

VANGO RETURNS HIGH-GRADE GOLD!

Results from current drilling plus historic results to be included in Marymia Project Resource upgrade in 2022

Highlights

High gold grades and confirmation of continuity of gold structure at depth:

- 9m at 3 g/t Au from 111m in VPIRC0004 incl. 3m at 7.9 g/t Au from 114m
- o 2m at 1 g/t Au from 157m in VPIRC0004
- 4m at 1.1 g/t Au from 134m in VPIRC0001
- 2m at 2.2 g/t Au from 115m in VPIRC0002
- 7m at 0.8 g/t Au from 124m in VPIRC0002
- 12m at 1 g/t Au from 121m in VPIRC0003

Multiple historical intercepts BELOW the mined level of the Pigeon open-pit:

- 4m at 8.2 g/t Au from 71m in FRC1585
- 7m at 1.7 g/t Au from 51m in FRC9606
- 9m at 2.1 g/t Au from 90m in PGRC0079
- 16m at 1.5 g/t Au from 77m in PGRC0106
- 13m at 1.2 g/t Au from 86m in PGRC0112
- \circ 8m at 2.6 g/t Au from 52m in PGRC0137 incl. 1m at 5.8 g/t Au from 52m
- 12m at 1 g/t Au from 83m in PGRC0138 incl. 2m at 3.4 g/t Au from 83m
- 1m at 9.3 g/t Au from 101m in PGRC0139
- 14m at 1.6 g/t Au from 106m in PGRC0141
- o 12m at 1.5 g/t Au from 94m in PGRC0143 incl. 3m at 4.6 g/t Au from 99m
- 9m at 2.2 g/t Au from 47m in PGRC0185 incl. 1m at 5.7 g/t Au from 47m
- 2m at 5.2 g/t Au from 68m in PGRC0185
- \circ 5m at 1.9 g/t Au from 54m in PGRC0188 incl. 1m at 7.6 g/t Au from 54m
- o 15m at 1.7 g/t Au from 100m in PMRC0001

Vango's planned resource upgrade will be compiled by Dr Spero Carras and David
 Jenkins from Terra Search

Vango Mining Limited (Vango, ASX: VAN) is pleased to announce further gold intersections from drilling at the Company's flagship Marymia Gold Project (Marymia, the Project) in the Mid-West region of Western Australia.

The latest results are from the first four holes drilled at the Pigeon open-pit target (Figure 3).

Vango Mining Ltd ABN: 68 108 737 711 ASX: **VAN** **Issued Capital** 1,259,937,632 Shares 115.864.406 Options Australian Registered Office

Aurora Place Building 1 Level 29, 88 Phillip Street Sydney NSW 2000 AUSTRALIA

Directors

BRUCE MCINNES - Executive Chairman SEAN ZHOU - Deputy Chairman - Non-Executive Director HUNTER GUO - Non-Executive Director The Hon CRAIG WALLACE – Non-Executive Director Dr CAROL ZHANG – Non-Executive Director

Figure 1 Plan View Pigeon Open-Pit Area

Pigeon Open Pit

The Pigeon pit was targeted with 5 drillholes in Vango's ongoing open-pit focused resource extension program. Results have been received for the first 4 holes and are reported in this announcement. All 4 holes returned significant gold:

- $\circ~$ 9m at 3 g/t Au from 111m in VPIRC0004 incl. 3m at 7.9 g/t Au from 114m
- o 2m at 1 g/t Au from 157m in VPIRC0004
- 4m at 1.1 g/t Au from 134m in VPIRC0001
- 2m at 2.2 g/t Au from 115m in VPIRC0002
- $\circ~~$ 7m at 0.8 g/t Au from 124m in VPIRC0002
- 12m at 1 g/t Au from 121m in VPIRC0003

These results show the continuity of a strong gold zone that broadly follows an interpreted mineralised structure, that follows the contact between sediments and mafic packages.

In addition to the positive results from the current drilling, there are multiple high-grade gold intersections from historic drilling below the current pit outline, including:

- 4m at 8.2 g/t Au from 71m in FRC1585
- \circ 7m at 1.7 g/t Au from 51m in FRC9606
- $\circ~$ 9m at 2.1 g/t Au from 90m in PGRC0079
- \circ 16m at 1.5 g/t Au from 77m in PGRC0106
- 13m at 1.2 g/t Au from 86m in PGRC0112
- \circ 8m at 2.6 g/t Au from 52m in PGRC0137 incl. 1m at 5.8 g/t Au from 52m
- \circ 12m at 1 g/t Au from 83m in PGRC0138 incl. 2m at 3.4 g/t Au from 83m
- 1m at 9.3 g/t Au from 101m in PGRC0139
- 14m at 1.6 g/t Au from 106m in PGRC0141
- $\circ~$ 12m at 1.5 g/t Au from 94m in PGRC0143 incl. 3m at 4.6 g/t Au from 99m
- \circ 9m at 2.2 g/t Au from 47m in PGRC0185 incl. 1m at 5.7 g/t Au from 47m
- \circ 2m at 5.2 g/t Au from 68m in PGRC0185
- $\circ~$ 5m at 1.9 g/t Au from 54m in PGRC0188 incl. 1m at 7.6 g/t Au from 54m
- 15m at 1.7 g/t Au from 100m in PMRC0001

