ASX Announcement

New Regional Discovery - High Grade Copper, Gold and Silver Intersected at Chapman Prospect Chapman the histor Chapman Prospect located ~ 1km Southeast of Carlow Project and ~250m from the historic Good Luck workings thought to be a structural repeat of the Carlow host-sequence. Two wide-spaced RC holes, GLC007 and GLC008 targeting VTEM anomalies were drilled at the Chapman Prospect to the Southeast of Good Luck. Hole GLC007 was successful and intersected; 10m @ 3.40% Cu, 1.75g/t Au and 24.65g/t Ag from 116m, including; 5m @ 6.23% Cu, 3.01g/t Au, 45.32g/t Ag from 117.00m 3m @ 1.73% Cu, 1.04g/t Au, 12.67g/t Ag from 138m Follow-up Ultrafine soil sampling defines regional structures responsible for hosting mineralisation and appears coincident with a regional magnetic trend.

DHEM survey completed recently with modelling results pending and drilling planned for early in the New Year.

Figure 1: Anhedral Pyrite/Pyrrhotite/Chalcopyrite in RC drill chips at 121m, GLC007

ARTEMIS RESOURCES ASX: ARV FRA: ATY US: ARTTF www.artemisresources.com.au

Artemis Resources Limited ("Artemis" or "the Company") (ASX:ARV, Frankfurt: ATY, US OTCQB: ARTTF) is pleased to provide an update on assay results from the recent RC drilling programme targeting the Chapman Prospect located ~1km Southeast from its 100%-owned Carlow Gold and Copper Project in the West Pilbara region of Western Australia, Figure 2.

Alastair Clayton, Executive Director commented: "To hit thick, shallow, high-grade Copper-Gold-Silver mineralisation in one of two "wildcat" holes at Chapman, to the Southeast of old workings at Good Luck, is highly encouraging. We have long suspected that structural repeats of the Carlow host sequence were possible and even likely. Whilst still early days, these drill results combined with ultrafine geochemistry and geophysics add significant weight to our team's belief in just that.

"As is often the case many North American and European mineral fields, fresh rock in the Carlow region is so near surface that it is possible to be very close to significant mineralisation without any obvious geochemical signature. As evidenced by the rapidly growing Cross Cut and Western Zones up at the Carlow Project, once located, these systems have the potential to grow rapidly through systematic, shallow drilling.

"We look forward to getting back out in the New Year to further explore this ~1km long magnetic trend."

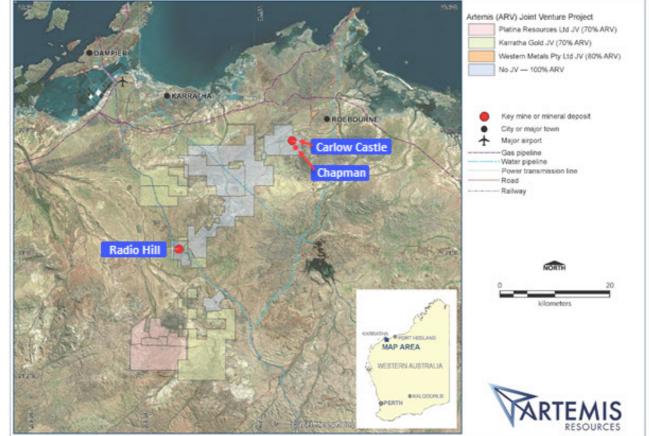


Figure 2: Regional map showing the location of the Chapman Prospect within the E47/1797 tenement which also hosts the Carlow Castle Au-Cu-Co project.

Chapman Zone

ARTEMIS

Chapman lies ~1km southeast of Carlow Castle, Figure 2 and 3. Drilling at Chapman was completed as part of a circa 14,000 metre RC program, which was completed in September 2021. At Chapman, a total of 1,836 samples from 8 holes were sent for analysis. The location of these holes are shown in Figure 3.

These holes targeted a series of Versatile Time Domain Electromagnetic (VTEM) plate anomalies, with all plates dipping shallowly to the NW with some holes orientated to drill beneath old workings that seem to indicate some structure that trended to the ENE, based on the orientation of the shafts and trenches. A majority of holes intersected sulphides of various percentages that coincided with the VTEM anomalies, with the most spectacular interval occurring in hole GLC007 (as shown in Figure 3).

GLC007 was targeting a VTEM plate (Figure 5) that was isolated and seemed 'off-trend'. Significant sulphides (up to 15%) were intersected, comprising predominately of pyrite and pyrrhotite.

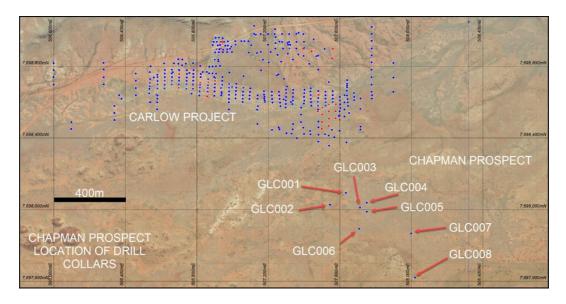


Figure 3: Location of Chapman drill collars in relation to Carlow Resource envelope. Note that Hole GLC007 is a 'wildcat' hole and is located some distance from the cluster of holes to the northwest. Blue dotes denote RC, red dote denote diamond.

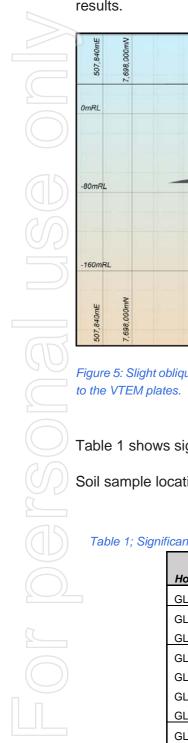



Figure 4: Image showing the first pass UFF soil sampling for Cu values, which are highlighting a NW trend. Note that the significant Cu values occur within the two inferred bounding structures, also trending to the NW. Hole GLC007 is highlighted with its significant result, using a 0.3% Cu cut off. Image is mag 2VD with draped satellite image.

In addition to the drilling, 52 Ultrafine Fraction (UFF) soils were taken on a 200 x 50m grid to assist in identifying the structures that may host mineralisation, Figure 4. Results are still pending for the infill soil sampling program, completed in November.

In Figure 4, it can be seen that the higher Cu values in the UFF soils fall within an interpreted structural corridor that trends to the northwest. Further work is planned in 2022 to follow up on these great results.

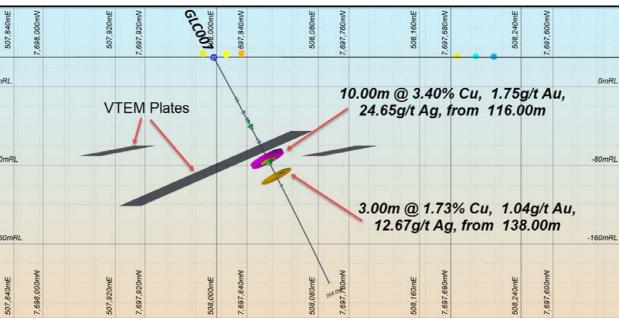


Figure 5: Slight oblique section along the drill trace of GLC007 showing the location of the high-grade intersections in relation to the VTEM plates.

