

ASX / MEDIA ANNOUNCEMENT

19 January 2022

163.5m at 0.52% Ni & 0.016% Co from 186.5m Ending in Mineralisation

- 282.5m at 0.43% Ni & 0.014% Co from 67.5m (DDED21-076)
 - o Including 163.5m at 0.52% Ni & 0.016% Co from 186.5m
 - Final 18m of hole reported 0.66% Ni & 0.014% Co from 331.7m and ending in mineralisation
 - Modelling indicates true width of intrusion to be ~600m and depth to be >1,500m
- Resource drilling definition program commenced across Bardwell portion of the Boomerang Target, across ~1km of total 6.5km prospective strike of the intrusion
- Grades of mineralisation comparable to that of BHP's (ASX: BHP) Mt Keith Mining Operation
- Imminently expecting results from DDED21-075 which contains 730m interval of host dunite intrusive unit, starting 20m below surface. Hole is currently being extended to depth of ~1,200m
- Edleston Project is located within a Tier 1 mining jurisdiction with access to green, low-cost hydroelectric power within the Project area

Aston Minerals Limited ("Aston Minerals" or "the Company", ASX: ASO) is pleased to announce that it has intersected 163.5m at 0.52% Ni and 0.016% Co from 186.5m within the Boomerang Ni-Co Target at the Edleston Project, Ontario, Canada with the hole ending in mineralisation.

Executive Chairman, Tolga Kumova commented "Aston is uniquely positioned to capitalise on the burgeoning demand for nickel which has recently reached the highest price since 2011, while nickel inventories are at historically low levels. Currently, the stainless steel industry accounts for approximately two thirds of the utilisation, while demand from electric vehicle batteries are expected to double their current market share to approximately 20% by 2025¹.

Combining the projected demand with an increased focus on ethically sourced, green supplies of nickel, multinational mining houses and end users are becoming increasingly aggressive towards acquisition of assets which meet these criteria.

Edleston is located on the doorstep of the Sudbury complex, host to an extensive history of nickel production and smelting. In addition, the mining centres of Timmins and Kirkland Lake have a highly skilled mining workforce and associated services.

The drilling conducted to date at the Boomerang Nickel-Cobalt Sulphide Target has shown that the scale and tenor of mineralisation is comparable to other globally significant mining operations such as BHP's Mt Keith Operations. Our aim is to define a substantial resource base and conduct associated metallurgical and engineering studies this year to be able to quantify the economic potential of this Project."

Managing Director, Dale Ginn commented: "The substantial intersection at Bardwell Prospect has exceeded our expectations in relation to both the grade and extent of mineralisation. To have such broad zones of mineralisation at comparable grades to that of Mt Keith so early on in our nickel exploration program provides us with a huge degree of confidence in the potential of the system.

We have commenced a resource definition drilling program, aiming to systematically expand along approximately 1km of strike and to the depth of the presently identified area of mineralisation at Bardwell. Exploration drilling also continues along an additional 5.5 kms of length on the Boomerang Nickel Target. To date, magnetic inversion modelling has a very high degree of correlation with the interpreted mineralised envelope."

Boomerang Target Overview

The Boomerang Target was identified through a geological interpretation undertaken based on recent drilling and reprocessing of magnetics. Through this process, we recognised the extent of the Boomerang Target and its intense magnetic response. Magnetic inversion modelling of the Boomerang Target was undertaken to further constrain the geometry and extent of the dunite/peridotite complex. It is interpreted that this dunite/peridotite body

¹ Source: Nickel price rally to run out of steam as supplies ramp up - MINING.COM

extends for a strike of 5km, is 500 to >1,500m wide and extends to depths of well over 500m.

A total of 13 drill holes for 5,959m of drilling have been completed to date across three sections of the Boomerang Target. All of the three sections have nickel sulphide mineralisation identified in logging and verified through handheld XRF. Drilling has been completed within the constraints of what was initially permitted, hence multiple holes from the same pad. Extensive drill permitting across the entire strike length of the Boomerang has been submitted and is expected to be approved shortly.

Figure 2: Drill Plan DDED21-057 & 059 & 76, modelled intrusive body and interpreted mineralised envelope

Edleston Project Overview

The Edleston Project is located approximately 60km via road to the south of Timmins, Ontario. Both towns of Kirkland Lake and Timmins host significant former and current producers, with all required services and skilled labour available to support exploration and development of the Project.

Edleston is located within the Abitibi Greenstone Belt of Archean metavolcanic and metasedimentary assemblages which have been steeply folded with the axes trending in a

general east-west direction. These have been intruded mainly by large granitic bodies and by masses of mafic and ultramafic rocks as well as several ages of younger dolerite dykes. The Abitibi Greenstone Belt extends from north-eastern Ontario and northern Quebec for over 800km.

Regionally, the Project is located within the western extension of the Cadillac-Larder Fault Zone along which a number of major gold deposits and mines are located. The occurrence of a Timiskaming conglomerate, similar to that occurring at Kirkland Lake, at several places within the eastern extent of the Project, supports this view.

The host lithology is an altered and sheared ultramafic that exhibits extensive silicification and contains abundant quartz-carbonate veins, veinlets and fracture fill. This host unit extends over 10km to the east of the drilled area.

