	1.03	0.08	1.3	0.50	0.31	0.01	0.02	2	
		GN24-539	0.00	1.00	0.24	4.7	0.51	0.52	0.05	0.34	2	
		CINV10-02	0.00	5.27	0.69	4.4	0.07	0.78	0.00	0.02	2	
		inc	3.33	1.94	1.5	5.3	0.08	1.6	0.00	0.02		
		CIINV10-01A	1.80	6.96	0.90	17.9	0.26	1.24	0.02	0.18	2	
		CIINV10-01B	0.00	7.02	1.45	79.3	0.23	2.55	0.02	0.34	2	
		CIINV10-03	0.00	26.89	0.80	43.2	0.21	1.44	0.02	0.17	2	
		inc	8.22	13.53	1.11	76.6	0.33	2.23	0.03	0.29		
		CIIIVN10-01	0.00	81.00	NSI							
		CHNV10-01A	0.00	9.94	8.0	6.6	0.38	8.3	0.12	0.80		
		inc	5.10	3.09	21.6	12.7	0.61	22.0	0.22	1.4	1	
		CHNV10-01B	1.70	7.27	1.4	3.2	1.1	2.0	0.02	0.44	2	
		inc	3.32	5.65	1.6	3.7	1.4	2.3	0.02	0.49		

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 63

T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	J	ORC Code explanation	Commentary									
			CHNV10-02	0.00	19.30	0.69	8.6	0.95	1.2	0.03	0.44	2
			inc	0.00	2.92	0.89	34.6	4.8	3.4	0.07	1.9	
			inc	9.16	3.21	0.87	4.2	0.55	1.2	0.02	0.29	
			inc	16.07	1.60	1.9	15.0	0.31	2.2	0.09	0.42	
			CHNV10-03	0.00	3.94	0.40	2.0	0.50	0.64	0.02	0.15	2
			inc	3.21	0.73	1.3	1.4	0.70	1.6	0.02	0.15	
			CHNV10-04	0.00	7.96	2.0	8.5	1.1	2.6	0.03	0.62	
			DJNV10-01A	0.00	59.54	2.2	11.2	5.1	4.5	0.23	0.07	
			inc	57.49	2.06	15.7	49.7	2.1	17.2	0.08	0.11	1
			DJNV10-01B	4.14	20.23	0.06	2.6	0.32	0.23	0.00	0.01	2
			SNV10-01	0.00	15.55	70.9	59.1	0.18	71.7	0.10	1.7	
			inc	0.00	4.00	202	172	0.07	203.8	0.03	2.3	1
			inc	8.19	6.30	43.7	22.6	0.15	44.0	0.06	2.1	1
			SNV10-02	0.00	12.52	2.3	12.3	1.36	3.0	0.14	0.55	
			(1) cut c	off 10 g/t Au equ	ivalent							
			(2)	cut off 0.2	g/t Au equ	ivalent						
			NSI: no si	gnificant interse	ction							
Data aggregat	ion -	In reporting Exploration Results	weighting averaging	Weighted avera	age signific	ant inte	rcepts a	re reporte	d to a gold	grade equ	ivalent (Au	Eq). R
methods		techniques maximum and/or mi	nimum grade	reported to cut	-off grade	of a 1.0	g/t Au e	quivalent	and 10 g/t /	Au equival	ent allowir	ng for ι
		truncations (eg cutting of high g	rades) and cut-off	internal dilution	n between	sample	s above t	the cut-of	f grade and	0.2 g/t Au	equivalen	t allow
		grades are usually Material and	should be stated.	internal dilution	n between	sample	s above t	the cut-of	f grade. The	following	metals an	d meta
	-	Where aggregate intercepts inco		been used to re	eport gold	grade ed	quivalent	t: Au US\$:	1780 / oz A	g US\$24 /c	oz and Zn L	JS\$ 280
		of high-grade results and longer	lengths of low-grade	Metallurgical re	ecoveries f	οτ Διι Δ	g and 7n	have hee	n estimated	from me	tallurgical t	est wo
		results the procedure used for su	• •	SGS Metallurgio			_				_	

- be stated and some typical examples of such aggregations should be shown in detail.
- The assumptions used for any reporting of metal equivalent values should be clearly stated.