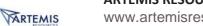
Table 1 shows significant intersections, and Table 2 provides the hole collar statistics for Chapman.

Soil sample locations are in Appendix A and assays located in Appendix B at the end of this report.

Table 1; Significant intersections for holes drilled in the Chapman Prospect. Values are based on >0.3% Cu cut off	Table 1;	Significant intersections	for holes drilled in the	Chapman Prospect.	Values are based on >0.3% Cu o	cut off
--	----------	---------------------------	--------------------------	-------------------	--------------------------------	---------

HoleID	From (m)	To (m)	DH Width (m)	Au (g/t)	Cu (%)	Ag (g/t)
GLC001	144	146	2	0.02	0.38	1.95
GLC002	58	59	1	0.01	0.34	2.50
GLC002	69	70	1	0.01	0.33	1.60
GLC003	105	106	1	0.01	0.39	1.90
GLC003	110	111	1	0.01	0.31	1.80
GLC003	126	127	1	0.03	0.37	1.80
GLC003	129	131	2	0.02	0.56	2.90
GLC004	107	108	1	0.01	0.34	1.90
GLC004	112	113	1	0.02	0.40	1.60
GLC004	116	117	1	0.03	0.37	1.80
GLC004	118	120	2	0.05	0.34	1.55
GLC004	121	123	2	0.04	0.47	2.35
GLC004	125	126	1	0.02	0.81	3.60
GLC005	81	84	3	0.01	0.65	3.17
GLC005	92	94	2	0.02	0.36	1.70

ARTEMIS RESOURCES ASX:ARV FRA:ATY US:ARTTF



HoleID		From (m)	To (m)	DH Width (m)	Au (g/t)	Cu (%)	Ag (g/t)
GLC005		101	104	3	0.02	0.69	3.80
GLC005	Including	102	103	1	0.04	1.08	6.10
GLC006		13	14	1	0.01	0.49	2.10
GLC006		17	20	3	0.01	0.50	2.23
GLC006		25	26	1	0.09	0.41	1.90
GLC006		53	54	1	0.18	0.32	0.80
GLC006		56	60	4	0.28	0.56	2.33
GLC006	Including	58	59	1	0.85	1.04	4.80
GLC006		123	125	2	0.01	0.46	2.65
GLC006		126	129	3	0.02	0.60	3.43
GLC006		132	133	1	0.03	0.38	2.60
GLC006		134	135	1	0.01	0.49	3.30
GLC006		144	145	1	0.01	0.47	2.50
GLC006		148	151	3	0.02	0.45	2.33
GLC006		152	153	1	0.01	0.35	2.10
GLC006		155	156	1	0.05	0.45	2.80
GLC007		48	49	1	0.01	0.31	1.80
GLC007		51	52	1	0.01	0.32	1.60
GLC007		64	66	2	0.07	0.36	1.70
GLC007		72	73	1	0.01	0.34	1.90
GLC007		74	77	3	0.02	0.32	1.67
GLC007		80	81	1	0.06	0.51	2.40
GLC007		82	83	1	0.02	0.37	1.70
GLC007		99	100	1	0.02	0.38	1.50
GLC007		116	126	10	1.75	3.41	24.65
GLC007	Including	117	122	5	3.01	6.23	45.32
GLC007		138	141	3	1.04	1.73	12.67
GLC007	Including	139	141	2	1.28	2.28	16.65
GLC007		150	151	1	0.17	0.33	1.80
GLC008		39	40	1	0.10	0.38	4.20

Table 2: Hole collar Statistics

HoleID	Туре	East MGA	North MGA	RLMGA	Dip	Azimuth MGA	Total Depth
GLC001	RC	507634	7698094	32.41	-59.8	136.32	264
GLC002	RC	507545	7698028	33.44	-59.97	135.99	264
GLC003	RC	507712	7698012	31.74	-59.42	135.51	228
GLC004	RC	507750	7698039	31.56	-59.88	181.25	252
GLC005	RC	507751	7697989	31.58	-59.61	181.22	162
GLC006	RC	507707	7697893	31.53	-59.57	2.45	216
GLC007	RC	507998	7697867	30.11	-60.31	133.24	264
GLC008	RC	508020	7697621	29.6	-59.1	1.18	186

Competent Persons Statement

The information in this announcement that relates to Exploration Results and Exploration Targets is based on information compiled or reviewed by Mr. Steve Boda, who is a Member of the Australasian Institute Geoscientists. Mr. Boda is an employee of Artemis Resources Limited. Mr. Boda has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Boda consents to the inclusion in the announcement of the matters based on his information in the form and context in which it appears.

About Artemis Resources

Artemis Resources (ASX: ARV; FRA: ATY; US: ARTTF) is a Perth-based exploration and development company, led by an experienced team that has a singular focus on delivering shareholder value from its Pilbara gold projects – the Greater Carlow Gold Project in the West Pilbara and the Paterson Central exploration project in the East Pilbara.

For more information, please visit www.artemisresources.com.au

This announcement was approved for release by the Board.

For further information contact:

Alastair Clayton

Executive Director

alastair.clayton@artemisresources.com.au

Appendix A Soil Sample Locations

	-
	Ł
	Ł
	١.
	1
	L
	Ł
	١.
	L
	1
	L
	L
	1
	1
	L
	1
	Ł
	ł
	L
	1
	1
	Ł
	1
	L
	L
	L
	1
	L
	Ł
	İ.
	L
	L
	1
	L
	L
	1
	1
	1
	l
	L
	L
	L
	L
	L
	L
	L
	L
	L
μ	Ł
	i.
	L
	L
	1
	L