Gold mineralisation is broadly distributed throughout this lithology as pyrite in ranges of 3 to 5% with trace chalcopyrite and occasional visible gold. Intercalated volcanic and metasedimentary units lie to the north and south of the Edleston mineralised zone.

Along strike, 1.5km to the east of the drill defined Edleston Zone is the Sirola Zone which exhibits identical geology and mineralisation, and contains some of the only exposed outcrops in the region. Outcrops consist of an altered reddish feldspar porphyry which lies in contact with mineralised ultramafic volcanic. These formations have a general strike of 100 degrees azimuth with a steep dip and are generally sheared and highly altered by carbonatization and silicification.

The Boomerang Nickel-Cobalt Sulphide Target was identified through a geological interpretation undertaken based on recent drilling and reprocessing of magnetics. Through this process, the extent and intense magnetic response of the Boomerang Target was recognised. Magnetic inversion modelling of the Boomerang Target was undertaken to further constrain the geometry and extent of the dunite/peridotite complex. It is interpreted that this dunite/peridotite body extends for a strike of 5km, is 500 to >1,500m wide and extends to depths of well over 500m.

The exploration model applied to conduct targeting of this body is analagous to Dumont and Crawford Nickel-PGE-Cobalt Deposits. Nickel sulphide mineralisation at these deposits was formed through the serpentinisation of a dunite unit (rock composed of >90% olivine). Through the reaction of olivine with water, extensive magnetite is developed, hence providing such a strong magnetic response and potentially allowing for a direct exploration targeting method to be applied. Through this process of serpentinisation, nickel is liberated from olivine within a strongly reducing environment and the liberated nickel is partitioned into low sulphur nickel sulphide minerals.

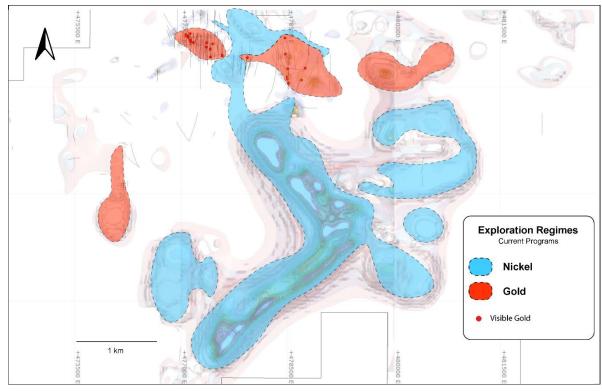


Figure 3: Current nickel and gold exploration regimes at Edleston Project

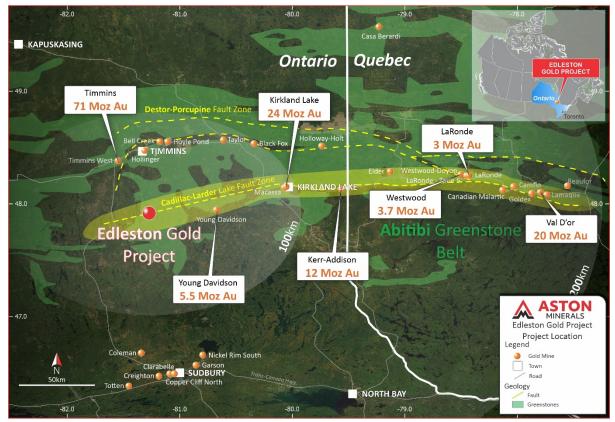


Figure 4: Edleston Project location, Ontario, Canada

This announcement has been authorised for release by the Board of Aston Minerals Limited.

For further information, please contact:

Dale Ginn Managing Director +61 (08) 6143 6740 Rob Jewson Corporate Director +61 (08) 6143 6740

Competent Person's Statement

The information in this announcement that relates to the Exploration Results for Edleston Project is based on information compiled and fairly represented by Mr Robert Jewson, who is a Member of the Australian Institute of Geoscientists and Executive Director of Aston Minerals Limited. Mr Jewson has sufficient experience relevant to the style of mineralisation and type of deposit under consideration, and to the activity which he has undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Jewson consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.

Appendix 1: Diamond Drill Collar Details, Assay Results & Interpreted Intervals

Hole	Size	Easting	Northing	Elevation	Azimuth	Dip	Final Depth (m)
DDED21-057	NQ	477,784	5,303,529	354	311	-57	552
DDED21-059	NQ	477,784	5,303,529	354	311	-70	267
DDED21-060	NQ	477,785	5,303,532	355	316	-70	345
DDED21-061	NQ	477,798	5,303,524	354	316	-75	385
DDED21-063	HQ	477,783	5,303,525	355	316	-70	204
DDED21-065	HQ	479,209	5,305,726	365	0	-90	540
DDED21-067	HQ	478,791	5,304,010	362	320	-70	507
DDED21-069	HQ	479,209	5,305,727	365	20	-70	320
DDED21-070	HQ	478,791	5,304,010	362	320	-55	588
DDED21-072	HQ	479,209	5,305,727	365	200	-70	579
DDED21-073	HQ	478,791	5,304,010	362	320	-45	578
DDED21-075	HQ	479,209	5,305,727	365	200	-45	744 (In Progress)
DDED21-076	HQ/NQ	477,782	5,303,527	355	310	-75	350

