ASX RELEASE

Locksley Resources

25th November 2021

LOCKSLEY RESOURCES LIMITED ACN 629 672 144

Level 11, London House 216 St. Georges Terrace Perth Western Australia 6000 Tel: +61 (08) 9481 0389 Facsimile: +61 (08) 9463 6103 Website: www.locksleyresources.com.au

Contact:

Mr Stephen Woodham Managing Director Tel: +61 417 293 449 woodhams@locksleyresources.com.au

Directors

Adam Giles Stephen Woodham Stephen Brockhurst

Ticker ASX: LKY

Shares on Issue 56,000,001

DRILLING RESULTS SUPPORT RESOURCE DEFINITION

- Results received for 4 diamond drill holes and 23 reverse circulation (RC) drill holes
- Mineralisation observed in all holes
- Up to 10.3% Cu and 6.9g/t Au¹
- Examination of previous drilling shows numerous unsampled areas of mineralisation
- Results remain pending for a further 8 drill holes from the recent programmes and 2 historic holes from 2020
- Significant results include

CAD001 1.79m @ 4.16% Cu, 1.12g/t Au from 69.74m CAD002 9.50m @ 2.39% Cu, 0.79g/t Au from 109.5m CAD003 24.00m @ 0.51% Cu, 0.28g/t Au from 57.0m TORC001 2.0m @ 1.03% Cu, 0.14g/t Au from 30.0m TORC003 3.0m @ 1.04% Cu, 0.31g/t Au from 31.0m TORC013 6.0m @ 0.73% Cu, 1.50g/t Au from 50.0m TORC018 6.0m @ 0.96% Cu, 0.63g/t Au from 100.0m TORC019 17.0m @ 0.54% Cu from 3.0m

Locksley Resources is pleased to advise that assay results have been received for 27 drill holes completed in August, September and October 2021 at the Tottenham Copper Project in central New South Wales.

Locksley's Managing Director Steve Woodham commented "

"Locksley are delighted by these very positive drilling results. The copper numbers confirm the consistency and robust nature of the deposits. The project continues to deliver additional copper value as the Company moves toward a JORC 2012 compliant Resource calculation. We look forward to updating the market as additional pending results come in. The deposits remain open in multiple directions including down plunge and along strike.

 $^{^1}$ CAD001 0.48m @ 10.35% Cu, 2.31g/t Au, 12g/t Ag from 71.05m ; TORC013 1.00m @ 1.69% Cu, 6.9g/t Au, 13g/t Ag from 50.00m

Assay results have been received for 4 diamond drill holes and 23 RC drill holes from the Chris Watson, Orange Plains and Carolina Deposits. Hole location data is presented as Table 1 and Figures 1 and 3. Anomalous results presented as Table 2. All holes reported on to date intersected Au – Cu ± Ag ± Zn mineralisation. Results remain pending for 3 diamond drill holes and 5 RC holes from the recent programmes. Results also remain pending for additional sampling of holes TMD029 and TMD030 that were drilled in 2020.

Carolina Deposit Diamond Drilling

The Carolina Deposit lies 9km ENE of Tottenham. Holes CAD001 to CAD006 were drilled in September 2021 for 1,260.4m. Results have been received for holes CAD001, CAD002, and CAD003. Results remain pending for holes CAD004, CAD005, and CAD006. Holes TMD029 and TMD030 were drilled in late 2020 by private company Bacchus Resources Pty Ltd, to test the down dip extent of the Carolina Deposit. It is currently thought that these holes pass to the south of the high grade plunge of the deposit. These holes have been recovered, and relogged to confirm the 2020 sampling. Additional sampling of mineralised material has occurred with results pending.

CAD001 (141.4m)

This north directed hole was intended to provide geotechnical information and metallurgical sample towards the southern end of a conceptual open pit. Ground conditions were poor in the top 60m with strong weathering and faulting. It appears that faulting may define the southern edge of the Carolina deposit. A supergene ore zone was intercepted from 69.7m to 74.7m, containing pyrite, cuprite, and chalcocite. This zone returned:

1.79m @ 1.12g/t Au, 5g/t Ag, 4.16% Cu from 69.74m

The interval included a zone of semi massive chalcocite that returned:

0.48m @ 2.31g/t Au, 12g/t Ag, 10.35% Cu from 71.05m

CAD002 (189.6m)

This west directed hole was drilled to provide geotechnical information and metallurgical sample towards the eastern side of a conceptual open pit and to infill between high grade results in TMD017 (3.77m @ 6.2% Cu, 1.7ppm Au)¹ and CLRC005 (9m @ 2.4% Cu, 0.2ppm Au)². Geotechnical conditions are good with intact rock from shallow depths. A hanging wall pyrite + arsenopyrite + chalcopyrite sulphide horizon is present from 49.95m which returned:

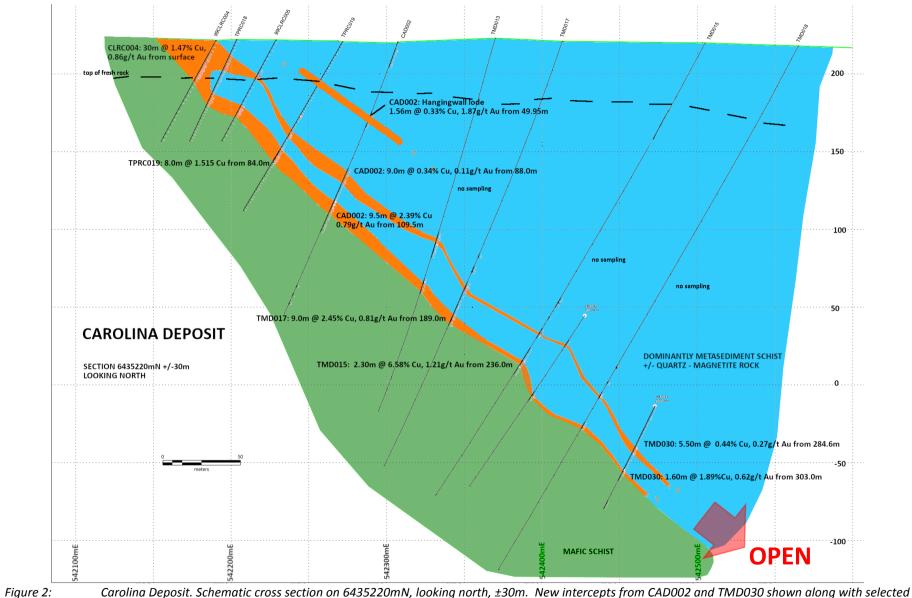
1.56m @ 1.87g/t Au, 6g/t Ag , 0.33% Cu, 0.50% Zn from 49.95m

This matches sparse historical reports of an upper gold horizon with grades to 5.1g/t Au in hole CRC01³. Many of the historic drill holes have no sampling present to confirm or refute a more widespread distribution of this horizon. The two previously defined ore zones were intersected and returned results of:

9.00m @ 0.11g/t Au, 0.34% Cu from 88.00m (Upper horizon)

9.50m @ 0.79g/t Au, 2g/t Ag, 2.39% Cu from 109.50m (Lower horizon)

¹ Mincor Annual report 2011


² Jones, P., 2000. EL4908 TOTTENHAM Straits Exploration – Arimco Mining Joint Venture Annual Exploration and Final Report 14th October 1998 – 13th October 1999. Report No.65 Open file report GS2000/156 R00042470

³ Schwebel, P., 1996.Tottenham EL4908 Annual Report for the 12 Months to 13 October 1996. Arimco Mining Pty. Ltd. Report 96.224 Open file report GS21996/465 R00002294

Figure 1:

Carolina Deposit. Previous drilling (black dots), and recent holes referred to in this release. (Map Grid Australia, zone 55)

historic results.

CAD003 (120.4m)

This south directed hole was intended to provide geotechnical information and metallurgical sample towards the northern end of a conceptual open pit. Geotechnical conditions are good with intact rock from shallow depths. A weak oxide result of 1.00m @ 0.46g/t Au from 21.00m appears to correlate with the upper gold zone intersected in CAD002 and CRC01.

Supergene mineralisation containing chalcocite was logged between 58m and 60.5m and 66m to 68m. Primary pyrite + chalcopyrite + magnetite mineralisation is observed between 70.5m and 81m. These zones returned a result of

24.00m @ 0.28g/t Au 1g/t Ag, 0.51% Cu from 57.00m

TMD029 (318.7m)

This hole was drilled in late 2020 by private company Bacchus Resources Pty Ltd, to test the down dip extent of the Carolina Deposit. Sampling of the main mineralised zone returned a narrow intercept of:

0.35m @ 2.41g/t Au, 5g/t Ag, 5.28% Cu from 295.25m

It is currently thought that this hole passes to the south of the high grade section of the deposit. This core has been recovered, and relogged to confirm the 2020 sampling. Additional sampling of mineralised material has occurred with results pending.

TMD030 (330.8m)

This hole was drilled in late 2020 by private company Bacchus Resources Pty Ltd, to test the down dip extent of the Carolina Deposit. Sampling of the upper ore horizon returned:

5.50m @ 0.26g/t Au, 2g/t Ag, 0.24% Cu from 284.60m

The lower ore horizon returned:

1.60m @ 0.62g/t Au, 3g/t Ag, 1.89% Cu from 303.00m

It is currently thought that this hole passes to the south of the high grade section of the deposit. This core has been recovered, and relogged to confirm the 2020 sampling. Additional sampling of mineralised material has occurred with results pending.

Orange Plains Deposit Diamond Drilling

A single diamond drill hole was completed at the Orange Plains Deposit, Hole location is shown in Figure 3.

TOD001 (303.5m)

This west directed hole located the fault that displaces the mineralised horizons between the Chris Watson and Orange Plains Deposits between 170 and 180m. The fault appears to trend north -south and is steeply dipping. The fault zone is weakly mineralised with quartz veining and pyrite. A narrow sulphide zone was intersected at 80m that appears to be the attenuated northern margin of the Orange Plains Deposit.

Chris Watson and Orange Plains Deposits RC Drilling

28 RC drill holes (TORC001 to TORC028), were completed over the Chris Watson and Orange Plains Deposits for 3,398m of drilling in October 2021. Hole locations are shown in Figure 3. Results have been received for holes TORC001 to TORC021, TORC024, and TORC025.

