ASX RELEASE

1 December 2021

EUR announces 11% increase in Total Measured, Indicated and Inferred Resources to 12.9 Mt @ 1.00% Li₂O

EUR finalises resource estimation based on infill drilling program in Zone 1 of the Wolfsberg Lithium Project deposit increasing previous resources by 11%

European Lithium Limited (ASX: EUR, FRA:PF8, OTC:EULIF) (European Lithium or the Company) is pleased to announce an upgrade in The Wolfsberg Lithium Project's (Wolfsberg) Inferred resource for Zone 1. The increase in Inferred Mineral Resources follows the recently announced (see ASX Announcement 8 November 2021) increased Measured and Indicated Mineral Resources for Zone 1.

Inferred Resource Estimation

The estimation of the Inferred Mineral Resources uses the same interpretation as the previous estimate, (see ASX Announcement 5 April 2018) based on continuity of the identified veins.

The previous estimate was completed by using a long-distance interpolation between the identified veins and the pegmatite intersections of the deep level boreholes. This model was confirmed by the recent drilling campaign where, previous Inferred Mineral Resources could be upgraded into Measured or Indicated classifications respectively (see ASX announcement 8 November 2021). The recent drilling program was designed as infill exploration, which focused on the area of the previous Inferred Resources. No holes were drilled outside this area as extensional exploration, therefore, Inferred Mineral Resources are based on short distance extrapolation of the identified veins beyond the limits of drilling.

The Inferred Mineral Resource estimate uses the same modelling technique and parameters as for the Measured/Indicated Resources, with the only difference being that an extended extrapolation distance is allowed. The limits for the inferred resources exceed the limits of the measured/indicated model by 50m. This distance is selected based on the previous continuity variogram analysis and in respect to the overall observed down dip and along-strike extension of the veins of several hundred meters on average.

The new inferred Mineral Resource using a density of 2.73 t/m³ is 3.1 Mt at 0.90% Li₂O. Only mineralized pegmatite intersections exceeding 0.5m width are included in the resource estimate. Intersection grade is calculated as the length weighted grade across the vein, assuming a minimum width of 2m.

For further information regarding the geology and interpretation, drilling, sampling and analysis, resource estimation or modifying factors, see ASX announcement 9 November 2021.

Upside Potential

Strong upside potential exists as numerous pegmatite intersections were not assigned to dedicated veins and therefore have not been included in any resource estimation to date.

Although the geological continuity hypothesizes a certain extension of those samples, the relation between the individual pegmatite intersections has not been determined as yet and therefore have been excluded from any resource. Investigation of the potential for estimation and reporting of additional mineralisation is under consideration.

Mineral Resources

Total Measured, Indicated and Inferred Mineral Resources now total 12.9 Mt grading 1.00% Li₂O. This includes the previously announced estimate of 9.7Mt grading 1.03% Li₂O in the Measured and Indicated Resource category (see ASX Announcement 8 November 2021) and the current updated Inferred Resource estimate of 3.1 Mt grading 0.90% Li₂O.

All cells within the wireframed mineralization have been reported as resource with no cut-off grade for Li₂O used in resource reporting. Assignment of mineralisation versus unmineralized material was done as part of the sectional interpretation using a minimum mineralized thickness of 0.5m for sampling. Intersections less than this were excluded with hard boundary wireframes, therefore all material identified as mineralization has been reported. This was chosen to align with the anticipated mining method of long hole open stoping whereby all material mined is taken as ore.

The upgraded Measured, Indicated and Inferred Resource estimate is detailed in Table 1
Table 1: Measured, Indicated and Inferred Mineral Resources – Wolfsberg Lithium Project
(effective 29 November, 2021)

(ellective 27 November, 2021)		
Category	Tonnage (t)	Grade (% Li₂O)
Measured	4 313 000	1,13
Indicated	5 430 000	0,95
Total (M+I)	9 743 000	1,03
Inferred	3 138 000	0,90
Total (M+I+In)	12 881 000	1.00

Notes:

- 1) resources estimated based on minimum mineralized intersection of 0.5m
- 2) bulk density of 2.73 t/m³ applied to volumetric estimate
- 3) Grade is based on length weighted mineralized intersections, assuming minimum intersection width of 2m and incorporates internal dilution.

Tony Sage, Chairman, commented: "These results are another step in the right direction for the Wolfsberg project. An increase in resources means an extension of mine life from what was previously announced in the PFS."

This announcement has been authorised for release to the ASX by the Board of the Company.

Tony Sage Non-Executive Chairman European Lithium Limited

Visit the Company's website to find out more about the advanced Wolfsberg Lithium Project located in Austria.

Competent Person's Statement

The information in this announcement pertaining to the Wolfsberg Lithium Project, and to which this statement is attached, relates to Exploration Results and Mineral Resources and is based on and fairly represents information and supporting documentation provided by the Company and reviewed by Mr Don Hains, who is the independent Qualified Person to the Company and is a Member of the Association of Professional Geoscientists of Ontario with over 38 years' experience in the mining and resource exploration industry. Mr Haines has sufficient experience, as to qualify as a Competent Person as defined in the 2012 edition of the "Australian Code for Reporting of Mineral Resources and Ore reserves". Mr Hains consents to the inclusion in the report of the matters based on information in the form and context in which it appears. The company is reporting the Mineral Resource under the 2012 edition of the Australasian Code for the Reporting of Results, Minerals Resources and Ore reserves (JORC code 2012).

This announcement has been authorised for release to the ASX by the Board of the Company.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria in this section apply to all succeeding sections.)		
Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Diamond drilling used for material collection. European Lithium Limited completed twenty (20) deep hole diamond drill holes with a total length of 7953,3 m in Zone 1. Drill hole diameter is considerably large, and orientation is approximately perpendicular to the dip of pegmatite veins to ensure that each sample is representative of veins it intersects. Sample intersections are contact to contact with a minimum sample length of 0.1m up to 1m length After cutting, a ¼ split of HQ were sent to ALS laboratories for assay.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Diamond drilling used for the entire program Overburden drilling was performed in PQ diameter and for final core drilling HQ diameter was used. 3 m length standard coring tube is used. The drill core was not orientated.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recovery was measured for all runs and recorded into "Core Recovery Log" then later transferred into an Excel spreadsheet template for import to the database. Overall core recovery is excellent, and average is 97.63 %.

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Both lithology and geotechnical logging was undertaken by trained professional geologists. For lithology logging descriptions were done over the full length of drill core on paper "Lithology Logging Form", recording rock type, colour, foliation and structural characteristics, mineralogy, core recovery and a graphic log representative of the lithology. Paper logs are later transferred to Excel spreadsheets template for import to the database. The geotechnical logging is undertaken on a domain run interval basis with breaks made at points where the rock mass characteristics change. Data were recorded into previously prepared Excel spreadsheet logging templates. For the drilling campaign individual photographs of each core box were taken using a Panasonic Lumix GX80 camera with a Lumix G Vario 12-32 optics. The photography include full metadata. To ensure consistency of scale, a fixed frame was used to shoot down the core boxes at a fixed height. The core box is oriented that the starting depth is at the top left corner of the photograph and the drill hole number, box number, starting and ending depth of the core with a scale bar included. Additionally a colour reference chart was included to enable calibration and correct reproduction of the digital images. The core photography was done in wet conditions.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Cutting of core was performed in the core shed after logging and sample mark up. The core is cut along core axis. Only mineralized intervals are cut in half in first instance and then one of the pieces split in two quarters. The cutting is done by technicians and supervised by geologists. Samples with visible mineralization (spodumene) are taken regardless of the lithology and grade and ranging from 0.1 m to 1 m in thickness. All remaining core is stored securely in the Wolfsberg core shed. The CP is of the opinion that the sample size is appropriate to the grain size of the target mineralization.