SGS Metallurgical Operations in Lakefield, Ontario using a combination of gravity and flotation of a combined metallurgical sample from 5 drill holes. Using data from the test results, and for the purposes of the AuEq calculation gold recovery is estimated at 89%, silver at 84% and zinc at 79%. Accordingly, the formula used is AuEq (g/t) = Au (g/t) + [Ag (g/t) x (24/1780) x (0.84/0.89)] + [Zn (%) x (28.00*31.1/1780) x (0.79/0.89)]. Metallurgical test work and geological and petrographic descriptions suggest all the elements included in the metal equivalents calculation have a reasonable potential of eventual economic recovery. While Cu and Pb are reported in the table above, these metals are not used in the Au equivalent calculation at this early stage of the Project.

No top cuts have been applied to the reported grades.

Relationship between mineralisation

- These relationships are particularly important in the reporting of Exploration Results.
- *If the geometry of the mineralisation*

The mineralisation is moderately or steeply dipping and strikes NNE and ENE. For some drill holes, there is insufficient information to confidently establish the true width of the mineralized intersections at this stage of the exploration program.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
widths and intercept lengths	with respect to the drill hole angle is known its nature should be reported.	Apparent widths may be thicker in the case where bedding-parallel mineralisation may intersect ENE-striking cross faults and veins.
	 If it is not known and only the down hole lengths are reported there should be a clear statement to this effect (eg 'down hole length true width not known'). 	Representative cross section interpretations have been provided with release of significant intersections to allow estimation of true widths from individual drill intercepts.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Representative maps and sections are provided in the body of reports released to the ASX.
Balanced	- Where comprehensive reporting of all	All available final data have been reported.
reporting	Exploration Results is not practicable	
, 0	representative reporting of both low	
	and high grades and/or widths should	
	be practiced to avoid misleading	
	reporting of Exploration Results.	
Other	- Other exploration data if meaningful	Geological context and observations about the controls on mineralisation where these have been made are provided in
substantive	and material should be reported	the body of the report.
exploration data	including (but not limited to):	
•	geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method	Specific gravity measurements have been taken from the drill core recovered during the drilling program. These data are expected to be used to estimate bulk densities in future resource estimates.
	of treatment; metallurgical test results;	Eight Induced Polarisation (IP) lines have been completed in the northern area. Each line is approximately 1 kilometre in
	bulk density groundwater geotechnical and rock characteristics; potential deleterious or contaminating	length lines are spaced 100m apart with a 50m dipole. The initial results indicate possible extension of the mineralisation with depth. Data will be interpreted including detailed re-processing and drill testing.
	substances.	A ground magnetic survey and drone magnetic survey have been completed. The results of these data are being processed and interpreted with the geological information provided from surface and in the drilling and will be used to guide future exploration.
Further work	- The nature and scale of planned further	CEL Plans to undertake the following over the next 12 months
	work (eg tests for lateral extensions or	Additional data precision validation and drilling as required;
	depth extensions or large-scale step-	

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
	out drilling). - Diagrams clearly highlighting the areas of possible extensions including the main geological interpretations and future drilling areas provided this information is not commercially sensitive.	 Detailed interpretation of known mineralized zones; Geophysical tests for undercover areas. Structural interpretation and alteration mapping using high resolution satellite data and geophysics to better target extensions of known mineralisation. Field mapping program targeting extensions of known mineralisation. Investigate further drilling requirements to upgrade both the unclassified mineralisation and mineralisation in the existing historical resources to meet JORC 2012 requirements; Further metallurgical test work on lower grade mineralisation in the intrusions and oxidised mineralisation.