Chris Watson to Orange Plains area showing previous drilling (black dots), and holes mentioned in this release as yellow crosses. Pink crosses represent holes with assay results pending. Yellow boxes show results from the current release. White boxes show historic results from holes being relogged and sampled. Full results presented as Table 2. (Map Grid Australia, zone 55)

All holes to date have intersected some mineralisation. Noteworthy results include:

TORC001 2.0m @ 1.03% Cu, 0.14g/t Au from 30.0m TORC003 3.0m @ 1.04% Cu, 0.31g/t Au from 31.0m TORC013 6.0m @ 0.73% Cu, 1.50g/t Au from 50.0m TORC018 6.0m @ 0.96% Cu, 0.63g/t Au from 100.0m TORC019 17.0m @ 0.54% Cu from 3.0m TORC019 3.0m @ 1.88% Cu, 0.41g/t Au from 33.0m

The results to date have confirmed historic drilling and extended the ore zones.

Chris Watson Deposit Historic Diamond drilling

Over 9,000m of previous diamond drilling is stored at the Orange Plains field camp. Many of these holes contain unsampled intervals of mineralised core. Holes TMD021, TMD022, TMD028 and TPDD008, from the deeper sections of the Chris Watson Deposit, are being relogged and all unsampled mineralisation sent for assay. All of these holes contain significant copper mineralisation that demonstrates the system remains open at depth. Assay results are not expected until January 2022.

Exploration Camp at the former Orange Plains Mine with stored Mincor drill core on right

Next Steps

Once all assay results from the recent programmes are received, data will be sent to an independent consultant to calculate a resource for the Mount Royal to Orange Plains and Carolina Deposits.

Historic core from the Chris Watson Deposit is currently being relogged and sampled. Multiple historic drill holes are present at the WB Clarke Geoscience Centre in western Sydney. The relaxation of COVID-19 restrictions now means that these holes are accessible to be relogged and sampled through to February 2022.

Hole ID	Prospect	Hole Type	MGA94z55E	MGA94z55N	RL	Dip	MGA Azimuth	Depth (m)
TOD001	Orange Plains	DDH	534149.0	6433314.4	230.9	-50	270.9	303.5
CAD001	Carolina	DDH	542273.8	6434986.4	219.8	-60	350.9	141.4
CAD002	Carolina	DDH	542307.0	6435219.6	220.0	-70	265.9	189.6
CAD003	Carolina	DDH	542232.5	6435299.5	219.9	-58	206.9	120.4
CAD004	Carolina	DDH	542356.5	6434641.1	214.9	-67	275.9	198.6
CAD005	Carolina	DDH	542458.2	6434635.8	214.9	-70	270.9	291.7
CAD006	Carolina	DDH	542478.8	6434796.3	218.3	-75	276.9	318.7
TMD029	Carolina	DDH	542572.2	6435300.0	214.9	-60.0	262.5	318.7
TMD030	Carolina	DDH	542576.4	6435299.5	214.8	-66.0	252.6	330.8
TORC001	Chris Watson	RC	533613.7	6433519.3	241.1	-60	359.9	66.0
TORC002	Chris Watson	RC	533774.4	6433431.8	237.8	-60	1.9	96.0
TORC003	Chris Watson	RC	533827.6	6433469.3	236.6	-60	353.9	78.0
TORC004	Chris Watson	RC	533860.2	6433423.3	235.7	-60	359.9	108.0
TORC005	Chris Watson	RC	533917.0	6433437.5	235.0	-60	359.9	120.0
TORC006	Chris Watson	RC	533966.2	6433468.1	234.3	-60	0.9	96.0
TORC007	Chris Watson	RC	534012.3	6433418.4	233.4	-60	0.9	114.0
TORC008	Chris Watson	RC	534066.3	6433423.3	232.4	-60	359.9	114.0
TORC009	Chris Watson	RC	534117.2	6433447.9	231.9	-60	1.9	86.0
TORC010	Orange Plains	RC	534165.3	6433477.7	231.3	-60	1.9	78.0
TORC011	Orange Plains	RC	534164.0	6433436.3	231.0	-60	1.9	108.0
TORC012	Orange Plains	RC	534157.8	6433375.9	231.0	-60	1.4	126.0
TORC013	Orange Plains	RC	534165.0	6433330.8	230.8	-60	1.4	156.0
TORC014	Orange Plains	RC	534212.7	6433308.3	230.0	-60	0.4	168.0
TORC015	Orange Plains	RC	534263.9	6433426.6	229.5	-60	0.9	96.0
TORC016	Chris Watson	RC	533856.5	6433259.4	236.2	-60	0.9	204.0
TORC017	Orange Plains	RC	534115.1	6433226.0	231.4	-60	0.9	204.0
TORC018	Orange Plains	RC	534219.3	6433206.1	230.6	-60	359.9	204.0
TORC019	Orange Plains	RC	534365.1	6433350.5	228.2	-60	357.9	78.0
TORC020	Orange Plains	RC	534413.7	6433343.9	227.5	-60	359.9	78.0
TORC021	Orange Plains	RC	534465.9	6433308.4	227.7	-60	4.9	90.0
TORC022	Orange Plains	RC	534563.9	6433139.0	228.3	-60	1.4	150.0
TORC023	Orange Plains	RC	534563.6	6433301.0	226.6	-60	359.9	78.0
TORC024	Orange Plains	RC	534879.2	6432988.3	224.0	-60	2.9	180.0
TORC025	Orange Plains	RC	534814.8	6433053.1	224.2	-60	1.4	168.0
TORC026	Orange Plains	RC	534616.7	6433023.3	227.4	-60	2.9	198.0
TORC027	Orange Plains	RC	534664.2	6433253.1	224.8	-60	1.9	78.0
TORC028	Orange Plains	RC	534765.2	6433232.3	223.6	-65	5.9	78.0

Table 1:

Tottenham Project hole locations

Prospect	Hole ID	From (m)	To (m)	Interval (m)	Estimated True Width (m)	Au (ppm)	Ag (ppm)	Cu (%)	Zn (%)	Ore Type
Carolina	CAD001	10.20	11.40	1.20	0.9		6			oxide
Carolina	CAD001	69.74	71.53	1.79	1.3	1.12	5	4.16		transitional
incl	udes	71.05	71.53	0.48	0.4	2.31	12	10.35		transitional
Carolina	CAD002	5.00	6.00	1.00	0.9			0.17		oxide
Carolina	CAD002	49.95	51.51	1.56	1.4	1.87	6	0.33	0.50	sulphide
Carolina	CAD002	88.00	97.00	9.00	7.7	0.11		0.34		sulphide
incl	udes	96.00	97.00	1.00	0.9	0.50	3	1.75		sulphide
Carolina	CAD002	109.50	119.00	9.50	8.1	0.79	2	2.39		sulphide
incl	udes	114.00	116.60	2.60	2.2	1.51	5	4.33		sulphide
Carolina	CAD002	121.00	122.00	1.00	0.9			0.17		sulphide
Carolina	CAD002	175.00	176.00	1.00	0.9	0.36				sulphide
Carolina	CAD003	21.00	22.00	1.00	0.5	0.46				oxide
Carolina	CAD003	57.00	81.00	24.00	12.0	0.28	1	0.51		transitional + sulphide
	udes	76.00	80.00	4.00	2.0	0.65	2	1.11		sulphide
Chris Watson	TORC001	30.00	32.00	2.00	1.9	0.14	3	1.03		transitional
Chris Watson	TORC001	33.00	35.00	2.00	1.9			0.12		transitional
Chris Watson	TORC002	39.00	41.00	2.00	1.9	0.11	2	0.29	0.15	transitional
Chris Watson	TORC003	19.00	20.00	1.00	1.0	0.08	1	0.12		oxide
Chris Watson	TORC003	31.00	34.00	3.00	2.9	0.31	5	1.04	0.14	transitional
	udes	32.00	33.00	1.00	1.0	0.64	10	2.02	0.18	transitional
Chris Watson	TORC003	36.00	42.00	6.00	5.7				0.18	transitional
Chris Watson	TORC004	70.00	71.00	1.00	1.0			0.17		sulphide
Chris Watson	TORC005	41.00	42.00	1.00	1.0				0.21	transitional
Chris Watson	TORC006	19.00	22.00	3.00	2.9			0.20		oxide
Chris Watson	TORC006	33.00	40.00	7.00	6.7			0.46		oxide
Chris Watson	TORC007	44.00	45.00	1.00	1.0	0.10	2	0.32		transitional
Chris Watson	TORC008	39.00	40.00	1.00	1.0	0.12	1	0.23		transitional
Chris Watson	TORC009	23.00	30.00	7.00	6.7		1	0.25		oxide
Chris Watson	TORC009	82.00	83.00	1.00	1.0			0.17		sulphide
Orange Plains	TORC010	3.00	6.00	3.00	2.9			0.13		oxide
Orange Plains	TORC010	16.00	29.00	13.00	11.7			0.11		oxide
Orange Plains	TORC011	23.00	30.00	7.00	6.7			0.20	0.15	oxide
Orange Plains	TORC011	40.00	41.00	1.00	1.0			0.43		transitional

Prospect	Hole ID	From (m)	To (m)	Interval (m)	Estimated True Width (m)	Au (ppm)	Ag (ppm)	Cu (%)	Zn (%)	Ore Type
Orange Plains	TORC012	3.00	16.00	13.00	11.7			0.12		oxide
Orange Plains	TORC012	21.00	25.00	4.00	3.9			0.11		oxide
Orange Plains	TORC012	61.00	63.00	2.00	2.0		1	0.17	0.20	sulphide
Orange Plains	TORC013	24.00	25.00	1.00	1.0				0.14	oxide
Orange Plains	TORC013	28.00	29.00	1.00	1.0				0.31	oxide
Orange Plains	TORC013	30.00	35.00	5.00	4.8	0.15	2	0.28	0.14	oxide
Orange Plains	TORC013	35.00	36.00	1.00	1.0				0.13	oxide
Orange Plains	TORC013	50.00	56.00	6.00	5.7	1.50	5	0.73	0.52	sulphide
incl	udes	50.00	51.00	1.00	1.0	6.90	13	1.69	0.25	sulphide
Orange Plains	TORC014	18.00	22.00	4.00	3.9				0.14	oxide
Orange Plains	TORC014	44.00	47.00	3.00	2.9	0.23	3	0.42	0.23	transitional
Orange Plains	TORC014	56.00	57.00	1.00	1.0	0.12				sulphide
Orange Plains	TORC014	58.00	59.00	1.00	1.0	0.11	1	0.23	0.55	sulphide
Orange Plains	TORC015	4.00	6.00	2.00	2.0			0.13		oxide
Orange Plains	TORC015	25.00	29.00	4.00	3.9			0.14		oxide
Chris Watson	TORC016	51.00	54.00	3.00	2.9				0.35	sulphide
Chris Watson	TORC016	98.00	102.00	4.00	3.9		1	0.16		sulphide
Orange Plains	TORC017	83.00	84.00	1.00	1.0	0.18				sulphide
Orange Plains	TORC017	92.00	93.00	1.00	1.0	0.15				sulphide
Orange Plains	TORC017	109.00	110.00	1.00	1.0		1	0.16	0.17	sulphide
Orange Plains	TORC017	122.00	123.00	1.00	1.0			0.23	0.12	sulphide
Orange Plains	TORC018	94.00	95.00	1.00	1.0	0.22				sulphide
Orange Plains	TORC018	100.00	106.00	6.00	5.7	0.63	4	0.96	0.37	sulphide
incl	udes	104.00	105.00	1.00	1.0	2.23	11	2.53	0.68	sulphide
Orange Plains	TORC018	126.00	129.00	3.00	2.9		2	0.41		sulphide
Orange Plains	TORC019	3.00	20.00	17.00	15.3		1	0.54		oxide
incl	udes	14.00	17.00	3.00	2.9		1	2.02	0.15	oxide
Orange Plains	TORC019	23.00	25.00	2.00	2.0				0.11	oxide
Orange Plains	TORC019	25.00	30.00	5.00	4.8	0.36	1	0.12		oxide