[Site							Depth	Regolith	
	Date	Date	ID	Locality	Easting	Northing	RL	Туре	Std/Dup Type	(m)	Туре	Lith
ſ	16-Oct-21	AF0057	CC40	Chapman	507400.3	7698195.5	35.9	UFF		0.2	Eluvium	Gabbro
	16-Oct-21	AF0058	CC41	Chapman	507401.7	7698145.0	36.7	UFF		0.2	Eluvium	Gabbro
	16-Oct-21	AF0059	CC42	Chapman	507402.0	7698098.5	35.8	UFF		0.15	Colluvium	Gabbro
	16-Oct-21	AF0060	CC43	Chapman	507407.0	7698046.5	35.5	UFF		0.3	Colluvium	
	16-Oct-21	AF0061	CC44	Chapman	507403.4	7697999.0	34.9	UFF		0.15	Colluvium	
	16-Oct-21	AF0062	CC45	Chapman	507600.0	7697897.5	34.6	UFF		0.2	Alluvium	
	16-Oct-21	AF0063	CC46	Chapman	507599.7	7697952.8	35.3	UFF		0.2	Eluvium	Gabbro
	16-Oct-21	AF0064	CC46	Chapman	507599.7	7697952.8	35.3	DUP	DUP-AF0063			
	16-Oct-21	AF0065	CC47	Chapman	507601.0	7698000.9	33.8	UFF		0.3	Alluvium	
	16-Oct-21	AF0066	CC47	Chapman	507601.0	7698000.9	33.8	DUP	DUP-AF0065			
_	16-Oct-21	AF0067	CC48	Chapman	507599.9	7698050.2	34.8	UFF		0.2	Alluvium	
Л	16-Oct-21	AF0068	CC49	Chapman	507600.1	7698101.0	34.6	UFF		0.25	Alluvium	
	16-Oct-21	AF0069	CC50	Chapman	507600.5	7698149.9	36.3	UFF		0.2	Alluvium	
	16-Oct-21	AF0070	CC51	Chapman	507600.7	7698199.6	36.6	UFF		0.2	Alluvium	
	16-Oct-21	AF0071	CC66	Chapman	507799.9	7698200.8	36.2	UFF		0.25	Colluvium	Gabbro
\mathbf{i}	16-Oct-21	AF0071	CC67	Chapman	507800.4	7698149.5	34.0	UFF		0.23	Alluvium	Gabbio
)I	16-Oct-21	AF0072	CC68	Chapman	507800.4 507803.1	7698097.0	34.5	UFF		0.25	Alluvium	
/	16-Oct-21	AF0073	CC69	Chapman	507803.1	7698047.0	34.5	UFF		0.23	Alluvium	
	16-Oct-21	AF0074	CC70	Chapman	507798.9	7698001.7	33.0	UFF		0.25	Alluvium	
Л	16-Oct-21 16-Oct-21	AF0075 AF0076	CC70	•	507798.9	7698001.7	33.0	DUP	DUP-AF0075	0.25	Alluviulli	
/			CC70	Chapman Chapman	507800.7		32.2	UFF	DUP-AF0075	0.3	Alluvium	
3	16-Oct-21	AF0077		•		7697950.6					Alluvium	
Л	16-Oct-21	AF0078	CC72	Chapman	507797.1	7697904.0	33.8	UFF		0.25		
_	16-Oct-21	AF0079	CC73	Chapman	507799.6	7697843.7	33.6 25.5	UFF		0.25	Alluvium	
	16-Oct-21	AF0080	CC74	Chapman	507801.4	7697799.2	35.5	UFF		0.3	Colluvium	
_	17-Oct-21	AF0081	CC75	Chapman	508001.2	7698203.4	35.7	UFF		0.3	Alluvium	
	17-Oct-21	AF0082	CC76	Chapman	507995.7	7698146.1	35.2	UFF		0.3	Alluvium	
	17-Oct-21	AF0083	CC77	Chapman	508000.6	7698099.7	34.3	UFF		0.3	Alluvium	
J	17-Oct-21	AF0084	CC78	Chapman	508001.5	7698042.8	35.0	UFF		0.25	Alluvium	
\leq	17-Oct-21	AF0085	CC79	Chapman	507994.4	7698001.4	34.0	UFF	DUD 450005	0.2	Alluvium	
_	17-Oct-21	AF0086	CC79	Chapman	507994.4	7698001.4	34.0	DUP	DUP-AF0085			
_	17-Oct-21	AF0087	CC80	Chapman	508001.1	7697945.3	33.1	UFF		0.3	Alluvium	
	17-Oct-21	AF0088	CC81	Chapman	507999.6	7697901.4	34.0	UFF		0.25	Alluvium	
	17-Oct-21	AF0089	CC82	Chapman	508004.6	7697848.8	33.3	UFF		0.2	Alluvium	
기	17-Oct-21	AF0090	CC83	Chapman	508000.4	7697795.8	34.1	UFF		0.25	Alluvium	
\leq	17-Oct-21	AF0091	CC83	Chapman	508000.4	7697795.8	34.1	DUP	DUP-AF0090			
	17-Oct-21	AF0092	CC84	Chapman	508001.0	7697749.1	33.1	UFF		0.2	Alluvium	
기	17-Oct-21	AF0093	CC85	Chapman	507997.7	7697700.0	33.0	UFF		0.2	Alluvium	
	17-Oct-21	AF0094	CC86	Chapman	507985.3	7697635.8	34.9	UFF		0.15	Alluvium	
	17-Oct-21	AF0095	CC87	Chapman	507998.4	7697603.3	33.2	UFF		0.25	Colluvium	
	17-Oct-21	AF0096	CC88	Chapman	508000.0	7697550.3	31.9	UFF		0.2	Alluvium	
)	17-Oct-21	AF0097	CC89	Chapman	507999.2	7697499.1	33.1	UFF		0.25	Alluvium	
	17-Oct-21	AF0098	CC90	Chapman	508200.0	7697598.7	30.8	UFF		0.3	Alluvium	
	17-Oct-21	AF0099	CC91	Chapman	508200.3	7697650.0	31.1	UFF		0.3	Alluvium	
)	17-Oct-21	AF0100	CC92	Chapman	508200.1	7697702.7	31.3	UFF		0.3	Alluvium	
12	17-Oct-21	AF0101	CC93	Chapman	508200.9	7697752.1	31.3	UFF		0.3	Alluvium	
	17-Oct-21	AF0102	CC94	Chapman	508197.9	7697803.9	31.7	UFF		0.25	Alluvium	
	17-Oct-21	AF0103	CC94	Chapman	508197.9	7697803.9	31.7	DUP	DUP-AF0102			
	17-Oct-21	AF0104	CC95	Chapman	508200.7	7697849.2	29.9	UFF		0.2	Alluvium	
	17-Oct-21	AF0105	CC96	Chapman	508200.6	7697901.3	31.6	UFF		0.3	Alluvium	
\mathbf{i}	17-Oct-21	AF0106	CC97	Chapman	508199.6	7697950.1	30.9	UFF		0.3	Alluvium	
	17-Oct-21	AF0107	CC97	Chapman	508199.6	7697950.1	30.9	DUP	DUP-AF0106			
_	17-Oct-21	AF0108	CC98	Chapman	508201.2	7697998.5	31.9	UFF		0.25	Alluvium	