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by for example transcription or keying errors between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	Geological logging completed by previous explorers was done on paper copies and transcribed into the drill hole database. The data was checked for errors. Checks can be made against the original logs and core photographs. Assay data is received in digital format. Backup copies are kept and the data is copied into the drill hole database.
		The drill hole data is backed up and is updated periodically by a Company GIS and data team.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	Site visits have been undertaken from 3 to 16 October 2019 15 to 30 November 2019 and 1-19 February 2020. The performance of the drilling program collection of data and sampling procedures were initiated during these visits.
Geological interpretation	 Confidence in (or conversely the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. 	The interpretation is considered appropriate given the stage of the project and the nature of activities that have been conducted. The interpretation captures the essential geometry of the mineralised structure and lithologies with drill data supporting the findings from the initial underground sampling activities.
	 The effect if any of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	The most recent resource calculation (2006 and 2003 – La Mancha) used all core drilling at the time and detailed underground channel sampling collected by EPROM CMEC and La Mancha. Overlying assumptions included a reduction of the calculated grade in each resource block by a factor of 10% to account for possible errors in the analyses and samples. An arbitrary reduction factor was applied to the 2006 resource whereby the net reported tonnage was reduced by 25% for indicated resource blocks 50% for inferred resource blocks and 75% of potential mineral resource blocks. The reason for the application of these tonnage reduction factors was not outlined in the resource report. It is noted that at the time of this report La Mancha was in a legal dispute concerning the project with its joint venture partner and given the acquisition of a 200000 Oz per annum producing portfolio the project was likely no longer a core asset for La Mancha at that time. Additionally, under the original acquisition agreement La Mancha had to issue additional acquisition shares based on resource targets.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary
		The effect of removing the assumptions relating to application of the arbitrary tonnage reduction factors applied increases the overall resource tonnage by in excess of 50%. Removing these correction factors would bring the overall tonnage and grade close the earlier (2003 1999 and 1996) tonnage and grade estimates albeit in different categories (lower confidence) which are considered more appropriate.
		The mineralisation is defined to the skarn and vein bodies detailed cross section and plan maps were prepared for these bodies with their shapes used in controlling the resource estimate.
		The structure of the area is complex and a detailed structural interpretation is recommended as this may provide a better understanding of the continuity of mineralisation and possible extensions to it. The deposit contains bonanza gold values and while very limited twinning has indicated acceptable repeatability a rigorous study of grade continuity needs to be undertaken as part of future resource calculations.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise) plan width and depth below surface to the upper and lower limits of the Mineral Resource. 	For the historic resource no reliable information has been provided to the owner however through further ongoing investigation is being conducted by the owner to address this information gap.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions including treatment of extreme grade values domaining interpolation parameters and maximum distance of extrapolation from data 	The historic resource estimation techniques are considered appropriate. The 2003 and 2006 resources used a longitudinal section polygonal method was used for estimating resources with individual blocs representing weighted averages of sampled underground and/or areas of diamond drill pierce points with zones of influence halfway to adjacent holes. The area of the block was calculated in AutoCad directly from the longitudinal sections.
	points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates previous estimates and/or mine	Check assaying by PG Consulting returned values in the check assay sample which were 3.4% and 13% greater for Au and Ag than the original assays. A number pf previous resource estimates were available to check the 2006 resource estimate when the arbitrary tonnage reduction factors are removed brings the overall tonnage and grade close the earlier (2003 1999 and 1996) tonnage and grade estimates albeit indifferent categories which are considered more appropriate.

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary
	production records and whether the Mineral Resource estimate takes appropriate account of such data The assumptions made regarding recovery	It was assumed only gold silver and zinc would be recovered and that no other by products would be recovered. This is viewed as conservative given metallurgical data pointing to the production of a saleable zinc concentrate.
	of by-products. - Estimation of deleterious elements or other non-grade variables of economic	Based on the preliminary metallurgy estimation of deleterious elements or other non-grade variables economic significance was not required.
	significance (eg sulphur for acid mine drainage characterisation). - In the case of block model interpolation	The minimum mining width of 0.8m was assumed for veins less than 0.6m and for wider widths a dilution of 0.2m was used to calculate the grade.
	the block size in relation to the average sample spacing and the search employed.	No assumptions were made regarding correlation between variables.
	 Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological 	The mineralisation is defined within skarn and associated vein deposits. Detailed cross section and plamaps were prepared for these domains with their shapes used in controlling the resource estimate. Long sections of the veins and skarn were taken and sampling was plotted and the blocks outlined considering this.
	interpretation was used to control the resource estimates.Discussion of basis for using or not using	Grade cutting was not used in the calculation of the resource and no discussion was given as to why i was not employed. It is recommended that a study be undertaken to determine if an appropriate top cut need be applied
	grade cutting or capping. - The process of validation the checking process used the comparison of model data to drill hole data and use of reconciliation data if available	No data is available on the process of validation.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture and the method of determination of the moisture content. 	No data is available.
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	The Mineral Resource Estimate is above a cut-off grade of 3.89 g/t Au. This is based on the assumed mining cost at the time of the estimate.