Hole	From (m)	To (m)	Sample ID	Co ppm	Ni ppm
DDED21-076	10.55	12	ED076-001	51	72
DDED21-076	12	13.5	ED076-002	51	72
DDED21-076	13.5	15.02	ED076-003	44	64
DDED21-076	15.02	16.53	ED076-004	51	75
DDED21-076	16.53	18.1	ED076-005	48	73
DDED21-076	18.1	19.69	ED076-007	54	78
DDED21-076	19.69	21	ED076-008	56	85
DDED21-076	21	22.43	ED076-009	57	84
DDED21-076	22.43	23.96	ED076-010	52	78
DDED21-076	23.96	25.5	ED076-013	53	79
DDED21-076	25.5	26.96	ED076-014	53	79
DDED21-076	26.96	28.53	ED076-015	54	80
DDED21-076	28.53	29.97	ED076-016	56	86
DDED21-076	29.97	31.57	ED076-017	51	88
DDED21-076	31.57	33.04	ED076-019	49	85
DDED21-076	33.04	34.5	ED076-020	46	76
DDED21-076	34.5	36.03	ED076-021	47	75
DDED21-076	36.03	37.5	ED076-022	47	78
DDED21-076	37.5	38.99	ED076-023	51	85
DDED21-076	38.99	40.44	ED076-025	55	290
DDED21-076	40.44	42	ED076-026	154	3490
DDED21-076	42	43.5	ED076-027	29	61
DDED21-076	43.5	44.97	ED076-028	24	51
DDED21-076	44.97	46.5	ED076-029	23	48
DDED21-076	46.5	47.97	ED076-030	34	50

Hole	From (m)	To (m)	Sample ID	Co ppm	Ni ppm
DDED21-076	47.97	49.52	ED076-032	35	83
DDED21-076	49.52	51	ED076-033	69	147
DDED21-076	51	52.5	ED076-034	33	51
DDED21-076	52.5	53.97	ED076-035	39	61
DDED21-076	53.97	55.5	ED076-038	22	48
DDED21-076	55.5	57	ED076-039	24	48
DDED21-076	57	58.53	ED076-040	28	54
DDED21-076	58.53	59.5	ED076-041	60	574
DDED21-076	59.5	60.4	ED076-042	92	1280
DDED21-076	60.4	61.5	ED076-044	83	1985
DDED21-076	61.5	62.5	ED076-045	102	2450
DDED21-076	62.5	63.5	ED076-046	97	2250
DDED21-076	63.5	64.45	ED076-047	101	2330
DDED21-076	64.45	65.5	ED076-048	96	2320
DDED21-076	65.5	66.49	ED076-050	91	2350
DDED21-076	66.49	67.53	ED076-051	92	2430
DDED21-076	67.53	68.5	ED076-052	123	3410
DDED21-076	68.5	69.53	ED076-053	166	4360
DDED21-076	69.53	70.5	ED076-054	215	5200
DDED21-076	70.5	71.45	ED076-055	197	5240
DDED21-076	71.45	72.49	ED076-057	186	4760
DDED21-076	72.49	73.5	ED076-058	146	3730
DDED21-076	73.5	74.54	ED076-059	224	6080
DDED21-076	74.54	75.5	ED076-060	209	5910
DDED21-076	75.5	76.58	ED076-063	195	5490
DDED21-076	76.58	77.46	ED076-064	147	3990
DDED21-076	77.46	78.48	ED076-065	232	6010
DDED21-076	78.48	79.58	ED076-066	129	3370
DDED21-076	79.58	80.5	ED076-067	189	5270
DDED21-076	80.5	81.46	ED076-069	231	6630
DDED21-076	81.46	82.56	ED076-070	198	5790
DDED21-076	82.56	83.5	ED076-071	124	3870
DDED21-076	83.5	84.5	ED076-072	143	4410
DDED21-076	84.5	85.56	ED076-073	164	4980
DDED21-076	85.56	86.5	ED076-075	141	4120
DDED21-076	86.5	87.5	ED076-076	113	3110
DDED21-076	87.5	88.49	ED076-077	117	3160
DDED21-076	88.49	89.96	ED076-078	111	2950
DDED21-076	89.96	91.35	ED076-079	123	3120
DDED21-076	91.35	93	ED076-080	116	2800
DDED21-076	93	94.54	ED076-082	113	2610
DDED21-076	94.54	95.89	ED076-083	106	2540
DDED21-076	95.89	97.55	ED076-084	101	2420
DDED21-076	97.55	99	ED076-085	140	3560