Prospect	Hole ID	From (m)	To (m)	Interval (m)	Estimated True Width (m)	Au (ppm)	Ag (ppm)	Cu (%)	Zn (%)	Ore Type
Orange Plains	TORC019	33.00	36.00	3.00	2.9	0.41	5	1.88	0.10	transitional
incl	udes	33.00	34.00	1.00	1.0	0.84	9	3.65	0.18	transitional
Orange Plains	TORC019	36.00	39.00	3.00	2.9				0.15	transitional
Orange Plains	TORC020	3.00	4.00	1.00	1.0		1	0.11		oxide
Orange Plains	TORC020	65.00	66.00	1.00	1.0			0.10		sulphide
Orange Plains	TORC021	4.00	14.00	10.00	9.0	0.14	1	0.40	0.15	oxide
Orange Plains	TORC021	19.00	20.00	1.00	1.0			0.12		oxide
Orange Plains	TORC021	30.00	32.00	2.00	2.0		1	0.29		sulphide
Orange Plains	TORC021	55.00	56.00	1.00	1.0	0.13	2	0.56		sulphide
Orange Plains	TORC024	35.00	36.00	1.00	1.0	0.12	4	0.25	0.95	transitional
Orange Plains	TORC025	11.00	14.00	3.00	2.9				0.11	oxide
Orange Plains	TORC025	47.00	48.00	1.00	1.0			0.10	0.12	transitional
Orange Plains	TORC025	104.00	105.00	1.00	1.0			0.13		sulphide
Orange Plains	TORC025	115.00	116.00	1.00	1.0			0.14		sulphide
Orange Plains	TOD001	79.00	80.00	1.00	0.7	0.26	2	0.24		sulphide
Carolina	TMD029	295.25	295.60	0.35	0.35	2.41	5	5.28		sulphide
Carolina	TMD030	284.60	290.10	5.50	4.7	0.26	2	0.44		sulphide
Carolina	TMD030	303.00	304.60	1.60	1.6	0.62	3	1.89		sulphide

Table 2: Anomalous intercepts (0.1g/t Au or 0.1% Cu or 0.1% Zn cutoff with up to 2m internal dilution)

The Board of Directors of Locksley Resources Limited authorised the release of this announcement.

Further information contact: Mr Stephen Woodham Managing Director T: +61 8 9481 0389 E: woodhams@locksleyresources.com.au

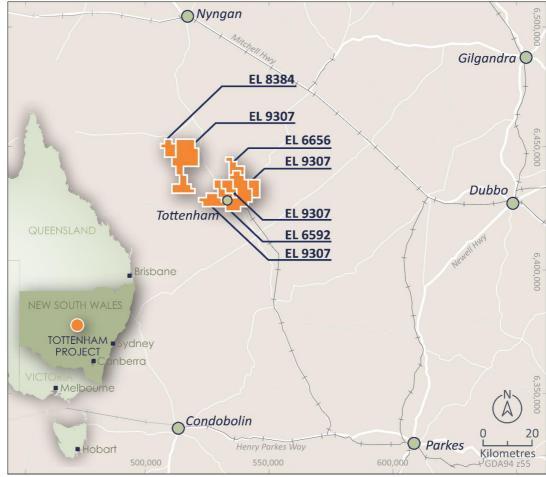
COMPLIANCE STATEMENTS

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning the Company's planned exploration program and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "expect," "intend," "may", "potential," "should,", "further" and similar expressions are forward-looking statements. Although the Company believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that further exploration will result in additional Mineral Resources.

Competent Person

Except where indicated, exploration and technical information above have been reviewed and compiled by Ian Cooper BSc (Hons), BE (Mining), MSc, a Competent Person who is a Member of the Australian Institute of Mining and Metallurgy, (Member Number 106609) with over 35 years of experience in metallic minerals mining, exploration and development, and has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Cooper is a full time employee and shareholder of Locksley Resources Limited and consents to the inclusion of this technical information in the format and context in which it appears.


Previously Reported information and other foot notes for reference

This report includes information that relates to announcements previously made to the ASX including exploration Results and Mineral Resources prepared and first disclosed under JORC Code 2012. The information was extracted from the Company's previous ASX announcements as follows:

- Locksley Resources (LKY) Prospectus 6 Jul 2021
- LKY:ASX Announcement 24 Aug 2021 "EXPLORATION UPDATE DRILLING COMMENCES AT TOTTENHAM"
- LKY:ASX Announcement 30 Sept 2021 RC DRILLING COMMENCES AT THE TOTTENHAM COPPER PROJECT, EXPLORATION UPDATE
- Mincor Resources Annual Report 2011

ABOUT THE TOTTENHAM PROJECT

The Tottenham Project is an advanced Cu-Au exploration project that consists of four Exploration Licences, (EL6592, EL6656, EL8384, EL9307), covering 470km², located in the Lachlan Fold Belt of central New South Wales.

