

LATIN RESOURCES LIMITED ACN: 131 405 144

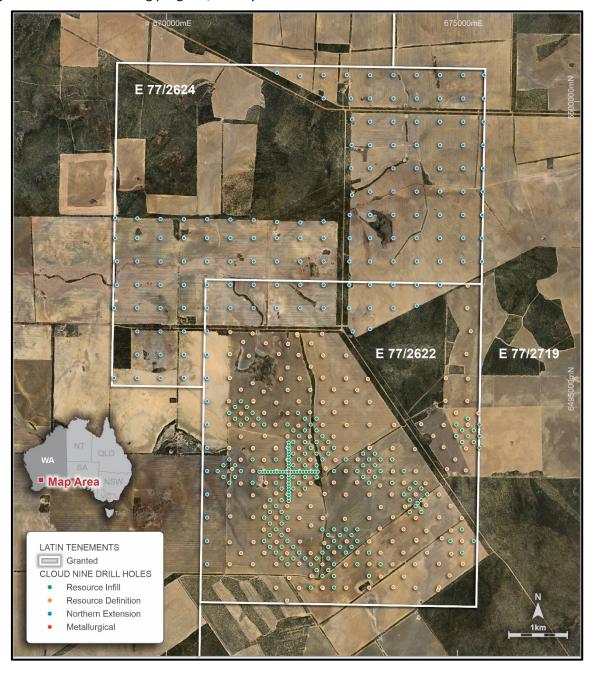
Unit 3, 32 Harrogate Street, West Leederville, WA 6007

P +61 8 6117 4798 E info@latinresources.com.au W www.latinresources.com.au

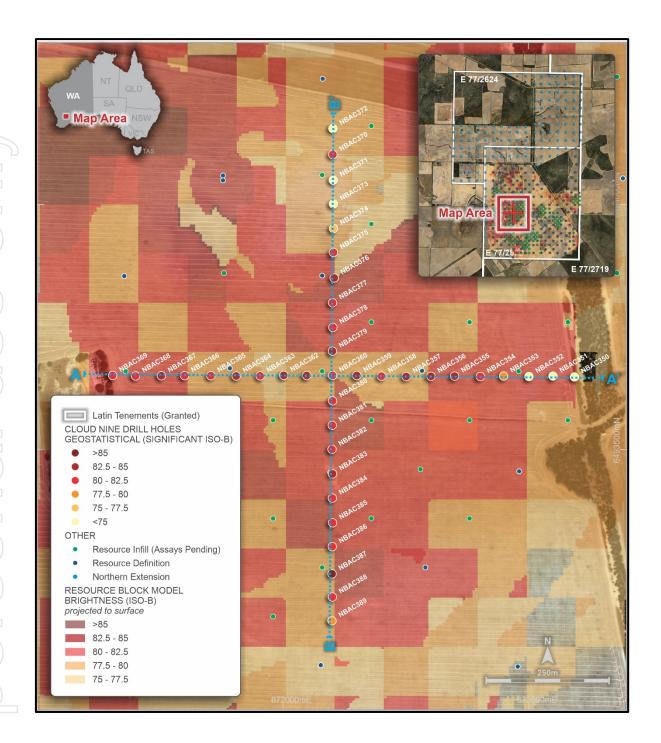
20 December 2021

HIGH-GRADE HALLOYSITE INTERSECTED AT THE CLOUD NINE DEPOSIT

HIGHLIGHTS:


- Consecutive holes demonstrate excellent continuity of high-grade halloysite bearing kaolinised granite from within the Cloud Nine Mineral Resource area.
- High-grade halloysite results have been received from the next 14 holes in the geostatistical cross drilling program. Significant intersections include:
 - NBAC366: 9m @ 18% Halloysite from 28m to EOH
 - Incl: 2m @ 47% Halloysite from 28m
 - NBAC367: **18m @ 17% Halloysite** from 24m to EOH
 - NBAC368: 19m @ 23.4% Halloysite from 13m
 - Incl: 2m @ 50% Halloysite from 19m
 - NBAC369: **6m @ 18% Halloysite** from 7m
 - and 13m @ 19% Halloysite from 19m
 - Incl: **2m @ 30% Halloysite** from 19m
 - NBAC373: 3m @ 18% from 3m
 - and 15m @ 21% Halloysite from 10m
 - NBAC374: 16m @ 25% Halloysite from 9m to EOH
 - NBAC375: 9m @ 36% Halloysite from 14m to EOH
- Moving forward, significant cost savings and improvements in sample throughput will be achieved by LRS through the approved use of the FTIR and Machine Learning (ML) approach.
- Recent drilling results and ongoing drilling in Q1 2022 will drive an update to the JORC Resource Estimate for the Cloud Nine deposit, designed to increase confidence levels to Indicated and potentially Measured status.
- Significant laboratory delays continue to impact the Company's ability to announce results from the Cloud Nine drilling program in a timely manner.

Latin Resources Limited (ASX: LRS) ("Latin" or "the Company") is pleased to announce that further outstanding halloysite results have been returned from ongoing XRD analysis of the close spaced drilling conducted at the Company's 100% owned Noombenberry Kaolin-Halloysite Project near Merredin, Western Australia (*Appendix 1*).


Within the Noombenberry Project, the Company has identified and reported a JORC-2012 Inferred Mineral Resource of **207Mt** of kaolinised granite at the **Cloud Nine deposit**, which includes separate domains containing **123Mt** of bright-white kaolinite and **84Mt** of kaolin/halloysite-bearing materialⁱ.

The most recent halloysite results further demonstrate the consistent nature of the high-grade halloysite bearing material within the area tested at Cloud Nine and further strengthens Noombenberry's position as a globally significant halloysite project.

The Company will report the XRD results from the remaining 12 drill holes from the close-spaced geostatistical cross drilling program, as they become available.

Results received to date have confirmed that both the <u>thickness and brightness</u> of the kaolinised granite is extremely consistent within the area tested. A near surface blanket, up to 28 metres thick, of ultra-bright (>80 ISO-B) kaolinitic material and significant halloysite bearing material was defined over an area approaching one square kilometre (*Figure 2, Figure 3, and Figure 4*).

Halloysite results from ongoing XRD analysis

The next 14 drillholes to be analysed from the recent drilling program have returned more outstanding results, containing consistent widths of high-grade halloysite material in consecutive holes, further confirming the high quality of the area tested.

The drilling also highlighted a second near surface blanket of halloysite bearing material (*Figure 3*) in addition to the "headline" halloysite intersections reported.

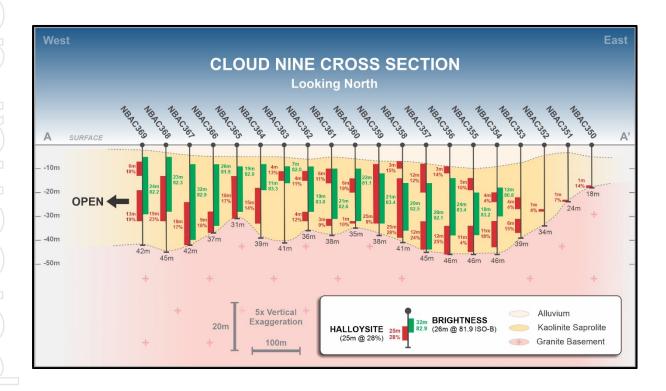
Exceptionally high-grade halloysite intersections, including 47% and 50% halloysite, were encountered within the broader high-grade halloysite zones.

Significant results received from the east-west cross section include:

NBAC365: 18m @ 17% Halloysite from 13m to EOH
 Incl: 6m @ 29% Halloysite from 15m

NBAC366: 9m @ 18% Halloysite from 28m to EOH

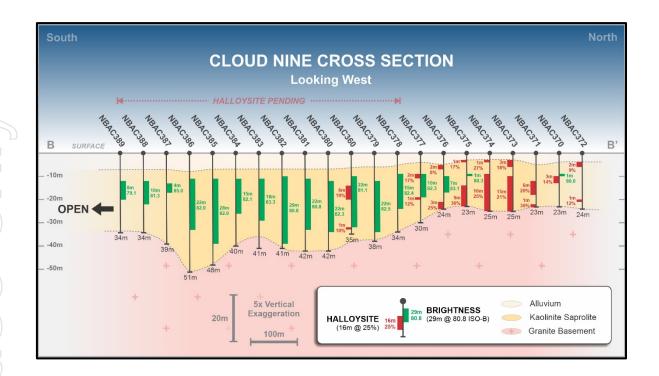
Incl: 2m @ 47% Halloysite from 28m


NBAC367: 18m @ 17% Halloysite from 24m to EOH

NBAC368: 19m @ 23.4% Halloysite from 13m
 Incl: 2m @ 50% Halloysite from 19m

• NBAC369: 6m @ 18% Halloysite from 7m

and 13m @ 19% Halloysite from 19m


Incl: 2m @ 30% Halloysite from 19m

Significant results received from the north-south drilling include:

- NBAC371: 6m @ 20% Halloysite from 12m
 and 1m @ 30% Halloysite at EOH
- NBAC373: 3m @ 18% Halloysite from 3m
 and 15m @ 21% Halloysite from 10m
- NBAC374: **16m @ 25% Halloysite** from 9m to EOH
- NBAC375: 9m @ 36% Halloysite from 14m to EOH
- NBAC376: 3m @ 25% Halloysite from 21m to EOH

Twelve holes from the southern end of the 40-hole geostatistical cross drilling program have halloysite results pending.

Alternate Halloysite and Kaolinite Analysis Pathway Development

As part of the mineral resource estimate for the Cloud Nine kaolin—halloysite deposit, the Company's Resource Consultants, RSC and its partners, developed a novel machine learning (ML) algorithm, which provides a cost- and time-efficient quantification of kaolinite and halloysite, delivering fit-for-purpose results.

Cloud Nine - Next Steps

The Company is progressing initial desktop scoping studies, including detailed metallurgical test work, updating of the geological model and other preliminary studies.

It is anticipated that this work will lead to an upgrade of the Maiden JORC Inferred Mineral Resources, once all results from the infill drilling have been received. It is expected that this will result in an increase in the JORC classification to Indicated status, with the potential to bring some areas into the Measured Status.

Other site works proposed for the new year include additional geotechnical drilling, bulk sampling for additional metallurgical test work and the production potential offtake product samples, baseline environmental studies and preliminary mine design and costings.

More details of the planned works will be provided in due course.

This Announcement has been authorised for release to ASX by the Board of Latin Resources.

For further information please contact:

Chris Gale
Executive Director
Latin Resources Limited
+61 8 6117 4798

Andrew Rowell Senior Communications Advisor White Noise Communications 08 6374 2907

info@latinresources.com.au | www.latinresources.com.au

About Latin Resources

Latin Resources Limited (ASX: LRS) is an Australian-based mineral exploration company with several mineral resource projects in Latin America and Australia. The Australian projects include the Yarara gold project in the NSW Lachlan Fold belt, Noombenberry Kaolin-Halloysite Project near Merredin, WA, and the Big Grey Project in the Paterson region of WA.

The Company recently signed a JV agreement with the Argentinian company Integra Capital to fund the next phase of exploration on its lithium pegmatite projects in Catamarca, Argentina.

Forward-Looking Statement

This ASX announcement may include forward-looking statements. These forward-looking statements are not historical facts but rather are based on Latin Resources Ltd.'s current expectations, estimates and assumptions about the industry in which Latin Resources Ltd operates, and beliefs and assumptions regarding Latin Resources Ltd.'s future performance. Words such as "anticipates", "expects", "intends", "plans", "believes", "seeks", "estimates", "potential" and similar expressions are intended to identify forward-looking statements. Forward-looking statements are only predictions and are not quaranteed, and they are subject to known and unknown risks, uncertainties and assumptions, some of which are outside the control of Latin Resources Ltd. Past performance is not necessarily a guide to future performance and no representation or warranty is made as to the likelihood of achievement or reasonableness of any forward-looking statements or other forecast. Actual values, results or events may be materially different to those expressed or implied in this ASX announcement. Given these uncertainties, recipients are cautioned not to place reliance on forward looking statements. Any forward-looking statements in this announcement speak only at the date of issue of this announcement. Subject to any continuing obligations under applicable law and the ASX Listing Rules, Latin Resources Ltd does not undertake any obligation to update or revise any information or any of the forward-looking statements in this announcement or any changes in events, conditions or circumstances on which any such forward looking statement is based.

Competent Person Statement

The information in this ASX release that relates to Exploration Results is based on information compiled by Mr Anthony Greenaway, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Greenaway is a full-time employee of Latin Resources Ltd and has sufficient experience which is relevant to the style of mineralisation and types of deposit under consideration and to the exploration activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australian Code for Reporting of Mineral Resources and Ore Reserves". Mr Greenaway consents to the inclusion in this report of the matters based on information in the form and context in which it appears.

The information in this ASX release that relates to Mineral Resources is based on information compiled under the supervision of Mr Louis Fourie. Mr Fourie is a licenced Professional Geoscientist registered with APEGS (Association of Professional Engineers and Geoscientists of Saskatchewan) in the Province of Saskatchewan, a 'Recognised Professional Organisation' (RPO) included in a list that is posted on the ASX website from time to time. Mr Fourie has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity of resource estimation to qualify as a Competent Person as defined in the 2012 Edition of the JORC Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Latin confirms it is not aware of any new information or data that materially affects the information included in the market announcement. Latin confirms that the form and context in which the Competent Person's findings are presented have not been materially modified.