Hole	From (m)	To (m)	Sample ID	Co ppm	Ni ppm
DDED21-076	99	100	ED076-088	119	3250
DDED21-076	100	101.82	ED076-089	214	6590
DDED21-076	101.82	102.96	ED076-090	111	3440
DDED21-076	102.96	104.56	ED076-091	97	2810
DDED21-076	104.56	106.11	ED076-092	101	2920
DDED21-076	106.11	107.58	ED076-094	98	2800
DDED21-076	107.58	108.97	ED076-095	106	2890
DDED21-076	108.97	110.56	ED076-096	105	2820
DDED21-076	110.56	111.9	ED076-097	99	2720
DDED21-076	111.9	113.4	ED076-098	98	2710
DDED21-076	113.4	115	ED076-100	87	2500
DDED21-076	115	116.5	ED076-101	101	2950
DDED21-076	116.5	118	ED076-102	95	2700
DDED21-076	118	119.5	ED076-103	100	2850
DDED21-076	119.5	121	ED076-104	98	2770
DDED21-076	121	122.62	ED076-105	97	2800
DDED21-076	122.62	124	ED076-107	99	2800
DDED21-076	124	125.59	ED076-108	95	2590
DDED21-076	125.59	127.09	ED076-109	100	2770
DDED21-076	127.09	128.5	ED076-110	102	2870
DDED21-076	128.5	130	ED076-113	103	2960
DDED21-076	130	131.48	ED076-114	102	2960
DDED21-076	131.48	133	ED076-115	104	2950
DDED21-076	133	134.5	ED076-116	110	3110
DDED21-076	134.5	136	ED076-117	111	3040
DDED21-076	136	137.5	ED076-119	108	2750
DDED21-076	137.5	139	ED076-120	111	2760
DDED21-076	139	140.57	ED076-121	110	2770
DDED21-076	140.57	141.91	ED076-122	112	2830
DDED21-076	141.91	143.56	ED076-123	113	2870
DDED21-076	143.56	145.11	ED076-125	110	2690
DDED21-076	145.11	146	ED076-126	112	2710
DDED21-076	146	147.5	ED076-127	116	2790
DDED21-076	147.5	149	ED076-128	113	2790
DDED21-076	149	150.5	ED076-129	108	2650
DDED21-076	150.5	152.13	ED076-130	116	2880
DDED21-076	152.13	153.46	ED076-132	113	2790
DDED21-076	153.46	154.96	ED076-133	111	2690
DDED21-076	154.96	156.5	ED076-134	113	2730
DDED21-076	156.5	158	ED076-135	112	2760
DDED21-076	158	159.36	ED076-138	115	2800
DDED21-076	159.36	160.95	ED076-139	113	2740
DDED21-076	160.95	162.5	ED076-140	107	2590
DDED21-076	162.5	163.97	ED076-141	113	2720

Hole	From (m)	To (m)	Sample ID	Co ppm	Ni ppm
DDED21-076	163.97	165.4	ED076-142	114	2790
DDED21-076	165.4	166.93	ED076-144	115	2680
DDED21-076	166.93	168.51	ED076-145	107	2570
DDED21-076	168.51	170.06	ED076-146	107	2690
DDED21-076	170.06	171.5	ED076-147	113	2730
DDED21-076	171.5	173.01	ED076-148	112	2690
DDED21-076	173.01	174.5	ED076-150	112	2690
DDED21-076	174.5	176	ED076-151	112	2700
DDED21-076	176	177.53	ED076-152	108	2650
DDED21-076	177.53	179.1	ED076-153	112	2720
DDED21-076	179.1	180.65	ED076-154	104	2710
DDED21-076	180.65	181.92	ED076-155	104	2610
DDED21-076	181.92	183.5	ED076-157	113	2860
DDED21-076	183.5	185	ED076-158	116	3000
DDED21-076	185	186.5	ED076-159	117	2960
DDED21-076	186.5	187.52	ED076-160	126	3100
DDED21-076	187.52	188.57	ED076-163	132	3240
DDED21-076	188.57	189.66	ED076-164	219	6710
DDED21-076	189.66	190.78	ED076-165	166	6200
DDED21-076	190.78	191.83	ED076-166	142	5790
DDED21-076	191.83	192.7	ED076-167	134	4380
DDED21-076	192.7	193.52	ED076-169	223	5940
DDED21-076	193.52	194.65	ED076-170	173	4620
DDED21-076	194.65	195.66	ED076-171	102	2790
DDED21-076	195.66	196.55	ED076-172	107	2940
DDED21-076	196.55	197.98	ED076-173	118	4060
DDED21-076	197.98	199.26	ED076-175	107	4070
DDED21-076	199.26	200.45	ED076-176	271	13400
DDED21-076	200.45	201.47	ED076-177	200	9490
DDED21-076	201.47	202.5	ED076-178	232	7620
DDED21-076	202.5	203.5	ED076-179	162	5310
DDED21-076	203.5	204.5	ED076-180	122	4700
DDED21-076	204.5	205.5	ED076-182	330	6530
DDED21-076	205.5	206.5	ED076-183	235	6640
DDED21-076	206.5	207.5	ED076-184	278	7010
DDED21-076	207.5	208.47	ED076-185	90	2500
DDED21-076	208.47	209.5	ED076-188	118	3380
DDED21-076	209.5	210.5	ED076-189	140	3990
DDED21-076	210.5	211.5	ED076-190	210	5190
DDED21-076	211.5	212.48	ED076-191	171	5710
DDED21-076	212.48	213.5	ED076-192	237	5350
DDED21-076	213.5	214.57	ED076-194	190	4550
DDED21-076	214.57	215.47	ED076-195	150	3600
DDED21-076	215.47	216.52	ED076-196	154	4280