Tottenham Project location

The Tottenham deposits are hosted within the Ordovician Girilambone Group that also host the Tritton and Girilambone Mines, 110km to the north-northwest (Aeris Resources Ltd.), and is immediately along strike from the Collerina Copper Deposit that is being progressed by Helix Resources Ltd. The recently discovered Constellation Deposit is also in this belt. Significant previous exploration has defined two exploration targets at the Mount Royal – Orange Plains and Carolina Deposits for an exploration target range of

7Mt @2% Cu, 1.0g/t Au to 14Mt @ 1.2% Cu, 0.5g/t Au.

The current focus is to convert this target into a resource consistent with the JORC 2012 code.

The Competent Person for this Exploration Target is Mr Jeremy Peters FAusIMM CP(Geo, Min) a Director of Burnt Shirt, who has sufficient experience and qualifications to postulate such targets. Mr Peters cautions that an Exploration Target is a statement or estimate of the exploration potential of a mineral deposit in a defined geological setting where there has been insufficient exploration to estimate a Mineral Resource, that the potential quantity and grade is conceptual in nature and that it is uncertain if further exploration will result in the estimation of a Mineral Resource.

JORC CODE 2012 TABLE 1

Section 1: Sampling Techniques and Data – Tottenham Project, Drilling

(Criteria in this section apply to all succeeding sections)

Criteria	Explanation	Commentary
	Nature and quality of sampling (e.g. cut channels, random chips, ar specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Drill core sampling is by sawn quarter PQ core and half HQ core. Nominal sample interval is 1m with a range of 0.3m to 1.5m. RC samples collected each metre using rotating cone splitter. All samples submitted to ALS Orange for preparation and assay.
Sampling	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Assay standards or blanks are inserted at least every 25 samples for diamond drill core. All sample weights show consistency with recovery and interval length.
Techniques	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	Each sample was dried, crushed and pulverised as per standard industry practice. Diamond drilling- core samples were taken at nominally 1m, but with a range between 0.5- 1.5m. Core samples are cut in half, dried, crushed and pulverised to 85% passing 75 microns. Gold (Au) was determined by 30g fire assay (method Au-AA25) with a detection limit 0.01ppm. Multielement assaying was completed for 48 elements by 0.25g four-acid digest with ICPMS determination (method ME-ICP61). RC samples assayed by aqua-regia digestion followed by ICP determination of Ag, As, Co, Cu, Fe, Pb, S, Zn, (method ICP-41).
Drilling Techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face - sampling bit or other type, whether core is oriented and if so, by what method, etc)	Triple tube diamond drilling completed using PQ3 core until fresh rock is reached then HQ3 coring. Additional intervals of PQ3 core were obtained in selected holes to aid geotechnical logging and obtain a larger sample size for possible metallurgical testwork. Core orientation was completed where possible using Reflex ™ method. RC drilling completed using 127mm face sampling hammer. Sample captured in cyclone and split using rotating cone splitter.
	Method of recording and assessing core and chip sample recoveries and results assessed.	Diamond drill core recovery recorded against intervals drilled as part of geotechnical logging to determine recovery. Recoveries are generally greater than 95% once in fresh rock. Areas of wet sample and poor recovery noted at time of RC drilling.
Drill Sample Recovery	Measures taken to maximise sample recovery and ensure representative nature of the samples	Diamond drilling utilising triple tube drilling and short drilling runs employed to maximise core recovery. Larger diameter PQ drilling used in weathered material to improve recovery. For RC drilling foam injection used to suppress water inflow and efforts made to maintain a dry hole before drilling.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no known relationship between sample recovery and grade. Where samples recoveries are less than 95% there is no relationship observed between grade and sample recovery. Relationships between sample recovery and grade are not considered significant where recoveries exceeded 95% in fresh rock. In rare cases powdery chalcocite was detected which may wash out during drilling and cutting, thus reducing copper assay grade. Additional care was taken in sampling of this material.