APPENDIX 1

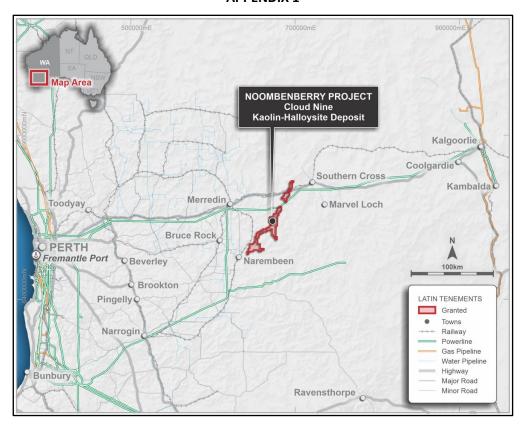


Figure 5: Location of the Noombenberry Kaolin-Halloysite Project ~300km east of Perth, WA

APPENDIX 2

Table 1: Geostatistical Cross - Collar and results status

Hole ID	Depth (m)	East (m)	North (m)	RL (m)	ISO-B Results	Halloysite Results
NBAC350	18	672593.5	6493649	445	Received	Received
NBAC351	24	672549.8	6493650	444	Received	Received
NBAC352	34	672500.8	6493649	442	Received	Received
NBAC353	39	672449.3	6493650	441	Received	Received
NBAC354	46	672401.8	6493649	439	Received	Received
NBAC355	46	672349.3	6493650	438	Received	Received
NBAC356	46	672301.4	6493650	437	Received	Received
NBAC357	45	672250.9	6493649	436	Received	Received
NBAC358	41	672200.5	6493650	434	Received	Received
NBAC359	38	672150.3	6493651	433	Received	Received
NBAC360	35	672100.9	6493652	432	Received	Received
NBAC361	38	672048.5	6493651	430	Received	Received
NBAC362	36	672001.6	6493652	429	Received	Received
NBAC363	41	671953.7	6493651	428	Received	Received
NBAC364	39	671904.8	6493650	427	Received	Received
NBAC365	31	671853.2	6493651	425	Received	Received
NBAC366	37	671799.8	6493651	424	Received	Received
NBAC367	42	671752.5	6493651	422	Received	Received
NBAC368	45	671700.1	6493650	421	Received	Received
NBAC369	42	671653.3	6493652	420	Received	Received
NBAC370	23	672101.6	6494102	434	Received	Received
NBAC371	23	672102.5	6494050	434	Received	Received
NBAC372	24	672101.7	6494155	433	Received	Received
NBAC373	25	672102.9	6494001	434	Received	Received
NBAC374	25	672103	6493951	433	Received	Received
NBAC375	23	672102.8	6493902	432	Received	Received
NBAC376	24	672104.3	6493850	432	Received	Received
NBAC377	30	672100.9	6493800	432	Received	Received
NBAC378	34	672101.6	6493749	432	Received	Pending
NBAC379	38	672100.8	6493701	432	Received	Pending
NBAC380	42	672101.1	6493600	432	Received	Pending
NBAC381	42	672100.4	6493550	432	Received	Pending
NBAC382	41	672100	6493501	433	Received	Pending
NBAC383	41	672100.9	6493451	433	Received	Pending
NBAC384	40	672100.5	6493401	433	Received	Pending
NBAC385	48	672101.2	6493351	433	Received	Pending
NBAC386	51	672100.4	6493302	433	Received	Pending
NBAC387	39	672100.1	6493247	433	Received	Pending
NBAC388	34	672100.6	6493200	434	Received	Pending
NBAC389	34	672099.9	6493151	434	Received	Pending

Table 2: Significant intersections of high brightness (+80 ISO-B) kaolinised granite within the Geostatistical Cross drilling. (See table 4 for full geochemical results used to calculate the significant intersections)

Hole ID	East	North	RL	From	То	Interval	ISO-B
	(m)	(m)	(m)	(m)	(m)	(m)	(+80)
NBAC354	672402	6493649	439	18	30	12	80.8
NBAC355	672349	6493650	438	20	38	18	83.2
NBAC356	672301	6493650	437	14	38	24	83.4
NBAC357	672251	6493649	436	16	44	28	82.7
NBAC358	672201	6493650	434	16	36	20	82.5
NBAC359	672150	6493651	433	12	33	21	83.4
NBAC360	672101	6493652	432	10	32	22	81.1
NBAC361	672048	6493651	431	10	31	21	82.6
NBAC362	672002	6493652	429	9	28	19	83.0
NBAC363	671954	6493651	428	9	16	7	82.0
NBAC364	671905	6493650	427	8	19	11	83.3
NBAC365	671853	6493651	426	9	28	19	82.0
NBAC366	671800	6493651	424	8	34	26	81.9
NBAC367	671753	6493651	423	8	40	32	82.9
NBAC368	671700	6493650	421	5	28	23	82.3
NBAC369	671653	6493652	420	5	29	24	82.2
NBAC370	672102	6494102	434	9	10	1	80.0
NBAC375	672103	6493902	432	9	10	1	80.3
NBAC376	672104	6493850	432	10	17	7	83.1
NBAC377	672101	6493800	432	9	19	10	82.3
NBAC378	672102	6493749	432	9	24	15	82.4
NBAC379	672101	6493701	432	12	34	22	82.5
NBAC380	672101	6493600	432	12	34	22	82.3
NBAC381	672100	6493550	432	11	33	22	80.8
NBAC382	672100	6493501	433	10	39	29	80.8
NBAC383	672101	6493451	433	11	29	18	83.3
NBAC384	672101	6493401	433	11	26	15	82.1
NBAC385	672101	6493351	433	11	39	28	81.8
NBAC386	672100	6493302	433	11	33	22	82.0
NBAC387	672100	6493247	433	13	17	4	85.0
NBAC388	672101	6493200	434	12	22	10	81.3

Table 3: Significant intersections of high-grade halloysite received from the next 14 aircore holes from the Geostatistical Cross drilling. (See table 4 for full geochemical results used to calculate the significant intersections)

Hole ID	East (m)	North (m)	RL (m)	From (m)	To (m)	Interval (m)	Halloysite (%)
NBAC364	671905	6493650	427	18	33	15	14
NBAC365	671853	6493651	426	13	31	18	17
NBAC366	671800	6493651	424	12	14	2	14
NBAC366	671800	6493651	424	28	37	9	18
NBAC367	671753	6493651	423	24	42	18	17
NBAC368	671700	6493650	421	13	32	19	23
NBAC369	671653	6493652	420	7	13	6	18
NBAC369	671653	6493652	420	19	32	13	19
NBAC370	672102	6494102	434	10	16	6	10
NBAC371	672103	6494050	434	12	18	6	20
NBAC371	672103	6494050	434	22	23	1	30
NBAC372	672102	6494155	433	4	6	2	9
NBAC372	672102	6494155	433	20	21	1	12
NBAC373	672103	6494001	434	3	6	3	18
NBAC373	672103	6494001	434	10	25	15	21
NBAC374	672103	6493951	433	3	4	1	27
NBAC374	672103	6493951	433	9	25	16	25
NBAC375	672103	6493902	432	3	4	1	17
NBAC375	672103	6493902	432	14	23	9	36
NBAC376	672104	6493850	432	5	7	2	8
NBAC376	672104	6493850	432	21	24	3	25
NBAC377	672101	6493800	432	9	11	2	17
NBAC377	672101	6493800	432	19	20	1	12

Table 4: Full geochemical results received to date for the Geostatistical Cross drill program (NBAC378 to NBAC389 will be reported when received)

Hole ID	From (m)	To (m)	Interval	-45um (%)	Fe2O3 (%)	Al2O3 (%)	SiO2 (%)	TiO2 (%)	Kaolinite (%)	Halloysite (%)	Brightness (ISO-B)
NBAC350	3	5	2	15.02	10.5	28.6	46.6	1.24	93	0	19
NBAC350	5	7	2	41.61	5.54	34.4	45.1	0.99	93	0	33
NBAC350	7	9	2	42.88	5.69	34.6	44.4	0.97	93	0	31.5
NBAC350	9	11	2	47.00	7.16	33.9	43.9	0.72	86	0	30
NBAC350	11	13	2	44.98	5.24	33.6	45.6	0.98	74	3	36.5
NBAC350	13	15	2	38.65	5.63	31	47.3	1.24	47	0	36
NBAC350	15	17	2	20.64	7.65	24.5	51.5	1.23	27	2	28.5
NBAC350	17	18	1	21.39	7.43	21.6	53.9	1.69	71	14	27
NBAC351	3	5	2	17.79	8.4	30.3	46.1	2.1	89	4	24
NBAC351	5	7	2	50.91	4.31	34.9	44.6	1.6	88	6	38
NBAC351	7	9	2	54.41	3.2	35.8	44.7	1.46	94	0	41.5
NBAC351	9	11	2	52.99	6.3	34.5	43.6	1.4	92	0	34
NBAC351	11	13	2	50.73	7.31	33.8	43.6	1.49	92	0	29.5
NBAC351	13	14	1	48.33	6.33	34.1	44	1.56	92	0	33
NBAC351	14	16	2	49.45	4.89	34.9	44.8	0.89	93	0	38.5
NBAC351	16	18	2	49.85	1.18	35.5	47.6	0.35	83	5	69
NBAC351	18	19	1	33.24	1.42	30.6	52.4	0.39	66	3	62.5
NBAC351	19	20	1	27.54	1.39	28.6	54.9	0.36	54	5	64.5
NBAC351	20	21	1	20.00	1.69	26.3	57.2	0.36	52	1	57
NBAC351	21	23	2	17.09	2.84	23.6	58.5	0.73	45	0	45
NBAC351	23	24	1	22.76	3.51	28.6	51.6	0.67	56	7	42.5
NBAC352	4	6	2	24.52	8.25	33.3	43	1.61	88	0	21
NBAC352	6	7	1	36.11	4.13	35.2	44.9	1.7	94	0	40
NBAC352	7	8	1	38.56	3.67	35.5	45.1	1.5	94	0	42.5
NBAC352	8	10	2	43.08	6.21	34.9	44.1	1.12	93	0	32
NBAC352	10	12	2	42.52	7.17	34.4	43.2	1.19	92	0	33.5
NBAC352	12	13	1	38.49	7.04	33.2	45	1.03	91	0	30.5
NBAC352	13	14	1	43.69	8.31	31.9	44.8	1.07	89	0	24
NBAC352	14	15	1	40.95	9.82	32.2	42.9	1.04	90	0	22
NBAC352	15	16	1	48.78	4.89	34.3	44.8	1.63	93	0	41
NBAC352	16	17	1	39.51	5.72	33.4	44.5	1.78	90	0	38
NBAC352	17	19	2	46.20	8.33	32.9	42	2.2	88	0	30.5
NBAC352	19	20	1	52.53	8.23	34	41.4	1.46	89	0	29.5
NBAC352	20	22	2	53.76	6.36	34.8	42.2	1.38	91	0	32.5
NBAC352	22	23	1	55.76	5.09	35	43.4	1.37	92	0	40
NBAC352	23	24	1	29.44	11.6	27.5	43.9	1.69	66	1	24.5
NBAC352	24	25	1	23.84	5.03	25.9	52.8	1.45	54	2	38.5
NBAC352	25	27	2	19.76	9.36	21.7	52.6	1.68	42	0	24.5
NBAC352	27	28	1	16.72	7.22	23.1	53.9	1.49	43	4	30.5
NBAC352	28	29	1	20.45	9.29	26.7	47.9	1.04	60	0	26
NBAC352	29	31	2	20.12	6.43	27.6	48.8	1.65	58	2	33.5
NBAC352	31	32	1	19.69	8.19	22.1	52.5	2.05	38	0	26.5
NBAC352	32	33	1	18.19	6.86	18.9	58.8	1.41	19	0	24.5

	Hole ID	From (m)	To (m)	Interval	-45um (%)	Fe2O3 (%)	Al2O3 (%)	SiO2 (%)	TiO2 (%)	Kaolinite (%)	Halloysite (%)	Brightness (ISO-B)
	NBAC353	8	9	1	29.82	6.36	31.4	47.4	1.94	84	0	18.5
	NBAC353	9	10	1	27.82	3.05	32.6	49.9	1.14	89	0	40
	NBAC353	10	11	1	20.52	3.07	29.8	54.1	0.83	84	0	36.5
	NBAC353	11	13	2	40.24	0.98	36.5	47.5	0.84	96	0	76.5
	NBAC353	13	15	2	39.36	0.99	35.8	47.1	1.77	96	0	80.5
	NBAC353	15	17	2	38.15	0.75	35.2	48.2	1.34	93	4	79.5
	NBAC353	17	19	2	43.14	1.11	35.8	47.7	1.34	97	0	79
	NBAC353	19	21	2	49.20	1.02	36.4	45.6	1.97	93	0	76.5
	NBAC353	21	22	1	32.24	1.46	33.3	47.7	2.87	82	0	61.5
	NBAC353	22	24	2	46.38	1.06	36.1	47.7	0.92	94	3	71
	NBAC353	24	26	2	40.14	3.37	34.7	46.7	0.96	88	6	47
	NBAC353	26	27	1	44.75	3.93	34.8	46.3	1.09	92	0	44.5
	NBAC353	27	28	1	41.20	4.08	33.9	46.3	1.28	91	0	43
	NBAC353	28	29	1	44.23	4.41	32.8	47.1	1.53	87	0	40
	NBAC353	29	31	2	41.96	5.84	30	48.2	1.4	77	0	35
	NBAC353	31	32	1	25.16	4.4	26.4	53.1	1.78	53	13	39.5
	NBAC353	32	34	2	22.88	5.71	26.2	51.6	1.79	39	28	38.5
	NBAC353	34	36	2	17.26	5.84	24.4	53	2.09	50	9	36
	NBAC353	36	37	1	20.82	6.69	24.5	52.6	1.69	52	10	32.5
	NBAC353	37	39	2	20.16	6.95	24.2	52.2	1.71	52	1	31.5
	NBAC354	9	10	1	24.81	6.61	29.3	49.4	1.56	85	0	20
((NBAC354	10	12	2	33.20	2.38	32.6	51.2	1.36	86	3	50
	NBAC354	12	14	2	32.22	1.35	33.7	51	1.09	96	0	59.5
	NBAC354	14	15	1	40.47	1.28	34.1	50.8	0.71	96	0	57
	NBAC354	15	16	1	32.71	0.83	34.6	51.1	0.44	96	0	70.5
	NBAC354	16	18	2	39.99	1.03	35.5	48.9	0.93	97	0	67
	NBAC354	18	20	2	45.78	0.75	36.4	47.1	1.1	96	1	80
	NBAC354	20	22	2	36.98	0.64	36.1	46.7		90	4	79.5
	NBAC354	22	24	2	41.37	0.82	35.7	48	1.51	91	4	80
	NBAC354	24	26	2	43.65	0.73	36.5	47.9	0.91	97	0	82
	NBAC354	26	28	2	45.52	0.79	36.3	47.2	1.17	95	0	81
	NBAC354	28	30	2	50.96	0.89	36.2	47	1.23	96	0	82
	NBAC354	30	32	2	46.04	1.09	35.4	48.1	1.64	96	0	79
	NBAC354	32	34	2	38.68	0.66	33.3	49.9	1.73	66	18	78
	NBAC354	34	36	2	37.57	0.62	31.1	51.6	1.86	58	17	76.5
	NBAC354	36	38	2	27.97	0.72	29.8	52.9	2.23	63	10	73.5
	NBAC354	38	39	1	28.68	3.44	28.3	51.5	2.31	40	32	48
	NBAC354	39	40	1	27.97	5.29	27.2	50.6	1.97	31	39	41
	NBAC354	40	41	1	25.49	14.2	24.2	44.7	1.73	46	13	24.5
	NBAC354	41	42	1	25.98	6.44	27.1	49.7	1.86	63	5	34
	NBAC354	42	43	1	17.71	5.46	25.4	52.6	2.39	58	6	40
	NBAC354	43	44	1	19.06	5.01	25.1	54.1	2.27	62	3	41.5
	NBAC354	44	45	1	26.18	5.65	26.5	52.7	1.73	67	0	34
	NBAC354	45	46	1	13.10	7.23	19.3	57.4	1.7	24	1	25.5
	NBAC355	10	11	1	19.56	2.79	28.5	52.6	1.33	81	0	43.5
	NBAC355	11	12	1	25.00	2.01	30.8	53.7	0.81	80	7	50.5