Hole	From (m)	To (m)	Sample ID	Co ppm	Ni ppm
DDED21-076	216.52	217.5	ED076-197	184	5300
DDED21-076	217.5	218.5	ED076-198	211	5530
DDED21-076	218.5	219.51	ED076-200	195	4980
DDED21-076	219.51	220.5	ED076-201	167	4520
DDED21-076	220.5	221.44	ED076-202	213	5210
DDED21-076	221.44	222.5	ED076-203	235	5860
DDED21-076	222.5	223.42	ED076-204	241	6190
DDED21-076	223.42	224.43	ED076-205	199	6090
DDED21-076	224.43	225.5	ED076-207	223	7520
DDED21-076	225.5	226.5	ED076-208	200	5440
DDED21-076	226.5	227.41	ED076-209	205	5080
DDED21-076	227.41	228.36	ED076-210	166	4210
DDED21-076	228.36	229.21	ED076-213	97	3060
DDED21-076	229.21	230.17	ED076-214	77	2760
DDED21-076	230.17	231	ED076-215	153	4280
DDED21-076	231	232	ED076-216	159	6880
DDED21-076	232	232.82	ED076-217	167	6140
DDED21-076	232.82	233.77	ED076-219	146	5220
DDED21-076	233.77	234.69	ED076-220	187	4740
DDED21-076	234.69	235.59	ED076-221	128	3990
DDED21-076	235.59	236.5	ED076-222	128	3890
DDED21-076	236.5	237.54	ED076-223	135	4550
DDED21-076	237.54	238.5	ED076-225	139	4310
DDED21-076	238.5	239.5	ED076-226	148	4890
DDED21-076	239.5	240.47	ED076-227	119	4260
DDED21-076	240.47	241.52	ED076-228	125	4260
DDED21-076	241.52	242.5	ED076-229	134	4530
DDED21-076	242.5	243.46	ED076-230	154	4840
DDED21-076	243.46	244.5	ED076-232	178	5910
DDED21-076	244.5	245.5	ED076-233	173	5690
DDED21-076	245.5	246.47	ED076-234	131	5480
DDED21-076	246.47	247.5	ED076-235	134	5690
DDED21-076	247.5	248.55	ED076-238	190	6040
DDED21-076	248.55	249.5	ED076-239	220	5950
DDED21-076	249.5	250.5	ED076-240	169	5220
DDED21-076	250.5	251.5	ED076-241	151	4110
DDED21-076	251.5	252.5	ED076-242	203	5060
DDED21-076	252.5	253.5	ED076-244	165	3980
DDED21-076	253.5	254.58	ED076-245	199	4420
DDED21-076	254.58	255.49	ED076-246	254	7020
DDED21-076	255.49	256.53	ED076-247	258	5990
DDED21-076	256.53	257.51	ED076-248	231	5470
DDED21-076	257.51	258.55	ED076-250	219	4980
DDED21-076	258.55	259.5	ED076-251	175	6090

Hole	From (m)	To (m)	Sample ID	Co ppm	Ni ppm
DDED21-076	259.5	260.5	ED076-252	136	5340
DDED21-076	260.5	261.5	ED076-253	197	7180
DDED21-076	261.5	262.5	ED076-254	163	5990
DDED21-076	262.5	263.5	ED076-255	131	5260
DDED21-076	263.5	264.53	ED076-257	156	5430
DDED21-076	264.53	265.53	ED076-258	223	6570
DDED21-076	265.53	266.5	ED076-259	195	6350
DDED21-076	266.5	267.5	ED076-260	175	4920
DDED21-076	267.5	268.46	ED076-263	195	4960
DDED21-076	268.46	269.5	ED076-264	211	6240
DDED21-076	269.5	270.5	ED076-265	167	4820
DDED21-076	270.5	271.5	ED076-266	118	4330
DDED21-076	271.5	272.5	ED076-267	168	5560
DDED21-076	272.5	273.5	ED076-269	144	4270
DDED21-076	273.5	274.57	ED076-270	132	4260
DDED21-076	274.57	275.56	ED076-271	160	5040
DDED21-076	275.56	276.48	ED076-272	132	3940
DDED21-076	276.48	277.37	ED076-273	153	4610
DDED21-076	277.37	278	ED076-275	131	4450
DDED21-076	278	279.09	ED076-276	134	5180
DDED21-076	279.09	279.99	ED076-277	133	4670
DDED21-076	279.99	280.82	ED076-278	104	2930
DDED21-076	280.82	282	ED076-279	133	4080
DDED21-076	282	282.9	ED076-280	137	5930
DDED21-076	282.9	284.05	ED076-282	204	6700
DDED21-076	284.05	285	ED076-283	122	4480
DDED21-076	285	286	ED076-284	172	6060
DDED21-076	286	287.03	ED076-285	137	5910
DDED21-076	287.03	288.06	ED076-288	133	4620
DDED21-076	288.06	288.96	ED076-289	128	4260
DDED21-076	288.96	290	ED076-290	113	3760
DDED21-076	290	291	ED076-291	98	3120
DDED21-076	291	292.09	ED076-292	98	3270
DDED21-076	292.09	293	ED076-294	91	3050
DDED21-076	293	294.03	ED076-295	129	4130
DDED21-076	294.03	295.06	ED076-296	159	4470
DDED21-076	295.06	295.96	ED076-297	145	3460
DDED21-076	295.96	297	ED076-298	146	3570
DDED21-076	297	297.98	ED076-300	115	3390
DDED21-076	297.98	299	ED076-301	164	5890
DDED21-076	299	300.04	ED076-302	176	6470
DDED21-076	300.04	301	ED076-303	202	7950
DDED21-076	301	302	ED076-304	198	6200
DDED21-076	302	302.97	ED076-305	231	4150