Appendix B Soil Sample Assays

Sample	Ag		As	Au	Ва	Ве	Bi		Cd	Се	Со	Cr	Cs	Cu		Ga	Ge	Нf	Hg	In		La	Li	Mg
No	ppm	Al pct	ppm	ppb	ppm	ppm	ppm	Ca pct	ppm	ppb	ppm	ppm	ppm	ppm	Fe pct	ppm	ppm	ppm	ppm	ppm	K pct	ppb	 ppm	pct
AF0057	0.057	71600	20.6	10	97.5	1.71	0.358	3450	0.071	18.5	22.6	470	2.5	111	80500	18.4	0.14	0.425	0.043	0.077	2470	11.2	34.6	11100
AF0058	0.05	63500	18.4	7.9	129	0.87	0.165	102000	0.108	25.7	29.8	175	3.22	81.1	37500	12.2	0.09	0.068	0.036	0.045	3080	15.6	19.4	18700
AF0059	0.077	73700	19.1	3.9	109	1.4	0.248	6430	0.107	19.7	31.6	366	2.91	148	64500	16.3	0.12	0.299	0.048	0.068	5330	11	29.2	18900
AF0060	0.119	62900	15.8	6.7	196	1.41	0.205	37000	0.15	35.2	39.3	270	3.6	220	51200	12.8	0.13	0.166	0.031	0.05	5020	17.6	21.1	22300
AF0061	0.067	58800	15.6	9.8	176	1.4	0.231	6430	0.094	29.9	62.8	510	5.1	91	67000	14.7	0.18	0.144	0.057	0.075	5960	13.5	22.4	32300
AF0062	0.194	71000	17.2	7.5	110	1.83	0.331	11400	0.103	36.7	50.7	294	3.22	528	70000	18.6	0.19	0.529	0.018	0.075	4790	17	25.7	24200
AF0063	0.789	73100	23.7	34.5	211	1.4	0.564	5830	0.17	14.8	64.5	327	3.54	3640	75800	16.9	0.13	0.4	0.044	0.082	2940	11.6	22.2	17200
AF0064	0.899	67200	25.1	36.4	209	1.37	0.574	5680	0.175	14.8	67	326	3.42	3760	74700	17.2	0.13	0.37	0.048	0.084	2720	11.8	21	16500
AF0065	0.34	91400	28.3	21.6	147	1.53	0.404	4320	0.094	17.8	42.7	356	3.06	910	83500	20.2	0.19	0.544	0.039	0.083	5510	8.89	43.4	16100
AF0066	0.351	68000	28.5	14.6	126	1.32	0.407	4180	0.092	17	40.7	355	2.58	829	78900	16.8	0.11	0.399	0.041	0.073	4180	9.08	28.7	15100
AF0067	0.133	71000	20.5	8.9	128	1.39	0.249	5810	0.102	20	37	385	2.87	216	63500	16.9	0.15	0.287	0.045	0.066	5660	11.5	27.7	21700
AF0068	0.052	64000	16	5.5	128	1.54	0.298	2100	0.078	29.8	48.6	479	2.59	108	78400	17.4	0.12	0.145	0.037	0.071	4890	9.35	33.9	13000
AF0069	0.057	62900	15.2	2.2	129	1.57	0.276	2810	0.082	25.7	37.3	555	2.11	96.9	94500	17	0.1	0.311	0.046	0.079	4460	7.23	34.5	12400
AF0070	0.061	72800	16	4.9	117	1.51	0.266	2670	0.07	20.8	31.8	508	2.33	86.2	86600	18.5	0.12	0.429	0.042	0.079	3680	6.07	38.6	14500
AF0071	0.063	72300	17.7	10.6	106	1.34	0.302	5350	0.079	15.8	28.2	605	3.01	94.6	86300	16.4	0.09	0.364	0.091	0.078	3710	9.81	27.6	18600
AF0072	0.068	76500	13.8	10.1	105	1.7	0.255	10200	0.047	35.1	34.2	393	3.54	89.1	74000	19.9	0.21	0.607	0.014	0.084	4150	11.5	34.2	24000
AF0073	0.084	70100	13.3	7.5	139	1.69	0.269	9570	0.061	31.6	30.8	350	3.57	82.1	74000	19.2	0.2	0.537	0.018	0.086	4320	14.2	28.6	22200
AF0074	0.077	72800	12.5	4.6	149	1.75	0.29	9930	0.054	31.9	24.2	352	3.73	91.9	78600	17.1	0.17	0.335	0.01	0.077	4350	16.9	28	23400
AF0075	0.074	71600	15.3	4.4	145	1.63	0.267	9510	0.05	29.8	32.6	328	3.5	211	79200	20.3	0.23	0.467	0.008	0.09	4030	15.2	29.4	22100
AF0076	0.096	74100	12.6	5	149	2.06	0.313	9650	0.058	35.6	26.7	327	3.85	176	78000	16	0.18	0.6	0.014	0.078	4280	15.8	31.4	21900
AF0077	0.216	72900	19	17.2	122	1.8	0.314	9800	0.066	38.2	34.8	326	3.64	290	82600	18.9	0.17	0.592	0.018	0.092	4200	15.2	28.9	21200
AF0078	0.141	71000	10.8	2.2	145	1.2	0.26	9590	0.062	28.3	27.4	347	3.21	152	85100	14.8	0.11	0.252	0.012	0.072	4880	13.8	25.8	24000
AF0079	0.92	68800	48.7	24.7	162	1.34	0.551	10300	0.179	17.6	54.1	284	3.08	2340	74600	17.7	0.16	0.447	0.044	0.088	3600	11.2	23.5	18800
AF0080	0.099	78000	19	12.9	131	1.88	0.34	1820	0.069	35.9	43.2	327	2.26	179	103000	22.9	0.17	0.408	0.048	0.111	4260	10.5	40.8	9280
AF0081	0.064	63700	13.2	4.6	132	1.11	0.246	8450	0.067	24.3	24	439	2.57	88.4	71900	13.7	0.07	0.201	0.048	0.063	2520	10.2	24	17900
AF0082	0.064	70500	15.6	7.3	122	1.5	0.248	31400	0.076	27.2	30.9	363	3.39	102	68200	17.8	0.19	0.234	0.02	0.074	5070	12.9	28.2	22200
AF0083	0.093	70200	11.1	21.4	124	1.7	0.275	9970	0.061	27.8	26.2	373	3.52	81.5	76300	17.7	0.17	0.338	0.013	0.079	3890	12.3	26.6	23600
AF0084	0.065	63900	17.2	19.7	130	1.67	0.256	24600	0.057	49	39	326	4.02	90.2	69000	18.5	0.24	0.617	0.01	0.073	4180	17.1	32.4	23400
AF0085	0.136	58500	22.5	28.9	133	1.56	0.237	34400	0.047	46.4	35.4	283	3.33	112	63300	16.2	0.18	0.58	0.015	0.069	2560	16.6	30.1	21500
AF0086	0.143	65600	24.7	39.1	129	1.7	0.262	27100	0.046	48.3	39.6	320	3.64	126	70100	18.1	0.2	0.649	0.017	0.076	2970	16.1	33.9	23500
AF0087	0.037	72600	10.6	12.5	148	2.13	0.341	9090	0.07	40.5	24.4	340	4.69	118	79200	16	0.16	0.542	0.006	0.073	5000	17.8	30	23600
AF0088	0.182	68600	16.6	9.2	107	1.89	0.284	9000	0.06	40.8	34.9	327	4.39	134	74600	19.3	0.21	0.641	0.026	0.082	4400	15.7	31.5	23700
AF0089	0.1	66300	16.7	12.5	138	1.68	0.281	8620	0.076	47.8	34.1	296	3.92	140	71000	18	0.22	0.35	0.018	0.074	8090	17.4	24.8	22500
AF0090	0.223	78900	19.1	31.4	172	1.74	0.321	11500	0.058	38.4	40.2	345	3.86	260	86800	18.9	0.15	0.504	0.017	0.088	3750	13.4	32.1	23900
AF0091	0.239	72600	17.7	43.3	172	1.67	0.326	11000	0.044	38.5	37.1	357	3.7	248	82600	17.3	0.13	0.388	0.017	0.082	3360	13.8	27.9	22800
AF0092	0.136	56100	16.7	19.1	160	1.51	0.344	4390	0.101	32	36.3	388	2.82	155	96100	15.1	0.09	0.288	0.049	0.083	3800	11.2	25.1	14400
AF0093	0.049	58900	18.8	10.9	99.3	1.3	0.323	5520	0.054	24.6	24.2	328	3.68	102	86600	14.3	0.07	0.346	0.051	0.086	3890	10.2	24.2	17200
AF0094	0.262	62000	25.6	14.3	102	1.03	0.267	20700	0.046	38.6	30.4	232	3.31	122	58900	13.2	0.15	0.129	0.043	0.077	4230	11	26.2	20500
AF0095	0.067	47400	16.5	5.2	105	1.2	0.224	7300	0.065	36.1	27.1	212	3.59	58	53000	11.6	0.15	0.146	0.06	0.055	3180	13	18.2	22900
AF0096	0.064	81400	15.7	4.9 4.7	102 79.7	1.61	0.278	3700 8140	0.067	36	52.3 51.4	358 323	4.27 4.02	77.9 69	93900	20.1 18.5	0.21	0.595	0.044	0.092	3530	11.7	37.7	22000
AF0097	0.057	75000	13.8	4./	/9./	1.55	0.246	8140	0.053	41	51.4	323	4.02	69	81800	18.5	0.2	0.644	0.044	0.082	3320	13.8	35.3	21900