	-			45	F : 202	41202	6:00	T:02	17 12 - 21 -	11.11	n teleteren
Hole ID	From (m)	To (m)	Interval	-45um (%)	Fe2O3 (%)	Al2O3 (%)	SiO2 (%)	TiO2 (%)	Kaolinite (%)	Halloysite (%)	Brightness (ISO-B)
NBAC355	12	14	2	32.11	0.96	35	50	0.56	91	4	68
NBAC355	14	15	1	33.96	1.1	35.2	49.4	0.52	87	8	59
NBAC355	15	16	1	39.16	1	36.1	48.4	0.43	91	5	61.5
NBAC355	16	17	1	21.60	1.04	30.9	55	0.46	76	15	64
NBAC355	17	18	1	38.50	1.41	30.1	56.2	0.45	86	5	61
NBAC355	18	19	1	25.42	1.18	32.8	53	0.57	79	16	67.5
NBAC355	19	20	1	36.14	1.49	35.3	49.6	0.39	93	2	59.5
NBAC355	20	22	2	43.22	0.6	36.4	49.4	0.36	97	0	81.5
NBAC355	22	24	2	45.36	0.56	36.8	48.9	0.29	97	0	83.5
NBAC355	24	26	2	48.45	0.58	36.8	48.2	0.37	96	0	83.5
NBAC355	26	28	2	50.56	0.62	37.1	47.9	0.39	96	0	84
NBAC355	28	30	2	54.26	0.53	37.3	48.1	0.3	97	0	84.5
NBAC355	30	32	2	53.13	0.5	37.2	48	0.37	96	0	83.5
NBAC355	32	34	2	46.20	0.59	36.3	48.8	0.41	91	0	83.5
NBAC355	34	36	2	42.80	0.61	33.3	50.8	0.29	71	6	83
NBAC355	36	38	2	39.82	0.59	30.9	52.5	0.42	59	7	82
NBAC355	38	40	2	28.78	0.73	29.9	54.4	0.29	68	1	79
NBAC355	40	42	2	19.46	0.97	27.5	56.9	0.42	61	0	73.5
NBAC355	42	43	1	23.24	1.27	31.4	52.6	1.17	79	5	72
NBAC355	43	44	1	17.84	2.35	27.9	54	1.99	70	7	52
NBAC355	44	45	1	24.30	2.84	27	54.3	2.14	66	5	45.5
NBAC355	45	46	1	20.86	9.19	25	50.1	1.6	48	0	24
NBAC356	9	11	2	18.05	3.85	28.2	54.8	1.14	66	12	32.5
NBAC356	11	12	1	20.22	1.4	29.4	56.9	0.71	65	15	56.5
NBAC356	12	14	2	36.68	0.54	36.6	49.1	0.43	91	5	78
NBAC356	14	16	2	50.20	0.53	37.8	48	0.33	97	0	83
NBAC356	16	18	2	41.30	0.56	37.9	47.6	0.31	92	5	82.5
NBAC356	18	20	2	54.93	0.56	37.1	47.9	0.32	91	6	83.5
NBAC356	20	22	2	49.75	0.54	36.6	49.1	0.27	97	0	84.5
NBAC356	22	24	2	54.59	0.49	37.7	48.2	0.25	97	0	85.5
NBAC356	24	26	2	53.05	0.57	37.5	47.7	0.23	97	0	84.5
NBAC356	26	28	2	51.46	0.47	37.6	47.7	0.25	97	0	84.5
NBAC356	28	30	2	49.01	0.57	37.3	47.6	0.25	97	0	84.5
NBAC356	30	32	2	46.70	0.54	37	47.9	0.23	93	0	83.5
NBAC356	32	34	2	45.10	0.56	34.5	50.3	0.27	79	2	82
NBAC356	34	36	2	35.10	0.59	33.5	50.9	0.25	43	32	83
NBAC356	36	38	2	29.65	0.77	32.7	50.9	0.41	34	40	80
NBAC356	38	40	2	31.04	0.76	34.2	50.1	0.37	42	37	79.5
NBAC356	40	42	2	27.27	0.79	33.5	50.4	0.37	68	11	78
NBAC356	42	44	2	27.13	0.88	34.1	49.6	0.36	63	19	79
NBAC356	44	45	1	25.24	0.97	33.2	50.9	0.46	56	23	77.5
NBAC356	45	46	2	16.63	1.56	27.7	56.7	0.35	43	11	61.5 28
NBAC357	10	10	1	20.88	4.56 2.09	30.2	51.4 57.4	0.81	68	16 15	45
	10								61		64
NBAC357	11	12	1	20.67	1.14	30.8	55.8	0.54	76	5	
NBAC357	12	14	2	34.10	0.66	35.9	49.2	0.42	80	14	76.5

	Hole ID	From (m)	To (m)	Interval	-45um (%)	Fe2O3 (%)	Al2O3 (%)	SiO2 (%)	TiO2 (%)	Kaolinite (%)	Halloysite (%)	Brightness (ISO-B)
	NBAC357	14	16	2	27.50	0.77	34.5	51.5	0.27	89	4	76.5
	NBAC357	16	18	2	48.64	0.63	37.5	47.3	0.23	98	0	83.5
	NBAC357	18	20	2	51.25	0.59	37.9	47.4	0.23	79	18	84.5
	NBAC357	20	22	2	52.03	0.51	38	47.4	0.2	92	6	85.5
	NBAC357	22	24	2	51.66	0.44	38	47.2	0.24	89	8	85.5
	NBAC357	24	26	2	50.25	0.5	38.2	47.4	0.26	88	9	85
	NBAC357	26	28	2	50.95	0.43	37.8	47.2	0.23	91	6	84.5
	NBAC357	28	30	2	50.13	0.45	37.5	48	0.23	93	1	85
	NBAC357	30	32	2	47.16	0.44	35.5	49.6	0.23	85	0	83.5
	NBAC357	32	34	2	34.60	0.54	33.4	51.3	0.27	55	20	80.5
	NBAC357	34	36	2	30.66	0.61	33.3	50.8	0.32	41	35	80
	NBAC357	36	38	2	30.42	0.74	33.6	50.7	0.3	70	9	79
	NBAC357	38	40	2	28.45	0.8	34.1	50.2	0.32	52	29	81
	NBAC357	40	42	2	26.12	0.73	33.9	50.5	0.34	51	29	81
	NBAC357	42	44	2	25.93	1.01	33.8	50.9	0.31	59	19	79
	NBAC357	44	45	1	21.06	1.73	27.8	56.5	0.36	45	5	63
	NBAC358	7	9	2	17.84	3.83	31.1	51.4	1.05	73	11	34.5
	NBAC358	9	10	1	18.35	1.77	29.8	55.7	0.95	61	19	48.5
	NBAC358	10	12	2	31.26	0.89	35.5	49.9	0.48	93	0	72
	NBAC358	12	14	2	39.03	0.77	36.5	48.2	0.41	89	8	76.5
	NBAC358	14	16	2	39.59	0.58	37.6	48.6	0.37	70	26	77.5
\mathcal{L}	NBAC358	16	18	2	41.68	0.37	37.6	47.5	0.4	82	16	83.5
	NBAC358	18	20	2	53.48	0.36	37.8	47.1	0.39	50	47	85
	NBAC358	20	22	2	50.12	0.5	37.6	47.5	0.37	73	23	84.5
	NBAC358	22	24	2	43.35	0.64	36.3	48.1	0.46	90	1	81.5
	NBAC358	24	26	2	42.55	0.64	35.3	48.5	0.46	87	0	80
	NBAC358	26	28	2	37.68	0.47	33.7	50.9	0.38	36	40	82
	NBAC358	28	30	2	35.67	0.32	34.3	50.4	0.45	20	58	82
	NBAC358	30	32	2	32.04	0.32	34.7	49.8	0.48	43	39	80.5
	NBAC358	32	34	2	30.54	0.4	34.6	50.1	0.4	42	38	82
	NBAC358	34	36	2	27.50	0.41	34.7	50.3	0.29	40	41	83.5
	NBAC358	36	38	2	30.70	0.94	34.2	50.3	0.4	57	25	74.5
	NBAC358	38	39	1	24.29	1.15	33.9	49.9	0.4	67	14	77.5
	NBAC358	39	41	2	18.69	1.61	28.2	55.6	0.32	47	8	60.5
	NBAC359	7	8	1	21.16	4.25	30.2	52.3	1.08	73	6	29.5
	NBAC359	8	9	1	22.33	2.74	24.8	61.4	0.72	56	10	38.5
	NBAC359	9	10	1	17.06	1.53	28.6	57.8	0.71	62	12	50
	NBAC359	10	12	2	26.88	0.55	35.3	50.1	0.45	92	0	78.5
	NBAC359	12	14	2	42.31	0.45	37.8	47.8	0.3	85	10	84.5
	NBAC359	14	16	2	46.65	0.47	37.2	48.1	0.25	86	7	84.5
	NBAC359	16	18	2	44.44	0.3	35.6	49.4	0.23	77	8	85.5
	NBAC359	18	20	2	44.98	0.32	34.9	49.9	0.24	78	4	84
	NBAC359	20	22	2	37.87	0.32	34.1	51.1	0.26	64	12	82.5
	NBAC359	22	23	1	40.86	0.31	33.8	51.1	0.32	70	7	84
	NBAC359	23	25	2	41.43	0.48	33.6	51.1	0.32	69	7	83
	NBAC359	25	27	2	37.24	0.29	34.2	50.4	0.37	72	7	84.5

	Hole ID	From	То	Interval	-45um	Fe2O3	Al2O3	SiO2	TiO2	Kaolinite	Hallavsita	Duightmass
	noie iD	(m)	(m)	intervai	-45um (%)	(%)	(%)	(%)	(%)	(%)	Halloysite (%)	Brightness (ISO-B)
	NBAC359	27	29	2	31.49	0.65	34	50.5	0.37	67	11	82
	NBAC359	29	31	2	27.61	0.88	34.1	50.2	0.44	71	7	81.5
	NBAC359	31	33	2	27.98	0.54	33.8	51.3	0.52	72	6	81
	NBAC359	33	35	2	26.28	0.91	34.4	49.7	0.38	81	0	77.5
	NBAC359	35	37	2	31.01	0.91	34.6	49.9	0.36	80	3	78.5
	NBAC359	37	38	1	22.85	1.36	32.2	52.1	0.33	67	4	68
	NBAC360	6	7	1	17.74	5.08	29.3	52	1.1	76	2	25.5
	NBAC360	7	8	1	16.49	2.33	31.2	53	0.82	78	6	48
	NBAC360	8	10	2	20.05	1.01	32	54.1	0.48	83	3	67.5
	NBAC360	10	12	2	35.99	0.64	36.4	49	0.34	94	0	82
	NBAC360	12	14	2	36.56	0.58	36.4	48.8	0.37	87	4	83
	NBAC360	14	16	2	39.59	0.43	35.1	49.5	0.54	64	19	80.5
	NBAC360	16	18	2	47.23	0.43	34.2	50.5	0.58	60	20	80.5
	NBAC360	18	20	2	39.54	0.47	35.3	49.7	0.5	64	19	80.5
	NBAC360	20	22	2	41.61	0.69	35.7	49.3	0.41	85	0	81.5
	NBAC360	22	24	2	40.65	0.43	34.3	50	0.55	75	4	81
	NBAC360	24	26	2	30.10	0.62	33.8	50.7	0.42	67	10	81.5
	NBAC360	26	28	2	29.54	1.03	34.9	49.3	0.4	81	3	81
	NBAC360	28	30	2	32.16	1.08	35.3	48.8	0.47	86	0	80.5
	NBAC360	30	32	2	33.04	1.05	35.8	49.1	0.47	87	0	79.5
	NBAC360	32	33	1	24.64	1.99	32.8	50.4	0.37	64	10	62.5
((NBAC360	33	35	2	17.05	2.9	27.8	55.5	0.44	46	6	48
	NBAC361	5	6	1	17.30	5.57	27.4	54.9	0.9	68	4	24.5
	NBAC361	6	7	1	18.51	3.27	31.2	52	0.71	81	3	36.5
	NBAC361	7	8	1	20.39	1.59	29	57.4	0.39	78	0	57
	NBAC361	8	10	2	23.56	0.88	32.6	53.7	0.18	85	0	72.5
	NBAC361	10	12	2	33.99	0.57	35.1	50.7	0.09	68	19	85.5
	NBAC361	12	14	2	45.13	0.54	36	49	0.08	64	24	87
	NBAC361	14	16	2	44.95	0.54	34.2	50.8	0.11	59	20	85.5
	NBAC361	16	18	2	45.72	0.49	33.5	51.3	0.12	75	0	85.5
	NBAC361	18	20	2	33.53	0.62	34	51	0.13	75	0	85.5
	NBAC361	20	22	2	28.43	1.18	35	49.5	0.15	83	0	83
	NBAC361	22	24	2	36.14	1.21	34	50.3	0.62	81	0	80.5
	NBAC361	24 25	25 27	2	30.87 40.23	1.38 1.49	34.6	49.4 48.4	0.44	87 77	0	80.5 77
	NBAC361	27	29	2	33.95	1.49	34.9	49.4	0.7	76	0	80
	NBAC361	29	31	2	31.50	1.56	35	49.4	0.01	81	0	78.5
	NBAC361	31	32	1	20.97	1.54	31.2	52.7	0.23	58	8	69
	NBAC361	32	34	2	20.24	3.66	31.9	49.7	0.21	61	9	42
	NBAC361	34	36	2	18.43	3.23	31.7	50.3	0.21	67	3	44.5
	NBAC361	36	38	2	16.43	3.04	27	55.8	0.28	51	0	43.5
	NBAC362	6	7	1	16.70	2.17	27	59.3	0.23	71	1	46.5
	NBAC362	7	9	2	31.11	0.65	34.2	52	0.39	89	0	77
	NBAC362	9	11	2	50.92	0.44	37.5	48	0.27	89	5	84
	NBAC362	11	13	2	49.98	0.42	36.5	48.7	0.24	75	14	85.5
	NBAC362	13	15	2	42.25	0.52	34.6	50.5	0.24	65	15	85
		,				J.U_	.					