Figure 2 Cross-section Pigeon 19280E

Table 1 2021 Drilling Pigeon Collar information

	HoleID	MGA E	MGA N	RL	North	East	Depth	Dip	Az
	VPIRC0001	7207950	768678	611	5414.345	19340.15	172	-60.9	151.4
\geq	VPIRC0002	7207947	768657	611	5421.934	19320.35	159	-59.6	149.5
	VPIRC0003	7207955	768632	611	5441.075	19302.4	159	-59.2	151.0
	VPIRC0004	7207946	768611	611	5443.424	19279.68	171	-59.9	151.6
	VPIRC0005	7207925	768598	611	5431.403	19258.12	201	-66.9	151.5

2021 Drilling Campaign Progress and Next Steps

Vango is targeting 11 priority open-pits in its 2021 drilling campaign. Drilling is designed to add resources to the substantial existing Marymia resource base, and to deliver 'critical mass' to Marymia's resource base to support a proposed stand-alone mining operation at the Project.

The first phase of drilling in all 11 open pits has now been completed and consisted of 8,914 metres of RC drilling across 56 holes. All results have now been reported from first-phase drilling at the Skyhawk, Parrot, Apollo, Prickleys, Ibis, Exocet and Rosella open-pits along with the first 4 holes from the Pigeon open-pit. Results from drilling at the remaining 3 open-pits will be progressively released as they become available.

Vango plans to conduct a follow-up, second phase of drilling at all targets that deliver positive results from the completed first round of drilling, to test for further extensions of gold mineralisation to add to the Marymia resource base.

HoleID	MGA E	MGA N	RL	North	East	Depth	Dip	Az
FRC1585	7207613.1	769048.5	583.8	4940.0	19500.0	505.0	117	-60
FRC9606	7207595.6	769058.3	608.8	4919.9	19500.0	530.0	70	-60
PGRC0079	7207896.5	768776.5	610.0	5319.7	19400.2	531.2	117	-60
PGRC0106	7207900.2	768659.7	610.1	5379.7	19299.9	531.3	100	-60
PGRC0112	7207904.2	768749.2	610.3	5339.7	19380.1	531.6	130	-60
PGRC0137	7207888.8	768597.6	608.8	5400.0	19240.2	530.1	120	-60
PGRC0138	7207907.6	768632.6	609.1	5399.4	19279.9	530.3	110	-60
PGRC0139	7207909.5	768677.3	610.0	5379.3	19319.9	531.2	110	-60
PGRC0141	7207916.2	768765.5	610.1	5342.3	19400.2	531.4	125	-60
PGRC0143	7207917.6	768650.1	609.4	5399.6	19300.0	530.7	110	-60
PGRC0185	7207872.1	768561.5	609.4	5403.0	19200.5	530.6	104	-60
PGRC0188	7207858.9	768544.4	609.6	5399.7	19179.2	530.9	100	-60
PMRC0001	7207914.1	768766.5	611.9	5340.0	19400.0	533.2	150	-60

Table 2 Historical Collars Pigeon Pit

Figure 3 Marymia Gold Project showing the 11 priority open pits.

Authorised for release by the Board of Vango Mining Limited. -ENDS-

For further information, contact:

Bruce McInnes Chairman info@vangomining.com +61 418 183 466

James Moses Investor Relations james@mandatecorporate.com.au +61 420 991 574

Information in this announcement is extracted from reports lodged as market announcements available on the Company's website <u>https://vangomining.com/</u>.

The Company confirms that it is not aware of any new information that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original market announcements.

About Vango Mining

Vango Mining Limited (ASX: VAN) is a minerals exploration mining company with ambitions of becoming a high-grade WA gold miner by developing the 100% owned Marymia Gold Project (**Marymia**) in the mid-west region of Western Australia. The Project comprises 45 granted mining leases over an area of 325.08km². It has an established high-grade resource of 1Moz @ 3g/t Au¹, underpinned by the Trident Deposit, whose resource is 410koz @ 8g/t Au, with immediate extensions open at depth/along strike.

The Marymia Project has the potential to become a significant Australian high-grade producer. The Greenstone Belt in the Marymia region includes six major gold corridors, which remain largely un-tested beyond 100m depth supported with an extensive drilling and geophysical database. Previous mining between 1992-2001, produced 580,000 ounces of gold almost entirely from open-pits.

Vango is focused on growing its high-grade gold resource to support a proposed stand-alone gold mining and production operation at Marymia. The Project is located along strike, immediately to the north of Superior Gold's (TSX-V: SGI) Plutonic Gold Mine which has produced more than 5.5Moz of gold.²

Figure 4 Location of Marymia Gold Project in the Yilgarn block of Western Australia.

