

Further high-grade gold zones intersected at Mt York

Latest assay results define a thick zone of shallow gold mineralisation at the eastern end of the historical Breccia Hill pit highlighting significant growth potential at Mt York

<u>Highlights</u>

Further significant assay results received from Reverse Circulation (RC) drilling at the 873,500oz Mt York Gold Project in the Pilbara Region of WA.

Latest results have identified new high-grade lodes and thick shallow gold mineralisation in areas with minimal drilling. Best new intercepts include:

- <u>20m @ 1.58g/t Au from 28m</u> in KMYC141, including: • <u>4m @ 4.42g/t Au from 44m</u>.
- 12m @ 1.73g/t Au from 132m in KMYC142, including:
 4m @ 2.89g/t Au from 136m.
- 4m @ 3.38g/t Au from 68m in KMYC140.
- 4m @ 2.51g/t Au from 96m in KMYC139.
- Thick zone of shallow mineralisation intersected at the eastern end of the Breccia Hill pit, with assays of up to 4.42g/t Au.
- Assay results pending for 28 drill holes, with several single-metre samples already in the laboratory awaiting analysis.
- Mining studies advancing and diamond drilling program planned for early next year.
- RC drilling program now completed for the year at the 873,500oz Mt York Gold Project with a total of 95 holes drilled for 14,988m.

Kairos' Executive Chairman, Terry Topping, said: "I would firstly like to congratulate our team on the successful completion of our 2021 drilling program at Mt York ahead of the onset of the northern wet season. We have been able to drill 95 holes for a total of just under 15,000m – a fantastic result which is testament to the dedication and hard work of our exploration field team. To all of them and the drillers who have supported us this year, a big thank-you.

"These latest results have built on our announcement of September, where we reported some exceptional results from 'The Gap' zone between the Main Hill and Breccia Hill pits. The latest results include a thick zone of shallow gold mineralisation at the eastern end of the Breccia Hill pit and some deeper extensions of previously intersected mineralisation, that we were able to target using a specialised track-mounted rig.

"We still have assay results pending for 28 holes, which should come through over the coming weeks and into early 2022. In addition, we are about to commence the previously announced follow-up in-fill drill air-core program at the Kangan Project. This will follow up the encouraging shallow gold results we reported recently and test some of the recently identified pegmatite targets, which have the potential for lithium mineralisation. With these and other programs in full swing, we expect to maintain a strong level of news-flow through into the New Year."

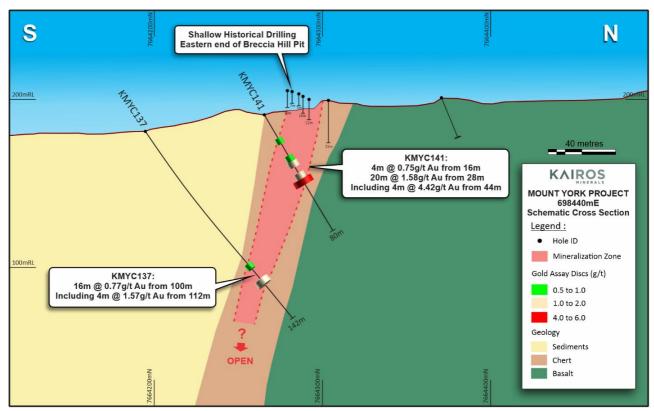


Figure 1: Schematic Cross-Section showing some of the latest assay results - Mt York deposit.

Kairos Minerals Ltd (ASX: KAI; "Kairos" or "the Company") is pleased to report further highly encouraging assay results from Reverse Circulation (RC) drilling at its 100%-owned **Pilbara Gold Project in WA** with the latest assay results continuing to demonstrate the substantial upside and growth potential at the 873,500oz Mt York Deposit.

The Company has now completed its major RC drill program at Mt York for the 2021 field season with a total of 95 drill-holes completed for 14,988m.

A track-mounted rig returned to the project in late October to follow up on results received from previously drilled holes. This specialised equipment was required to access complex locations, and eight drill holes were drilled to depths of up to 310m to test deeper extensions of the mineralisation down-dip.