ARTEMIS RESOURCES ASX:ARV FRA:ATY US:ARTTF

Sample	Ag		As	Au	Ва	Ве	Bi		Cd	Се	Со	Cr	Cs	Cu		Ga	Ge	Hf	Hg	In		La	Li	Mg	
No	ppm	Al pct	ppm	ppb	ppm	ppm	ppm	Ca pct	ppm	ppb	ppm	ppm	ppm	ppm	Fe pct	ppm	ppm	ppm	ppm	ppm	K pct	ppb	ppm	pct	
AF0098	0.061	81200	14.3	3.3	118	1.64	0.282	5260	0.059	32	41.1	374	5.27	76.3	85200	20	0.18	0.564	0.034		4920	11.3	40.9	1750	00
AF0099	0.074	73400	12.4	4.4	102	1.51	0.272	20000	0.059	38.7	38.8	309	4.05	86.4	75900	17.1	0.14	0.35	0.019		4710	14.3	28.5	2380	
AF0100	0.126	73300	13.9	5.3	139	1.7	0.295	10400	0.081	33.7	33.5	299	4.14	212	76400	19.6	0.21	0.485	0.014	_	4150	15.3	30	2140	
AF0101	0.164	74300	13.8	6.7	168	1.85	0.301	10100	0.067	42.9	31.4	315	4.4	115	77300	20.2	0.25	0.565	0.016		5570	-		-	
AF0102	0.141	65000	14.4	9.6	138	1.19	0.231	26400	0.051	41.8	38	320	3.17	117	72800	17.8	0.17	0.466	0.017		4090	16.4	29	2230	
AF0103	0.138	68800	14	9.2	137	1.77	0.256	22400	0.06	47.1	42.6	294	3.84	123	71700	18.2	0.22	0.623	0.02	0.08	4660	16.2	30.2	2310	
AF0104	0.112	77100	15.1	12.7	174	1.91	0.273	14000	0.051	45.5	39.4	301	4.18	128	77800	19.8	0.22	0.337	0.017	0.084	6290	15.1	33.6	2560	
AF0105	0.092	66500	12.1	8.7	158	1.8	0.254	8530	0.047	34.7	32.4	307	3.48	104	70700	17.8	0.22	0.356	0.011	0.074	4260	13.6	28.4	2400	
AF0106	0.098	71800	12.8	7.8	158	1.76	0.246	9230	0.05	34.6	32.1	341	3.78	92	73100	18.6	0.25	0.45	0.009		4970	14.6	-	2420	
AF0107	0.104	75700	12	5.5	167	1.76	0.27	9670	0.046	36.7	29	358	4	83.9	77100	17.6	0.25	0.336	0.01	0.078	5310	16	31.6	2530	
AF0108	0.092	67100	11.6	24.9	104	2.22	0.292	15200	0.06	49.2	26.3	338	4.34	64.4	69000	11.7	0.16	0.704	0.031	0.05	3890	15.4	30.5	2490	
710100	0.052	07100	11.0	24.5	104	2.22	0.252	15200	0.00	45.2	20.5	550	4.54	04.4	05000	11.7	0.10	0.704	0.051	0.05	3850	15.4	50.5	2450	50
					~		~			~	-	-	~	-	-	-									
Sample No	Mn	Mo	Nb	Ni	Pb	Pt nnh	Rb	Re	S pct	Sb	Sc	Se	Sn	Sr			Th			-				Zn ppm	Zr
AF0057	<i>pct</i> 434	<i>ppm</i> 0.55	<i>ppm</i> 1.08	<i>ррт</i> 153	ррт 17.2	ppb 4	<i>ppm</i> 42.3	<i>ppm</i> 0.0003	5 pci 52	<i>ppm</i> 1.21	26.4	<i>ррт</i> 1.27	<i>ррт</i> 1.81	<i>ррт</i> 24.3	••	ppm 0.057		· · ·	0.204	1.03	-	ppm 0.363	ррт 18.2	45.5	<i>ppm</i> 22.4
AF0057	319	0.33	0.93	113	11.5	4	42.5 34.7	0.0003	154	0.498	13.5	1.27	0.99	121		0.037	4.52		0.16	1.03	-	0.235	10.2	40.1	4.6
AF0059	532	0.23	0.93	168	11.5	4	54.1	0.0001	98	0.458	23.9	1.14	1.44	30.4		0.034	6.95			0.763		0.235	14.2	61.9	15.1
AF0060	606	0.35	1.03	200	15.3	3	50	0.0001	101	0.64	15.4	0.9	1.44	48		0.053	6.69			0.812		0.199	20	55.6	9.6
AF0061	711	0.36	1.22	407	14.4	5	76.7	0.0002	129	0.76	16.1	1.07	1.50	41.1		0.055				0.797		0.253	17.9	65	9
AF0062	630	0.34	0.89	338	16.1	3	63.8	0.0002	76	0.766	18.9	1.28	1.61	113		0.094			0.248	1.25		0.185	23.3	71.8	23.7
AF0063	389	0.47	0.81	960	32.1	4	48	0.0002	73	0.798	24.3	1.33	1.74	31.5		0.184	8.99		0.344	1.05		0.202	17	68.6	17.7
AF0064	390	0.48	0.82	999	31.9	4	45.8	0.0003	81	0.802	24	1.44	1.72	30.4		0.202	9.03		0.323	1.06	130	0.2	18.2	69.5	17
AF0065	465	0.43	0.76	385	15.8	4	63.4	0.0002	68	0.945	28.6	1.18	1.76	38.1	0.005	0.103	7.33	1190 ().272	0.911	149	0.165	13.8	58.4	22.4
AF0066	451	0.39	0.8	341	14.4	4	50.7	0.0002	55	0.943	26.8	1.1	1.55	34.9	0.004	0.096	6.69	796 (0.216	0.84	144	0.229	12.7	52.9	18.3
AF0067	534	0.35	0.88	212	14	4	60.2	0.0001	73	0.711	21.5	0.99	1.41	22.7	0.004	0.056	6.61	940 (0.216	0.719	120	0.207	14.8	71.8	15
AF0068	929	0.78	1.05	203	17.5	4	58.1	0.0002	76	0.848	27.5	1.24	1.57	36.6	0.006	0.057	7.4	952 (0.224	1.15	153	0.26	14.9	53.3	9.6
AF0069	890	0.65	0.87	179	15.3	3	41.4	0.0002	62	0.806	30.5	0.95	1.55	30.8	0.005	0.054	7.54	1070 0	0.178	1.15	169	0.195	10.4	57.6	14.7
AF0070	696	0.5	0.88	202	14.6	4	39.3	0.0001	55	0.807	27.2	0.84	1.48	35.5	0.005	0.047	6.6	1110 (0.189	0.862	156	0.239	7.23	60.5	18.8
AF0071	469	0.41	0.91	330	14.6	6	41.9	0.0002	109	0.852	26.9	0.96	1.52	24.4	0.005	0.055	7.37	636 (0.205	1.03	142	0.182	14	55.5	15.2
AF0072	440	0.33	1.09	247	14.6	4	54.1	0.0002	79	0.787	21.7	0.97	1.69	125	0.005	0.048	8.68	1300 (0.259	1.48	127	0.217	13.1	71.9	22.6
AF0073	583	0.4	1	184	15.1	4	54.7	0.0003	72	0.715	21.5	1.02	1.65	101	0.007	0.055	8.68	1120 (0.237	1.45	127	0.266	16.4	71	21.4
AF0074	534	0.38	0.92	145	16.5	3	52	0.0002	78	0.688	21.2	0.96	1.8	118	0.008	0.062		1250 (0.245	1.72	136	0.163	19	65.8	14.3
AF0075	578	0.41	0.96	204	14.3	3	60	0.0002	68	0.676	22.3	1.09	1.62	104		0.064	-		0.226	1.48	131	0.263	16	71.8	18.9
AF0076	542	0.34	1.12	169	19.3	3	53.8	0.0002	73	0.809	22.5	0.91	2	105	0.006	0.075		1320 (0.264	1.99	130	0.24	19.3	59.7	24.6
AF0077	550	0.41	1.09	209	17.7	3	50.2	0.0002	76	0.816	23	1.05	1.83	117		0.082			0.254	1.61		0.229	17.6	68.2	23.2
AF0078	648	0.29	0.47	160	13.2	2	46	0.0001	79	0.506	22.1	0.81	1.4	103		0.058			0.202	1.04	132	0.09	14.6	59.8	10.1
AF0079	399	0.4	0.92	613	18.5	4	40.5	0.0002	77	0.957	21.4	1.06	1.62	46.7		0.174	7.27	1010 (0.226	0.933		0.223	12.9	77.7	17.7
AF0080	838	0.72	1.41	204	19.1	3	41.6	0.0001	71	0.804	28.6	1.32	2.13	23.4		0.077			0.213	1.26		0.307	16.3	57.3	21.9
AF0081	530	0.3	0.49	170	11.9	3	30.6	0.0002	74	0.67	22.8	0.77	1.21	34.4	0.003	0.05	5.89		0.176	0.78		0.151	13.3	53.9	7.7
AF0082	504	0.33	1.22	243	13.9	3	44.8	0.0002	86	0.754	18.5	0.96	1.52	49.8		0.047	-	1160		0.883	120	0.22	19.3	65.4	12.5
AF0083	407	0.52	1.19	208	15.1	5	53.8	0.0002	85	0.746	19.6	0.92	1.72	77.7		0.056	-	1150	0.23	1.25		0.226	16.3	69.1	15.1
AF0084	756	0.77	1.22	201	15.5	4	51.9	0.0003	189	0.694	16.6	1.34	1.63	133	0.007	0.052	9.21	1450 (0.281	3	133	0.279	18.8	69.5	22.9