	Criteria	JORC Code explanation	Commentary
	Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The QA/QC actions taken to provide adequate confidence in data collection and processing are discussed above. In general, QAQC procedures involving duplicates in every stage (core duplicate, crush, pulp laboratory as well laboratory duplicates) is implemented. Duplicates, standards and blanks were introduced every 20 samples (5% frequency). Acceptable levels of accuracy and precision for standards and blanks were obtained. All sample preparation and assays were undertaken by ALS (Ireland), which is ISO 9001:2015 and ISO 17025:2017 accredited. Sample preparation was using ALS procedure PREP31Y Lithium analysis was using ALS procedure LIOG63 by four acid digestion and analyzed by ICP. Combination of Rare Earth and Trace Elements including major oxides analyzed by ME-MS81 and ME-ICP06 including LOI. Cerified standards used are AMIS 0341, AMIS 0342 sourced from African Minerals Standards and GBW 07152, GBW 07153, NCS DC 86303, NCS DC 86304 and NC DC 86314 sourced from Brammer International Standards. Blank material was limestone BCS CRM 393
7 :	Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Mineralized intersections visibly identified, verified and labelled by logging geologists. The independent CP has reviewed the drill logs and reported sample intervals and compared them against the core photos. The CP is satisfied that the sample intervals accurately represent the reported mineralized intervals. All the primary data was transferred into standardized Excel spreadsheet templates and imported into an Access database. Li assays were converted to Li2O for reporting using a conversion of Li2O% = Li% * 2.153. An electronic database containing collars, surveys, assays and geology is maintained by Mine-IT, an independent Mining Information Consultancy based in Leoben, Austria.
71	Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	• Drill hole collar survey is conducted by an external licensed surveyors company, using a total station instrument 1600 Leica with standard accuracies of +/-2mm per kilometre. All coordinates are tied into the state triangulation network and provided in the Austrian Gauss Kruger coordinate system (EPSG: 31252).

Criteria	JORC Code explanation	Commentary
		Drill hole deviation is carried out internally by the drilling company GEOPS using DeviShot, with readings every 60m for azimuth and inclination.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Target Infill drilling is designed to close section spacing to no more than 100m and typically less than 50m. The current drill program is a continuation of drill programs undertaken in 2016-2019. Pegmatite intersections in drill core were sampled and assayed on widths up to 1m. For veins exceeding 1 m the samples up to 1 m were prepared, assayed separately and composited subsequently. A similar rationale was applied for the PFS in 2018 (see ASX announcement 23.04.2018)
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill hole was perpendicular to the dip of the pegmatite veins. No sampling bias was introduced.
Sample security	The measures taken to ensure sample security.	 All drill core was placed into labelled PVC core boxes with drill hole and box number and run intervals. Drill core boxes were transferred to the Wolfsberg core shed and securely stored. All samples for sample preparation and assay were transported to ALS (Ireland) by secure courier. Chain of custody was followed insuring that only dedicated personal from ECM team and ALS lab had access to the sample at all stages of sampling process. Remaining coarse and pulp duplicates are returned after assaying and stored in Wolfsberg core shed.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Due to Covid-19 situation no physical audit by the CP was done. This is now planned in Q1/2022. The CP had previously undertaken site visits in 2014 and 2016 and has monitored drilling, logging and QA/QC procedures on a regular basis throughout the various drill campaigns.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

(Criteria listed in the pred	ceding section also apply to this section.)	
Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The 100% owned subsidiary in Austria, ECM Lithium AT GmbH, has 54 exploration licences in the Wolfsberg project area valid to 31 December 2024 and renewable for additional 5-year terms following demonstration that exploration work has been undertaken on any one licence in the preceeding 5 year term. ECM Lithium AT GmbH has 11 mining licences in the Wolfsberg project area. These are held in perpetuity as long as the terms of the mining licence are met. These licences obligate the Company to mine for at least 4 months per year but this requirement has been suspended by the Mining Authority until 31 December 2021 to allow technical studies to be undertaken. Land access is granted by the landowner who waived all rights to object to development of an underground mine on his land which is a commercial forest. ECM Lithium AT GmbH is obliged to pay the landowner compensation for use of forest roads and any emissions. This is documented in a waiver agreement dated 15 April 2011. A compensation rate of €2,000/month was agreed with the landowner in 2015 for this current work programme. There was a dispute with the landowner which has been referred to arbitration. Meanwhile the compensation amount of €2,000/month was being paid. The dispute has been settled with an amendment to the agreement from 15 April 2011, dated 27 May 2021. An amended compensation amount of €2,400/month is to be paid by ECM Lithium AT GmbH. All other clauses of the 15 April 2011 agreement remain in place.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The project was previously owned by the Austrian state company, Minerex, who conducted extensive exploration of the project area in 1981-1987. In total 9,940m3 of surface trenches, 12,012m of diamond drilling from surface, 4,715m of diamond drilling from underground and 1,389m of underground mine development were undertaken. A twin hole drill and data verification program completed in 2016 (see ASX announcement 16 Nov. 2016) enabled incorporation of historic data in the resource estimation).
Geology	Deposit type, geological setting and style of mineralisation.	• The spodumene bearing pegmatites occur in form of veins within a regional anticline. The pegmatite veins are intruded into amphibolites and mica schist

Criteria	JORC Code explanation	Commentary
		host rocks strictly concordant to their foliation. On the northern limb of this anticline, which is known as Zone 1, the strata uniformly strikes WNW-ESE (average 120°) and dips to the NNE at an average of 60°. • The amphibolite hosted pegmatites (AHP) are in stratigraphical hanging wall position relative to the mica schist hosted pegmatites (MHP) although they overlap. The AHP has greyish to greenish spodumene crystals aligned subparallel to the pegmatite contacts and average about 2-3 cm in length reaching a maximum of 15 cm. Spodumene crystals are more or less homogeneously distributed within a fine-grained matrix of feldspar and quartz with flakes of muscovite. The MHP lack the typical features and textures of pegmatites having undergone a penetrative metamorphic overprint almost completely recrystallizing the original pegmatitic minerals. The spodumene minerals are in the form of mm sized lenticular grains embedded into very fine feldspar, quartz and muscovite matrix. • A comprehensive description of the geology and mineralization is provided in the 'Independent Geologists Report' contained within the 'Second Replacement Prospectus' of 28th July 2016 that can be found on the Company website www.europeanlithium.com
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 All the drill collar, drilling, downhole survey and associated geochemical, and logging data was transferred to standardized excel spreadsheet templates for import to the Access database. A full list of drill hole coordinates is provided in the Appendix. The current announcement refers to the results received for twenty (20) holes drilled in 2021. Assay data and major intercept data for holes drilled in exploration programs in 2016-2019 has been previously reported (see ASX announcements of 10 March 2017, 17 April 2017, 31 May 2017, 8 June 2017, 28 June 2017, 4 Feb 2018, 27 April 2018). Refer to ASX Announcement 9th November 2021 for plan and cross sections. Drill location data for the twenty (20) holes from 2021 are summarized in the appendix.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high 	 No cut-off grades were used as the proposed mining method (long hole open stoping) requires taking all material within the stope width. Pegmatite veins with a minimum width of 0.1m were sampled contact to contact and sample lengths up to 1.0m were taken and aggregated to provide a composite grade for the width of the intersection.