The program has so far been successful in identifying new high-grade lodes and thick, shallow gold mineralisation in areas with minimal drilling. Further strong assay results have recently been returned, including:

- <u>20m @ 1.58g/t Au from 28m</u> in KMYC141, including:
 <u>4m @ 4.42g/t Au from 44m</u>.
- 12m @ 1.73g/t Au from 132m in KMYC142, including:
 4m @ 2.89g/t Au from 136m.
- 4m @ 3.38g/t Au from 68m in KMYC140.
- 4m @ 2.51g/t Au from 96m in KMYC139.

Drill hole KMYC141 returned exceptional gold results close to surface at the eastern end of the historical Breccia Hill open pit (see Figure 1 for a cross-section and Figure 2 for a plan view). This result increases the Company's confidence in the potential of the Project to deliver high-grade ore during the first years of mining.

Assay results are pending for 28 drill holes.

A breakdown of the drilling completed during the year is provided in Table 1 below:

Prospect	Drill Holes	Total Meters	Pending Assays (Holes)					
Old Faithful	16	2403	0					
Green Creek	5	400	0					
Iron Stirrup North	6	752	3					
Iron Stirrup	7	1337	0					
Zakanaka	10	1293	0					
Mt York	49	8555	23					
Batavia	2	248	2					
Total	95	14988	28					

Table 1: RC drill-holes completed at Mt York Project.

All of the assay results received to date are from four-metre composite samples. The single-metre samples are being collected, according to the results received from the composite samples, and submitted to Intertek Laboratories in Perth for gold and multi-element analysis.

The list of drill holes and significant intercepts is located at the end of this announcement in Table 2.

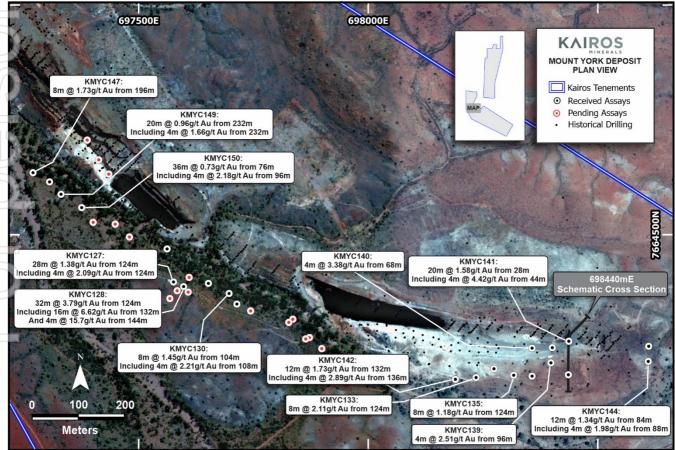


Figure 2: Plan view of the area showing the drill holes with the latest assay results.

<u>Next Steps</u>

- Further assay results from the Mount York RC drilling.
- Commencement of AC drilling program at the Kangan Project.
- Mining studies for the Mt York Project.
- Geochemistry sampling results from Mt York, Wodgina, Kangan and Skywell Projects.
- Additional heritage surveys at the Kangan and Skywell Projects.

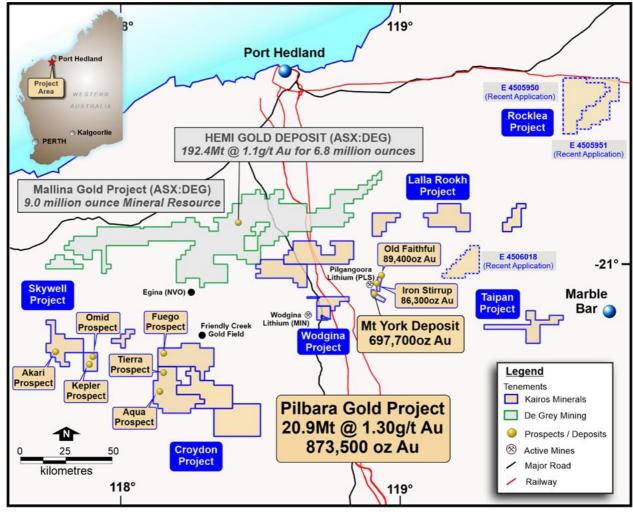


Figure 3: Pilbara Gold Project, WA.

With the authority of the Board.

About Kairos Minerals

Kairos Minerals (ASX: KAI) is a diversified West Australian-based exploration company which is focused on the exploration and development of two key project hubs located in WA's premier mining districts.

The Company's 100%-owned Pilbara Gold-Project has its central "hub" located ~100km south of Port Hedland in the world-class Pilgangoora district immediately adjacent to the major lithium-tantalum projects owned by Pilbara Minerals, which is currently in production.