	F	T -	lakamal.	45	F-202	A1202	c:oa	Tion	W1::	Halla dia	Duinkturen
Hole ID	From (m)	To (m)	Interval	-45um (%)	Fe2O3 (%)	Al2O3 (%)	SiO2 (%)	TiO2 (%)	Kaolinite (%)	Halloysite (%)	Brightness (ISO-B)
NBAC362	15	17	2	37.12	0.6	33.6	51	0.27	76	0	83
NBAC362	17	19	2	32.85	0.79	34.4	50.6	0.41	77	0	82
NBAC362	19	21	2	30.83	0.61	34.2	50	0.36	78	0	84.5
NBAC362	21	23	2	32.22	0.96	34.9	49.4	0.29	83	0	81.5
NBAC362	23	25	2	29.47	1.15	34.7	49.5	0.29	82	0	80.5
NBAC362	25	26	1	30.16	1.01	35.1	49.3	0.3	79	3	82
NBAC362	26	28	2	27.59	0.8	34.7	50	0.32	82	0	82
NBAC362	28	30	2	22.85	0.96	33.5	50.9	0.4	66	11	78
NBAC362	30	32	2	21.93	1.11	33.7	50.1	0.35	67	12	73
NBAC362	32	33	1	22.39	1.46	33.5	50.1	0.36	74	5	65.5
NBAC362	33	34	1	21.64	1.37	33.7	49.8	0.25	80	0	70.5
NBAC362	34	36	2	24.26	1.42	29.9	54.3	0.4	65	0	64
NBAC363	5	7	2	24.29	1.8	31.4	53.5	0.48	86	0	58
NBAC363	7	9	2	50.98	0.81	37.6	47.4	0.27	95	0	79.5
NBAC363	9	11	2	47.24	0.77	36	49.1	0.27	88	0	82.5
NBAC363	11	13	2	41.70	0.74	34.6	49.7	0.25	72	10	82.5
NBAC363	13	15	2	39.82	0.64	33.1	51.2	0.26	57	17	81.5
NBAC363	15	16	1	39.27	0.71	33.1	51	0.27	67	6	81.5
NBAC363	16	17	1	39.99	1	33	50.6	0.28	78	0	78
NBAC363	17	18	1	35.85	1.3	33.5	49.9	0.3	74	0	74
NBAC363	18	19	1	35.55	1.43	34.1	49.3	0.37	74	0	68
NBAC363	19	20	1	40.80	1.41	34	49	0.41	75	0	68.5
NBAC363	20	21	1	29.54	2.82	32.8	48.9	0.6	75	0	49.5
NBAC363	21	23	2	27.20	5.14	31.5	48.4	0.37	70	0	33.5
NBAC363	23	24	1	24.56	4.2	32.4	48.5	0.35	76	0	37
NBAC363	24	26	2	25.50	3.71	32.7	49	0.4	68	0	42.5
NBAC363	26	28	2	27.06	3.47	33	48.6	0.38	77	0	44
NBAC363	28	30	2	29.02	3.58	33	49	0.39	72	0	44
NBAC363	30	32	2	28.77	3.52	32.1	49.2	0.38	64	0	47.5
NBAC363	32	33	1	26.67	3.46	31.4	49.9	0.37	64	0	47
NBAC363	33	35	2	23.23	6.06	26.8	52.9	0.39	55	0	35
NBAC363	35	37	2	23.64	5.73	25.4	54	0.49	44	0	35.5
NBAC363	37	39	2	20.29	6.46	24	55	0.54	42	0	29.5
NBAC363	39	40	1	15.92	7.08	22.7	55.5	0.88	38	0	29.5
NBAC363	40	41	1	13.69	4.86	18.7	63	0.66	22	0	32.5
NBAC364	5	6	1	33.67	1.09	30.3	56.6	0.39	75	8	62.5
NBAC364	6	8	2	48.19	1.07	36.7	48.5	0.41	91	4	67.5
NBAC364	8	10	2	53.19	0.53	37.8	47.2	0.29	96	1	84.5
NBAC364	10	12	2	49.94	0.55	37.5	47.2	0.31	92	4	84
NBAC364 NBAC364	12	14 16	2	52.13	0.55	37.1	48.2 50.2	0.26	93	0	84
NBAC364	14 16	18	2	41.55 39.06	0.65	34.5 34.1	50.2	0.26	81 78	0	82.5 83.5
NBAC364	18	19	1	25.03	0.65	34.1	51.7	0.29	62	12	83.5
NBAC364	19	21	2	27.79	1.3	33.9	50.2	0.27	50	29	63
NBAC364	21	23	2	28.18	1.13	34	50.5	0.22	66	14	69.5
NBAC364	23	25	2	23.09	1.2	33.2	50.6	0.31	62	15	66.5

Hole ID	From	То	Interval	-45um	Fe2O3	Al2O3	SiO2	TiO2	Kaolinite	Hallavsita	Duightmass
noie iD	(m)	(m)	intervai	-45um (%)	(%)	(%)	(%)	(%)	(%)	Halloysite (%)	Brightness (ISO-B)
NBAC364	25	26	1	24.08	1.77	33.3	50	0.33	67	12	56
NBAC364	26	28	2	25.85	3.06	32.8	49.5	0.34	65	12	46
NBAC364	28	29	1	23.32	2.75	33.2	49.7	0.27	72	8	46.5
NBAC364	29	31	2	20.92	2.16	31.6	51.6	0.26	63	7	50
NBAC364	31	33	2	20.72	1.7	31.6	52	0.21	56	13	57
NBAC364	33	35	2	20.46	1.91	31.8	52.2	0.2	70	0	53
NBAC364	35	37	2	19.71	1.74	31.1	52.7	0.21	60	6	54
NBAC364	37	38	1	21.35	1.82	32.1	51.5	0.25	69	4	58.5
NBAC364	38	39	1	22.74	1.96	26.5	58.2	0.24	45	6	52.5
NBAC365	5	6	1	22.72	4.12	23.5	61.5	0.67	56	8	30
NBAC365	6	7	1	23.51	1.59	20.8	68.2	0.6	46	10	52
NBAC365	7	9	2	45.96	0.59	36.6	48.6	0.33	83	12	78
NBAC365	9	11	2	47.17	0.5	38.1	47.5	0.27	97	1	84
NBAC365	11	13	2	52.12	0.52	37.7	47.3	0.34	88	9	85.5
NBAC365	13	15	2	51.74	0.48	38.2	47.2	0.28	74	24	86
NBAC365	15	17	2	49.88	0.56	37.8	47.3	0.29	72	25	85
NBAC365	17	19	2	46.15	0.58	37.6	47.6	0.3	70	26	84.5
NBAC365	19	20	1	48.61	0.6	36.2	48.3	0.31	62	28	82.5
NBAC365	20	21	1	40.03	0.68	34.1	50.3	0.22	44	36	73.5
NBAC365	21	23	2	45.47	0.8	34.3	49.7	0.52	72	8	76.5
NBAC365	23	25	2	37.47	0.52	34.5	49.7	0.41	66	15	81.5
NBAC365	25	26	1	41.81	0.57	34.2	50.1	0.4	79	1	82
NBAC365	26	28	2	36.46	0.61	34.4	50.3	0.44	70	10	81.5
NBAC365	28	29	1	27.59	2.21	32.9	49.3	0.38	70	8	54.5
NBAC365	29	30	1	22.70	3.2	32.7	49.4	0.32	61	16	43
NBAC365	30	31	1	20.96	3.56	29.4	52.6	0.36	50	10	40
NBAC366	5	6	1	23.33	2.29	26.6	59.3	0.6	72	5	46.5
NBAC366	6	8	2	33.75	0.99	34.4	50.8	0.5	92	0	69.5
NBAC366	8	10	2	39.39	0.57	37.2	48.3	0.5	95	0	79.5
NBAC366	10	12	2	52.38	0.55	38.1	47.4	0.41	97	0	82
NBAC366	12	14	2	43.16	0.42	37.6	47.3	0.5	81	14	81.5
NBAC366	14	16	2	45.66	0.64	37.9	47.2	0.39	97	0	82.5
NBAC366	16	18	2	37.57	0.6	37.8	47.4	0.51	94	0	82
NBAC366	18	20	2	41.07	0.51	37.5	47.1	0.5	91	5	83
NBAC366	20	22	2	41.45	0.65	37.8	47.4	0.45	97	0	83
NBAC366	22	24	2	38.29	0.55	37.7	47.4	0.5	93	3	83
NBAC366	24	26	2	38.79	0.6	37	47.8	0.47	86	7	82.5
NBAC366	26	28	2	38.67	0.63	34.9	49.7	0.43	79	4	81.5
NBAC366	28	30	2	36.42	0.43	33.5	50.8	0.48	28	47	80
NBAC366	30	32	2	33.17	0.38	34.1	50.5	0.61	66	12	81.5
NBAC366	32	34	2	29.79	0.46	34.8	50.1	0.51	77	4	83
NBAC366	34	35	1	23.85	1.12	33.8	50	0.46	61	17	71.5
NBAC366	35	36	1	20.71	3.22	32.4	50.2	0.36	60	14	45.5
NBAC366	36	37	1	17.96	3.6	30	52.5	0.37	49	13	41
NBAC367	4	6	2	22.41	1.53	29.8	56	0.64	77	4	61.5
NBAC367	6	8	2	38.03	0.81	37.1	48.3	0.45	96	0	78

	Hole ID	From	То	Interval	-45um	Fe2O3	Al2O3	SiO2	TiO2	Kaolinite	Halloysite	Brightness
	noie ib	(m)	(m)	intervai	-45um (%)	(%)	(%)	(%)	(%)	(%)	(%)	(ISO-B)
	NBAC367	8	10	2	54.28	0.64	37.9	46.9	0.46	98	0	84
	NBAC367	10	12	2	44.80	0.52	37.8	47.1	0.46	97	0	83.5
	NBAC367	12	14	2	42.74	0.65	37.9	47	0.44	97	0	83
	NBAC367	14	16	2	43.81	0.78	37.9	47.1	0.42	97	0	82.5
	NBAC367	16	18	2	43.91	0.78	37.9	47	0.38	97	0	83
	NBAC367	18	20	2	40.81	0.78	37.7	47.2	0.43	96	0	83
	NBAC367	20	22	2	30.95	0.77	37.8	47.2	0.5	96	0	82.5
	NBAC367	22	24	2	50.75	0.66	37.6	47.1	0.34	93	2	83
	NBAC367	24	26	2	45.15	0.38	37.9	47.2	0.41	80	14	84.5
	NBAC367	26	28	2	44.04	0.32	37.9	47.2	0.38	72	23	85.5
	NBAC367	28	30	2	40.37	0.28	36.1	48.7	0.42	61	26	84
	NBAC367	30	32	2	37.68	0.39	34.3	50.2	0.43	58	21	82.5
	NBAC367	32	34	2	34.00	0.76	33.9	50.7	0.43	71	7	80.5
	NBAC367	34	36	2	31.66	0.3	33	51.2	0.37	48	26	84
	NBAC367	36	38	2	33.29	0.41	32.9	51.4	0.32	53	21	83
	NBAC367	38	39	1	31.84	0.62	34.8	49.3	0.41	67	17	81
	NBAC367	39	40	1	29.53	0.52	34.3	49.4	0.63	72	8	80
	NBAC367	40	41	1	23.97	1.68	33.8	49.5	0.51	70	11	59
	NBAC367	41	42	1	16.64	2.83	30.3	52.1	0.43	53	13	47
	NBAC368	3	5	2	40.93	1.2	33.1	52	0.49	82	5	65
	NBAC368	5	7	2	49.57	0.41	38.2	46.7	0.35	98	0	85.5
(NBAC368	7	9	2	41.28	0.43	37.8	47.6	0.26	97	0	85
	NBAC368	9	11	2	48.20	0.54	38.1	47.5	0.25	98	0	85
	NBAC368	11	13	2	47.59	0.53	37.7	47	0.25	90	7	84.5
	NBAC368	13	15	2	48.87	0.44	38.1	47	0.13	69	28	85.5
	NBAC368	15	17	2	57.37	0.87	37.6	45.7	0.86	85	11	76
	NBAC368	17	19	2	36.73	0.58	37.3	44.9	1.23	74	20	77.5
	NBAC368	19	21	2	44.25	0.48	37.7	47	0.43	46	50	81.5
	NBAC368	21	22	1	54.34	0.54	37.5	46.4	0.71	67	29	77.5
	NBAC368	22	24	2	49.68	0.34	36.3	47.9	0.45	64	27	82.5
	NBAC368	24	26	2	38.25	0.37	34.4	50.6	0.29	51	29	85
	NBAC368	26	28	2	34.41	0.48	34	50.5	0.38	60	18	81.5
	NBAC368	28	30	2	30.48	0.97	33.7	50.2	0.51	69	9	65
	NBAC368	30	32	2	15.40	0.67	34.6	50.2	0.51	69	13	76
	NBAC368	32	33	1	26.49	1.34	34.6	48.9	0.54	76	8	70.5
	NBAC368	33 35	35 36	2	27.89	2.01	33.2	49.8	0.59	71	3	61
	NBAC368		38	2	27.75	2.25	33.2	49.2 50.4	0.55	77 72	6	57.5 56.5
	NBAC368	36 38	40	2	27.79 24.23	2.31 1.87	32.7	49.4	0.59	73	7	60
	NBAC368	40	42	2	27.37	1.87	32.2	50.7	0.62	73	3	60
	NBAC368	40	44	2	23.37	4.53	31	49.6	0.62	70	1	38
	NBAC368	44	45	1	18.23	4.73	30	50.4	0.5	63	3	37
	NBAC369	2	3	1	32.64	4.73	23.4	60.3	0.74	59	0	34
	NBAC369	3	5	2	31.24	2.09	28.1	57.9	0.47	76	3	54
	NBAC369	5	7	2	46.34	0.69	36	49.5	0.47	95	0	79
	NBAC369	7	9	2	47.21	0.33	37.9	47.6	0.44	83	13	84
	NDAC303	,	,	_	77.21	0.55	37.3	77.0	U. 	03	13	UT