Criteria	JORC Code explanation	Commentary
	 grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	No metal equivalent values are reported
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	between host rock and pegmatite veins.
	• If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	• Calculation follows the formula: True Thickness = Measured Thickness * $\cos(\beta)$ $MT = \text{measured thickness} \\ T_T = \text{true thickness} \\ \alpha = \text{dip angle of borehole} \\ \beta = \text{measured dip angle} \\ \gamma = 90 - \beta \\ T_T = MT*\cos(\beta)$
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See appendix for a representative cross section showing inferred extensions to the interpreted geological model.

Criteria	JORC Code explanation	Commentary
++Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All grades are reported from ALS Labs. Assay data for all twenty (20) batches for completed holes have been received and are listed in the appendix.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 logging, density measurements, core recovery, and magnetic susceptibility. Density measurements are by the Archimedes method. Density samples are taken at regular intervals for all core and all lithological units.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	No current plans for Zone 1. Requirements for additional drilling in Zone 1 and Zone 2 still to be determined.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Historical data derive from paper works from Minerex, the company which executed the exploration program in the 1980s. Data have been scanned or manually transcribed. There were multiple checking phases by comparing data with different sources (e.g. laboratory reports, annual summary reports, geological maps, core logging, etc.). Few contradictions were detected and any observed discrepancies were documented. Finally, the data were compiled into an Access database. See ASX announcement 5th April 2018

Criteria	JORC Code explanation	Commentary
		 New data (2016-2021) were acquired and processed under a strict QA/QC procedure.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 The Competent Person has visited the site Oct. 24-31, 2014 and August 24-27, 2016 to review twin hole drilling for historic data verification and resource drilling. The CP did not observe any areas of concern during the site visits and data review. COVID-19 restrictions prevented a site visit in 2021. A visit is planned for Q2/2022. An audit and site visit of application of the QA/QC procedures took place August 24-27, 2016, with no deviations found. Since then, audits of QA/QC procedures have been undertaken in conjunction with review of drill data in 2018 and 2021. In the opinion of the CP, QA/QC procedures are well developed and no areas of concern have been identified.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 The fundamental basis of the geological interpretation (vein identification) was done by Minerex. By being in charge over the whole period of the exploration they are assumed to have the best knowledge about the deposit. Dr Richard Göd, the geology adviser to European Lithium Limited, was the Chief Geologist in charge of the Minerex exploration. The geological experts in charge now have not detected any flaws in the previous works and interpretations. Underground mine development was carried out by Minerex to intersect the pegmatite veins and follow them by drifting along strike, which confirmed the geological interpretation and demonstrated the vein continuity. Extensive mineralogical studies were made as part of the metallurgical testwork programme of Minerex. Data comprise listings (samples, etc.) and a wide range of geological maps. Although not directly used for resource estimation they are extremely helpful for understanding the deposit characteristics. So far, no alternative interpretation of the geology has been considered. The resource estimation recognizes the characteristics of the vein structure and makes estimates on a vein by vein basis
		 The pegmatite intrusion visibly shows continuity along strike as evidenced by the underground drifting. Continuity down dip is evidenced from drillhole profiles.

Criteria	JORC Code explanation	Commentary
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	 The currently explored deposit has an extension in strike of 1700 m. The maximum vertical extension is about 400 m (1650 masl to 1250 masl) along strike due to varying exploration strategies in the past. The veins are steep to medium dipping and most of them have expressions on the surface. It is expected that the deposit continues deeper than currently explored. The width of the veins averages 1.45 m with maximum width recorded at 5.5 m. Intersection lengths in the boreholes were logged but not sampled if less than 0.1 m.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. 	 For project evaluation vein thickness and grade are of paramount importance. For this situation a semi-3D modelling approach is most appropriate for both key figures. This is in particular true for vein thickness, which can by this approach be treated by statistical and numerical methods, while by alternative solutions it has to be indirectly derived from wireframed surface distance. The modelling was done in Surpac and Leapfrog, with some adaptations for this particular application. Interpolation parameters are derived from variography analysis. Variogram ranges are about 75 m for thickness and 75 m for grade, however both with evidence of a significant nugget ratio. The search distance is set at100 m for both. Variogram parameters for lithium grade and vein thickness are: Parameter Grade Thickness Nugget (CO) 0.081 0.24 Sill (C1) 0.34 1.12 Range (R1,m) 75 75 Model spherical spherical Max. distance 100 100
	 Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 Extrapolation is limited to 50m beyond the interpretation for classification as inferred resource. For the measured resources a boundary is used which represents the hull of the samples (no extrapolation). For the indicated resources another boundary is applied which allows for a moderate extrapolation of 20-40 m. Parameters refer exclusively to the strike/dip extension, as thickness is a model parameter. The results correlate well with prior publications of Minerex. In the very beginning of the project the veins were modelled by standard wireframing

with very similar results as far as volume is concerned.

Criteria	JORC Code explanation	Commentary
		 The anticipated mining method (long hole open stoping) necessitates taking all material in the stope, thus no cut-off is applied. The reported grade is the average grade across the vein, including interbedding, assuming a minimum width of 2 m.
D)		 By-products are not considered in the resource model estimate.
		 The only element that is of potential concern is the Fe2O3 concentration of the spodumene concentrate. That may limit access to the high quality glass/ceramic market, but is of no concern if converting to lithium
		 hydroxide. The block dimension of the model is 25 m x 25 m (with variable thickness).
		The size is very much determined by assumed stope dimensions rather than blast dimensions. This is because the mining methods under consideration
		have to extract the full panel size of a stope. Likewise modelling of the transverse grade distribution is not relevant because the whole width has to be mined as a total.
		 Selectivity in mining is assumed limited to selection and dimensioning of stopes. Future deposit modelling investigations will focus on vein regularity because this is of relevance for dilution.
		 Currently only thickness and grade is under investigation. No reasonable correlation exists for these two parameters.
1		 The geological interpretation refers to the vein identification, i.e. assigning distinct drill hole intersections to a distinct vein. This is done primarily on basis of the global geological structure, which is fairly well known. For
		adjacent located veins however, this is sometimes ambiguous. This is the prime basis for modelling, which handles only the interpolation between these geologically defined nodes for each vein.
		 Before modelling was undertaken, an intensive study on the sample data (grade, partially thickness) was conducted. The distributions of both are
		reasonably similar to a Gaussian distribution and do not show any tendency for outliers. Hence no particular measures for capping must be applied.
		 Model results are always statistically compared with sample data. As far as
		possible this is done also for groupings such as by the host rock type. Comparisons were also done with records from former drifting. An essential
		part is also the evaluation of the plausibility of vein identification, which is still in progress.
		 Resources by vein and resource classification category are summarized

Criteria	JORC Code explanation	Commentar	У					
		below:						
				1				
				Measu	ired & Ind	dicated	Inferre	d
			vein					
			code	Vol (m³)	%Li ₂ O	Thick (m)	Vol (m³)	%Li ₂ O
			0.0	69 198	0,70	1,01	38 297	0,65
			0.1	100 271	0,87	1,57	56 247	1,40
			0.2	23 820	1,38	0,93	22 149	1,24
			0.3	59 695	0,86	1,04	40 342	0,97
			1.1	217 673	1,07	1,32	96 328	0,86
			1.2	283 799	0,64	1,87	74 868	0,55
			2.1	295 988	1,31	1,57	85 590	1,05
			2.2	155 731	1,24	1,13	41 000	1,46
			3.1	326 297	1,40	1,37	98 673	1,00
			3.2	136 193	1,23	0,83	65 981	1,17
			4	202 067	0,89	0,95	115 054	0,81
			6.1	114 146	0,74	0,92	56 701	0,72
			6.2	528 001	0,95	1,52	140 513	0,78
			7	1 021 712	1,02	2,11	186 142	0,78
			8	47 218	0,63	1,40	35 937	0,68
			Sum	3 581 809	1,03	1,45	1 153 822	0,90
		All resource cla	tonnes asses incl	9 742 520 ude potenti	ial crow	n pillars.	3 138 396	
		The model r assignments	esults hav	ve been re	viewed	by the CP i	n Leapfrog t	o verify ve
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture	The principle transformat					_	-