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary
Mining factor		 The Mineral Resource Estimate considered the assumptions outlined below which are considered appropriate; Metal prices: Au US\$550 Oz Ag US\$10 Oz Metallurgical Recovery; Au – 80% Ag – 70% Zn - nil Operating cost: US\$55t based on underground cut and fill mining and flotation and cyanidation combined The minimum mining width of 0.8m was assumed for veins less than 0.6m and for wider widths a dilution of 0.2m was used to calculate the grade.
Metallurgical factors or assumptions	regarding metallurgical amenability. It is	 Historical metallurgical test-work assumptions were 80% recovery for Au, Ag and Zn. The most recent historic test work was conducted in 1999 by Lakefield Research (cyanidation) and CIMM Labs (flotation) in Chile on 4 samples which all contain primary sulphide minerals and so can be considered primary, partial oxide or fracture oxide samples. The test work was conducted using a 150 micron grind which would appear to coarse based on petrography conducted by CEL which shows that the gold particles average 30-40 microns. Rougher flotation tests were performed with a 20 minute and 30 minute floatation time. Generally, the longer residence time improved recovery. Recoveries to concentrate for gold range from 59.6% - 80.6% and for silver from 63.1% - 87.2%. Knelson concentrate tests with floatation of tailings were also completed. Applying a joint process Knelson concentrator and floatation of the tailings of the concentrator it is found that the global recovery is approximately 80% for gold. While the testwork was focused predominantly on gold recovery some rougher flotation testwork was undertaken targeting Zn recovery producing up to 85% recoveries. In sulphide samples this produced a Zn concentrate containing 42% Zn with grades in excess of 50% Zn in concentrate expected with additional floatation stages. The report concluded that it was possible to produce a commercial Au-Ag concentrate and a Zn concentrate.

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary
		 Extraction of gold and silver by cyanidation was tested on 3/8 and % inch (9.525mm and 19.05mm) crush sizes that are designed to test a heap leach processing scenario. Bottle roll of these crush size resulted in 41-39% gold recovery and 31-32% silver recovery with high cyanic consumption. No tests have been done on material at a finer grind size. More recently, CEL has completed initial metallurgical test work on a 147 kg composite sample of mineralised limestone drill core from GMDD039, GMDD040, GMDD041, GNDD043, GNDD003 and GNDD018 and a 55 kg composite sample of mineralised intrusion (dacite) drill core from GNDD11 GNDD113A, GNDD155 and GNDD157. The of skarn mineralisation in limestone that has a weighte average grade of 10.4 g/t Au, 31.7 g/t Ag, 3.2 % Zn, 0.15 % Cu and 0.46 % Pb. The sample of mineralised dacite has a weighted average grade of 11.1 g/t Au, 7.0 g/t Ag and 0.1 % Zn. Separate tests on 2 kg sub-samples were done with differing grinding times, Knelson and Mosley table gravity separation techniques and floatation techniques to provide a series of gravity and floatation concentrates. Key results are: Combined gravity and floatation concentration process resulted in recoveries 85-95% for Au, 82-87% for silver and 77-80% for zinc. Cu had similar recoveries to Ag and Pb had similar recoveries to Zn. A simple gravity separation followed by a sulfide flotation process when re-combined produced a single product with a median grade of 47 g/t Au, 120 g/t Ag and 13% Zn with a recovered weight of 24-33% of the sample weight. Tailings fragment analysis indicates a grind of (p₈₀) 72-106 μm. Generally, a coarser grind resulted in a higher % weight recovered to the concentrate with a corresponding lower grade without significantly impacting recovery. QEMSCAN analysis of the sample indicates much of the Zn not recovered is due to the presence of Zn oxide (franklinite) and silicates (hemimorphite). Sulphides present are dominated by pyrite and spha
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic 	 Further test work is planned. It is considered that there are no significant environmental factors which would prevent the eventual extraction of gold from the project. Environmental surveys and assessments will form a part of future pre-feasibility.