Since acquiring the project in early 2016, Kairos has established a JORC Indicated 8.56Mt at 1.3 g/t for 366,000oz and Inferred 12.36Mt at 1.28 g/t for 507,000oz for a Total Mineral Resource of 20.93Mt @ 1.3g/t Au for 873,500oz (ASX announcement, 4 March 2020). The Project encompasses the historical Lynas Find gold project, which produced over 125,000oz of gold between 1994 and 1998.

Kairos's 100%-owned Roe Hills Project, located 120km east of Kalgoorlie in WA's Eastern Goldfields, comprises an extensive tenement portfolio where the Company's recent exploration work has confirmed the potential for significant discoveries of high-grade gold, nickel and cobalt mineralisation. Kairos' tenure adjoins the emerging Lake Roe gold discovery, owned by Breaker Resources (ASX: BRB).

In the Pilbara, Kairos also holds 2,026 square kilometres of tenure (granted and applications) which is highly prospective for gold discoveries.

Kairos has been well recognised for its industry leading technical team that includes its Chairman Terry Topping (Taipan Resources NL, Cauldron Energy Ltd), Technical Director Neil Hutchison (Poseidon Nickel, Jubilee Mines) and consulting specialists.

For further information, please contact:

Investors:	Media:
Mr Terry Topping	Nicholas Read/Paul Armstrong
Executive Chairman	Read Corporate
Kairos Minerals Limited	Ph: 08 9388 1474

Inv. Mr Terry ... Executive Chairn... Kairos Minerals Limiteo COMPETENT PERSON STATEMENT: Competent Person: The information in "mpiled and reviewed by Mr Terry T "as sufficient experience tho "here y are undertake "tion Results Competent Person: The information in this report that relates to Exploration Results or Mineral Resources is based on information compiled and reviewed by Mr Terry Topping, who is a Director of Kairos Minerals Ltd and who is also a Member of AusIMM. Mr Topping has sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity which they are undertaking to qualify as Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.' (the JORC Code 2012). Mr Topping has consented to the inclusion in the report of the matters based on their information in the form and context in which it appears.

> The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

KAIROS

Table 2: List of drilled holes and significant intercepts completed at Mt York Project

П	Table	Table 2: List of drilled holes and significant intercepts completed at Mt York Project									
	Prospect	Hole	MGAE	MGAN	RL	Dip	Az	Total Depth (m)	From (m)	Length (m)	Au (ppm)
	Mt York	KMYC111A	696959	7665422	180	-60	45	60			Pending Assays
	Mt York	KMYC121	696996	7665337	180	-60	45	80			Pending Assays
	Mt York	KMYC122	697055	7665066	179.1	-60	45	114			Pending Assays
	Mt York	KMYC123	697074	7665094	182	-60	45	100			NSA
	Mt York	KMYC124	697104	7665122	182	-60	45	70			NSA
	Mt York	KMYC125	697110	7664976	190	-60	40	200	96	16	0.56
	Mt York	KMYC126	697003	7665206	180	-60	70	192	156	4	1.25
	Mt York	KMYC127	697576	7664397	177	-60	45	204	124	36	1.18
								including	124	4	2.09
									188	4	0.50
	Mt York	KMYC128	697598	7664387	177.3	-60	45	220	124	32	3.79
								including	132	16	6.62
								including	144	4	15.7
								including	200	4	0.66
	Mt York	KMYC129	697652	7664394	175	-60	40	204	92	4	0.6
					•				136	4	1.17
									156	4	1.63
	Mt York	KMYC130	697697	7664372	176	-60	45	132	104	8	1.45
		1						including	108	4	2.21
								5	128	4	0.68
	Mt York	KMYC131	697714	7664349	176	-60	40	198	104	8	1.06
								including	108	4	1.62
	Mt York	KMYC132	697744	7664334	177	-60	40	114	100	4	1.03
	Mt York	KMYC133	698235	7664189	178	-60	0	180	124	8	2.10
	Mt York	KMYC134	698274	7664208	181	-60	0	120	116	4	1.01
	Mt York	KMYC135	698317	7664194	180	-55	0	160	124	8	1.18
	Mt York	KMYC136	698357	7664192	181.3	-55	0	148	124	4	2.14
	Mt York	KMYC137	698436	7664195	182	-55	0	142	100	4	0.81
			000100	,001100		55	•	- 12	112	4	1.57
	Mt York	KMYC138	698401	7664254	187	-60	0	100	28	4	0.58
			000401	7004234	_	00	0	100	44	8	1.04
								including	48	4	1.26
								menualing	60	4	0.66
	Mt York	KMYC139	698398	7664221	186	-60	0	118	96	4	2.51
	Mt York	KMYC140	698357	7664253	187	-60	0	94	68	4	3.38
	Mt York	KMYC141	698437	7664268	192	-60	0	<u>94</u> 80	16	4	0.76
			090437	7004208	152	-00	0	80	28	20	1.58
								including	44	4	4.42
	Mt York	KMYC142	609100	766/105	177	-60	0	including	132	12	
L	IVIL TOTA	10110142	698190	7664185	1//	-00	U	190	132	4	1.72
	Mt York	KMYC143	609611	7664257	182.3		0	including 00	8	4	2.90
	IVIT TOTK	1/10/10/143	698611	7664257	102.3	-55	0	88			1.12
									40	4	0.52