Criteria	JORC Code explanation	Commentary			
	content.	validation is used (dry). Considerations on moisture will be subject of the mining investigations.			
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	 Currently no cut-off for either thickness or grade is used. Indirectly a cut-off for thickness occurs because only samples with a length of more than 0.5 m are sampled and hence only these contribute to the resources. The mining method proposed (long hole open stoping) requires taking the full width of the stope; regardless of garde, thus no cut-off grade is used. For modelling purposes, a minimum mining width of 2m is assumed. 			
Mining factors or assumptions	• Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 Currently no particular assumptions for mining methods are made. This is with the exception of the full-vein-width (semi 3D) modelling approach. This is based on the assumption that in every case the full width has to be mined and no selectivity is conceivable for any separation within the vein. For this reason, the modelled grade includes also the dilution due to interbeddings which are observed regularly. The Minerex Prefeasibility study concluded that long hole open stoping and cut and fill were appropriate mining methods. Minimum sampling width was 0.5 m. The economic minimum mining width still has to be established taking into account current studies to remove waste dilution by sensor based sorting. 13% of the sample composites had interbedding which has been included as internal dilution within the resource estimate. Mining studies undertaken in 2017 by SRK Consulting included a preliminary mining layout utilising a standard stope shape of 25 m high by 75 m wide with 4 m rib and sill pillars. Based on the mining method selection criteria, SRK (2017) further recommended that the most appropriate underground mining method to be considered for low cost mining at Wolfsberg is a variant of sublevel stoping called Long Hole Open Stoping. Pillar support and partial backfill was recommended to assure stability. 			
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not	 Minerex conducted extensive metallurgical testing and concluded that a 6% Li₂O spodumene concentrate could be produced by crushing, grinding, flotation and magnetic separation. Saleable by-products of feldspar, quartz and mica were also obtained which have value with the projects location in Central Europe. Limited testwork also demonstrated that the spodumene concentrate was amenable to conversion to lithium carbonate. 			

Criteria	JORC Code explanation	Commentary
	always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Complex testwork at the company's pilot plant facility (Dorfner/Anzplan, in Hirschau, Germany) with mined bulk samples from the existing U/G mine (2,500t) has been undertaken by the company and did show that the spodumene concentrate from Wolfsberg can be successfully processed to battery grade lithium carbonate and lithium hydroxide, using commercially proven technology (see ASX announcement April 5, 2018). This coupled to the fact that the deposit is technically and economically viable as determined by a PFS (see ASX announcement 05 April 2018), and may be mined economically using long hole open stoping, means that the deposit meets the criterion for eventual economic extraction as required for a resource to be stated under JORC (2012).
Environmen-tal factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 It is envisioned that the waste from mining and processing will be utilised as fill in the mine and that there will be no permanent tailings dam. The mine area is in a commercial forest and there are no nature conservation or water protection zones.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 The measurements of density for pegmatite and the major host rocks, amphibolite and mica schist were obtained using the Archimedes method. For mineralised pegmatite zones routine density information was determined at regular intervals every 0.5 m. The procedure follows the Archimedes method by weighing samples of full core diameter in 10-15 cm lengths in air and in water. Results obtained from 565 samples of pegmatite were 2.70 ± 0.07; from 1837 amphibolite samples (3.00 ± 0.1) and 2.83 ± 0.08 for 2936 samples of mica schist. An average density of 2.73 t/m³ has been used to convert volumetric measures to tonnage within the mineralized resource envelope, regardless of pegmatite type.
Classification	The basis for the classification of the Mineral Resources into	Former exploration activities comprise underground drifts following some

Criteria	JORC Code explanation	Commentary
	 varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 selected veins. In this way the continuity of the veins was demonstrated and investigated, as well as the reasons for the occurrence of disturbances. This appraisal is supported by the statistical analysis of the variability based on the drill hole data. Measured resources are stated for the veins immediately above and below the underground workings that visibly show continuity to the extent of the underground drilling which results in profiles at 50 m along strike. Indicated resources are stated for the main cross-sections, where there were at least three drill holes not more than 50 m apart. Inferred resources are stated for the main cross sections, where there are at least three drill holes not more than 75m apart.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	 The resource estimate has been prepared by Mine-IT Sanak Oberndorfer (Prof. Dr. Thomas Oberndorfer) and audited by the independent Competent Person, Mr Don Hains, P. Geo.
Discussion of relative accuracy/confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The relative accuracy of the Mineral Resource estimate is reflected in the reporting of the Mineral Resource as per the guidelines of the JORC Code (2012). The resource estimate refers to global estimates of tonnes and grade.

Appendix

Drill Hale Colley Table (Infill Drilling Commeion 2024)

	Drill Hole	e Collar Table "Ir	nfill Drilling Campa	ign 2021"							
>	Drill Hole ID	E_GK	N_GK	Collar Elevation	Start Date	End Date	Dip	Azimuth	Total_Depth	Total_ Core_ Recovery_%	Notes
	P18-09	126545.18	5190059.39	1623.79	26-Feb-2021	08-Mär-2021	-69.3	198.4	440.7	97.30	Surface drilling program 2021
	P18-10	126473.88	5190036.64	1630.04	10-Mär-2021	17-Mär-2021	-66.8	198.1	359.7	98.00	Surface drilling program 2021
	P18-06	126715.76	5190050.70	1636.92	19-Mär-2021	29-Mär-2021	-55.2	199.8	419.3	98.70	Surface drilling program 2021
	P18-05	126810.54	5190082.92	1646.02	02-Apr-2021	14-Apr-2021	-50.2	194.5	470.4	98.30	Surface drilling program 2021
	P18-04	126810.33	5190082.40	1646.05	15-Apr-2021	24-Apr-2021	-38.4	194.0	448.9	98.50	Surface drilling program 2021
	P18-03	126920.03	5190015.28	1656.58	27-Apr-2021	08-Mai-2021	-30.6	198.8	444.0	97.20	Surface drilling program 2021
	P18-02	126970.92	5189847.67	1687.73	12-Mai-2021	20-Mai-2021	-30.5	199.0	345.5	98.60	Surface drilling program 2021
	P18-01	126970.92	5189847.67	1687,73	25-Mai-2021	07-Jun-2021	-50.0	200.6	344.5	97.40	Surface drilling program 2021
	P18-17	126114.45	5190117,47	1610,54	10-Jun-2021	18-Jun-2021	-66.7	200.5	320.7	91.61	Surface drilling program 2021
7	P18-12	126363.22	5190334,57	1560,40	08-Jun-2021	19-Jun-2021	-33.1	197.3	475.9	99.38	Surface drilling program 2021
	P18-11	126431.66	5190331,48	1563,59	22-Mai-2021	04-Jun-2021	-32.6	195.5	516.8	98.20	Surface drilling program 2021
	P18-14	126318.97	5190335.13	1558.72	22-Jun-2021	02-Jul-2021	-33.9	204.7	460.1	98.43	Surface drilling program 2021
	P18-18	126009.93	5190196.34	1590.91	23-Jun-2021	03-Jul-2021	-74.9	173.3	374.4	95.01	Surface drilling program 2021
	P18-16	126318.23	5190335.58	1558.69	05-Jul-2021	16-Jul-2021	-37.2	218.5	473.6	97.87	Surface drilling program 2021
	P18-19	126011.70	5190195.01	1590.93	06-Jul-2021	15-Jul-2021	-62.4	190.7	320.5	98.14	Surface drilling program 2021
	P18-20	125958.44	5190248.32	1582.25	17-Jul-2021	31-Jul-2021	-61.9	209.1	336.0	97.28	Surface drilling program 2021
	P18-24	125794.45	5190321.64	1553.52	20-Jul-2021	29-Jul-2021	-62.8	272.6	362.3	98.50	Surface drilling program 2021