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
Citteria	extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts particularly for a greenfields project may not always be well advanced the status of early consideration of these potential environmental impacts should be reported. Where these aspects	
	have not been considered this should be reported with an explanation of the environmental assumptions made.	
Bulk density	 Whether assumed or determined. If assumed the basis for the assumptions. If 	Densities of 2.7 t/m3 were used for mineralised veins and 2.6 t/m3 for wall rock.
	determined the method used whether wet or dry the frequency of the measurements	No data of how densities were determined is available.
	the nature size and representativeness of the samples.	The bulk densities used in the evaluation process are viewed as appropriate at this stage of the Project
	 The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs porosity etc) moisture and differences between rock and alteration zones within the deposit. 	CEL is collecting specific gravity measurements from drill core, which it is expected will be able to be used to estimate the block and bulk densities in future resource estimates. For RC drilling, the weights of material recovered from the drill hole is also able to be used as a measure of the bulk density.
	 Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative 	The Mineral Resource Estimate has both Indicated and Inferred Mineral Resource classifications under the National Instrument 43-101 code and is considered foreign. These classifications are considered appropriate given the confidence that can be gained from the existing data and results from drilling.

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary
	confidence in tonnage/grade estimations reliability of input data confidence in continuity of geology and metal values quality quantity and distribution of the data).	The reliability of input data for the 2003 and 2006 resources is acceptable as is the confidence in continuity of geology and metal values quality quantity and distribution of the data. Appropriate account has been taken of all relevant factors with the exception of studies into the appropriateness of the application of a top cut.
	 Whether the result appropriately reflects the Competent Person's view of the deposit. 	The reported 2006 NI43-101 (non-JORC Code compliant Measured and Indicated) estimate for the Hualilan Project is measured resource of 164294 tonnes averaging 12.6 grams per tonne gold and 52.1 g/t silver and 2.5% zinc plus an indicated resource of 51022 tonnes averaging 12.4 grams per tonne gold and 36.2 g/t silver and 2.6% zinc plus an inferred resource of 213952 tonnes grading 11.7 grams per tonne gold and 46.6 g/t silver and 2.3% zinc. (Source La Mancha resources Toronto Stock Exchange Release April 7 2007 - Interim Financials) – See Table 1.
		The 2006 estimate did not include the east-west mineralised Magnata Vein despite the known mineralisation in the Magnata Vein being drilled on a 25 x 50-metre spacing. The 2003 NI43-101 (non-JORC Code compliant) estimate attributed approximately half of its measured and indicated tonnage to the Magnata Vein. The 2006 estimate also included arbitrary tonnage reduction factors of 25% for indicated category 50% for inferred category and 75% for potential category.
		The 2006 estimate also included a significant tonnage of Potential Category Resources which have not been reported.
		The reported 2003 NI43-101 (non-JORC Code compliant) estimate for the Hualilan project is a measured resource of 299578 tonnes averaging 14.2 grams per tonne gold plus an indicated resource of 145001 tonnes averaging 14.6 grams per tonne gold plus an inferred resource of 976539 tonnes grading 13.4 grams per tonne gold representing some 647809 ounces gold. (Source La Mancha resources Toronto Stock Exchange Release May 14 2003 - Independent Report on Gold Resource Estimate) – See Table 1.
		The 2003 Mineral Resource classification and results appropriately reflect the Competent Person's view of the deposit and the current level of risk associated with the project to date.
		Historic 2003 NI43-101 (non-JORC Code compliant):

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary					
		CATEGORY	TONNES	Au (g/t)	Ag (g/t)	Zn%	
		Measured	299,578	14.2			
		Indicated	145,001	14.6			
		Inferred	976,539	13.4			
		Historic 2006 NI43-1	01 (non-JORC Code compl	iant)			
		CATEGORY	TONNES	Au (g/t)	Ag (g/t)	Zn%	
		Measured	164,294	12.5	52.1	2.5	
		Indicated	51,022	12.4	36.2	2.6	
		Inferred	213,952	11.7	46.6	2.3	
Audits or reviews	 The results of any audits or reviews of Mineral Resource estimates. 	The earlier (1996 an report. This indeper	e estimate has not been d 2000) Mineral Resour dent report was done to This report concluded be realistic.	ce Estimates we o NI-43-101 star	ndard and the	results of th	is report were
Discussion of relative accuracy/confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For 	relied upon. The ava	onfidence in the data qualification and assare given the confidence lintinuity and top cut.	y data correlate	well. The app	proach or pro	cedure are
	example the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits or if such an approach is not deemed appropriate a	and closer spaced d strike and dip direct	variable in nature in this rilling is required to imp ions. It is noted that the is of grade repeatability.	rove the unders results from the	tanding of th	e grade conti	nuity in both
	qualitative discussion of the factors that could affect the relative accuracy and	•	s very high grades and t ade reduction factor of 1	•			•