ARTEMIS RESOURCES ASX:ARV FRA:ATY US:ARTTF

S	ample	Mn	Мо	Nb	Ni	Pb	Pt	Rb	Re		Sb	Sc	Se	Sn	Sr	Та	Те	Th		τI	U	V	W	Y	Zn	Zr
Ν	0	pct	ррт	ррт	ррт	ррт	ppb	ррт	ррт	S pct	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	Ti pct	ррт	ррт	ррт	ррт	ррт	ррт	ррт
A	F0085	627	0.63	1.23	166	15.9	4	33.5	0.0003	194	0.631	15.8	1.22	1.5	169	0.006	0.054	8.96	1290	0.233	2.53	152	0.316	16.6	57.3	21
A	F0086	686	0.66	1.25	186	17.1	5	37.9	0.0002	184	0.681	17.5	1.24	1.68	138	0.006	0.058	9.66	1420	0.272	2.68	170	0.284	18	65.4	24
A	F0087	558	0.32	0.97	159	21.6	3	53.9	0.0003	52	0.755	20.6	0.88	2.1	116	0.008	0.076	11.6	1430	0.326	1.98	133	0.204	20.5	58.1	22.9
A	F0088	580	0.45	1.12	181	16.6	4	52.3	0.0002	77	0.712	19.5	1.05	1.83	120	0.008	0.06	9.35	1410	0.296	1.81	139	0.259	16.9	68	24.9
A	F0089	650	0.43	1.09	176	16.2	4	69.7	0.0002	64	0.626	17.8	1.01	1.63	62	0.008	0.058	8.14	1360	0.282	1.13	133	0.277	19.5	93.8	16.2
A	F0090	677	0.38	1.01	216	19	4	37.8	0.0002	63	0.73	23.4	0.88	1.84	125	0.006	0.081	9.15	1400	0.262	1.73	163	0.269	14.2	60.8	21.5
A	F0091	650	0.36	0.9	204	18.7	4	34.8	0.0001	72	0.688	23.2	0.82	1.84	122	0.006	0.081	8.99	1190	0.252	1.74	159	0.194	14.9	58	16.8
A	F0092	846	0.54	1.06	212	18.3	3	38	0.0002	107	0.784	24.2	1.02	1.85	40.5	0.005	0.081	7.96	712	0.216	0.924	170	0.237	16.6	70.7	12.8
A	F0093	471	0.38	0.77	170	14.4	2	36.5	0.0002	63	0.694	21.7	0.81	1.68	35.4	0.005	0.068	7.37	850	0.211	0.923	160	0.205	13.8	50.9	14.7
A	F0094	459	0.38	1.08	138	10.8	2	37.3	0.0002	174	0.518	15.5	0.74	1.17	42.2	0.005	0.067	4.83	1060	0.223	0.902	137	0.282	10.6	50.6	7.5
A	F0095	464	0.29	1.1	138	12.9	2	36.1	0.0001	83	0.584	13.7	0.66	1.21	40.6	0.007	0.042	5.39	944	0.217	0.769	112	0.25	12.2	57.2	8.3
A	F0096	870	0.38	1.06	323	15.4	4	46.2	0.0002	53	0.711	26	1.09	1.65	36	0.006	0.063	7.24	1410	0.284	0.889	161	0.315	17.8	66.1	24.1
A	F0097	852	0.42	1.11	274	14	4	40.9	0.0002	91	0.608	23.1	1.14	1.52	84.2	0.005	0.046	7.49	1660	0.259	0.951	148	0.311	19	63.2	24.5
A	F0098	767	0.51	1.28	261	15.2	3	58.1	0.0002	88	0.633	28	1.09	1.77	52.1	0.005	0.058	7.71	1220	0.281	0.844	143	0.355	17.2	68.5	24.1
A	F0099	713	0.33	1.01	197	15	3	48.9	0.0001	111	0.538	20.3	0.9	1.64	101	0.008	0.059	7.6	1310	0.261	0.93	134	0.149	19.5	65.9	16.3
A	F0100	560	0.37	1.09	204	15.6	3	60.2	0.0002	98	0.637	21.1	1	1.77	82.5	0.006	0.066	8.19	1340	0.27	1.19	125	0.298	22.5	72.9	21.8
A	F0101	573	0.47	1.28	184	17.4	4	65.9	0.0003	88	0.709	21	1.08	1.9	93.3	0.007	0.062	9.39	1500	0.312	1.69	135	0.289	21	73.6	23.9
A	F0102	766	0.52	0.85	173	12.2	3	48	0.0002	136	0.508	20	1.16	1.3	143	0.006	0.041	6.86	1410	0.228	1.46	138	0.144	17.3	63.9	17.6
A	F0103	744	0.44	0.76	188	15.9	4	56.3	0.0003	116	0.636	16.7	1.13	1.73	138	0.008	0.062	9.2	1400	0.315	1.9	135	0.185	16.5	66.3	23.6
(+ + + + + + + + + + + + + + + + + + +	F0104	662	0.49	0.94	189	17.9	3	65.6	0.0002	94	0.714	16.5	1.09	1.9	171	0.009	0.074	9.73	1440	0.335	1.83	140	0.195	15.6	66.9	16.5
<u>Y A</u>	F0105	565	0.41	0.71	187	14.9	3	57.6	0.0002	79	0.673	15.3	0.92	1.7	97.6	0.007	0.066	8.7	1150	0.267	1.92	122	0.218	15.9	67.1	15.9
A	F0106	530	0.45	0.83	193	14.3	3	61.9	0.0002	80	0.666	17.2	1.03	1.68	123	0.008	0.061	8.65	1450	0.283	1.92	129	0.21	15.1	68.4	19.5
	F0107	539	0.48	0.76	178	15.2	2	59	0.0002	89	0.688	17.9	1.01	1.79	128	0.008	0.067	9.13	1580	0.302	2.06	137	0.14	17	66.4	15.9
Α	F0108	564	0.25	1.08	146	18.2	5	34.7	0.0003	97	0.872	14.5	0.74	2.01	121	0.008	0.08	10.9	1380	0.329	2.39	142	0.27	16.8	47.6	27.6

SECTION 1 SAMPLING TECHNIQUES AND DATA

(Criteria in this section apply to all succeeding sections.)

Criteria	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where industry standard' work has been done this would be relatively simple (eg reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodilies or mineralisation thypes (eg submarine nodules) may warrant disclosure of detailed information. UFF samples were collected on a 200 x 50m grid locat over the area of interest. A hand dug pit was excavated carefully so no suffa material contaminated the collection point, which is at the bottom of the pit 20 – 30cm below surface, usually whe the regolich profile changes from orange-brown purple/red. Soil was sieved to pass 2mm and a sample of ~250g w recorded on the GPS. Samples were tool location with characteristics of the samples collected. Reverse circulation of any measurement tools or systems used. In cases where industry standard' work has been done this would be relatively simple from which 3 kg was pulverise or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). Reverse Circulation drilling completed by Topdrill. Drilling was completed using a track mounted T685 Schran rig. This can produce 1000psi/2700CFM with an axillary boos which is capable of achieving dry samples at depths of arou 300m.