Hole	From (m)	To (m)	Sample ID	Co ppm	Ni ppm
DDED21-076	302.97	303.9	ED076-307	295	6000
DDED21-076	303.9	304.96	ED076-308	196	4060
DDED21-076	304.96	305.99	ED076-309	258	6020
DDED21-076	305.99	307.06	ED076-310	193	3860
DDED21-076	307.06	308	ED076-313	165	3190
DDED21-076	308	309.05	ED076-314	273	4780
DDED21-076	309.05	310	ED076-315	149	2730
DDED21-076	310	311	ED076-316	179	3390
DDED21-076	311	311.98	ED076-317	133	6390
DDED21-076	311.98	313.05	ED076-319	146	8090
DDED21-076	313.05	314	ED076-320	143	8040
DDED21-076	314	314.97	ED076-321	141	6910
DDED21-076	314.97	316	ED076-322	127	7670
DDED21-076	316	317	ED076-323	73	4990
DDED21-076	317	317.93	ED076-325	74	5010
DDED21-076	317.93	319	ED076-326	136	8100
DDED21-076	319	319.83	ED076-327	230	7040
DDED21-076	319.83	320.97	ED076-328	254	6250
DDED21-076	320.97	322	ED076-329	224	4780
DDED21-076	322	323.02	ED076-330	116	2340
DDED21-076	323.02	324	ED076-332	95	2060
DDED21-076	324	325	ED076-333	88	2120
DDED21-076	325	326	ED076-334	89	1875
DDED21-076	326	326.99	ED076-335	86	2370
DDED21-076	326.99	328	ED076-338	90	2270
DDED21-076	328	329	ED076-339	95	2260
DDED21-076	329	330	ED076-340	95	2370
DDED21-076	330	331	ED076-341	86	2410
DDED21-076	331	331.69	ED076-342	79	2400
DDED21-076	331.69	332.66	ED076-344	179	14750
DDED21-076	332.66	333.33	ED076-345	209	13250
DDED21-076	333.33	333.99	ED076-346	256	13550
DDED21-076	333.99	335	ED076-347	164	5550
DDED21-076	335	336.06	ED076-348	148	3000
DDED21-076	336.06	337	ED076-350	169	6370
DDED21-076	337	338	ED076-351	98	3330
DDED21-076	338	339.03	ED076-352	95	2690
DDED21-076	339.03	340	ED076-353	93	2640
DDED21-076	340	341	ED076-354	99	3830
DDED21-076	341	342.03	ED076-355	99	3290
DDED21-076	342.03	343.07	ED076-357	115	4690
DDED21-076	343.07	343.97	ED076-358	171	9890
DDED21-076	343.97	345	ED076-359	107	7910
DDED21-076	345	346.1	ED076-360	145	8270

Hole	From (m)	To (m)	Sample ID	Co ppm	Ni ppm
DDED21-076	346.1	346.93	ED076-363	149	8760
DDED21-076	346.93	348	ED076-364	207	8940
DDED21-076	348	349	ED076-365	134	6510
DDED21-076	349	350	ED076-366	82	4230

Hole	From (m)	To (m)	Interval (m)	Sulphide % (Visual Estimate)	Host Lithology
	52.5	54.9	2.4	Finely disseminated to semi-massive (pyrrhotite-pentlandite-chalcopyrite) 10%	Fine grained sheared peridotite at contact with rhyolitic tuff
	84.3	87.5	3.2	Finely disseminated to blebby (pyrrhotite-pentlandite) 5%	Fine grained peridotite
DDED21	87.5	93	5.5	Finely disseminated (pyrrhotite- pentlandite) 2%	Fine grained peridotite
-059	179.5	181	1.5	Coarsely disseminated (pyrrhotite- pentlandite) 5%	Medium grained peridotite
	203.5	225	21.5	Finely disseminated (pyrrhotite- pentlandite) 4-8%	Fine grained peridotite
	227.5	237	9.5	Finely disseminated to blebby (pyrrhotite-pentlandite) 4-8%	Fine grained peridotite
	256	267	6	Finely disseminated (pyrrhotite- pentlandite) 4-8%	Fine grained peridotite
DDED21	81.9	93	5	Finely disseminated (pyrrhotite) 2- 8%	Fine grained peridotite
-060	177.3	287	109.7	Finely disseminated (pyrrhotite) 1- 4%	Fine to medium grained dunite and fine grained peridotite
DDED21 -061	213.9	256.5	42.6	Finely disseminated (pyrrhotite) 2- 8%	Fine grained peridotite
DDED21	80.3	98	18.3	Finely disseminated (pyrrhotite) 2- 8%	Fine grained peridotite
-063	182.5	204	21.5	Finely disseminated and blebby (pyrrhotite) 1-10%	Fine to medium grained dunite and fine grained peridotite
DDED21 -065	150.5	251	100.5	Finely disseminated, blebby, and coarsely disseminated (pyrrhotite) 2-4%	Fine grained peridotitic komatiite
DDED21 -073	303.5	329	25.5	Finely disseminated and fracture controlled (pyrrhotite) 1-4%	Fine grained dunite
DDED21	168	190.8	22.8	Finely disseminated (pyrrhotite) 1- 8%	Fine grained serpentinised peridotite
-075	208.9	243	34.1	Finely disseminated (pyrrhotite- pentlandite) 1-2%	Fine grained peridotite
DDED21	60.4	86.5	26.1	Finely disseminated (pyrrhotite) 2- 4%	Fine grained serpentinised peridotite
-076	188.6	349	160.4	Finely disseminated, blebby, and coarsely disseminated (pyrrhotite) 2- 8%	Fine grained serpentinised peridotite and medium grained dunite