	F	T -	latamal.	45	F-202	A1202	c:oa	Tion	W1::	Halla dia	Duinkturaa
Hole ID	From (m)	To (m)	Interval	-45um (%)	Fe2O3 (%)	Al2O3 (%)	SiO2 (%)	TiO2 (%)	Kaolinite (%)	Halloysite (%)	Brightness (ISO-B)
NBAC369	9	11	2	44.78	0.38	37.5	47.5	0.46	76	20	83
NBAC369	11	13	2	47.11	0.42	37.7	47.1	0.4	76	20	82
NBAC369	13	15	2	47.22	0.48	38.1	47.3	0.42	92	5	83
NBAC369	15	17	2	46.70	0.43	37.9	47.1	0.42	97	0	83
NBAC369	17	19	2	46.68	0.43	37.8	47	0.47	97	0	83.5
NBAC369	19	21	2	46.47	0.4	36.5	48.1	0.4	59	30	82.5
NBAC369	21	23	2	42.75	0.49	35	49.3	0.45	59	25	81.5
NBAC369	23	25	2	37.00	0.54	34.5	50.1	0.48	71	10	81.5
NBAC369	25	27	2	33.09	0.4	33.6	50.4	0.46	50	26	82.5
NBAC369	27	29	2	28.98	0.58	33.9	50.2	0.55	63	16	81
NBAC369	29	30	1	24.12	0.82	33.6	50.3	0.46	61	17	76
NBAC369	30	32	2	24.34	1.2	34.5	49.2	0.49	71	12	70.5
NBAC369	32	34	2	24.40	1.43	34.5	49.1	0.42	79	5	68
NBAC369	34	36	2	27.69	1.9	34.3	48.5	0.48	85	0	67
NBAC369	36	37	1	23.17	1.94	34	49	0.44	74	8	60
NBAC369	37	39	2	21.86	3.04	33.1	48.9	0.39	76	3	47
NBAC369	39	40	1	19.87	3.38	32.8	49	0.42	73	4	45
NBAC369	40	41	1	20.90	3.82	32.3	48.8	0.44	74	2	43
NBAC369	41	42	1	19.56	3.96	29.1	52.2	0.54	62	0	40
NBAC370	4	5	1	28.97	3.61	35	47	0.76	85	9	30.5
NBAC370	5	6	1	25.52	1.85	36.2	47.7	0.6	92	3	45.5
NBAC370	6	7	1	23.63	2.79	36.3	46.4	0.37	96	0	39.5
NBAC370	7	9	2	29.51	1.56	36.7	47.1	0.49	97	0	63
NBAC370	9	10	1	39.57	1.63	36.9	46.9	0.34	95	2	80
NBAC370	10	11	1	41.07	2.44	36.6	46.3	0.22	86	10	56.5
NBAC370	11	12	1	44.30	4.61	35.2	45.9	0.22	77	17	39.5
NBAC370	12	13	1	49.54	5.71	32.3	47.3	0.21	67	14	36
NBAC370	13	14	1	48.07	5.13	31.4	48.6	0.17	76	0	36.5
NBAC370	14	15	1	42.49	3.74	31	50	0.18	66	6	45.5
NBAC370	15	16	1	37.41	3.42	32.2	49.9	0.17	66	11	46.5
NBAC370	16	18	2	36.68	2.85	33.1	48.9	0.41	82	0	55.5
NBAC370	18	20	2	31.56	5.02	31.5	48.3	0.39	69	7	36.5
NBAC370	20	21	1	29.64	3.87	32.1	48.8	0.52	77	2	47.5
NBAC370	21	23	2	25.06	4.17	29.6	51.6	0.46	66	0	42.5
NBAC371	5	6	1	54.41	2.94	37.5	44.3	0.71	95	2	39
NBAC371	6	7	1	55.41	1.87	37.6	45.5	0.42	98	0	49.5
NBAC371	7	8	1	51.19	3.72	37	45	0.29	96	0	38.5
NBAC371	8	9	1	44.96	2.88	36.9	46.1	0.22	97 97	0	45.5
NBAC371	9	10 12	2	55.37 35.83	2.29 1.97	36.8 36.8	46.8 47	0.41	89	0 8	62 51
NBAC371	12	13	1	35.83	1.55	36.8	47.1	0.21	74	22	57
NBAC371	13	14	1	46.21	2.37	36.9	46.5	0.32	73	23	48
NBAC371	14	15	1	46.21	1.38	37.2	46.7	0.28	70	26	59.5
NBAC371	15	16	1	48.75	1.7	36.9	46.8	0.13	77	19	60
NBAC371	16	17	1	47.74	1.32	37.5	46.8	0.18	79	17	69
NBAC371	17	18	1	46.75	1.55	35.5	48.8	0.07	73	14	60.5
NDAC3/1	1/	10	1	40.75	1.55	33.3	40.0	0.05	75	14	00.5

Hole ID	From	То	Interval	-45um	Fe2O3	Al2O3	SiO2	TiO2	Kaolinite	Halloysite	Brightness
поје ір	(m)	(m)	intervai	-45um (%)	(%)	(%)	(%)	(%)	(%)	(%)	(ISO-B)
NBAC371	18	20	2	39.50	3.31	32.9	49.3	0.12	68	9	44
NBAC371	20	21	1	36.68	3.32	33.4	48.4	0.23	82	0	48.5
NBAC371	21	22	1	32.64	3.48	33.8	48	0.31	79	5	48.5
NBAC371	22	23	1	26.96	4.43	31.3	49.7	0.33	43	30	44
NBAC372	4	5	1	12.98	6.57	29.5	50.4	0.96	71	8	20
NBAC372	5	6	1	17.58	4.18	26	57.4	0.78	61	10	30
NBAC372	6	8	2	24.85	1.65	30.5	53.6	0.45	73	<1	65.5
NBAC372	8	9	1	25.60	1.99	31.4	52.6	0.45	75	0	71.5
NBAC372	9	10	1	23.27	3.38	30.1	52	0.5	74	0	52
NBAC372	10	11	1	23.75	2.95	30.1	52.6	0.39	75	0	57.5
NBAC372	11	12	1	26.48	2.12	33.2	50.3	0.34	84	0	69
NBAC372	12	14	2	33.92	3.09	33.7	49	0.27	78	6	54
NBAC372	14	16	2	31.42	2.37	34.3	48.6	0.36	77	9	60
NBAC372	16	17	1	28.78	3.63	33.1	48.8	0.43	77	4	45.5
NBAC372	17	18	1	27.42	3.18	33.2	48.5	0.4	78	4	45.5
NBAC372	18	20	2	24.70	3.96	33.1	48.6	0.33	74	5	38.5
NBAC372	20	21	1	21.25	4.18	32.4	48.4	0.27	66	12	36.5
NBAC372	21	23	2	19.35	3.26	31.5	50.4	0.34	65	6	42
NBAC372	23	24	1	15.72	3.57	21.6	61.4	0.39	23	3	35.5
NBAC373	3	4	1	29.97	5.83	34.9	43.6	1	64	28	20.5
NBAC373	4	5	1	39.32	5.45	35.7	44	0.89	77	16	24
NBAC373	5	6	1	47.93	2.06	37.8	45.3	0.8	87	11	50.5
NBAC373	6	8	2	41.71	1.71	37.6	46.8	0.28	98	0	50
NBAC373	8	9	1	34.81	2.9	36.9	46.5	0.22	96	0	48.5
NBAC373	9	10	1	36.17	1.39	37	47.1	0.25	90	8	69.5
NBAC373	10	11	1	50.90	1.44	37.6	46.6	0.4	85	13	65.5
NBAC373	11	12	1	44.68	1.27	37.4	47.5	0.38	95	2	73
NBAC373	12	14	2	47.35	0.98	37.9	47	0.2	83	15	73
NBAC373	14	16	2	44.68	0.92	36.2	49	0.1	71	19	80.5
NBAC373	16	17	1	38.87	0.88	34.2	50.5	0.07	59	20	76
NBAC373	17	18	1	35.54	0.88	34.4	50.2	0.13	55	25	67
NBAC373	18	19	1	32.04	1.47	33.9	50.1	0.08	52	28	53.5
NBAC373	19	20	1	38.45	0.73	37	47.6	0.1	59	35	81.5
NBAC373	20	21	1	38.53	0.7	36.9	47.6	0.15	60	34	83
NBAC373	21	22	1	27.33	1.15	34.6	49.3	0.08	56	27	65.5
NBAC373	22	23	1	30.52	3.52	33.7	48.3	0.24	72	10	42.5
NBAC373	23	24	1	28.59	2.96	33.8	48.5	0.35	57	25	49
NBAC373	24	25	1	19.47	1.76	21.7	63.7	0.18	11	15	45.5
NBAC374	3	<u>4</u> 5	1	39.89 61.48	3.56 2.31	37.2 37.9	44.6 45.4	0.86	69 98	27 0	39 47
NBAC374	5	6	1	47.34	2.31	37.9	45.4	0.49	98	0	46.5
NBAC374	6	8	2	36.82	2.08	37.4	46.8	0.41	96	0	51.5
NBAC374	8	9	1	44.24	1.45	37.7	40.8	0.2	98	0	63.5
NBAC374	9	10	1	45.31	1.43	37.7	47.2	0.19	81	17	75.5
NBAC374	10	11	1	44.89	1.96	37.1	46.2	0.21	68	29	54.5
NBAC374	11	12	1	44.76	1.39	37.5	46.8	0.25	62	34	62
NUAC3/4	11	12	-	44.70	1.35	37.3	+0.0	0.55	UZ	54	UZ

	Hole ID	From (m)	To (m)	Interval	-45um (%)	Fe2O3 (%)	Al2O3 (%)	SiO2 (%)	TiO2 (%)	Kaolinite (%)	Halloysite (%)	Brightness (ISO-B)
	NBAC374	12	13	1	47.05	1.39	35.3	49	0.33	68	20	73
	NBAC374	13	15	2	35.40	2.23	32.4	50.6	0.14	41	32	50.5
	NBAC374	15	17	2	27.13	1.71	33.1	50.1	0.18	51	26	56.5
	NBAC374	17	18	1	25.36	1.64	33.2	49.9	0.21	50	28	57.5
	NBAC374	18	20	2	26.50	0.9	34.3	50.2	0.11	50	29	70
	NBAC374	20	21	1	26.71	1.2	35.3	49.2	0.16	63	23	66.5
1	NBAC374	21	23	2	26.63	2.03	34.2	49.5	0.23	69	14	54.5
	NBAC374	23	24	1	25.45	2.56	34.2	48.3	0.22	30	53*	51.5
	NBAC374	24	25	1	23.25	2.52	31	51.6	0.25	26	44*	48
	NBAC375	3	4	1	35.48	3.63	37.1	44.7	0.8	78	17	27
	NBAC375	4	6	2	26.33	1.37	37.4	47.1	0.54	92	5	59.5
	NBAC375	6	8	2	33.70	1.17	37.9	46.5	0.36	98	0	63
	NBAC375	8	9	1	37.23	0.87	38.2	47	0.22	98	0	73.5
	NBAC375	9	10	1	43.91	0.89	38.1	47.3	0.2	98	0	79.5
	NBAC375	10	12	2	49.40	0.89	38	46.8	0.22	98	0	77
	NBAC375	12	13	1	54.68	0.97	37.6	47.3	0.25	97	0	82.5
	NBAC375	13	14	1	51.99	1.23	37.5	47.3	0.23	94	2	82
	NBAC375	14	15	1	50.71	1.44	37	47.1	0.36	71	26	73
	NBAC375	15	17	2	46.82	4.44	35.3	45.4	0.36	56	36	36.5
	NBAC375	17	19	2	43.04	3.39	33	48.9	0.23	34	43*	41.5
	NBAC375	19	20	1	37.98	1.8	32.4	50.6	0.18	29	45*	54.5
	NBAC375	20	22	2	32.20	4.03	32.3	48.3	0.19	36	40	39
	NBAC375	22	23	1	29.57	5.4	31.1	48.5	0.31	31	42	35
	NBAC376	5	6	1	17.59	4.99	20	64.8	1.18	46	7	29
	NBAC376	6	7	1	30.99	1.53	32.8	50.1	3.06	77	9	62.5
	NBAC376	7	9	2	38.55	0.69	37.8	47	0.65	97	0	79
	NBAC376	9	10	1	52.90	0.89	37.9	47	0.4	92	4	66.5
	NBAC376	10	12	2	62.71	0.41	38.2	46.6	0.34	89	8	84.5
	NBAC376	12	14	2	54.69	0.46	38.1	46.7	0.44	96	1	84.5
	NBAC376	14	16	2	43.85	0.33	37.7	47.6	0.68	95	0	79.5
	NBAC376	16	17	1	49.79	0.51	36.2	49	0.49	87	0	84
	NBAC376	17	18	1	42.88	0.75	34.3	50.2	0.36	79	0	78
	NBAC376	18	19	1	37.17	0.94	34	50.3	0.41	75	3	78.5
	NBAC376	19	21	2	37.04	1.17	33.8	50.4	0.37	76	2	77
	NBAC376	21	22	1	32.58	1.26	33.6	50.3	0.29	50	27*	67.5
	NBAC376	22	23	1	30.04	2.78	32.9	49.4	0.24	42	34*	43
	NBAC376	23	24	1	29.16	3.8	31.6	49.6	0.33	49	25	39
	NBAC377	4	6	2	22.73	0.94	34	51.3	0.96	91	0	62
	NBAC377	6	7	1	29.86	1.31	33.1	49.8	2.76	87	0	52.5
	NBAC377	7	9	2	19.65	3.26	28.6	55.5	0.92	77	1	41
	NBAC377	9	11	2	43.74	0.68	36.7	48.3	0.48	79	17	82.5
	NBAC377	11	13	2	45.04	0.8	36.9	48.1	0.27	96	0	82
	NBAC377	13	15	2	60.34	0.55	37.8	47.3	0.28	95	0	85
	NBAC377	15	17	2	50.88	0.81	37.6	47.4	0.16	91	1	85
	NBAC377	17	18	1	48.64	1.17	35	49.6	0.08	74	9	80.5
	NBAC377	18	19	1	35.52	1.17	33.4	50.9	0.09	71	2	79