¹ VAN ASX, 20/05/20 "Marymia Mineral Resource Increases to One Million Ounces"

² Superior Gold Inc., TSX-V:SGI, Corporate Website <u>www.superior-gold.com</u>

MARYMIA GOLD PROJECT JORC 2012 MINERAL RESOURCE ESTIMATE – MAY 2020										
Deposit	Cut-off		Indicated			Inferred			Total	
Mineral Resource	Au g/t	Кt	g/t	K oz	Кt	g/t	Oz	Kt	g/t	K oz
Open Pits	0.5	5,300	1.8	311	2,950	1.6	150	8,250	1.7	461
Underground	3.0	1,142	9.6	352	992	5.9	189	2,134	7.9	541
Total		6,442	3.2	663	3,942	2.7	339	10,384	3.0	1,002

JORC compliant Mineral Resource Estimate (ASX Announcement dated 20 May 2020³)

* VAN confirms all material assumptions and technical parameters underpinning the Resource Estimate and Reserve continue to apply, and have not materially changed as per Listing Rule 5.23.2

Mineral Resources reported in accordance with the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (Joint Ore Reserves Committee Code – JORC 2012 Edition). Open pit resources reported within optimised conceptual pit shells at A\$2,500/oz gold price above a 0.5 g/t Au cut off and include oxide, transition and fresh material.

Trident underground resources are retained as first reported 18 April 2019¹ above a 3.0 g/t Au cut-off grade, and modelled at a gold price of A\$2,000/oz, on the basis that the information has not materially changed since last reported. Other underground resources reported above a 3.0 g/t Au cut off (with minor 2.5 g/t Au cut-off material included for continuity purposes) and includes fresh material only. Totals may differ due to rounding, Mineral Resources reported on a dry in-situ basis.

Competent Persons Statements

The Statement of Mineral Resource Estimates has been compiled by Dr. Spero Carras who is a full-time employee of Carras Mining Pty Ltd and a Fellow of the Australian Institute of Mining and Metallurgy ("FAusIMM"). Dr. Carras has sufficient experience, including over 40 years' experience in gold mine evaluation, relevant to the style of mineralisation and type of deposits under consideration to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee ("JORC") Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves. Dr. Carras consents to the inclusion in this report of the matters based on this information in the form and context in which it appears. The information in this report that relates to exploration results has been reviewed, compiled and fairly represented by Mr David Jenkins, a Member of the Australian Institute of Geologists and a full time employee of Terra Search Pty Ltd. Mr Jenkins has sufficient experience, including over 29 years' experience in exploration and resource evaluation relevant to the style of mineralisation and type of deposits under consideration to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves. Mr Jenkins consents to the inclusion in this report of the matters Resources and Ore Reserves. Mr Jenkins consents to the inclusion in this report of the matters has been reviewed.

Forward Looking Statements

This announcement contains 'forward-looking information' that is based on the Company's expectations, estimates and projections as of the date on which the statements were made. This forward-looking information includes, among other things, statements with respect to the Company's business strategy, plans, development, objectives, performance, outlook, growth, cash flow, projections, targets and expectations, mineral reserves and resources, results of exploration and related expenses. Generally, this forward-looking information can be identified by the use of forward-looking terminology such as 'outlook', 'anticipate', 'project', 'target', 'potential', 'likely', 'believe', 'estimate', 'expect', 'intend', 'may', 'would', 'could', 'should', 'scheduled', 'will', 'plan', 'forecast', 'evolve' and similar expressions. Persons reading this announcement are cautioned that such statements are only predictions, and that the Company's actual future results or performance may be materially different. Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the Company's actual results, level of activity, performance or achievements to be materially different from those expressed or implied by such forwardlooking information.

³ VAN ASX, 20/05/20 "Marymia Mineral Resource Increases to One Million Ounces"

Table 3 Significant Assays current drilling

Hole ID	Sample	From	То	Samp Type	Au	Au1
VPIRC0001	DG24163	130	131	INT	0.179	
VPIRC0001	DG24164	131	132	INT	0.241	
VPIRC0001	DG24165	132	133	INT	0.694	
VPIRC0001	DG24166	133	134	INT	0.652	
VPIRC0001	DG24167	134	135	INT	0.988	
VPIRC0001	DG24168	135	136	INT	1.251	
VPIRC0001	DG24169	136	137	INT	1.121	
VPIRC0001	DG24170	137	138	INT	0.901	
VPIRC0001	DG24171	138	139	INT	0.486	
VPIRC0001	DG24172	139	140	INT	0.057	
VPIRC0001	DG24173	140	141	INT	0.034	
VPIRC0001	DG24174	141	142	INT	0.02	
VPIRC0002	DG24343	111	112	INT	-0.005	
VPIRC0002	DG24344	112	113	INT	-0.005	
VPIRC0002	DG24345	113	114	INT	-0.005	
VPIRC0002	DG24346	114	115	INT	0.006	
VPIRC0002	DG24347	115	116	INT	2.265	
VPIRC0002	DG24348	116	117	INT	2.148	
VPIRC0002	DG24349	117	118	INT	0.084	
VPIRC0002	DG24350	118	119	INT	0.308	
VPIRC0002	DG24351	119	120	INT	0.295	
VPIRC0002	DG24352	120	121	INT	0.191	
VPIRC0002	DG24353	121	122	INT	0.523	
VPIRC0002	DG24354	122	123	INT	0.374	
VPIRC0002	DG24355	123	124	INT	0.21	
VPIRC0002	DG24356	124	125	INT	0.68	
VPIRC0002	DG24357	125	126	INT	0.588	
VPIRC0002	DG24358	126	127	INT	0.466	
VPIRC0002	DG24359	127	128	INT	1.08	
VPIRC0002	DG24361	127	128	DUP	0.911	
VPIRC0002	DG24363	128	129	INT	0.614	
VPIRC0002	DG24364	129	130	INT	0.92	
VPIRC0002	DG24365	130	131	INT	1.276	
VPIRC0002	DG24366	131	132	INT	0.438	
VPIRC0002	DG24367	132	133	INT	0.125	
VPIRC0002	DG24368	133	134	INT	0.059	
VPIRC0002	DG24369	134	135	INT	0.041	