Criteria	Explanation	Commentary
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies	Systematic geological and geotechnical logging was undertaken when the holes were drilled. Data collected includes: • Nature and extent of weathering including location of base of complete weathering and top of fresh rock. • Nature and extent of lithologies. • Relationship between lithologies. • Amount and mode of occurrence of ore minerals. • Location, extent, and nature of structures such as bedding, cleavage, veins, faults etc. Structural data (alpha & beta) are recorded for orientated core. • Geotechnical data such as recovery, RQD, fracture frequency, qualitative IRS, microfractures, veinlets and number of defect sets. For some geotechnical holes the orientation, nature of defects and defect fill are recorded. • Regular density determinations by Archimedes method. • Regular magnetic susceptibility measurements.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography	Both qualitative and quantitative data is collected. Half core (HQ) & ¾ core (PQ) samples are retained in trays for future reference. All core photographed both dry and wet prior to assay sampling. RC chip samples retained in display chip trays. Chip trays photographed.
	The total length and percentage of the relevant intersections logged	All core was geologically and geotechnically logged.
	If core, whether cut or sawn and whether quarter, half or all core taken	Diamond drilling - core was sawn with half core (HQ) or quarter core (PQ) submitted for assay. Sampling was consistently on one side of the orientation line so that the same part of the core is sent for assay.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples collected using Metzke rotating cone splitter. Vast majority of samples collected dry. For RC drilling foam injection used to suppress water inflow and efforts made to maintain a dry hole before drilling.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique	Core samples were dried crushed and pulverised to 85% passing 75 microns. RC samples were dried and pulverised to 85% passing 75 microns. This is considered to appropriately homogenise the sample to allow subsampling for the various assay techniques.
Sub-sampling techniques and sample preparation	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples	Certified Reference Material (CRM) and blanks were inserted at least every 25 samples to assess the accuracy and reproducibility of the drill core results. The results of the standards were to be within ±8% variance from known certified result. If greater than 8% variance the standard and up to 10 samples each side were re-assayed. ALS conducted internal check samples every 20 samples for Au and every 20 samples for multielement assay.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	No field duplicates are taken for core samples. Core samples were cut in½ for HQ and¼ for PQ generally in down hole intervals of 1m, however, intervals can range from 0.3-1.5m. For RC drilling field duplicates were collected every 25 samples. This is considered representative of the in-situ material. The sample was crushed and pulverised to 85% passing 75 microns. This was considered to appropriately homogenise the sample.
	Whether sample sizes are appropriate to the grain size of the material being sampled	Sample sizes are industry standard and considered appropriate for the grainsize present.

	Criteria	Explanation	Commentary
		The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total	Standard assay procedures performed by a reputable assay lab, (ALS Group), were undertaken. Gold (Au) was determined by 30g fire assay (method Au-AA25) with a detection limit 0.0lppm. Multielement assaying was completed for 48 elements by 0.25g four-acid digest with ICPMS determination (method ME-ICP61). RC samples assayed by aqua-regia digestion followed by ICP determination of Ag, As, Co, Cu, Fe, Pb, S, Zn, (method ICP-41).Techniques are considered total.
	Quality of assay data and laboratory tests	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc	No geophysical tools were used in the determination of assay results. Magnetic susceptibility recorded using an Exploranum KT-9 kappameter.
		Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Certified reference material or blanks were inserted at least every 25 samples. Standards are purchased from Certified Reference Material manufacture companies. Standards were purchased in foil lined packets of between 50g and 60g. Different reference materials were used to cover high grade, medium grade, low grade, and trace ranges of elements, with a primary focus on copper and gold.
		The verification of significant intersections by either independent or alternative company personnel.	Drill data is compiled and collated and reviewed by senior staff. External consultants do not routinely verify exploration data until resource estimation procedures are deemed necessary. The intersection calculations were viewed by >1 geological personnel.
	Verification of sampling and assaying	The use of twinned holes.	Twinned holes have not been used in the drilling.
		Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Drill Hole Data including: meta data, any gear left in the drill hole, lithological, mineral, survey, sampling, density, magnetic susceptibility was collected and stored as physical and electronic copies or entered directly into an excel spread sheet using drop down codes. When complete the spreadsheet was combined into a master excel spreadsheet as the drill hole database. Assay data was provided by ALS via .csv spreadsheets. The data was validated using the results received from the known certified reference material. Hard copies of the assay certificates were stored with drill hole data such as drillers plods, invoices, and hole planning documents.
		Discuss any adjustment to assay data	Assay data is not adjusted.
		Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Historic drill hole collars were located using either a licenced surveyor, hand held GPS or on a local imperial or metric grid. Conversion of the local grid co-ordinates has been undertaken by previous exploration companies. Locksley has used DGPS surveying of drillholes (± 0.1m accuracy). Some historic drill holes were relocated and surveyed by DGPS as a check.
	Location of data points	Specification of the grid system used	All coordinates are based on Map Grid Australia Zone 55, Geodetic Datum of Australia 1994
	ponte	Quality and adequacy of topographic control	Historic drill hole collars were located using either a licenced surveyor, hand held GPS or on a local imperial or metric grid. Conversion of the local grid co-ordinates has been undertaken by previous exploration companies. Locksley has used DGPS surveying of drillholes (± 0.1m accuracy). Some historic drill holes were relocated and surveyed by DGPS as a check. Topography is subdued and vertical variation in hole locations is limited.

Criteria	Explanation	Commentary
	Data spacing for reporting of Exploration Results	Data spacing is variable. Drilling is a mix of infill between historic drilling and extensional drilling of a more exploratory nature,
Data spacing and distribution	Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Not Applicable as no resource estimate has been completed. Current drilling combined with historic drilling may be of sufficient density to calculate a mineral resource estimate in future.
	Whether sample compositing has been applied	Sample compositing is not applied.
Orientation of data	Whether the orientation of sampling achieves unbiased sampling of possible structures and extent to which this is known, considering the deposit type	Drilling was orientated to cross the mineralisation trend at variable angles and to test for structures in all directions. The use of orientated core allows estimates of the true width and orientation of the mineralisation to be made.
in relation to geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced sampling bias, this should be assessed and reported if material	No sample bias due to drilling orientation is known. However, the potential for bias is being investigated by the current drilling campaign.
Sample security	The measures taken to ensure sample security	Sample chain of custody has been managed by the employees of Locksley Resources, who commissioned the drilling, from the drill rig to assay laboratory. All samples are bagged in tied numbered calico bags, grouped into larger tied polyweave bags, or placed in a stillage crate and transported to ALS in Orange by Locksley personnel. All sample submissions are documented via ALS tracking system and all assays are reported via email. Sample pulps are returned to site and stored for an appropriate length of time (minimum 3 years). The Company has in place protocols to ensure data security.