Hala ID	From	Т.	Internal	-45um	F-202	Al2O3	SiO2	TiO2	Kaolinite	Hallavsita	Duightugg
Hole ID	(m)	To (m)	Interval	-45um (%)	Fe2O3 (%)	(%)	(%)	(%)	(%)	Halloysite (%)	Brightness (ISO-B)
NBAC377	19	20	1	33.85	2.05	34.3	49.3	0.25	69	12	71
NBAC377	20	21	1	27.53	2.55	34	49	0.28	76	0	58
NBAC377	21	23	2	33.02	12.1	30.1	43.5	0.26	61	7	20.5
NBAC377	23	25	2	28.76	9.29	30.9	45.1	0.16	64	6	24
NBAC377	25	27	2	25.19	3.89	31.6	49.8	0.13	61	7	40
NBAC377	27	29	2	19.21	4.19	27.9	53.7	0.12	45	7	37
NBAC377	29	30	1	16.24	5.84	24	56.1	0.39	27	9	27.5
NBAC378	5	6	1	15.97	4.4	24.5	59.3	0.8	62	1	25
NBAC378	6	7	1	20.31	2.6	31.2	52.8	0.84	Pending	Pending	43.5
NBAC378	7	9	2	24.46	1.11	32.2	53.9	0.3	Pending	Pending	68
NBAC378	9	11	2	42.47	0.57	35.8	49.2	0.16	Pending	Pending	83
NBAC378	11	13	2	37.68	0.54	34.1	50.5	0.21	Pending	Pending	82
NBAC378	13	15	2	38.42	0.55	33.7	51.4	0.14	Pending	Pending	82.5
NBAC378	15	17	2	39.18	0.46	34.5	50.3	0.22	Pending	Pending	84
NBAC378	17	19	2	42.56	0.44	34.8	49.7	0.26	Pending	Pending	84
NBAC378	19	21	2	36.51	0.46	34.9	49.5	0.35	Pending	Pending	83.5
NBAC378	21	23	2	28.50	1.04	34.1	50	0.22	Pending	Pending	80
NBAC378	23	24	1	28.64	0.94	34.5	49.7	0.22	Pending	Pending	81
NBAC378	24	25	1	29.13	1.16	35.2	48.9	0.34	Pending	Pending	77
NBAC378	25	27	2	27.21	1.23	34.6	49.3	0.27	Pending	Pending	72.5
NBAC378	27	29	2	26.88	1.36	34.3	49.6	0.29	Pending	Pending	70
NBAC378	29	31	2	26.36	2.45	34.9	47.9	0.19	Pending	Pending	52.5
NBAC378	31	33	2	21.79	3.79	31.8	49.8	0.17	Pending	Pending	41.5
NBAC378	33	34	1	22.24	2.97	29.1	54.4	0.14	Pending	Pending	44.5
NBAC379	6	7	1	10.51	4.08	28.7	53.9	1.01	Pending	Pending	28.5
NBAC379	7	8	1	20.13	2.95	24.3	61.7	0.68	Pending	Pending	36.5
NBAC379	8	9	1	24.98	1.51	23.3	65.3	0.4	Pending	Pending	54.5
NBAC379	9	10	1	23.59	0.7	28.2	60	0.28	Pending	Pending	73
NBAC379	10	12	2	35.61	0.79	36.6	48.5	0.3	Pending	Pending	71
NBAC379	12	14	2	39.51	0.53	36.5	48.7	0.31	Pending	Pending	79.5
NBAC379	14	16	2	43.53	0.44	36	49	0.36	Pending	Pending	83.5
NBAC379	16	18	2	43.97	0.34	36.1	49.3	0.36	Pending	Pending	85.5
NBAC379	18	19	1	41.44	0.46	30.1	53.8	0.89	Pending	Pending	78.5
NBAC379	19	21	2	37.95	0.41	35.2	49.5	0.28	Pending	Pending	85
NBAC379	21	23	2	34.57	0.61	35.2	49.3	0.31	Pending	Pending	83.5
NBAC379	23	25	2	33.07	0.58	34.6	49.8	0.3	Pending	Pending	83
NBAC379	25	27	2	33.18	0.52	35.6	49	0.29	Pending	Pending	84
NBAC379	27	29	2	29.52	0.57	34.8	49.6	0.39	Pending	Pending	83
NBAC379	29	31	2	26.69	0.81	34.7	49.8	0.29	Pending	Pending	81
NBAC379	31	33	2	29.90	0.66	36.1	49.2	0.42	Pending	Pending	83
NBAC379	33	34	1	31.76	0.79	35.3	48.9	0.37	Pending	Pending	80
NBAC379	34	35	1	22.37	2.45	32.8	49.7	0.23	Pending	Pending	49
NBAC379	35	36	1	22.82	2.22	31.9	51	0.27	Pending	Pending	48.5
NBAC379	36	37	1	23.95	1.84	34	49.9	0.23	Pending	Pending	58
NBAC379	37	38	1	17.67	2.64	29.2	53.3	0.29	Pending	Pending	45
NBAC380	7	8	1	23.74	2.97	26.9	58.3	0.81	Pending	Pending	39

Hole ID	From	То	Interval	-45um	Fe2O3	Al2O3	SiO2	TiO2	Kaolinite	Halloysite	Brightness
Hole ID	(m)	(m)	iiiteivai	-43diii (%)	(%)	(%)	(%)	(%)	(%)	(%)	(ISO-B)
NBAC380	8	10	2	27.28	1.15	30.1	56.7	0.63	Pending	Pending	65.5
NBAC380	10	12	2	33.64	0.83	35	50.3	0.41	Pending	Pending	74
NBAC380	12	14	2	52.75	0.59	37.6	47.1	0.28	Pending	Pending	84
NBAC380	14	16	2	53.43	0.41	37.7	47	0.41	Pending	Pending	83.5
NBAC380	16	18	2	51.32	0.36	37.2	48	0.41	Pending	Pending	83
NBAC380	18	20	2	45.60	0.46	35.2	48.9	0.56	Pending	Pending	81
NBAC380	20	22	2	41.18	0.4	34.8	49.6	0.56	Pending	Pending	80
NBAC380	22	24	2	36.08	0.4	34.7	49.5	0.4	Pending	Pending	84
NBAC380	24	26	2	34.50	0.37	35.2	49.3	0.37	Pending	Pending	83.5
NBAC380	26	28	2	34.64	0.36	35.7	49.2	0.48	Pending	Pending	83.5
NBAC380	28	30	2	32.12	0.46	36.2	48.8	0.47	Pending	Pending	84
NBAC380	30	32	2	31.48	1.17	36.3	47.8	0.46	Pending	Pending	79
NBAC380	32	34	2	27.02	1.21	35.7	48.1	0.51	Pending	Pending	79.5
NBAC380	34	36	2	24.59	1.8	34.7	49.3	0.44	Pending	Pending	69.5
NBAC380	36	37	1	31.56	1.84	35.9	47.8	0.37	Pending	Pending	72.5
NBAC380	37	38	1	22.77	2.34	31.1	52	0.35	Pending	Pending	58
NBAC381	7	8	1	23.34	3.81	27	57	0.76	Pending	Pending	34
NBAC381	8	9	1	21.77	1.09	23.5	65.5	0.72	Pending	Pending	65
NBAC381	9	11	2	25.10	0.73	35	50.7	0.53	Pending	Pending	74
NBAC381	11	13	2	36.40	0.59	37.2	48.5	0.49	Pending	Pending	81
NBAC381	13	15	2	48.42	0.69	38	47.1	0.32	Pending	Pending	82.5
NBAC381	15	17	2	52.28	0.7	38.1	47.2	0.3	Pending	Pending	83
NBAC381	17	19	2	50.40	0.72	37.8	47.1	0.38	Pending	Pending	82.5
NBAC381	19	21	2	47.10	0.65	36.2	48.2	0.36	Pending	Pending	82
NBAC381	21	23	2	38.53	0.5	35.2	49.7	0.45	Pending	Pending	80.5
NBAC381	23	25	2	35.84	0.45	34.3	50.3	0.59	Pending	Pending	79
NBAC381	25	27	2	32.96	0.46	34.3	51.1	0.39	Pending	Pending	80.5
NBAC381	27	29	2	29.20	0.77	35.2	48.9	0.56	Pending	Pending	78
NBAC381	29	31	2	29.18	0.53	35.3	49.4	0.56	Pending	Pending	79.5
NBAC381	31	33	2	29.30	0.81	35.2	49	0.48	Pending	Pending	80
NBAC381	33	35	2	24.99	0.97	34.8	49.2	0.54	Pending	Pending	77.5
NBAC381	35	37	2	23.97	1.1	34.1	49.4	0.73	Pending	Pending	76.5
NBAC381	37	39	2	29.54	1.2	35.8	48.2	0.5	Pending	Pending	77.5
NBAC381	39	40	1	30.12	1.38	35.8	48.1	0.49	Pending	Pending	77
NBAC381	40	41	1	24.85	1.91	33.6	49.9	0.43	Pending	Pending	68
NBAC381	41	42 8	1	24.56	2.86	31.9	50.5	0.34	Pending	Pending	51
NBAC382	7		2	23.06	3.29	24	61.8	0.77	Pending	Pending	34
NBAC382	10	10 12	2	25.06	1.17	32.9	52.9	0.48	Pending	Pending	66.5
NBAC382	12	14	2	31.23 40.23	0.65	36.2 37.5	49.7	0.32	Pending Pending	Pending Pending	78 82
NBAC382	14	16	2	49.47	0.57	38	47.4	0.31	Pending	Pending	84
NBAC382	16	18	2	53.05	0.57	37.7	46.8	0.39	Pending	Pending	82.5
NBAC382	18	20	2	56.44	0.02	37.7	46.9	0.47	Pending	Pending	82.5
NBAC382	20	22	2	52.75	0.49	37.4	47.1	0.42	Pending	Pending	83.5
NBAC382	22	24	2	46.40	0.65	35.6	49.2	0.27	Pending	Pending	81
NBAC382	24	26	2	42.03	0.61	34.7	50.1	0.43	Pending	Pending	80
NUACSOZ	۷4	20		42.03	0.01	J + ./	JU.1	0.43	rending	renamg	00

	Hole ID	From	То	Interval	-45um	Fe2O3	Al2O3	SiO2	TiO2	Kaolinite	Halloysite	Brightness
		(m)	(m)		(%)	(%)	(%)	(%)	(%)	(%)	(%)	(ISO-B)
	NBAC382	26	28	2	40.22	0.71	34.2	50.6	0.47	Pending	Pending	81.5
	NBAC382	28	30	2	37.98	0.44	34.4	50.6	0.44	Pending	Pending	82
	NBAC382	30	32	2	40.47	0.68	34.3	50.3	0.5	Pending	Pending	81.5
	NBAC382	32	34	2	36.04	1.04	34	50.5	0.52	Pending	Pending	79
	NBAC382	34	36	2	29.73	0.53	34.5	49.7	0.64	Pending	Pending	79
	NBAC382	36	38	2	29.39	0.85	35.3	48.8	0.57	Pending	Pending	78
	NBAC382	38	39	1	30.94	1.11	35.7	48.9	0.56	Pending	Pending	77
	NBAC382	39	40	1	25.38	1.66	32.6	50.9	0.45	Pending	Pending	66
	NBAC382	40	41	1	17.27	2.18	20.6	64.1	0.32	Pending	Pending	44.5
	NBAC383	7	8	1	33.07	2.63	29.3	55.7	0.74	Pending	Pending	41
	NBAC383	8	9	1	32.83	0.77	35.8	49.9	0.41	Pending	Pending	69
	NBAC383	9	11	2	40.30	0.45	37.1	48.8	0.39	Pending	Pending	76.5
	NBAC383	11	13	2	51.27	0.29	38.2	47.3	0.33	Pending	Pending	83
	NBAC383	13	15	2	51.34	0.25	38.4	47.2	0.3	Pending	Pending	85
	NBAC383	15	17	2	51.14	0.28	38.6	47.3	0.3	Pending	Pending	86
	NBAC383	17	19	2	53.42	0.38	38.3	47.2	0.35	Pending	Pending	84.5
	NBAC383	19	21	2	52.75	0.25	37.1	47.7	0.34	Pending	Pending	85
	NBAC383	21	23	2	46.81	0.24	35.5	49.2	0.39	Pending	Pending	83
	NBAC383	23	25	2	37.77	0.27	35.6	49.3	0.45	Pending	Pending	82
	NBAC383	25	27	2	36.64	0.71	34.2	50.1	0.42	Pending	Pending	81
	NBAC383	27	29	2	29.30	1.03	35.6	48.8	0.47	Pending	Pending	80
2	NBAC383	29	31	2	26.75	1.05	35.3	49.2	0.4	Pending	Pending	78.5
	NBAC383	31	33	2	25.64	1.27	34.5	50	0.42	Pending	Pending	75
	NBAC383	33	34	1	33.06	2.45	33.9	49.4	0.43	Pending	Pending	55
	NBAC383	34	35	1	21.05	7.01	29.4	49.2	0.29	Pending	Pending	27
	NBAC383	35	37	2	15.53	3.86	23.4	58.9	0.46	Pending	Pending	35
	NBAC383	37	39	2	15.67	3.67	21	61.8	0.47	Pending	Pending	34
	NBAC383	39 40	40	1 1	14.51 16.63	3.6 4.88	20.3	63.3 56.3	0.46	Pending	Pending Pending	35 40.5
	NBAC384	7	8	1	26.04	4.46	26.1	57.6	0.89	Pending Pending	Pending	27.5
	NBAC384	8	9	1	26.34	1.79	21.3	67.5	0.66	Pending	Pending	46
	NBAC384	9	10	1	27.70	0.72	31.2	55.9	0.68	Pending	Pending	67.5
	NBAC384	10	11	1	34.00	0.6	33.5	52.4	0.96	Pending	Pending	71.5
	NBAC384	11	13	2	51.74	0.31	37.9	46.9	0.53	Pending	Pending	82
	NBAC384	13	15	2	53.13	0.27	37.2	48.2	0.52	Pending	Pending	83
	NBAC384	15	17	2	47.06	0.31	36.1	48.7	0.51	Pending	Pending	83
	NBAC384	17	19	2	38.59	0.35	36.2	48.6	0.63	Pending	Pending	81.5
	NBAC384	19	21	2	37.68	0.36	36.1	48.5	0.72	Pending	Pending	80
	NBAC384	21	23	2	32.61	0.35	35.8	48.9	0.62	Pending	Pending	80.5
	NBAC384	23	25	2	37.63	0.35	36.5	48.3	0.54	Pending	Pending	84
	NBAC384	25	26	1	39.92	0.39	37.2	47.6	0.54	Pending	Pending	83
	NBAC384	26	27	1	36.49	0.65	36.7	48.4	0.5	Pending	Pending	77.5
	NBAC384	27	29	2	32.50	0.94	36.2	48.6	0.39	Pending	Pending	74
	NBAC384	29	31	2	27.10	1.82	33.6	49.5	0.42	Pending	Pending	66
	NBAC384	31	33	2	23.85	1.48	33.1	51	0.35	Pending	Pending	71.5
	NBAC384	33	35	2	22.92	2.1	31.5	51.3	0.44	Pending	Pending	64