Notes:

In relation to the disclosure of visual mineralisation, the Company cautions that visual estimates of sulphide mineral abundance should never be considered a proxy or substitute for laboratory analysis. Laboratory assay results are required to determine the widths and grade of the visible mineralisation reported in preliminary geological logging. The Company will update the market when laboratory analytical results become available

Appendix 2: JORC Code, 2012 Edition - Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Comments
Sampling techniques	• Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	
	• Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Core was cut into two equal halves with one submitted for analysis.
	• Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Sample intervals was based on geological observations. Minimum core width sampled was 0.3m and maximum 1.5m. Samples were submitted to ALS Laboratories Vancouver.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Standard tube NQ and HQ Diamond drilling was undertaken.
Drill sample recovery	• Method of recording and assessing core and chip sample recoveries and results assessed.	Field geologists measure core recoveries for every drill run completed. The core recovered is physically measured by tape measure and the length is recorded for every "run". Core recovery is

Criteria	JORC Code explanation	Comments	
		calculated as a percentage recovery. Core recovery is logged and recorded into the database.	
	• Measures taken to maximise sample recovery and ensure representative nature of the samples.	Diamond drilling by nature collects relatively uncontaminated core samples. These are cleaned at the drill site to remove drilling fluids and cuttings to present clean core for logging and sampling.	
	• Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no significant loss of material reported in the mineralised parts of the diamond core to date.	
Logging	• Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Drill holes were logged for lithology, alteration, mineralisation, structure and weathering by a geologist. Data is then captured in a database appropriate for mineral resource estimation.	
	• Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	All cores are photographed in the core tray, with individual photographs taken of each tray both dry and wet. Logging conducted is both qualitative and quantitative.	
	• The total length and percentage of the relevant intersections logged.	All drill holes were logged in full.	
Sub-sampling techniques and sample	• If core, whether cut or sawn and whether quarter, half or all core taken.	Diamond drill core was cut in half. Half the core was submitted for analysis and the remaining half was stored securely for future reference and potentially further analysis if ever required.	
preparation	• If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Only diamond core drilling completed.	
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Sample preparation was completed by ALS Laboratories in Vancouver using their standard preparation method. Samples were crushed to 80% passing 2mm, riffle split and pulverized to 95% passing 105µm.	

Criteria	JORC Code explanation	Comments
	• Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Standard preparation procedure inclusive of internal laboratory internal crushing and pulverizing tests were utilised by ALS Laboratories.
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	Field duplicate samples were taken at the rate of 1:25 samples. Standard reference materials and blanks were similarly inserted at the rate of 1:25Before and after predicted high grade intervals multiple blanks were inserted to ensure that there was no cross sample contamination. QAQC verified that the blank material reported below detection and thus no cross contamination between samples.
	• Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes are considered appropriate to the mineralisation style and grain size of the material.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	Both four acid digest ICP total digestion and ICP two acid partial digestion methods were utilised on all samples. This was aiming to determine an indicative proportion of sulphide versus silicate associated nickel on the basis of the partial digestion method being ineffective at liberating silicate hosted nickel mineralisation. The high degree of correlation indicated between the two results is indicative of a high proportion of sulphide associated mineralisation. ICP total digestion method involved analysis of a pulp by gently heating in a mixture of ultrapure HF/HNO ₃ /HClO ₄ until dry and the residue dissolved in dilute ultrapure HNO ₃ .
		ICP partial digestion method involved analysis of a pulp digested with 8:1 ultrapure HNO ₃ :HCl for 1 hour at 95°_{c} .

Criteria	JORC Code explanation	Comments
	• For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	An Olympus Vanta VMR pXRF in Geochem mode was utilised to assist with identification of nickel sulphide minerals Readings were collected over 40 second intervals for all 3 beams. The instrument is calibrated according to the manufacturer's specifications and a calibration check is performed daily to confirm the unit is operating within expected parameters as well as a performance test against a certified reference material. The manufacturer's most recen certificate of calibration is dated July 28, 2021 with nicke performance calibrated from OREAS 74a and GBM 398-4 certified reference materials.
	• Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Standard reference materials and blanks were inserted routinely a the rate of 1:25 samples.
Verification of sampling	 The verification of significant intersections by either independent or alternative company personnel. 	Results were reviewed by the chief geologist, managing director an competent person.
and assaying	• The use of twinned holes.	None of the current holes being drilled are considered to be twi holes.
	• Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All data was recorded in field logging sheets, digitsed then importe into a validated database.
	Discuss any adjustment to assay data.	No adjustments were performed to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	Drill collar locations were surveyed using a differential GPS.
	 Specification of the grid system used. 	All collar locations are reported in NAD83- 17N grid system.