	Hole ID	Sample	From	То	Samp Type	Au	Au1
	VPIRC0003	DG24535	117	118	INT	0.013	
>	VPIRC0003	DG24536	118	119	INT	0.011	
	VPIRC0003	DG24537	119	120	INT	0.476	
	VPIRC0003	DG24538	120	121	INT	0.494	
	VPIRC0003	DG24539	121	122	INT	0.682	0.647
	VPIRC0003	DG24541	121	122	DUP	0.764	
	VPIRC0003	DG24543	122	123	INT	0.772	
21	VPIRC0003	DG24544	123	124	INT	0.607	
	VPIRC0003	DG24545	124	125	INT	0.979	
$\frac{1}{6}$	VPIRC0003	DG24546	125	126	INT	1.101	
<i>J</i> r	VPIRC0003	DG24547	126	127	INT	1.249	
	VPIRC0003	DG24548	127	128	INT	0.645	
	VPIRC0003	DG24549	128	129	INT	0.986	
	VPIRC0003	DG24550	129	130	INT	2.514	
7	VPIRC0003	DG24551	130	131	INT	0.74	
JC	VPIRC0003	DG24552	131	132	INT	0.423	
	VPIRC0003	DG24553	132	133	INT	1.3	
	VPIRC0003	DG24554	133	134	INT	0.149	
	VPIRC0003	DG24555	134	135	INT	0.053	
\equiv	VPIRC0003	DG24556	135	136	INT	0.036	
J	VPIRC0003	DG24557	136	137	INT	0.04	
	VPIRC0004	DG24711	107	108	INT	0.48	
71	VPIRC0004	DG24712	108	109	INT	0.383	
	VPIRC0004	DG24713	109	110	INT	0.226	
	VPIRC0004	DG24714	110	111	INT	0.352	
	VPIRC0004	DG24715	111	112	INT	0.891	
	VPIRC0004	DG24716	112	113	INT	0.393	
	VPIRC0004	DG24717	113	114	INT	0.515	
	VPIRC0004	DG24718	114	115	INT	6.863	7.387
Π	VPIRC0004	DG24719	115	116	INT	15.684	16.272
	VPIRC0004	DG24721	115	116	DUP	14.949	15.682
	VPIRC0004	DG24723	116	117	INT	1.275	
	VPIRC0004	DG24724	117	118	INT	0.154	
	VPIRC0004	DG24725	118	119	INT	0.516	
	VPIRC0004	DG24726	119	120	INT	0.744	
	VPIRC0004	DG24727	120	121	INT	0.337	
	VPIRC0004	DG24728	121	122	INT	0.039	
	VPIRC0004	DG24729	122	123	INT	0.154	

Hole ID	Sample	From	То	Samp Type	Au	Au1
VPIRC0004	DG24730	123	124	INT	0.113	
VPIRC0004	DG24766	153	154	INT	0.076	
VPIRC0004	DG24767	154	155	INT	0.054	
VPIRC0004	DG24768	155	156	INT	0.027	
VPIRC0004	DG24769	156	157	INT	0.022	
VPIRC0004	DG24770	157	158	INT	1.194	
VPIRC0004	DG24771	158	159	INT	0.738	
VPIRC0004	DG24772	159	160	INT	0.138	
VPIRC0004	DG24773	160	161	INT	0.263	
VPIRC0004	DG24774	161	162	INT	0.062	
		J(Sectio	ORC Code on 1: Sam	e, 2012 Ed Ipling Ted	dition: Tal	ble 1 and Dat
_		(Criter	ia in this sec	tion apply to	all succeeding	g sections.)
Criteria		do ovnlan	ation			

JORC Code, 2012 Edition: Table 1 **Section 1: Sampling Techniques and Data**

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 RC Drilling assays are from 1m samples cone split on the cyclone for the key intercepts. 4m composites from these 1m splits are taken in zones of lower prospectivity at the Laboratory. Where the composite samples return > 0.2g/t Au, they are re-assayed on 1m intervals Historical drilling has been sampled on a 1m basis. By Battle Mt and Homestake Gold – split at rig. Duplicates are taken of the second quarter of core every 20 samples to ensure the samples were representative.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Face Sampling, Reverse Circulation hammer
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC drilling was bagged on 1m intervals and an estimate of sample recovery has been made on the size of each sample.