Surface drilling program 2021	98.00	299.6	252.2	-49.1	06-Aug-2021	30-Jul-2021	1553.62	5190321.40	125794.19	P18-25
Surface drilling program 2021	98.00	360.0	209.2	-82.5	11-Aug-2021	02-Aug-2021	1569.20	5190256.83	125842.31	P18-21
Surface drilling program 2021	98.26	350.1	237.4	-76.5	14-Aug-2021	07-Aug-2021	1553.41	5190321.15	125794.97	P18-23

Coordinates are reported in Austrian Gauss-Kruger System. EPSG Code: 31252

Assay Results – Individual Samples used in Inferred Resource Estimate (see ASX Announcement 08 November 2021 for samples used in Measured and Indicated Resource Estimate)

BHID	ID	from	to	Li ₂ O
P18-09	2000494	49,30	49,60	0,05
P18-09	2000495	109,95	110,10	0,66
P18-09	2000496	110,40	110,56	1,59
P18-09	2000497	127,95	128,15	0,03
P18-09	2000499	139,00	139,20	0,01
P18-09	2000500	174,50	174,70	0,03
P18-09	2000501	175,00	175,40	0,09
P18-09	2000502	192,90	193,43	0,12
P18-09	2000503	198,15	198,48	0,48
P18-09	2000504	198,86	199,19	0,12
P18-09	2000505	202,15	203,05	1,95
P18-09	2000507	214,40	215,15	0,13
P18-09	2000508	222,70	223,20	0,22
P18-09	2000509	227,30	227,80	0,03
P18-09	2000510	231,35	231,70	0,80
P18-09	2000511	232,50	233,00	1,32
P18-09	2000513	234,66	234,89	0,13
P18-09	2000514	235,29	235,40	0,18
P18-09	2000515	236,15	236,30	1,56
P18-09	2000516	241,30	242,20	0,29
P18-09	2000517	248,65	249,24	2,22
P18-09	2000518	249,24	249,83	2,40
P18-09	2000526	271,89	272,00	0,02
P18-09	2000527	298,55	299,18	1,99
P18-09	2000528	299,18	299,80	1,72
P18-09	2000529	309,00	309,40	0,04
P18-09	2000531	343,00	343,30	0,13
P18-09	2000532	403,80	404,33	0,59
P18-09	2000533	408,20	408,50	0,42

P18-09	2000535	426,55	426,80	0,02
P18-09	2000536	427,10	427,50	0,20
P18-09	2000537	427,86	428,19	0,34
P18-10	2000538	63,15	63,39	0,02
P18-10	2000539	93,90	94,40	0,59
P18-10	2000542	150,70	150,80	1,07
P18-10	2000543	155,10	155,40	1,76
P18-10	2000544	161,70	162,15	1,88
P18-10	2000545	164,60	164,95	2,29
P18-10	2000546	169,85	170,10	0,69
P18-10	2000547	176,81	176,92	0,04
P18-10	2000548	177,95	178,50	0,08
P18-10	2000550	185,17	185,77	0,97
P18-10	2000551	185,77	186,36	1,29
P18-10	2000552	190,26	191,06	0,15
P18-10	2000553	191,06	191,85	0,13
P18-10	2000555	194,15	194,70	0,06
P18-10	2000556	197,00	197,23	1,37
P18-10	2000557	197,60	197,95	1,47
P18-10	2000558	208,00	208,20	0,08
P18-10	2000559	217,98	218,28	0,74
P18-10	2000560	241,80	241,88	0,02
P18-10	2000562	253,90	254,17	0,02
P18-10	2000563	261,37	261,85	1,33
P18-10	2000564	264,18	264,24	0,40
P18-10	2000565	289,90	290,60	0,62
P18-10	2000566	291,10	291,18	0,04
P18-10	2000567	328,72	329,06	0,25
P18-10	2000568	336,00	337,00	1,30
P18-10	2000569	337,00	338,00	1,32
P18-10	2000577	352,93	353,13	0,05
P18-10	2000579	353,20	353,35	0,05

P18-06	2000580	115,80	115,92	0,04
P18-06	2000581	116,65	116,95	0,07
P18-06	2000582	163,95	164,50	0,30
P18-06	2000584	174,36	174,52	0,24
P18-06	2000585	180,20	181,00	0,14
P18-06	2000586	201,05	201,23	0,04
P18-06	2000587	201,40	201,56	0,02
P18-06	2000588	203,67	203,89	0,01
P18-06	2000590	215,75	216,08	0,07
P18-06	2000591	222,77	222,94	0,06
P18-06	2000593	224,16	224,34	0,11
P18-06	2000594	224,46	224,86	0,07
P18-06	2000595	232,24	232,43	0,06
P18-06	2000596	232,60	232,96	0,06
P18-06	2000597	237,13	237,25	0,19
P18-06	2000598	239,70	239,82	0,53
P18-06	2000599	249,05	250,11	2,31
P18-06	2000600	250,11	251,18	1,60
P18-06	2000608	251,30	251,60	1,20
P18-06	2000610	251,76	252,00	0,12
P18-06	2000611	253,13	253,72	1,81
P18-06	2000612	254,32	254,48	0,07
P18-06	2000613	255,18	255,30	0,07
P18-06	2000614	259,98	260,25	0,07
P18-06	2000615	274,50	275,21	0,66
P18-06	2000616	298,80	299,68	1,37
P18-06	2000617	301,30	302,10	1,05
P18-06	2000618	302,10	302,92	0,92
P18-06	2000619	306,12	306,60	1,50
P18-06	2000621	340,84	341,26	0,49
P18-06	2000622	381,06	381,15	0,03
P18-06	2000623	386,67	387,02	0,66

P18-06	2000624	388,60	389,00	0,74
P18-06	2000626	398,37	398,44	0,10
P18-06	2000627	398,60	398,75	0,53
P18-06	2000628	403,47	403,60	0,35
P18-05	2000629	16,74	17,07	0,03
P18-05	2000630	19,52	19,70	0,03
P18-05	2000631	42,42	42,56	1,48
P18-05	2000632	42,84	43,17	1,43
P18-05	2000633	71,09	71,29	0,02
P18-05	2000634	169,29	169,45	0,02
P18-05	2000637	218,08	218,33	1,52
P18-05	2000638	218,80	219,15	2,37
P18-05	2000639	219,75	220,52	1,34
P18-05	2000641	257,17	257,75	0,33
P18-05	2000642	262,91	263,03	0,03
P18-05	2000643	263,70	264,20	0,03
P18-05	2000644	270,89	271,04	0,01
P18-05	2000645	276,45	276,70	1,52
P18-05	2000647	282,00	282,50	1,92
P18-05	2000648	282,50	283,13	0,88
P18-05	2000649	285,25	285,45	0,04
P18-05	2000650	288,95	290,20	1,20
P18-05	2000651	293,74	294,27	0,76
P18-05	2000659	298,02	298,46	0,41
P18-05	2000660	300,05	300,36	0,02
P18-05	2000661	305,94	306,35	0,03
P18-05	2000662	306,48	307,13	0,06
P18-05	2000663	307,85	308,20	1,07
P18-05	2000664	310,27	310,38	1,86
P18-05	2000665	310,69	310,90	0,56
P18-05	2000667	330,34	330,62	0,13
P18-05	2000668	331,10	331,90	0,46