Hole ID	From	То	Interval	-45um	Fe2O3	Al2O3	SiO2	TiO2	Kaolinite	Hallovsita	Prightness
noie iD	(m)	(m)	intervai	-45um (%)	(%)	(%)	(%)	(%)	(%)	Halloysite (%)	Brightness (ISO-B)
NBAC384	35	37	2	19.83	2.36	30.7	52.7	0.35	Pending	Pending	60
NBAC384	37	38	1	30.25	3.98	31.3	50	0.39	Pending	Pending	45
NBAC384	38	39	1	18.09	7.51	27.2	51.3	0.26	Pending	Pending	26
NBAC384	39	40	1	16.23	5.45	18.5	63.1	0.29	Pending	Pending	29
NBAC385	7	8	1	13.60	4.06	30.8	51	1.15	Pending	Pending	30
NBAC385	8	9	1	26.04	2.37	28	56.8	0.87	Pending	Pending	43.5
NBAC385	9	11	2	39.32	0.6	36.2	49	0.5	Pending	Pending	74.5
NBAC385	11	13	2	58.51	0.22	38.3	46.7	0.37	Pending	Pending	85.5
NBAC385	13	15	2	52.27	0.33	38.3	46.9	0.35	Pending	Pending	85.5
NBAC385	15	17	2	56.50	0.22	38.5	47.2	0.37	Pending	Pending	85
NBAC385	17	19	2	50.06	0.38	37.4	47.8	0.32	Pending	Pending	84
NBAC385	19	21	2	52.25	0.29	36	48.8	0.83	Pending	Pending	79.5
NBAC385	21	23	2	45.29	0.38	35.4	49.3	0.58	Pending	Pending	78.5
NBAC385	23	25	2	38.21	0.37	35.7	49.4	0.41	Pending	Pending	82
NBAC385	25	27	2	35.52	0.44	35.1	49.2	0.56	Pending	Pending	79.5
NBAC385	27	29	2	31.01	0.37	34.4	50.3	0.58	Pending	Pending	80.5
NBAC385	29	31	2	32.08	0.43	35.8	49.2	0.46	Pending	Pending	80
NBAC385	31	33	2	31.33	0.45	35.9	49	0.56	Pending	Pending	79
NBAC385	33	35	2	30.90	0.4	36.2	48.5	0.6	Pending	Pending	81
NBAC385	35	37	2	29.65	0.5	35.3	49.2	0.51	Pending	Pending	82
NBAC385	37	39	2	26.47	0.61	35	50.5	0.41	Pending	Pending	82.5
NBAC385	39	40	1	28.64	1.66	34.5	49.3	0.39	Pending	Pending	68
NBAC385	40	41	1	26.25	1.03	34.6	50.3	0.48	Pending	Pending	78
NBAC385	41	42	1	27.08	1.65	33.7	50.4	0.43	Pending	Pending	70
NBAC385	42	43	1	26.05	1.75	33.7	50.3	0.41	Pending	Pending	68
NBAC385	43	45	2	26.41	1.74	34.2	49.5	0.42	Pending	Pending	67
NBAC385	45	47	2	26.05	2.34	32.9	50.9	0.35	Pending	Pending	62
NBAC385	47	48	1	21.75	2.86	26.2	57.4	0.38	Pending	Pending	49.5
NBAC386	8	9	1	18.50	2.82	23	63.4	0.91	Pending	Pending	35
NBAC386	9	10	1	28.72	1.2	34.6	50.4	0.8	Pending	Pending	64
NBAC386	10	11	1	55.49	0.72	38	46.4	0.61	Pending	Pending	74
NBAC386	11	13	2	52.31	0.43	38.2	46.4	0.72	Pending	Pending	82.5
NBAC386	13	15	2	52.53	0.48	38.4	46.7	0.44	Pending	Pending	85
NBAC386	15	17	2	52.28	0.47	38.2	46.7	0.34	Pending	Pending	85.5
NBAC386	17	19	2	53.88	0.43	38.4	46.9	0.26	Pending	Pending	85.5
NBAC386	19	21	2	50.61	0.29	38.5	47.1	0.39	Pending	Pending	86
NBAC386	21	23	2	52.06	0.22	38.4	47.2	0.44	Pending	Pending	85.5
NBAC386	23	25	2	46.16	0.26	36.5	48.4	0.48	Pending	Pending	83.5
NBAC386	25	27	2	42.57	0.46	34	50.8	0.79	Pending	Pending	77 75
NBAC386	27 29	29 31	2	32.23	0.59	34.5	49.5 50.2	0.94	Pending	Pending	75
NBAC386	31	33	2	32.11 30.49	0.78 1.07	33.7 33.6	50.2	0.94	Pending Pending	Pending Pending	77.5 79.5
NBAC386	33	35	2	21.55	1.07	33.2	50.8	0.52	Pending	Pending	79.5 75.5
NBAC386	35	36	1	21.87	1.23	30.1	53.9	0.44	Pending	Pending	75.5
NBAC386	36	38	2	18.73	1.31	28	56.3	0.43	Pending	Pending	62.5
NBAC386	38	40	2	20.82	1.23	28	56.9	0.49	Pending	Pending	
NDAC380	30	40	2	20.62	1.23	20	30.9	0.40	renumg	rending	66

	Hole ID	From	То	Interval	-45um	Fe2O3	Al2O3	SiO2	TiO2	Kaolinite	Halloysite	Brightness
		(m)	(m)		(%)	(%)	(%)	(%)	(%)	(%)	(%)	(ISO-B)
	NBAC386	40	42	2	17.74	1.38	29	56.1	0.45	Pending	Pending	67.5
	NBAC386	42	44	2	19.62	1.56	30.1	54.7	0.38	Pending	Pending	68.5
	NBAC386	44	45	1	19.32	1.93	24	60.9	0.57	Pending	Pending	53
	NBAC386	45	46	1	28.75	15.7	18.5	48.8	2.94	Pending	Pending	19.5
	NBAC386	46	47	1	32.09	12.7	22.9	47.8	2.41	Pending	Pending	20.5
	NBAC386	47	49	2	31.15	3.38	26	55.7	0.64	Pending	Pending	51
	NBAC386	49	50	1	15.60	4	28	52.4	0.37	Pending	Pending	53.5
	NBAC386	50	51	1	17.86	3.12	24	58.9	0.31	Pending	Pending	50.5
	NBAC387	7	8	1	10.11	4.22	29.7	51.5	1.2	Pending	Pending	26
	NBAC387	8	9	1	16.95	3.86	25.4	58.7	0.88	Pending	Pending	31
	NBAC387	9	11	2	34.49	0.91	33.8	51.6	0.65	Pending	Pending	69.5
	NBAC387	11	13	2	48.13	0.46	37.9	47.5	0.43	Pending	Pending	75.5
	NBAC387	13	15	2	55.61	0.41	38.1	47	0.38	Pending	Pending	85
	NBAC387	15	17	2	46.71	0.26	38.1	47	0.46	Pending	Pending	85
	NBAC387	17	18	1	44.20	0.41	36	48.7	1.12	Pending	Pending	75
	NBAC387	18	20	2	36.59	0.35	34.4	50.9	0.99	Pending	Pending	76
	NBAC387	20	21	1	61.75	0.35	35.7	48.6	1.25	Pending	Pending	75.5
	NBAC387	21	23	2	57.98	0.29	36.8	47.2	1.13	Pending	Pending	78
	NBAC387	23	25	2	41.26	0.31	34.1	50.3	0.7	Pending	Pending	77.5
	NBAC387	25	26	1	35.46	0.35	32.8	50.7	0.49	Pending	Pending	76
	NBAC387	26	28	2	43.68	0.6	35.5	49.1	0.41	Pending	Pending	81
2	NBAC387	28	30	2	29.33	1.03	33.1	50.3	0.84	Pending	Pending	70
	NBAC387	30	32	2	42.79	1.62	34.5	47.3	0.96	Pending	Pending	70.5
	NBAC387	32	34	2	20.83	5.16	28.7	49.2	0.79	Pending	Pending	40
	NBAC387	34	36	2	19.15	7.96	26.2	48.2	1.2	Pending	Pending	31
	NBAC387	36 37	37 39	2	17.78 24.56	9.11	24.6	47.6 46.4	1.54 2.04	Pending Pending	Pending Pending	28
	NBAC388	7	8	1	18.91	3.24	25.8	59.2	0.88	Pending	Pending	31.5
	NBAC388	8	10	2	20.81	1.62	27.9	59.2	0.69	Pending	Pending	59
	NBAC388	10	12	2	24.82	0.63	29.5	58.2	0.43	Pending	Pending	73.5
	NBAC388	12	14	2	57.42	0.33	36.4	48.7	0.51	Pending	Pending	82
	NBAC388	14	15	1	41.50	0.26	35.8	49	0.35	Pending	Pending	84.5
	NBAC388	15	17	2	41.35	0.31	36.1	48.9	0.46	Pending	Pending	82
	NBAC388	17	18	1	34.93	0.33	36.1	48.7	0.76	Pending	Pending	79
	NBAC388	18	20	2	36.36	0.39	35.5	49	0.81	Pending	Pending	79
	NBAC388	20	22	2	27.54	0.61	35.3	49.3	0.51	Pending	Pending	81
	NBAC388	22	24	2	22.37	1.12	34.1	50.3	0.33	Pending	Pending	75
	NBAC388	24	25	1	21.06	1.71	33.3	50.3	0.43	Pending	Pending	69.5
	NBAC388	25	27	2	20.89	1.17	33.6	51	0.3	Pending	Pending	76.5
	NBAC388	27	28	1	12.42	2	28.5	54.9	0.37	Pending	Pending	49
	NBAC388	28	30	2	10.85	2.44	25	58.3	0.4	Pending	Pending	43
	NBAC388	30	32	2	9.94	3.3	22.6	60	0.5	Pending	Pending	38
	NBAC388	32	33	1	9.21	2.82	22.9	60.4	0.61	Pending	Pending	40
	NBAC388	33	34	1	11.41	2.11	20.1	64.1	0.57	Pending	Pending	43.5
	NBAC389	7	8	1	7.23	3.48	31.8	50	1.17	Pending	Pending	33.5
	NBAC389	8	10	2	32.41	0.74	33.9	51.2	0.57	Pending	Pending	71

Hole ID	From (m)	To (m)	Interval	-45um (%)	Fe2O3 (%)	Al2O3 (%)	SiO2 (%)	TiO2 (%)	Kaolinite (%)	Halloysite (%)	Brightness (ISO-B)
NBAC389	10	12	2	40.89	0.55	35.8	49.3	0.33	Pending	Pending	77.5
NBAC389	12	13	1	45.14	0.32	36.5	48.9	0.35	Pending	Pending	84
NBAC389	13	14	1	38.24	0.53	35.5	49.6	0.37	Pending	Pending	78.5
NBAC389	14	16	2	33.96	0.91	34.9	49.8	0.34	Pending	Pending	70.5
NBAC389	16	18	2	33.85	0.62	35.3	49.6	0.41	Pending	Pending	82.5
NBAC389	18	20	2	29.46	1.3	34.9	48.7	0.47	Pending	Pending	80
NBAC389	20	22	2	24.29	2.32	33.3	49.1	0.45	Pending	Pending	70.5
NBAC389	22	24	2	25.17	1.35	34	49.5	0.46	Pending	Pending	76
NBAC389	24	26	2	14.02	2.85	28	54.2	0.4	Pending	Pending	45.5
NBAC389	26	28	2	12.13	2.4	27	56.2	0.45	Pending	Pending	45
NBAC389	28	30	2	12.51	1.85	26.4	57.2	0.5	Pending	Pending	49.5
NBAC389	30	32	2	10.22	1.92	26.1	57.9	0.47	Pending	Pending	49.5
NBAC389	32	33	1	14.00	1.77	22.5	61.8	0.48	Pending	Pending	49.5
	33 relimina	34 ry resu	1 Ilt pending	11.19 additional	3.04 SEM anal	19.6	64.7	0.38	Pending	Pending	37
						19.6	64.7	0.38	Pending	Pending	37

^{*} Preliminary result pending additional SEM analysis.

APPENDIX 3

JORC Code, 2012 Edition – Table 1 Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 The 2020–2021 drilling program completed by LRS was undertaken using industry-standard air-core drilling methods. A total of 197 holes for 4,430 m were completed at the Noombenberry Project. The June-August 2021 drilling program, completed by LRS, was undertaken using industry-standard air-core drilling methods. A total of 359 holes for 9,640 m were completed at the Noombenberry Project. Sample representivity was ensured through use of SOPs and the monitoring of results of quality control samples. Individual Air-core 1m samples from the 2020-2021 campaign were composited based on perceived reflectance, with observed iron oxide staining assumed to represent a lower reflectance. Composite intervals range from 1–4 m. Sample compositing was carried out on-site by LRS's representatives. Kaolinite sample intervals visually assessed to be poor kaolinite quality were not sampled (i.e. high Fe). These portions of the kaolinite were domained out of the estimation. Individual Air-core 1m samples from the August 2021 campaign were composited based on perceived reflectance, with observed iron oxide staining assumed to represent a lower reflectance. Composite intervals range from 1–2 m. Sample compositing was carried out on-site by LRS's representatives.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented. and if so, by what method, etc). 	 Latin resources have completed air-core drilling, an industry-standard technique. All drill holes diameters were 3 inches. AC Drilling employs rotary blade-type bit, with compressed air returning the chip samples through reverse circulation up the innertube to a cyclone for sampling.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	 For the 2020-2021 chip weight was not measured or recorded and not monitored due to the preliminary nature of the project. Sample recoveries have not been recorded. Recovery was assessed visually from the general consistency of the drill chip return from the hole. Individual 1-meter bulk sample weights for the August 2021 drilling campaign were measured and

Criteria	JORC Code explanation	Commentary
		recorded on site at the time of drilling.
		No water was encountered during the drilling process, all drill samples were dry samples.
		Sample recovery is expected to have a minimal negative impact on the sample representivity.
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	Sample recovery was controlled by best-practice SOPs for the drilling and by visual inspection by the rig geologist on the rig drill sample returns.
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential. 	There is no observed relationship between recovery and grade.
<u> </u>	loss/gain of fine/coarse material.	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, 	LRS geological logging has been completed for all holes and is representative across the mineralised body. The lithology, alteration, and characteristics of drill samples are logged on hard copy logs and entered in excel using standardised geological codes. In the Competent Person's opinion, the detail of logging is suitable to support an Inferred Mineral resource.
	channel, etc) photography.The total length and percentage of the	 Logging is both qualitative and quantitative depending on field being logged.
	relevant intersections logged.	Chip Trays were photographed.
		The logging was reviewed in 3D and was consistent and was used to define the geological model.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 For the initial 2020-2021 drilling campaign, composite samples were collected from the bulk sample bag using a 'PVC-spear'. Spear sampling was carried out by the onsite geologist, ensuring that the spear samples were collected by inserting the spear from the top corner of the sample bag to the opposite bottom corner of the sample bag to ensure a representative cross section of the full 1-m sample was collected. Composite samples range from 1–5 m. Composite sample intervals were selected based on geological logging, in particular lithological boundaries and zones of iron staining. Composites were prepared with the aim of including kaolinised saprolite of similar quality within each composite. However, in some cases, narrow bands of discoloured kaolinised saprolite were included in the composite. Even though spearing is considered an inappropriate method for representative sample splitting, the Competent Person considers it acceptable for this material, given the low natural inherent variability of the mineralisation. For the August 2021 drilling campaign, composite