Criteria	JORC Code explanation	Commentary		
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Reverse Circulation holes are being logged on 1m intervals 		
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	 Duplicates taken every 20 samples by sampling a second quarter of the NQ core, or from a second split directly from cyclone. Standards submitted every 20 samples of tenor similar to those 		
	 Quality control procedures daopted for all sub-sampling stages to maximise samples representivity Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	 expected in the sampling. Cone splitter on the cyclone was used to produce a 1m sub-sample on the RC rig. Blanks were inserted every 20 		
0	 Whether sample sizes are appropriate to the grain size of the material being sampled. 	 samples also In un-prospective lithologies these 1m samples were composited at the lab over 4m intervals. 		
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples analysed at Intertek Laboratories in Perth, WA, using a 50g Fire Assay method. Samples are dried, crushed and pulverised prior to analysis. 		
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Intercepts have been calculated generally using a 0.5g/t cut-off and internal waste of up to 3m thickness with total intercepts greater than 0.3g/t. All repeats and duplicates have been included. Historical work has been cross referenced against WAMEX reports A62465 (Battle Mt) and A64818 (Homestake) 		
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 DGPS has been used to locate the drillholes. REFLEX Gyro Tool used for downhole surveys on all holes 		
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity 	 Sample data down hole is at no more than 1m intervals Data spacing varies from approx. 		

Criteria	JORC Code explanation	Commentary
	appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	20m Assessment as to whether sufficient data has been generated to establish the degree of geological and grade continuity appropriate for Mineral Resource and estimation procedure(s) is underway and, if necessary, additional drilling will be carried out to establish continuity.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Intercepts given are downhole widths with the true widths not determined.
Sample security	• The measures taken to ensure sample security.	 Samples sealed in bulka bag with Security seal, unbroken when delivered to lab
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 Review of standards, blanks and Duplicates indicate sampling and analysis has been effective for current and historical drilling where QA/QC has been available

Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

		Contenta insteu in the preceding section also apply to th			
	Criteria	JORC Code explanation	Commentary		
	Mineral tenement and land tenure status	• Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park	 Located in the Marymia - Plutonic Greenstone Belt ~218km northeast of Meekatharra in the Midwest mining district in WA 		
		and environmental settings. The security of the tenure held at the time of reporting alona with any known impediments to obtaining a	 Pigeon M52/259 tenement in good standing 		
		licence to operate in the area.	• The tenements predate Native title interests, but are covered by the Gingirana Native Title claim		
	D D		 The tenements are 100% owned by Vango Mining Limited and subsidiary Dampier Plutonic Pty Ltd. 		
77			 Gold production will be subject to a 1-4% royalty dependent on gold price (Currently 2%) capped at \$2M across the entire project area. 		
			 Contingent production payments of up to \$4M across the entire project area. 		
J	Exploration done by other parties.	 Acknowledgment and appraisal of exploration by other parties. 	• Extensive previous work by Battle Mt and Homestake Gold		
1	Geology	 Deposit type, geological setting and style of mineralisation. 			
J)(()	Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	• Location of new drillholes based on surveyed sites, and DGPS, summarised in Table 1 and shown on Figures 2 and 3.		
		 easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in 	 Location of previous Drillholes based on historical reports and data, originally located on surveyed sites, and DGPS. 		
		metres) of the drill hole collar • dip and azimuth of the hole	 Northing and easting data generally within 0.1m accuracy 		
		 down hole length and interception 	• RL data +-0.2m		
		aepth hole length	• Down hole length =+- 0.1 m		
		 If the exclusion of this information is justified on the 			
		basis that the information is not Material and this			
		exclusion does not detract from the understanding of			
		the report, the Competent Person should clearly			
		explain why this is the case.			

Criteria	JORC Code explanation	Commentary		
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Intercepts have been calculated generally using a 1 g/t cut off or as otherwise stated (see Table 1) and internal waste of up to 3m thickness with total intercepts greater than 1g/t. All Duplicates and repeats are included No upper cut off has been applied to intersections. 		
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Orientation of mineralised zones are still to be ascertained by follow up drilling. 		
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Appropriate cross-sectional and plan view of the drilling are included. Table 1 & 2, drillhole locations and Table 3 & 4, all significant assays, with repeats and duplicates. 		
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	• Table 1 & 2, drillhole locations and Table 3 & 4, all significant assays, with repeats and duplicates.		
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Geological interpretations are included on plan views (Figure 2), sectional view (Figure 3) No new exploration data has been generated apart from the drilling information included in this report. 		
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Extensive further drilling is planned for the project 		