P18-05	2000670	331,90	332,72	1,25
P18-05	2000671	340,00	340,50	0,03
P18-05	2000673	347,50	347,67	0,03
P18-05	2000674	363,20	363,40	0,02
P18-05	2000675	408,85	409,10	0,86
P18-05	2000676	409,58	409,88	0,13
P18-05	2000677	411,49	411,89	0,19
P18-05	2000678	412,20	412,41	0,02
P18-05	2000679	421,45	421,56	1,02
P18-05	2000680	422,60	422,78	0,04
P18-05	2000682	436,87	437,59	0,94
P18-05	2000683	447,57	447,69	0,02
P18-04	2000684	14,90	15,10	0,01
P18-04	2000685	17,71	17,82	0,02
P18-04	2000688	69,69	70,06	0,09
P18-04	2000690	214,99	215,56	1,24
P18-04	2000692	221,23	221,47	1,01
P18-04	2000693	222,25	222,45	0,88
P18-04	2000694	235,83	235,98	1,19
P18-04	2000695	240,03	240,15	0,02
P18-04	2000697	259,41	259,53	0,06
P18-04	2000699	261,63	261,73	0,04
P18-04	2000700	266,69	267,14	1,17
P18-04	2000701	271,20	271,30	0,46
P18-04	2000702	275,98	276,35	1,14
P18-04	2000703	279,14	279,51	0,05
P18-04	2000704	282,48	283,06	1,15
P18-04	2000705	283,06	283,56	2,19
P18-04	2000706	284,00	284,36	1,93
P18-04	2000707	285,82	286,08	0,90
P18-04	2000708	288,63	288,77	0,02
P18-04	2000711	301,04	301,69	1,53

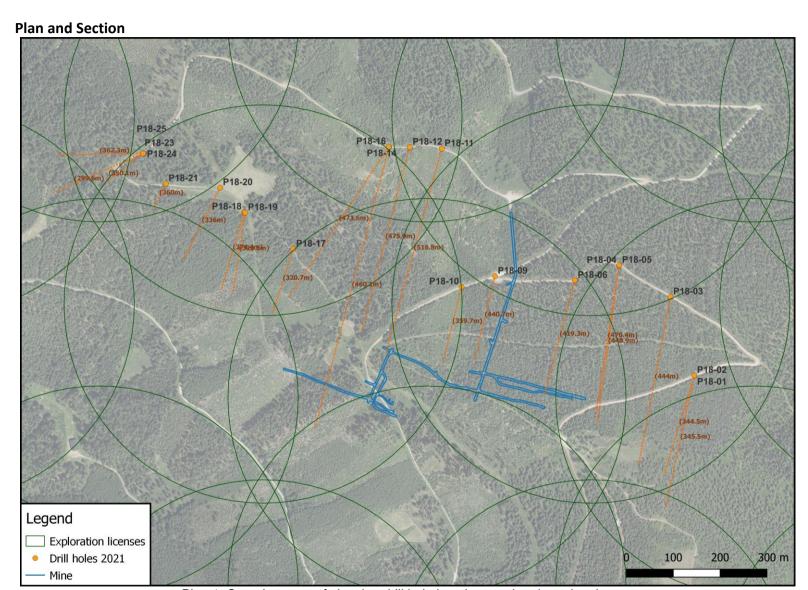
P18-04	2000712	304,13	304,30	1,40
P18-04	2000713	318,63	318,96	0,17
P18-04	2000714	325,38	325,79	0,12
P18-04	2000715	326,92	327,81	0,21
P18-04	2000723	328,53	329,50	1,51
P18-04	2000724	329,50	330,31	1,11
P18-04	2000725	332,55	332,95	1,46
P18-04	2000727	360,50	361,10	0,03
P18-04	2000728	396,32	396,47	0,02
P18-04	2000729	410,73	410,93	0,05
P18-04	2000731	411,30	411,50	0,74
P18-04	2000732	423,00	423,50	1,10
P18-04	2000733	423,50	424,04	1,38
P18-04	2000734	434,26	434,55	0,02
P18-04	2000735	263,11	263,52	0,02
P18-03	2000736	11,20	11,52	2,07
P18-03	2000737	11,79	12,18	0,03
P18-03	2000738	46,86	47,40	1,26
P18-03	2000740	49,95	50,12	0,03
P18-03	2000741	127,32	127,55	0,06
P18-03	2000742	130,56	130,74	0,07
P18-03	2000743	130,83	131,08	0,05
P18-03	2000744	197,00	197,33	1,72
P18-03	2000745	199,88	200,00	0,62
P18-03	2000747	200,70	201,51	2,80
P18-03	2000748	201,91	202,60	1,52
P18-03	2000750	209,66	209,84	0,07
P18-03	2000751	210,16	210,90	0,62
P18-03	2000752	234,71	234,83	0,03
P18-03	2000753	237,46	237,57	0,06
P18-03	2000754	238,27	238,47	0,03
P18-03	2000755	245,22	245,55	0,06

P18-03	2000756	247,26	247,98	0,17
P18-03	2000757	257,13	257,40	0,10
P18-03	2000758	265,38	265,53	0,04
P18-03	2000759	273,82	274,61	0,04
P18-03	2000760	276,23	276,54	0,73
P18-03	2000762	291,83	291,94	0,11
P18-03	2000763	293,29	294,16	0,66
P18-03	2000764	296,12	296,34	0,90
P18-03	2000765	305,66	305,92	0,03
P18-03	2000767	363,38	363,59	0,05
P18-03	2000768	364,00	364,16	0,05
P18-03	2000769	371,24	371,41	0,04
P18-03	2000770	373,01	373,32	1,18
P18-03	2000771	373,62	374,23	0,16
P18-03	2000779	388,71	389,42	1,10
P18-03	2000780	403,87	404,50	0,98
P18-03	2000781	404,50	405,13	1,59
P18-03	2000783	405,34	406,05	1,20
P18-03	2000784	415,47	415,93	0,02
P18-02	2000785	44,20	44,38	0,01
P18-02	2000787	100,58	100,71	0,09
P18-02	2000788	100,81	101,01	0,05
P18-02	2000789	101,50	101,69	0,05
P18-02	2000790	103,00	103,34	1,30
P18-02	2000791	116,04	116,30	0,05
P18-02	2000793	146,66	147,23	0,68
P18-02	2000794	147,23	147,80	1,13
P18-02	2000795	149,68	149,78	0,08
P18-02	2000796	150,20	150,36	0,08
P18-02	2000797	156,66	156,86	0,04
P18-02	2000798	158,34	158,95	0,16
P18-02	2000806	196,64	196,74	0,07