Criteria	JORC Code explanation	Comments
	 Quality and adequacy of topographic control. 	Topographic control on collars was derived from a LIDAR survey completed across the Project. LIDAR is considered to be industry best practice for this stage of exploration.
Data spacing and	 Data spacing for reporting of Exploration Results. 	Diamond drill holes are drilled selectively directly targeting mineralisation based on regional orientations known along strike.
distribution	• Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The spacing of the area being targeted by drilling underway at present is too broad for being able to estimate a mineral resource.
	• Whether sample compositing has been applied.	Sample compositing has been applied. Results reported are length weighted averages.
Orientation of data in relation to	• Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Based on the logging of the drilling and interpretation of the geology the drilling completed is interpreted to be perpendicular to the trend of mineralisation.
geological structure	• If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The drilling intercept reported is downhole. Further drilling is required to confirm the geometry of mineralisation.
Sample security	• The measures taken to ensure sample security.	Diamond drill core is transported from site by contractors to a secured core processing facility for logging and sampling. Samples are subsequently sent by a contractor to the assay laboratory.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	No audits are documented to have occurred in relation to sampling techniques or data.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure	• Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests,	The Edleston Project is 100% owned by a wholly owned subsidiary of Aston Minerals Ltd.
status	historical sites, wilderness or national park and environmental settings.	A 2% net smelter return royalty applies across the Project. 1% of the net smelter return royalty can be purchased for \$1,000,000 across the mining claims and 1% of the net smelter return royalty can be purchased for \$1,000,000 across the Leased Claim.
	• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Open file verification has been conducted to confirm licenses are in full force.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	Exploration reported was completed by 55 North Mining Inc (Formerly SGX Resources Inc.). Activities completed include magnetic surveys, VLF/IP surveys, extensive diamond drilling.
Geology	 Deposit type, geological setting and style of mineralisation. 	Regionally, Edleston appears to lie along the potential western extension of the Cadillac-Larder fault zone along which a number of major gold deposits are located. Geophysical and geological work has demonstrated that the Edleston Zone sits within the north limb of the host unit/horizon that stretches over 10 km to the east. This unit is broadly folded back toward the south and east immediately to the west of the deposit continuing under and near the contact with shallow sedimentary cover. The host rock is an altered and sheared ultramafic that exhibits extensive silicification and contains quartz-carbonate in veins, veinlets and fracture fill. A revised geological interpretation based on the information obtained from recent drilling and reprocessed magnetics coverages

Crit	teria	JORC Code explanation	Commentary
			was undertaken. Through this process the extent and intense magnetic response of the Boomerang Target was recognised. Magnetic inversion modelling of the Boomerang Target was undertaken to further constrain the geometry and extent of the dunite/peridotite complex. It is interpreted that this dunite/peridotite body extends for a strike of 5km, is 500 to >1,500m wide and extends to depths of well over 500m. The exploration model applied to conduct targeting of this body is analogous to Dumont and Crawford Nickel-PGE-Cobalt Deposits. Nickel sulphide mineralisation at these deposits was formed through the serpentinisation of a dunite unit (rock composed of >90% olivine). Through the reaction of olivine with water, extensive magnetite is developed hence providing such a strong magnetic response and potentially allowing for a direct exploration targeting method to be applied. Through this process of serpentinisation nickel is liberated from olivine within a strongly reducing
Duil			environment and the liberated nickel is partitioned into low sulphur nickel sulphide minerals.
	ill hole formation	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: o easting and northing of the drill hole collar o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar o dip and azimuth of the hole o down hole length and interception depth o hole length. 	Drill hole locations are described in the body of the text, in the appendix and on related Figures.

Criteria	JORC Code explanation	Commentary
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. 	Length weighted averages are reported in the highlights and body of the announcement. A full listing of the individual intervals is reported in the body of the release above.
	• Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Length weighted averages have been applied where necessary to calculate composite intervals. Calculations were performed in excel using the sumproduct function to calculate the length weighted average grades.
	• The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalence are reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Intervals of alteration and mineralisation reported are apparent widths. Further drilling is required to understand the geometry of mineralisation and thus the true width of mineralisation.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Maps and plans have been included in body of the announcement.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All information has been reported.

Criteria	JORC Code explanation	Commentary
Other	· Other exploration data, if meaningful and material, should be	No other exploration data is considered meaningful and material to
substantive	reported including (but not limited to): geological observations;	this announcement.
exploration	geophysical survey results; geochemical survey results; bulk samples	
data	- size and method of treatment; metallurgical test results; bulk	
	density, groundwater, geotechnical and rock characteristics;	
	potential deleterious or contaminating substances.	
Further work	The nature and scale of planned further work (eg tests for lateral	Further exploratory drilling along the 5km strike length of the
	extensions or depth extensions or large-scale step-out drilling).	Boomerang target is proposed to be undertaken.
	• Diagrams clearly highlighting the areas of possible extensions,	Maps including the location of samples and prospects are included
	including the main geological interpretations and future drilling	in the body of this release.
	areas, provided this information is not commercially sensitive.	