Table 4 Significant results historical Drilling

	Hole ID	Sample	From	То	Samp	Au	Au1
					Туре		
\geq	PGRC0112	L23063	82	83	INT	0.14	
	PGRC0112	L23064	83	84	INT	0.13	
	PGRC0112	L23065	84	85	INT	0.12	
	PGRC0112	L23066	85	86	INT	0.11	
	PGRC0112	L23067	86	87	INT	1.94	1.84
	PGRC0112	L23068	87	88	INT	0.2	0.42
	PGRC0112	L23069	88	89	INT	0.49	0.38
	PGRC0112	L23070	89	90	INT	1.11	1.02
71	PGRC0112	L23071	90	91	INT	1.16	1.09
	PGRC0112	L23072	91	92	INT	1.35	1.1
	PGRC0112	L23073	92	93	INT	1.47	1.22
]],	PGRC0112	L23074	93	94	INT	0.84	0.68
- 1	PGRC0112	L23075	94	95	INT	0.64	0.55
	PGRC0112	L23076	95	96	INT	1.03	1.03
	PGRC0112	L23077	96	97	INT	1.42	1.34
	PGRC0112	L23078	97	98	INT	1.56	1.36
	PGRC0112	L23079	98	99	INT	2.29	2
1	PGRC0112	L23080	99	100	INT	0.48	0.34
14	PGRC0112	L23081	100	101	INT	0.07	
	PGRC0112	L23082	101	102	INT	0.07	
	PGRC0112	L23083	102	103	INT	0.09	
	PGRC0079	K88707	86	87	INT	0.32	0.33
	PGRC0079	K88708	87	88	INT	0.09	
	PGRC0079	K88709	88	89	INT	0.07	
(PGRC0079	K88710	89	90	INT	0.1	
20	PGRC0079	K88711	90	91	INT	0.64	0.7
	PGRC0079	K88712	91	92	INT	7.65	7.64
71	PGRC0079	K88713	92	93	INT	1.25	1.4
	PGRC0079	K88714	93	94	INT	0.3	0.31
	PGRC0079	K88715	94	95	INT	0.57	0.49
	PGRC0079	K88716	95	96	INT	0.78	0.68
	PGRC0079	K88717	96	97	INT	3.53	3.88
	PGRC0079	K88718	97	98	INT	2.05	1.9
	PGRC0079	K88719	98	99	INT	1.84	1.93
	PGRC0079	K88720	99	100	INT	0.39	0.4
	PGRC0079	K88721	100	101	INT	0.22	0.23
	PGRC0079	K88722	101	102	INT	0.29	0.27
	PGRC0079	K88723	102	103	INT	0.13	0.16
_	PGRC0185	L39674	43	44	INT	-	
						0.01	
	PGRC0185	L39675	44	45	INT	0.02	
	PGRC0185	L39676	45	46	INT	0.02	
	PGRC0185	L39677	46	47	INT	0.03	
	PGRC0185	L39678	47	48	INT	5.73	3.38
	PGRC0185	L39679	48	49	INT	0.13	0.13
	PGRC0185	L39680	49	50	INT	4.74	3.72
	PGRC0185	L39681	50	51	INT	3.9	3.65

	Hole ID	Sample	From	То	Samp	Au	Au1
					Туре		
	PGRC0185	L39682	51	52	INT	0.51	0.27
_	PGRC0185	L39683	52	53	INT	1.16	1.1
2	PGRC0185	L39684	53	54	INT	1.8	1.52
	PGRC0185	L39685	54	55	INT	1.28	1.19
	PGRC0185	L39686	55	56	INT	0.99	0.91
	PGRC0185	L39687	56	57	INT	0.34	0.31
	PGRC0185	L39688	57	58	INT	0.1	0.1
	PGRC0185	L39689	58	59	INT	0.23	0.22
	PGRC0185	L39690	59	60	INT	0.46	0.37
_	PGRC0185	L39695	64	65	INT	0.05	
14	PGRC0185	L39696	65	66	INT	0.17	
5	PGRC0185	L39697	66	67	INT	0.16	
P	PGRC0185	L39698	67	68	INT	0.11	
/ [PGRC0185	L39699	68	69	INT	8.61	5.99
	PGRC0185	L39700	69	70	INT	1.84	0.41
	PGRC0185	L39701	70	71	INT	0.3	0.24
	PGRC0185	L39702	71	72	INT	0.14	
	PGRC0185	L39703	72	73	INT	0.12	
	PGRC0185	L39704	73	74	INT	0.06	
	PMRC0001	MA_H099097	96	97	INT	0.01	0
4	PMRC0001	MA_H099098	97	98	INT	0.05	0
	PMRC0001	MA_H099099	98	99	INT	0.05	0
	PMRC0001	MA_H099100	99	100	INT	0.06	0
	PMRC0001	MA_H099101	100	101	INT	0.93	0
	PMRC0001	MA_H099102	101	102	INT	1.45	0
P	PMRC0001	MA_H099103	102	103	INT	1.34	0
7	PMRC0001	MA_H099104	103	104	INT	1.21	0
	PMRC0001	MA_H099105	104	105	INT	1.42	0
70	PMRC0001	MA_H099106	105	106	INT	1.84	0
	PMRC0001	MA_H099107	106	107	INT	2.4	0
-	PMRC0001	MA_H099108	107	108	INT	0.8	0
	PMRC0001	MA_H099109	108	109	INT	1.35	0
-	PMRC0001	MA_H099110	109	110	INT	1.67	0
	PMRC0001	MA_H099111	110	111	INT	1.59	0
	PMRC0001	MA_H099112	111	112	INT	2.69	0
	PMRC0001	MA_H099113	112	113	INT	1.52	0
	PMRC0001	MA_H099114	113	114	INT	2.95	0
_	PMRC0001	MA_H099115	114	115	INT	1.83	0
	PMRC0001	MA_H099116	115	116	INT	0.41	0
	PMRC0001	MA_H099117	116	117	INT	0.18	0
	PMRC0001	MA_H099118	117	118	INT	0.25	0
	PMRC0001	MA_H099119	118	119	INT	0.04	0
	FRC1585	H13218	67	68	INT	0.01	0
	FRC1585	H13219	68	69	INT	0.01	0
	FRC1585	H13220	69	70	INT	0.01	0
	FRC1585	H13221	70	71	INT	0.01	0
	FRC1585	H13222	71	72	INT	8.84	0
	FRC1585	H13223	72	73	INT	20.6	0
	FRC1585	H13224	73	74	INT	2.86	0