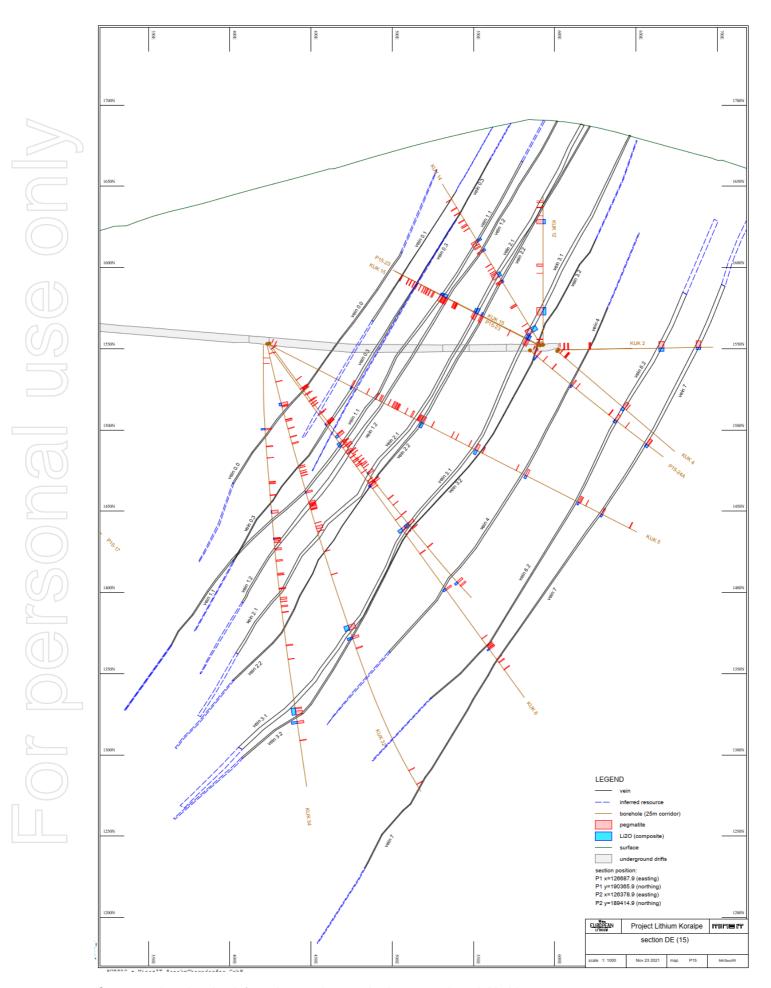
P18-02	2000807	197,55	198,43	0,94
P18-02	2000808	209,74	210,45	2,02
P18-02	2000810	212,78	212,91	1,07
P18-02	2000811	219,70	219,83	0,12
P18-02	2000812	228,63	229,52	1,11
P18-02	2000813	285,12	285,33	0,02
P18-02	2000814	286,23	286,67	0,02
P18-02	2000815	293,38	294,00	1,21
P18-02	2000816	294,00	294,63	0,92
P18-02	2000817	313,51	313,85	0,04
P18-02	2000818	315,97	316,10	0,03
P18-02	2000819	319,17	319,28	0,04
P18-02	2000821	321,88	322,06	0,29
P18-02	2000822	331,86	332,50	1,01
P18-02	2000824	332,50	333,14	0,92
P18-11	2000825	24,25	24,50	0,04
P18-11	2000828	53,04	53,17	2,20
P18-11	2000829	156,91	157,04	0,03
P18-11	2000830	166,49	166,83	0,03
P18-11	2000831	170,80	171,06	1,57
P18-11	2000832	195,53	195,66	1,81
P18-11	2000833	294,84	295,00	0,59
P18-11	2000834	297,05	297,52	1,46
P18-11	2000835	300,11	300,27	0,04
P18-11	2000836	309,05	309,59	0,56
P18-11	2000837	310,31	310,62	0,03
P18-11	2000839	310,91	311,08	1,14
P18-11	2000840	316,86	317,70	0,69
P18-11	2000841	317,70	318,54	1,30
P18-11	2000842	320,73	321,50	0,16
P18-11	2000843	321,50	322,43	0,89
P18-11	2000844	326,25	326,66	1,66

P18-11	2000845	326,72	327,08	1,74
P18-11	2000847	332,24	332,70	1,19
P18-11	2000848	335,73	335,97	0,59
P18-11	2000849	350,00	350,18	0,03
P18-11	2000850	384,32	384,72	1,52
P18-11	2000851	419,32	419,51	0,05
P18-11	2000852	419,68	419,90	0,33
P18-11	2000853	420,03	420,34	0,22
P18-11	2000854	420,91	421,50	1,27
P18-11	2000855	421,50	422,05	1,29
P18-11	2000857	466,03	466,61	0,35
P18-11	2000865	467,18	467,32	0,03
P18-11	2000866	475,00	475,33	0,09
P18-11	2000867	477,38	478,00	1,05
P18-11	2000868	478,46	478,69	1,12
P18-11	2000869	478,92	479,25	0,47
P18-11	2000870	494,87	495,10	0,23
P18-11	2000871	495,41	495,76	0,98
P18-11	2000873	503,64	504,38	1,18
P18-01	2000874	22,50	22,73	0,03
P18-01	2000875	44,30	44,55	0,02
P18-01	2000876	59,61	59,71	0,03
P18-01	2000877	95,71	95,94	0,94
P18-01	2000886	100,26	100,37	0,02
P18-01	2000887	104,42	104,66	0,04
P18-01	2000888	106,26	106,80	0,03
P18-01	2000889	108,39	108,98	0,33
P18-01	2000890	110,22	110,40	0,02
P18-01	2000891	119,16	119,26	0,03
P18-01	2000892	119,40	119,64	0,03
P18-01	2000893	120,75	121,04	0,07
P18-01	2000894	149,12	149,32	0,03

P18-01	2000895	151,73	151,90	0,02
P18-01	2000896	160,37	160,77	0,07
P18-01	2000897	162,90	163,34	0,04
P18-01	2000899	165,25	165,35	0,08
P18-01	2000900	200,57	200,69	0,02
P18-01	2000901	204,61	205,16	0,69
P18-01	2000902	206,76	207,02	0,92
P18-01	2000903	215,65	216,16	0,98
P18-01	2000904	216,47	216,97	0,93
P18-01	2000905	216,97	217,52	0,16
P18-01	2000906	279,92	280,38	0,03
P18-01	2000907	292,31	292,90	1,23
P18-01	2000909	292,90	293,43	1,69
P18-01	2000910	293,62	294,09	0,84
P18-01	2000911	294,28	294,70	0,85
P18-01	2000912	309,40	309,83	0,62
P18-01	2000914	322,92	323,60	0,96
P18-01	2000915	323,60	324,25	1,33
P18-01	2000916	324,56	324,66	1,80
P18-01	2000917	324,95	325,34	1,04
P18-01	2000919	336,33	336,44	0,02
P18-01	2000920	341,20	341,32	0,03
P18-01	2000921	341,38	341,59	0,02
P18-17	2000922	51,80	52,40	0,60
P18-17	2000924	134,71	134,90	0,02
P18-17	2000926	147,87	148,40	1,27
P18-17	2000927	148,40	148,96	1,68
P18-17	2000928	176,90	177,19	0,53
P18-17	2000929	180,00	180,11	0,03
P18-17	2000931	214,28	214,46	0,05
P18-17	2000933	215,03	215,24	0,03
P18-17	2000934	227,32	228,00	1,38