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. Recoveries are recorded on logging sheets along we encounters with water and whether the samples are dry, more or wet. Recoveries are recorded on logging sheets along we encounters with water and whether the samples are dry, more or wet. Drilling recoveries for Reverse Circulation drilling were >80 with some exceptions that maybe caused by loss of returned dry. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.
Logging	Whether core and chip samples RC samples were collected from the static cone splitter as t samples, one bulk sample and one primary (analytic

Criteria		Commentary
Criteria Sub-sampling techniques and sample preparation	 of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sample wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Sample. The bulk samples are one metre splits. These bags are then placed in neat rows of 50 bags each clear of the rig for safety reasons. A field technician mixes the bag by hand before taking is sample using a sieve and sieves the sample to remove fines. The sieved sample is then transferred to a wet sieve in bucket of water, and the sample is sieved further until roc fragments are clearly visible. These rock fragments are then logged by the site geologist taking note of colour, grainsize, rock type, alteration if any mineralisation if any, veining if any, structural information notable and any other relevant information. This information is then written down on pre-printed loggin sheets, using codes to describe the attributes of the geology. A representative sample is transferred to pre-labelled chi trays into the corresponding depth from where the sample was drilled from. The remainder of the sample from the sieve is the transferred into a core tray that has been marked up by depth at metre intervals. An identification sheet noting the hole number and from-th depths that correspond to each tray is then written up an placed above the tray and a photograph is taken of the chips. The hole is logged in its entirety, hence 100% The geological data would be suitable for inclusion in Mineral Resource Estimation. Organic material was removed from the sample as much a possible. The recommended sample size for UltraFine+TM samples wa 200g, providing sufficient clays in soil. By its very nature, th UltraFine+TM analysis method does not represent in sit material, but surfaces of clays in soil. By its very nature, th UltraFine+TM analysis method does not represent in sit material, but surface accumulations of metals mobilised b groundwater. Anomalous results as compared to backgroun would suggest a proximal source and further geologica investigation would be required to confirm the source. <l< td=""></l<>
	•	 approximately 1:20. For RC drilling, field duplicates were taken on a routine basis at approximately 1:20 ratio using the same sampling techniques (i.e. cone splitter) and inserted into the sample run. Primary and duplicates results have been compared. The sample sizes are appropriate, representative and are considered more than adequate to ensure that there are no particle size effects relating to the grain size of the mineralisation.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, 	 The UltraFine+[™] analytical technique was developed by LabWest in conjunction with CSIRO, primarily with the intention of providing an exploration tool where geology was obscured beneath surface cover. Minute particles of metals transported in groundwater from depth accumulate on the surfaces of clay minerals in soils. In the UltraFine+[™] process, clay particles are separated from

ARTEMIS RESOURCES ASX: ARV FRA: ATY US: ARTTF

Criteria	
	 spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system

Commentary

the soil sample and analysed for a suite of metals.