	Hole ID	Sample	From	То	Samp	Au	Au1
					Type		
	FRC1585	H13225	74	75	INT	0.61	0
_	FRC1585	H13226	75	76	INT	0.29	0
2	FRC1585	H13227	76	77	INT	0.1	0
	FRC1585	H13228	77	78	INT	0.07	0
	FRC1585	H13229	78	79	INT	0.18	0
	PGRC0137	L27589	48	49	INT	0.09	
	PGRC0137	L27590	49	50	INT	0.05	
	PGRC0137	L27591	50	51	INT	0.07	
	PGRC0137	L27592	51	52	INT	0.1	
	PGRC0137	L27593	52	53	INT	5.83	4.31
1	PGRC0137	L27594	53	54	INT	0.73	0.45
5	PGRC0137	L27595	54	55	INT	9.23	8.14
P	PGRC0137	L27596	55	56	INT	1.59	1.2
/ [PGRC0137	L27597	56	57	INT	1.74	1.63
	PGRC0137	L27598	57	58	INT	0.74	0.67
	PGRC0137	L27599	58	59	INT	0.54	0.49
	PGRC0137	L27600	59	60	INT	0.73	0.61
	PGRC0137	L27601	60	61	INT	0.25	
	PGRC0137	L27602	61	62	INT	0.13	
$\left \right $	PGRC0137	L27603	62	63	INT	0.15	
9	PGRC0137	L27604	63	64	INT	0.09	
	PGRC0138	L27740	79	80	INT	0.01	
	PGRC0138	L27741	80	81	INT	0.02	
	PGRC0138	L27742	81	82	INT	0.45	0.41
_	PGRC0138	L27743	82	83	INT	0.07	0.09
A	PGRC0138	L27744	83	84	INT	1.1	0.72
1	PGRC0138	L27745	84	85	INT	3.4	3.65
	PGRC0138	L27746	85	86	INT	0.26	0.28
77	PGRC0138	L27747	86	87	INT	0.68	0.58
	PGRC0138	L27748	87	88	INT	0.89	0.84
	PGRC0138	L27749	88	89	INT	0.59	0.52
	PGRC0138	L27750	89	90	INT	1.51	1.51
_	PGRC0138	L27751	90	91	INT	0.38	0.35
	PGRC0138	L27752	91	92	INT	1	1.11
	PGRC0138	L27753	92	93	INT	1.04	0.08
	PGRC0138	L27754	93	94	INT	0.61	0.59
	PGRC0138	L27755	94	95	INT	0.87	0.88
	PGRC0138	L27756	95	96	INT	0.4	0.4
	PGRC0138	L27757	96	97	INT	0.15	
	PGRC0138	L27758	97	98	INT	0.19	
	PGRC0138	L27759	98	99	INT	0.03	
	PGRC0139	L27868	97	98	INT	0.15	
	PGRC0139	L27869	98	99	INT	0.17	
	PGRC0139	L27870	99	100	INT	0.21	
	PGRC0139	L27871	100	101	INT	0.07	
	PGRC0139	L27872	101	102	INT	9.32	10.8
	PGRC0139	L27873	102	103	INT	0.14	0.96
	PGRC0139	L27874	103	104	INT	0.04	
	PGRC0139	L27875	104	105	INT	0.08	