P18-17	2000935	228,00	228,60	1,76
P18-17	2000936	228,60	229,20	1,05
P18-17	2000937	229,20	229,83	0,80
P18-17	2000939	243,94	244,13	0,02
P18-17	2000940	270,04	270,18	0,06
P18-17	2000941	270,54	270,91	0,03
P18-17	2000949	289,56	290,20	1,37
P18-17	2000950	290,20	290,80	1,65
P18-17	2000951	290,80	291,40	1,35
P18-17	2000952	291,40	292,02	1,38
P18-17	2000954	292,61	292,80	0,03
P18-12	2000955	3,59	3,75	2,82
P18-12	2000956	13,85	14,45	0,10
P18-12	2000958	14,45	15,14	0,74
P18-12	2000959	15,22	15,47	0,92
P18-12	2000960	25,00	25,20	0,02
P18-12	2000961	44,00	44,43	0,00
P18-12	2000962	95,93	96,07	0,03
P18-12	2000963	97,34	97,44	0,04
P18-12	2000964	135,67	135,73	1,54
P18-12	2000965	158,00	158,10	0,02
P18-12	2000966	162,69	162,95	0,50
P18-12	2000968	163,16	163,28	0,03
P18-12	2000969	167,62	167,75	0,02
P18-12	2000970	210,96	211,15	0,17
P18-12	2000971	217,52	217,79	0,05
P18-12	2000972	223,33	223,54	0,03
P18-12	2000973	225,96	226,07	0,03
P18-12	2000974	229,40	229,66	0,40
P18-12	2000975	236,42	236,66	0,01
P18-12	2000976	238,40	239,09	0,02
P18-12	2000977	241,50	241,79	0,05

P18-12	2000979	242,21	242,60	0,05
P18-12	2000980	245,21	245,47	0,02
P18-12	2000981	260,73	260,83	0,05
P18-12	2000982	261,67	262,28	0,12
P18-12	2000983	262,79	263,40	0,87
P18-12	2000984	268,87	269,07	0,03
P18-12	2000985	269,35	269,84	0,02
P18-12	2000986	276,68	276,82	0,01
P18-12	2000987	279,68	279,83	0,02
P18-12	2000988	283,40	283,57	0,66
P18-12	2000989	283,72	284,07	1,18
P18-12	2000990	284,07	284,57	0,93
P18-12	2000991	284,57	285,07	1,12
P18-12	2000992	285,07	285,88	0,94
P18-12	2000993	286,60	286,97	0,90
P18-12	2001001	292,66	293,14	0,17
P18-12	2001002	296,30	296,47	0,02
P18-12	2001003	298,70	299,22	0,91
P18-12	2001004	346,70	346,95	1,03
P18-12	2001005	346,99	347,56	1,88
P18-12	2001006	352,74	352,95	0,02
P18-12	2001008	362,04	362,14	0,01
P18-12	2001009	385,27	385,39	0,04
P18-12	2001010	386,41	387,10	1,17
P18-12	2001011	387,10	387,70	0,78
P18-12	2001012	391,40	391,49	0,03
P18-12	2001013	429,51	429,91	0,09
P18-12	2001014	444,24	444,41	0,04
P18-12	2001015	445,35	445,99	1,40
P18-12	2001017	446,50	446,63	0,51
P18-12	2001018	447,19	447,76	0,08
P18-12	2001019	466,50	466,67	0,64


P18-12	2001020	467,09	467,67	0,65
P18-12	2001021	468,28	468,62	0,43
P18-14	2001024	58,09	58,17	0,00
P18-14	2001025	60,40	60,66	0,02
P18-14	2001026	91,90	92,04	0,05
P18-14	2001028	97,78	97,90	0,04
P18-14	2001029	117,44	117,58	0,04
P18-14	2001030	133,47	133,57	0,08
P18-14	2001031	134,49	134,66	0,06
P18-14	2001032	143,54	143,72	0,14
P18-14	2001033	145,21	145,33	0,05
P18-14	2001034	197,21	197,83	0,90
P18-14	2001035	201,45	201,96	1,36
P18-14	2001043	215,41	215,56	0,02
P18-14	2001045	216,50	216,61	0,03
P18-14	2001046	222,57	222,92	1,68
P18-14	2001047	227,43	227,55	0,03
P18-14	2001048	228,20	228,4	0,02
P18-14	2001049	232,53	232,6	0,02
P18-14	2001050	232,70	233,04	1,38
P18-14	2001051	301,01	301,2	0,01
P18-14	2001052	311,74	312,29	0,64
P18-14	2001054	317,8	317,9	0,02
P18-14	2001055	357,41	357,58	0,03
P18-14	2001056	358,6	359,02	0,91
P18-14	2001058	359,15	359,79	0,40
P18-14	2001059	398,8	399,22	0,11
P18-14	2001060	408,25	408,9	0,94
P18-14	2001061	409,12	410,1	0,80
P18-14	2001062	411,16	411,6	0,84
P18-14	2001063	437,79	437,89	0,04
P18-14	2001064	441,32	441,91	0,11

P18-14	2001066	441,91	442,42	0,97
P18-14	2001067	444,85	445,16	0,56
P18-18	2001068	145,80	146,00	0,01
P18-18	2001069	203,52	204,30	0,89
P18-18	2001071	204,30	205,12	0,99
P18-18	2001072	205,70	205,82	0,05
P18-18	2001073	210,30	210,49	0,02
P18-18	2001074	254,87	255,28	0,42
P18-18	2001076	255,28	255,86	0,05
P18-18	2001084	272,18	273,15	1,26
P18-18	2001085	273,54	274,01	0,28
P18-18	2001087	322,50	322,66	0,03
P18-18	2001089	327,79	328,30	0,35
P18-18	2001090	360,83	361,37	0,74
P18-18	2001091	361,68	361,76	1,08
P18-18	2001092	361,80	361,85	0,32
P18-18	2001094	362,38	362,55	1,08
P18-18	2001095	363,95	364,09	0,04
P18-18	2001096	364,21	364,86	0,02
P18-16	2001124	51,23	51,34	0,03
P18-16	2001125	52,58	52,73	0,02
P18-16	2001126	76,93	77,05	0,05
P18-16	2001127	90,02	90,20	0,35
P18-16	2001129	108,93	109,03	0,62
P18-16	2001130	111,87	112,00	0,03
P18-16	2001131	141,66	142,03	1,18
P18-16	2001133	144,84	145,01	0,37
P18-16	2001134	184,72	185,09	1,46
P18-16	2001135	188,19	188,57	1,05
P18-16	2001143	192,60	192,93	0,43
P18-16	2001144	208,75	208,87	0,21
P18-16	2001146	210,60	211,25	0,55

P18-16	2001147	214,24	214,44	0,05
P18-16	2001148	273,41	273,69	0,02
P18-16	2001149	299,26	299,40	0,01
P18-16	2001150	341,57	341,78	0,02
P18-16	2001151	344,88	345,87	1,15
P18-16	2001152	398,43	398,81	0,07
P18-16	2001154	408,58	408,98	0,63
P18-16	2001155	409,34	410,02	1,60
P18-16	2001157	411,77	412,1	0,04
P18-16	2001158	434,75	434,89	0,02
P18-16	2001159	451,23	451,57	0,59
P18-16	2001160	452,54	452,75	0,04
P18-19	2001097	40,47	40,84	0,02
P18-19	2001099	138,07	138,16	0,02
P18-19	2001100	143,84	143,92	0,02
P18-19	2001101	181,23	181,76	0,11
P18-19	2001103	184,69	184,90	0,04
P18-19	2001105	223,43	223,64	0,53
P18-19	2001106	223,91	224,28	0,43
P18-19	2001107	235,40	236,30	1,12
P18-19	2001108	236,85	237,20	0,23
P18-19	2001109	250,81	251,15	0,02
P18-19	2001111	271,24	271,39	0,02
P18-19	2001112	292,00	292,90	1,48
P18-19	2001120	292,90	293,86	1,52
P18-19	2001121	294,11	294,20	0,48
P18-19	2001122	306,27	306,38	0,02

Plan 1: Overview map of showing drill hole locations and projected pathways.

Cross section showing inferred extensions to the interpreted model in blue.