Criteria	JORC Code explanation	Commentary
		samples were collected/split from the bulk sample bag using a 3-tier riffle splitter with an 87.5:12.5 split ratio. Composite sampling was undertaken on site by LRS
		 Sample preparation was carried out by Bureau Veritas Laboratories, Adelaide, Australia. Sample weights were recorded before any sampling or drying. Samples were dried at a low temperature (60°C) to avoid the destruction of halloysite. The dried sample was then pushed through a 5.6 mm screen prior to splitting.
15)		 A small rotary splitter is used to split an 800 g sample for sizing.
		 The 800 g split was wet sieved at 180 μm and 45 μm. The +180 μm and +45 μm fractions were filtered and dried with standard papers, then photographed. The -45 μm fraction was filtered and dried with 2-micron paper.
		 The -45μm material is split for XRF, XRD and brightness analysis. The reserves are retained by LRS.
		 Sample preparation for XRF: a sub-sample of the - 45 µm fraction was fused with a lithium borate flux into a glass disc for analysis.
		 Sample preparation for XRD was conducted at CSIRO, Division of Land and Water, South Australia, testing using selected -45 µm samples.
		 XRD sample preparation: A 3-gram sub-sample was micronised, slurried, spray dried to produce a spherical agglomerated sample for XRD analysis.
		• ISO-Brightness sample preparation: the -45 μm fraction was pressed into a brass cylinder; the cylinder was weighed to calculate the correct force that must be applied to the powder; 210 kPa of force was applied for 5 s, using a 5.73 kg weight loaded onto the ram pin.
		While there is limited QC, the Competent Person notes that the sub-sampling and sample preparation methods are fit for the purpose of an Inferred classified mineral resource.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, 	 Quantitative analysis of the XRD data was performed by CSIRO using SIROQUANT and Halloysite:Kaolinite proportions determined using profile fitting by TOPAS, calibrated by SEM point counting of a suite of 20 standards.
	handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	 ISO Brightness and L*a*b* colour of the dried - 45micron kaolin powder were determined according to TAPPI standard T 534 om-15 by the University of South Australia and Bureau Veritas Laboratories, using a Hunter lab QE instrument.
	Nature of quality control procedures	The analytical method used are industry standard

duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. • For the initial 2020-2021 drilling campa Company has collected eleven individua samples (1.4%) and has drilled and samp twin holes. LRS has analysed 50 validations. The laboratory inserted a range of stand the sample stream; the results of wireported to the Company. • The laboratory uses a series of control sar calibrate the XRF and XRD instrument Analytical work was completed by an indeanalytical laboratory. • The Hunterlab QE instrument at the Univ South Australia was calibrated using a significant intersections by either independent or alternative company personnel. • The use of twinned holes. • Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. • Discuss any adjustment to assay data. • The Company has drilled and asmpled not award the sum of the competent Person's opin results from these twin holes validate and the original results. • Primary data are recorded on paper drill then entered into a Microsoft Excel spre and stored in an Access database. • Hole and sample location are captured hand-held GPS and the data are uploade database. • Assay data and results are reported laboratory, reports. • A review of repeat sample pairs reveals correlation for element geochemistry SiO2, Al203, TiO2) but poor correlat kaolinite and halloysite. The he variability is higher, likely resulting for waitability is higher, likely resulting for waitability.		ommentary	Con	JORC Code explanation	Criteria	
Analytical work was completed by an indeanalytical laboratory. The Hunterlab QE instrument at the Univ. South Australia was calibrated using a saying trap' and a standard glossy, white tile. A number of samples were selected as passaying of sampling and assaying. The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. The Company has drilled and sampled nutwin holes. In the Competent Person's opir results from these twin holes validate and the original results. Primary data are recorded on paper drill then entered into a Microsoft Excel spreand stored in an Access database. A review of repeat sample pairs reveals correlation for element geochemistry SiO2, Al203, TiO2) but poor correlat kaolinite and halloysite. A review of the XRD data from check sampreveals a low bias in the check sample components, other than halloysite. The h variability is higher, likely resulting for	aign, the al repeat npled five samples. dard into thich are	For the initial 2020-2021 drilling campaign, Company has collected eleven individual re samples (1.4%) and has drilled and sampled twin holes. LRS has analysed 50 validation sam The laboratory inserted a range of standard the sample stream; the results of which	•	duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision		
Verification of sampling and assaying • The verification of significant intersections by either independent or alternative company personnel. • The use of twinned holes. • Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. • Discuss any adjustment to assay data. • Discuss any adjustment to assay data. • Assay data are recorded on paper drill then entered into a Microsoft Excel spreand stored in an Access database. • Assay data and results are reported laboratory, unadjusted as contained in the laboratory reports. • A review of repeat sample pairs reveals correlation for element geochemistry SiO2, Al2O3, TiO2) but poor correlat kaolinite and halloysite. • A review of the XRD data from check sample components, other than halloysite. The h variability is higher, likely resulting for	ependent versity of standard	calibrate the XRF and XRD instrumental Analytical work was completed by an independent analytical laboratory. The Hunterlab QE instrument at the University South Australia was calibrated using a standflight trap' and a standard glossy, white tile.	•			15 15 (7)
of sampling and assaying The use of twinned holes. Documentation of primary data, entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. The Company has drilled and sampled not twin holes. In the Competent Person's opin results from these twin holes validate and the original results. Primary data are recorded on paper drill then entered into a Microsoft Excel spre and stored in an Access database. Hole and sample location are captured hand-held GPS and the data are uploaded database. A review of repeat sample pairs reveals correlation for element geochemistry SiO2, Al2O3, TiO2) but poor correlated kaolinite and halloysite. A review of the XRD data from check sample components, other than halloysite. The hovariability is higher, likely resulting from the sample components, other than halloysite. The hovariability is higher, likely resulting from the components of the translation has been undertaken. The Company has drilled and sampled not twin holes. In the Competent who was involved in the logging and sam the drilling at the time. No independent in verification has been undertaken. The Company has drilled and sampled not twin holes. In the Competent who was involved in the logging and sam the drilling at the time. No independent in the drilling at the time. The Company has drilled and sampled at the drilling at the time. The company has drilling at	ispatched	A number of samples were selected as part of Company's routine QA/QC process and dispate for independent SEM analysis for visual verification of clay mineral species.			5	/4 T
 entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Discuss any adjustment to assay data. Primary data are recorded on paper drill then entered into a Microsoft Excel spreand stored in an Access database. Hole and sample location are captured hand-held GPS and the data are uploaded database. Assay data and results are reported laboratory, unadjusted as contained in the laboratory reports. A review of repeat sample pairs reveals correlation for element geochemistry SiO2, Al2O3, TiO2) but poor correlat kaolinite and halloysite. A review of the XRD data from check sample components, other than halloysite. The halloysite, is higher, likely resulting from the check sample components, other than halloysite. The halloysite, is higher, likely resulting from the check sample components, other than halloysite. The halloysite, is higher, likely resulting from the check sample. 	nt Person, mpling of	Air-core sample and assay data have to compiled and reviewed by the Competent Per who was involved in the logging and sampling the drilling at the time. No independent interverification has been undertaken.		intersections by either independent or alternative company personnel.The use of twinned holes.	of sampling and	
 Primary data are recorded on paper drill then entered into a Microsoft Excel spreand stored in an Access database. Hole and sample location are captured hand-held GPS and the data are uploaded database. Assay data and results are reported laboratory, unadjusted as contained in the laboratory reports. A review of repeat sample pairs reveals correlation for element geochemistry SiO2, Al2O3, TiO2) but poor correlated kaolinite and halloysite. A review of the XRD data from check sample reveals a low bias in the check sample components, other than halloysite. The howariability is higher, likely resulting from the components. 	inion, the	The Company has drilled and sampled nume twin holes. In the Competent Person's opinion results from these twin holes validate and v the original results.		entry procedures, data verification, data storage (physical and electronic) protocols.		
hand-held GPS and the data are uploaded database. Assay data and results are reported laboratory, unadjusted as contained in the laboratory reports. A review of repeat sample pairs reveals correlation for element geochemistry SiO2, Al2O3, TiO2) but poor correlat kaolinite and halloysite. A review of the XRD data from check sample reveals a low bias in the check sample components, other than halloysite. The h variability is higher, likely resulting from the components of the components of the components of the components.	eadsheet			Discuss any adjustment to assay data.		2
laboratory, unadjusted as contained in the laboratory reports. • A review of repeat sample pairs reveals correlation for element geochemistry SiO2, Al2O3, TiO2) but poor correlat kaolinite and halloysite. • A review of the XRD data from check sample reveals a low bias in the check sample components, other than halloysite. The h variability is higher, likely resulting from the contained in the laboratory reports.	ed to the					
correlation for element geochemistry SiO2, Al2O3, TiO2) but poor correlat kaolinite and halloysite. • A review of the XRD data from check samples components, other than halloysite. The h variability is higher, likely resulting from the components of the XRD data from check samples components, other than halloysite.	e original	laboratory, unadjusted as contained in the original laboratory reports.				1
reveals a low bias in the check samples components, other than halloysite. The h variability is higher, likely resulting fr	(Fe2O3,	correlation for element geochemistry (Fe. SiO2, Al2O3, TiO2) but poor correlation				3
the complexity of analysing halloysite. Competent Person's opinion, the level of a is acceptable for initial resource estimation. Inferred classification.	es for all halloysite from the hods, and e. In the accuracy ion at an	A review of the XRD data from check sample preveals a low bias in the check samples for components, other than halloysite. The hallowariability is higher, likely resulting from difference in the sample preparation methods, the complexity of analysing halloysite. In Competent Person's opinion, the level of accurate is acceptable for initial resource estimation and Inferred classification. No adjustments have been made to the data.				

Criteria	JORC Code explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill collar locations were positioned in the field using a handheld GPS with ±5 m accuracy. Post drilling, drill collar locations were surveyed by an independent contractor using a Hemisphere S321+ RTK GNSS base equipment with stated accuracies of 8 mm + 1 mm (horizontal) and 15 mm + 1 mm (vertical), relative to the base station position. The grid system used is UTM GDA 94 Zone 50, A Digital Elevation Model (DEM) was created using Synthetic Aperture Radar from Sentinel-1 satellite radar. RSC undertook an assessment of the collar Z-coordinate relative to this DEM with the following findings: The DGPS collar data was imprecise relative to the DEM in the range of -4 to +4 m. There was a consistently positive variance in the GPS collar data of between 2-6 m, including a 19 m outlier. Communications with Latin indicated that there were technical issues with DGPS survey during the collection of collars. GPS coordinates have a known low precision in the z-axis. As a result, all collars have been draped onto the DEM file. Considering the horizontal nature of the ore body, and the expected precision of the DEM file (<1 m), the Competent Person believes the accuracy of the collar locations present here will not materially impact the MRE considering its current classification as Inferred category.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Nominal first pass drill spacing is 400 m x 400 m, with off-set infill to a nominal 200 m x 400 m. Second pass infill drilling has been completed on a 200m x 200m grid. With a close spaced 50mx 50m drill pattern to assess close spaced grade variability. The drillhole spacing is appropriate to infer the geological and grade continuity appropriate for an Inferred Mineral Resource classification. Sample compositing has been applied as discussed above. Sample composites were prepared with the aim of including kaolinised saprolite of similar quality within each composite, although in some cases narrow bands of discoloured kaolinised saprolite were included in the composite.
Orientation of data in relation to	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this 	 Sampling is preferentially across the strike or trend of mineralized outcrops. Drill holes are vertical as the predominant

Criteria	JORC Code explanation	Commentary
geological structure	 is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 geological sequence is a flat lying weathering profile. Drill intersections are reported as down hole widths. The application of a semi-regular drilling grid over a laterally extensive, locally variable, mineralised regolith, combined with the horizontal nature of mineralisation and vertical hole dip is unlikely to have yielded a sampling bias. All drillholes have been drilled in a vertical drilling orientation to achieve a high angle of intersection with the flat-lying mineralisation. Drilling orientation is considered appropriate, with no obvious bias.
Sample security	The measures taken to ensure sample security.	Samples are collected and stored on site, prior to being transported to the laboratory by LRS personnel and contractors.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 The Competent Person for Exploration Results reported here has visited the site while both separate drilling campaigns were being completed and has reviewed and confirmed the drilling and sampling procedures. An RSC consultant has also visited the exploration site. RSC has validated 5% of the data against the original logs to ensure robustness and integrity of the sampling and analysis methods.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement andland tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	• Exploration licence E77/2624, E77/2622, E70/5649, E77/2719, E77/2725 and E70/5650 have been granted.
15)	The security of the tenure held at the time of reporting along with any known impediments to obtaining a	
	licence to operate in the area.	
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	No historic exploration has been completed on the tenement areas.
Geology	Deposit type, geological setting and style of mineralisation.	The Noombenberry Project is located on the largely granitic, Archean Yilgarn Craton.
3		The basement geology at the Noombenberry Project, is undulating granite, with isolated outcrops in the project area.
		 A well-developed regolith profile overlies the basement geology. Immediately overlying the granite is a zone of partially weathered granite that transition up profile into saprolite clays. The saprolite clay profile varies in thickness from 1 m to >50 m in places, which is related to the undulating upper surface of the granite. The saprolite clay profile is the key mineralised unit and contains kaolinite and localised zones of halloysite. The clay unit does contain discontinuous pods of Fe-rich staining.
		 The deposit is overlain by sandy soil and colluvial cover, up to ~15 m in places.
		The kaolin occurrence at the Noombenberry Project developed in situ by weathering of the feldspar-rich basement. The kaolin deposits are sub-horizontal zone overlying the unweathered granite.
		 Halloysite, a rare derivative of kaolin, occurs as nanotubes, compared to the generally platy structure of kaolinite. Variable grades of halloysite have been encountered at the Noombenberry Project.
Drill hole Informati on	A summary of all information material to the understanding of the exploration results including a tabulation of the followinginformation	 Drill holes were located by handheld GPS at the time of drilling and are reported in the text of this ASX release. An independent survey contractor has completing a
	for all Material drill holes: o easting and northing of the drill hole collar;	collar survey DGPS utilising Hemisphere S321+ RTK GNSS equipment with stated accuracies of 8mm + 1mm (horizontal) and 15mm + 1mm (vertical),

Criteria	JORC Code explanation	Commentary
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole down hole length and interception depth; hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	relative to the base station position. • Drill hole locations are reported in full in Appendix.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high-grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Reported summary intercepts are weighted averages based on length. No maximum or minimum grade truncations have been applied. No metal equivalent values have been quoted. Significant intersections are calculated on a nominal >80 ISO-B brightness, or >5% halloysite cut-off, with a maximum internal dilution of 2m.
Relationshi p between mineralisati onwidths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Drilling is reported to have been carried out at right angles to target controlling structures and mineralised zones where possible. Drilling intervals and interactions are reported as down hole widths. Insufficient information is available at this stage to report true widths.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	The Company has included various maps, figures and sections in the body of the announcement text showing the sample results geological context.
nced repo	 Where comprehensive reporting ofall Exploration Results is not practicable, representative reporting of both low and high-grades and/or widths should 	All analytical results have been reported in a balanced manner.

Criteria	JORC Code explanation	Commentary
rting	be practiced avoiding misleading reporting of Exploration Results.	
Other Substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density,groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	All information that is considered material has been reported, including drilling results, geological context and mineralisation controls etc.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting theareas 	LRS plans to carry out follow-up infill and extension drilling at Noombenberry Project.
		 Further metallurgical testwork, including bulk density measurements and halloysite analysis will be undertaken as part of future studies.
	of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	FTIR and Spectral Analysis with Machine Learning is currently being assessed as a potential replacement for XRD analysis for halloysite and kaolinite.
	Announcement dated 31 May 2021	

ⁱ Refer ASX Announcement dated 31 May 2021