- This robust method has been determined to be effective for gold and base metals exploration. LabWest is NATA accredited and applies suitable standards, blanks and duplicates to their analysis procedures.
- The handheld Garmin Map62 GPS used during sample collection is considered appropriate for locating surface samples, with an accuracy of ~3m.
- control A certified laboratory, ALS Chemex (Perth, Brisbane and Townsville) was used for analysis of drill samples submitted. The laboratory techniques below are for all samples submitted to ALS and are considered appropriate for the style of mineralisation
- The sample preparation followed industry best practice. Fire racy (ie lack of bias) and ullet assay samples were dried, coarse crushing to ~10mm, split to 300g subsample, followed by pulverisation in an LM5 or equivalent pulverising mill to a grind size of 85% passing 75 micron.
 - This fraction was split again down to a 50g charge for fire assay
 - 50-gram Fire Assay (Au-AA26) with ICP finish for Au.
 - All samples were dried, crushed, pulverised and split to produce a sub-smaple of 50g which is digested and refluxed with hydrofluoric, nitric, hydrochloric and perchloric acid (4 acid digest).
 - This digest is considered a total dissolution for most minerals
 - Analytical analysis is performed using ICP-AES Finish (ME-ICP61) for Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, Tl, U, V, W, Zn.
 - Additional Ore Grade ICP-AES Finish (ME-OG62) for Cu reporting out of range.
 - Standards are matrix matched by using previous pulps from drilling programs and homogenised using certified laboratories.
 - Standards were analysed by round robins to determine grade.
 - Standards were routinely inserted into the sample run at 1:20.
 - Laboratory standards and blank samples were inserted at regular intervals and some duplicate samples were taken for QC checks.
- verification of significant Sampling was undertaken by field assistants supervised by experienced geologists from Artemis Resources. Significant pendent or alternative intercepts were checked by senior personnel who confirmed them as prospective for gold mineralisation. use of twinned holes.
 - No twin holes using RC was completed in this program.
 - Electronic data capture on excel spreadsheets which are then uploaded as .csv files and routinely sent to certified database management provider.
 - Routine QC checks performed by Artemis senior personnel and by database management consultant.
 - PDF laboratory certificates are stored on the server and are checked by the Exploration Manager.
- A Garmin GPSMap62 hand-held GPS was used to define the racy and quality of surveys • to locate drill holes (collar location of the initial drill hole collars. Standard practice is for down-hole surveys), the GPS to be left at the site of the collar for a period of 5 ches, mine workings and minutes to obtain a steady reading. Collar locations are r locations used in Mineral considered to be accurate to within 5m. ource estimation. high-quality downhole north-seeking multi-shot or Specification of the grid system • А
- continuous survey gyro-camera was used to determine the Quality and adequacy of dip and azimuth of the hole at 30m intervals down the hole topographic control.
 - The topographic surface was calculated from the onsite mine survey pickups and subsequently verified by RTK GNSS collar surveys.

used.

Criteria		Commentary
		 Zone 50 (GDA 94). Surface collar coordinates are surveyed via RTK GNSS with 1cm accuracy by a professional surveying contractor.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drilling at the Good Luck and Chapman Prospects was guided by the positions of geophysical targets and at this early stage the hole spacing is relevant for an MRE classification. No sample compositing to date has been used for drilling completed by Artemis. All results reported are the result of metre downhole sample intervals.
Orientation of data in relation to geological structure		 Drill holes were designed to be perpendicular to the strike of known mineralisation. However, due to the structural and geological complexity of the area, mineralisation of unknown orientation can be intersected.
Sample security	 The measures taken to ensure sample security. 	 The chain of custody is managed by the supervising geologis who places calico sample bags in polyweave sacks. Up to 10 calico sample bags are placed in each sack. Each sack is clearly labelled with: Artemis Resources Ltd Address of laboratory Samples were delivered by Artemis personnel to the transport company in Karratha and shrink wrapped onto pallets. The transport company then delivers the samples directly to the laboratory. Due to unusual backlogs in Perth, ALS had sent a series of samples to Brisbane and Townsville for MS-ICP and FA Au respectively to speed up the analysis process. These samples were whole rock and not processed in Perth.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	· · · · · · · · · · · · · · · · · · ·

SECTION 2 REPORTING OF EXPLORATION RESULTS

(Criteria listed in the preceding section also apply to this section.)

Criteria		Commentary
<i>Mineral tenement and land tenure status</i>	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding 	 Drilling by Artemis was carried out on E47/1797 – 100% owned by Artemis Resources Ltd. This tenement forms a part of a broader tenement package that comprises the West Pilbara Project. This tenement is in good standing.

ARTEMIS RESOURCES ASX:ARV FRA:ATY US:ARTTF www.artemisresources.com.au

Criteria		Commentary
	 royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The most significant work to have been completed historically in the area, including the Little Fortune and Good Luck prospects, was completed by Open Pit Mining Limited between 1985 and 1987, and subsequently Legend Mining NL between 1995 and 2008. Work completed by Open Pit consisted of geological mapping, geophysical surveying (IP), and RC drilling and sampling. Work completed by Legend Mining Ltd consisted of geological mapping and further RC drilling. Legend also completed an airborne VTEM survey over the project area, with follow up ground-based FLTEM surveying using Southerm Geoscientist Consultants (SGC). Re-processing of this data was completed by Artemis and was critical in developing drill targets for the completed by both Open Pit and Legend has indicated that this data is compares well with data collected to date by Artemis. Validation and compilation of historic data is ongoing. All exploration and analysis techniques conducted by both Open Pit and Legend are considered to have been appropriate for the style of deposit.
Geology	Deposit type, geological setting and style of mineralisation.	· · · · · · · · · · · · · · · · · · ·
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the 	Drill hole information is contained within this release.

ARTEMIS RESOURCES ASX:ARV FRA:ATY US:ARTTF www.artemisresources.com.au

Criteria		Commentary
	case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated 	 All intervals reported are composed of 1 metre down hole intervals for Reverse Circulation drilling. Aggregated intercepts do include reported lengths of higher-grade internal intercepts. Results are reported at a base grade of >0.3% Cu with an "includin interval of >1% Cu. Internal dilution of up to 2m may be included ir an intersection. No metal equivalent calculations are used in this report.
Relationship between mineralisation widths and intercept lengths	 be clearly stated. These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 From initial exploration, using geophysics, downhole logs, and UF soil samples, it appears that the mineralisation is associated with a NW shear zone. True downhole lengths or true widths of mineralisation are not known.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Appropriate plans are shown in the text.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading 	 This release reports the results of eight RC holes. The significant results tabulated in the release are reported at a base grade of >0.3% Cu with an "including" interval of >1% Cu. Internal dilution of up to 2m may be included in an intersection.

Criteria		Commentary
	reporting of Exploration Results.	
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Targeting for the RC drilling completed by Artemis was based on VTEM geophysics, compilation of historic exploration data, and the surface expression of the targeted mineralised shear zones and associated historic workings.
Further work		 Further work (RC and diamond drilling) is justified to locate extensions to mineralisation both at depth and along strike.