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary
	confidence of the estimate. - The statement should specify whether it relates to global or local estimates and if local state the relevant tonnages which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. - These statements of relative accuracy and confidence of the estimate should be compared with production data where available.	No production data is available for comparison

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

JORC Code, 2012 Edition – Table 1 report template

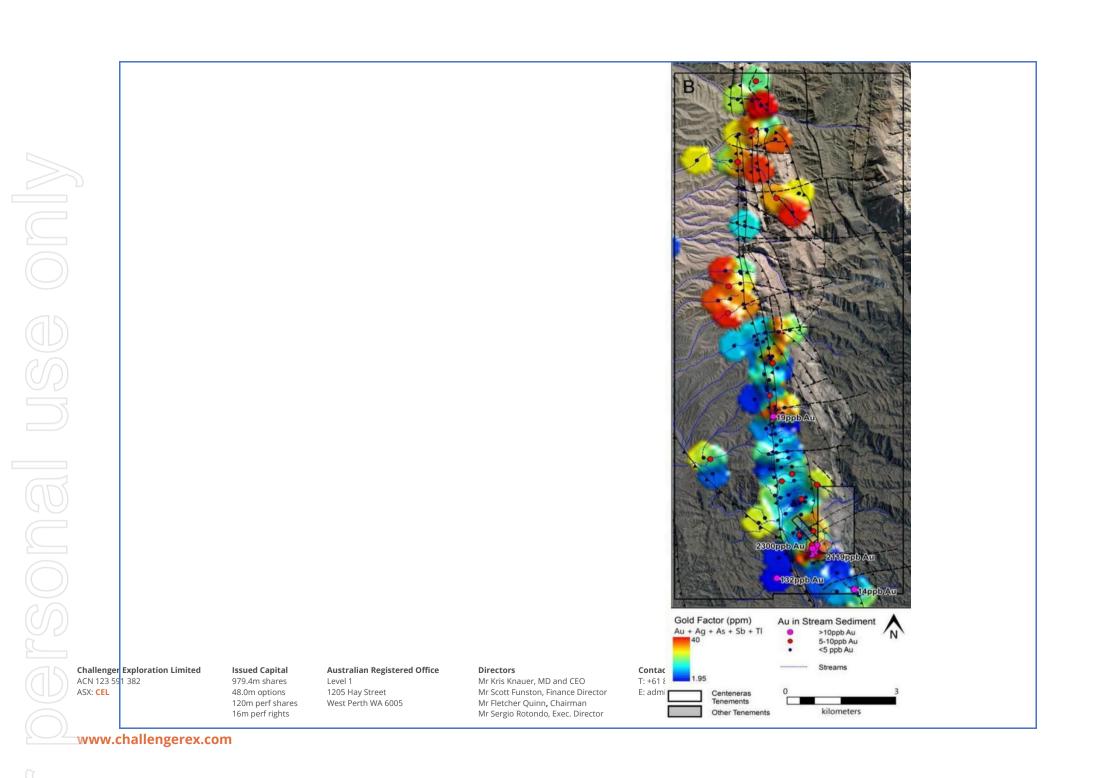
Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Committee Bay Resources (CBR) 2004 - 2006: reportedly collected 85 stream sediment samples. CEL has no information on how the samples were taken, the location or the assay techniques that were used. Cardero Resource Corporation (Cardero) - 2007: No samples were taken Centenera Mining Corporation (Centenera) – 2016-2017: 110 stream sediment samples and 26 rock chip samples were collected. CEL has no information on how the samples were taken, the precise location or the assay techniques that were used.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	- No drilling has been reported by previous explorers
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	- No drilling has been reported by previous explorers