	Hole ID	Sample	From	То	Samp	Au	Au1
					Туре		
	PGRC0139	L27876	105	106	INT	0.05	
1	PGRC0141	L29803	102	103	INT	0.01	
	PGRC0141	L29804	103	104	INT	0.02	
	PGRC0141	L29805	104	105	INT	0.04	
	PGRC0141	L29806	105	106	INT	0.31	0.27
	PGRC0141	L29807	106	107	INT	0.82	0.78
	PGRC0141	L29808	107	108	INT	0.73	0.77
	PGRC0141	L29809	108	109	INT	1.18	1.31
	PGRC0141	L29810	109	110	INT	1.48	1.61
	PGRC0141	L29811	110	111	INT	0.98	0.98
1	PGRC0141	L29812	111	112	INT	0.9	0.87
4	PGRC0141	L29813	112	113	INT	0.62	0.68
7	PGRC0141	L29814	113	114	INT	1.77	1.98
/ [PGRC0141	L29815	114	115	INT	2.45	2.85
	PGRC0141	L29816	115	116	INT	2.02	2.04
	PGRC0141	L29817	116	117	INT	2.51	2.77
	PGRC0141	L29818	117	118	INT	2.25	2.34
	PGRC0141	L29819	118	119	INT	2.4	2.82
	PGRC0141	L29820	119	120	INT	1.64	1.62
Γ	PGRC0141	L29821	120	121	INT	0.35	0.41
0	PGRC0141	L29822	121	122	INT	0.08	0.13
	PGRC0141	L29823	122	123	INT	0.03	
	PGRC0141	L29824	123	124	INT	0.1	
	PGRC0143	L30071	90	91	INT	-	
)					0.01	
	PGRC0143	L30072	91	92	INT	0.15	
	PGRC0143	L30073	92	93	INT	0.01	
	PGRC0143	L30074	93	94	INT	0.25	0.27
-	PGRC0143	L30075	94	95	INT	0.84	0.74
1	PGRC0143	L30076	95	96	INT	1.06	1.02
L	PGRC0143	L30077	96	97	INT	0.68	0.73
	PGRC0143	L30078	97	98	INT	0.31	0.33
	PGRC0143	L30079	98	99	INT	0.35	0.44
	PGRC0143	L30080	99	100	INT	3.84	3.99
	PGRC0143	L30081	100	101	INT	2.53	2.42
	PGRC0143	L30082	101	102	INT	4.63	4.29
	PGRC0143	L30083	102	103	INT	0.78	0.77
	PGRC0143	L30084	103	104	INT	0.82	0.89
	PGRC0143	L30085	104	105	INT	0.86	0.89
	PGRC0143	130086	105	106	INT	0.8	0.78
	PGRC0143	L30087	106	107	INT	0.38	0.29
	PGRC0143	130088	107	108	INT	0.12	0.10
	PGRC0143	L30089	108	109	INT	0.05	
	PGRC0143	130090	109	110	INT	0.02	
	PGRC0106	122444	73	74	INT	0.49	0.49
	PGRC0106	122445	74	75	INT	0.18	5.75
	PGRC0106	122446	75	76	INT	0.18	
	PGRC0106	122447	76	77	INT	0.13	0 25
	PGRC0106	122448	77	78	INT	1.06	1.13
	. 000100		,,	,0		1.00	±.±5

	Hole ID	Sample	From	То	Samp	Au	Au1
					Туре		
	PGRC0106	L22449	78	79	INT	0.56	0.57
	PGRC0106	L22450	79	80	INT	4.69	4.12
	PGRC0106	L22451	80	81	INT	2.33	2.2
	PGRC0106	L22452	81	82	INT	3.03	2.83
	PGRC0106	L22453	82	83	INT	1.15	1.2
	PGRC0106	L22454	83	84	INT	1.38	1.49
	PGRC0106	L22455	84	85	INT	1.99	1.95
	PGRC0106	L22456	85	86	INT	1.38	1.17
	PGRC0106	L22457	86	87	INT	0.55	0.6
77	PGRC0106	L22458	87	88	INT	0.68	0.77
	PGRC0106	L22459	88	89	INT	0.6	0.7
	PGRC0106	L22460	89	90	INT	1.01	0.98
ſſ	PGRC0106	L22461	90	91	INT	1.48	1.6
7	PGRC0106	L22462	91	92	INT	1.47	1.5
	PGRC0106	L22463	92	93	INT	0.6	0.61
	PGRC0106	L22464	93	94	INT	0.08	0.21
	PGRC0106	L22465	94	95	INT	0.17	
	PGRC0106	L22466	95	96	INT	0.18	
	PGRC0106	L22467	96	97	INT	0.2	
$\left[\right]$	PGRC0188	L39981	50	51	INT	0.01	
0	PGRC0188	L39982	51	52	INT	0.1	
	PGRC0188	L39983	52	53	INT	0.02	
	PGRC0188	L39984	53	54	INT	0.02	
	PGRC0188	L39985	54	55	INT	7.64	5.85
_	PGRC0188	L39986	55	56	INT	0.11	
6	PGRC0188	L39987	56	57	INT	0.01	
Ί,	PGRC0188	L39988	57	58	INT	0.2	
	PGRC0188	L39989	58	59	INT	1.34	0.96
- 1	PGRC0188	L39990	59	60	INT	0.21	
	PGRC0188	L39991	60	61	INT	0.02	
	PGRC0188	L39992	61	62	INT	0.01	
	PGRC0188	L39993	62	63	INT	0.01	
_	FRC9606	L37128	47	48	INT	0.27	0.28
	FRC9606	L37129	48	49	INT	0.16	0.21
	FRC9606	L37130	49	50	INT	0.14	
	FRC9606	L37131	50	51	INT	0.2	
	FRC9606	L37132	51	52	INT	1.31	1.22
_	FRC9606	L37133	52	53	INT	1.6	1.39
	FRC9606	L37134	53	54	INT	0.67	0.68
	FRC9606	L37135	54	55	INT	0.06	
	FRC9606	L37136	55	56	INT	2.73	2.54
	FRC9606	L37137	56	57	INT	3.94	3.2
	FRC9606	L37138	57	58	INT	1.89	1.73
	FRC9606	L37139	58	59	INT	0.37	0.43
	FRC9606	L37140	59	60	INT	0.27	0.26
	FRC9606	L37141	60	61	INT	0.3	0.32
	FRC9606	L37142	61	62	INT	0.16	