Section 2: Reporting of Exploration Results - Tottenham Project

(Criteria listed in the previous section also apply to this section)

Criteria	Explanation	Commentary
Mineral Tenure and Land Tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings	All drilling on EL6592 which is 100% owned by Locksley Resources Ltd. EL6592, EL6656, EL8384 and EL9307 form the Tottenham Project. The majority of these licences are covered by freehold farm land. Parts of EL6592 are covered by the Tottenham and Carolina State Forests, administered by Forestry Corporation NSW.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area	All exploration licences are in good standing. EL6592 expires 29/6/2026. EL6656 expires 27/10/2026. EL8384 expires 28/7/2026. EL9307 expires 16/10/2027.

Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties	The Tottenham field had mining present from 1872 to 1977. Major mines were present at Mount Royal, Orange Plains, Bogan River, Ace, and Carolina. The most active period of production was between 1905 and 1917. Little or no production was recorded between 1921 and 1925, owing to a combination of low copper prices and drought. There was no production in 1928 and between 1931 and 1942. In 1943 minor tonnages were won from the Mt. Royal, and Bogan River mines. There was minor production each year from 1946 to 1977 which came from operations at the Mt. Royal, Bogan River, Underlay and Carolina Mines and from leaching at the Mt. Royal, Carolina and Underlay Mines. Significant exploration drilling has occurred at the Bogan River to Effies Ace group of mines and about the Carolina Mine. Main recent explorers are Arimco Mining – Straits Resources (1996-2001) with 93 RC holes and Mincor Resources – Bacchus Resources (2006 -2020) with 83 aircore holes, 104 RC holes and 48 diamond holes. All of this drilling appears to have been undertaken using standard industry practice. 19 historic holes are also present at the NSW government core archive.
Geology	Deposit type, geological setting and style of mineralisation	The Tottenham deposits are hosted within the Ordovician Girilambone Group. The project area lies within the Girilambone Anticlinorium Zone of the Lachlan Fold Belt. Rock types are dominantly sequences of turbidites comprising sandstone and siltstone as well as minor chert, and conglomerate. Interbedded mafic volcanic, volcaniclastic and intrusive mafic units show a spatial association with copper mineralisation. The Girilambone Group is characterised by north-south trending thrust-bounded packages that separate Early Ordovician (Narrama Formation) and Middle Ordovician (Ballast and Lang Formations) units. The Early Ordovician Narrama Formation (~475Ma) hosts the bulk of the mafic igneous units, coarser-clastics, quartz-magnetite units and mineralisation. The majority of the mafic units are interpreted to be sills that have intruded into unconsolidated turbiditic sediments. Younger sediments cover much of the belt resulting in limited outcrop of less than 10%. The Girilambone Group is regionally metamorphosed to greenschist facies with a complex deformation history and is strongly folded with noticeably more metamorphism and deformation in the Tottenham area. Tight isoclinal folds are observed at the sub-metre scale, although large open folds are common such as the Orange Plains anticline. Metamorphism and deformation are mostly related to the Early Silurian Benamberan Orogeny, (~435 Ma). Metamorphism in the Tottenham area has led to the rocks being described as metasedimentary and mafic schists. The deposits are considered to be Besshi - Type sulphide copper-gold deposits that have been modified by deformation. Besshi - Type deposits are named after deposits on the southern Japanese island of Shikoku. The mineralisation in these systems is typically copper-rich with lesser zinc, silver, gold and minor cobalt within well-developed iron-sulphide (pyrite / pyrrhotite) bodies. The host rocks are commonly sedimentary rocks, and, as at Tottenham, these have been intruded and interlayered with basaltic igneous rocks.
Drill hole Information	A summary of all information material ta the understanding of the exploration results including a tabulation of the following information for all Material drill holes: - easting and northing of the drill hole collar - elevation or RL (Reduced Level-elevation above sea level in metres) of the drill hole collar - dip and azimuth of the hole - down hole length and interception depth - hole length	See body of announcement.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Not applicable as drill hole information is included

Criteria	Explanation	Commentary
	In reporting Exploration Results, weighting, averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Where reported, drilling results have been length weighted. No high cut-off has been applied. Cut off grades for anomalous intervals are either 0.1% Cu or 0.1ppm Au with up to 2m internal dilution.
Data aggregation methods	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Intercepts are length weighted with no cutting of grades. This may lead to elevation of intercept grades due to the presence of a narrow interval of high-grade material. Such high-grade zones are reported as included intercepts inside the broader intercept.
	The assumptions used for any reporting of metal equivalent values should be clearly stated	No metal equivalences quoted.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Orientated drill core has been used to allow determination of orientation of structures and mineralisation. Orientation of the mineralisation and structural trends is constrained by previous drilling and outcrop.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See body of announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	See body of announcement, LKY Prospectus 6 Jul 2021 LKY:ASX Announcement 24 Aug 2021
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples-size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	See body of announcement, LKY Prospectus 6 Jul 2021 LKY:ASX Announcement 24 Aug 2021
	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further drill testing to assess the scale and grade of the mineralisation is planned along with investigation of related targets.
Further work	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	See body of announcement, LKY Prospectus 6 Jul 2021 LKY:ASX Announcement 24 Aug 2021