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	- No rock chip sample or stream sediment sample logs have been found.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 No details of the sampling techniques, sample sizes and sample preparation has been found.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including 	 No details of the assay data and laboratory tests have beer found. Centenera: Report samples were prepared and analysed by SGS Laboratory in Peru and that blanks, standards and duplicate samples were included in the samples sent for


Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact

Criteria	JORC Code explanation	Commentary
	 instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	analysis. No data has been found to check the QAQC.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	- No information on sample verification has been found.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 No information on sample location surveys or the grid reference system has been found. Centenera: a plan of the combined stream sediment and rock chip samples without geographic reference was provided in a TSX release dated 21 March 2017

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	- No information on the data spacing has been found.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 There has been no exploration data that has been taken relative to the orientation of the geological controls.
Sample security	- The measures taken to ensure sample security.	 No detailed sample security information has been found Centenera: State that their samples were under supervision of their geologists in accordance with standard industry practice.
Audits or reviews	- The results of any audits or reviews of sampling techniques and data.	- No audits have been undertaken.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commer	ntary				
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along 	 The Cordon del Peñon is composed of six Minas (Mining Leases) and one Cateo (Exploration Licence): 					
			File No.	Area (Ha)	Name	Owner	
		Cateo	414-998-M-05	721.90		Armando J. Sanchez	
		Mine	1124-045-S-19	2,921.05	Guillermina	Armando J. Sanchez	
		Mine	1124-114-S-14	1,500.00	Agu 3	Armando J. Sanchez	
	, , , , , , , , , , , , , , , , , , , ,				_		

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary				
	with any known impediments to obtaining a licence to operate in	Mine	1124-343-S-14	1443.50	Agu 5	Armando J. Sanchez
	the area.	Mine	1124-623-S-17	1500.00	Agu 6	Armando J. Sanchez
	ine dredi	Mine	1124-622-S-17	1459.00	Agu 7	Armando J. Sanchez
		Mine	2478-C-71	18.00	El Petiso	Armando J. Sanchez &
						Carlos Ocampo
		 The licences are currently held in good standing. CEL has an option to acquire the Cordon del Peñon within years of the date of the agreement for US\$250,000 cash a US\$ 200,000 in cash or shares at 10 day VAWP prior to notifying the Vendor of the intention to acquire the projectly will make annual payments of US\$5,000 for the first a years. There are no known impediments to operating within the Cordon del Peñon 				
Exploration done by other parties	- Acknowledgment and appraisal of exploration by other parties.	 Previous exploration has been completed by Committee B Resources (CBR), Cardero Resource Corporation and Centenera Mining Corporation (Centenera). CEL have not been able to appraise the results of previous exploration as there has been no data provided in which t base an appraisal. CEL only has public releases hade to the TSX provided by Centenera dated 9 November 2016 and 21 March 2017 				
Geology	- Deposit type, geological setting and style of mineralisation.	style basi stre and CEL mine	e sediment ho s of the anom am sediment W). are keeping a eralisation wh	sted repla alous eler and rock o n open m iich may b	ncement min ment assem thip sample ind on the so se present a	lisation may be Car neralisation on the blage from the s (Au-Ag-As-Sb, Th, tyle/s of t the Cordon del eralisation has not

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
		been identified and the anomalous mineral assemblage indicate multiple mineralisation styles are possible.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	- There are no drill holes reported on the Cordon del Peñor
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	- No weighted average or aggregate results are reported
Relationship between mineralisation widths and	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, 	- No information is known of mineralisation widths

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Criteria	JORC Code explanation	Commentary
intercept lengths	there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 A plan of the Centenera stream sediment sample results is provided above which was published by Centenera in a release dated 21 March 2017
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 CEL believes the information provided is representative of the known data for the Cordon del Peñon
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Cardero Resources Corporation completed ASTER satellite alteration mapping and a structural study. The results of this work are not available to CEL
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The following initial exploration program is indented to be undertaken by CEL: Ground magnetic survey on E-W survey lines spaced 80 – 100m apart, covering as much of the Cordon del Peñon as possible with a ground based survey. Surface geological mapping (stream and creek traverses) over key areas identified by previous stream sediment and roc chip sample surveys with the intention of identifying and sampling possible sources for past stream sediment anomalies.

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director

Issued Capital 979.4m shares 48.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, Exec. Director