T +61 (0)8 6380 1904 Level 1, 43 Ventnor Avenue, West Perth WA 6005 kairosminerals.com.au ABN 84 006 189 331 ASX: KAI

Prospect	Hole	MGAE	MGAN	RL	Dip	Az	Total Depth (m)	From (m)	Length (m)	Au (ppm)
Mt York	KMYC144	698610	7664224	180	-60	0	118	84	12	1.34
Mt York	KMYC147	697270	7664635	176	-60	45	262	120	4	0.65
								156	4	0.68
								184	4	1.09
								196	8	1.73
							including	196	4	1.79
								220	4	1.43
Mt York	KMYC148	697306	7664615	175	-60	45	244	120	4	1.21
								132	4	0.54
								184	4	0.57
								224	4	0.71
Mt York	KMYC149	697331	7664588	175.6	-60	45	280	192	4	1.36
			•					216	4	0.69
								232	20	0.97
							including	232	4	1.66
Mt York	KMYC150	697376	7664559	175	-60	45	219	44	4	0.51
	L							76	12	0.70
							including	84	4	1.27
							-	96	16	0.91
							including	96	4	2.18
							-	152	4	1.55
Mount York	KMYC183	697401	7664527	177	-60	45	244			Pending Assa
Mount York	KMYC184	697449	7664523	175	-60	45	196			Pending Assa
Mount York	KMYC185	697480	7664495	174	-60	45	22			Pending Assa
Mount York	KMYC186	697562	7664469	175	-60	45	172			Pending Assa
Mount York	KMYC187	697836	7664316	176	-60	45	196			Pending Assa
Mount York	KMYC188	697872	7664276	175	-60	45	196			Pending Assa
Mount York	KMYC189	697827	7664309	181	-60	0	208			Pending Assa
Mount York	KMYC190	697864	7664273	180	-60	0	214			Pending Assa
Mount York	KMYC191	697899	7664252	179	-60	0	196			Pending Assa
Mount York	KMYC192	697435	7664632	218	-60	45	58			Pending Assa
Mount York	KMYC193	697413	7664663	215	-60	45	160			Pending Assa
Mount York	KMYC194	697388	7664706	203	-60	45	148			Pending Assa
Mount York	KMYC195	697608	7664375	177	-60	45	240			Pending Assa
Mount York	KMYC196	697584	7664378	176	-60	45	260			Pending Assa
Mount York	KMYC197	697568	7664361	197	-60	45	256			Pending Assa
Mount York	KMYC198	697610	7664407	173	-55	45	202			Pending Assa
Mount York	KMYC199	697542	7664331	173	-60	45	310			Pending Assa
Mount York	KMYC200	697545	7664376	175	-60	45	292			Pending Assa
				175	-60	45	274			Pending Assa
Mount York	KMYC204	697357	7664531	1/5	-011					

	Prospect	Hole	MGAE	MGAN	RL	Dip	Az	Total Depth (m)	From (m)	Length (m)	Au (ppm)
G	reen Creek	KMYC112	699410	7670920	202	-60	90	80			NSA
G	reen Creek	KMYC113	699440	7670920	200	-60	90	80			NSA
G	reen Creek	KMYC114	699435	7671000	203	-60	90	80			NSA
G	reen Creek	KMYC115	699446	7671040	204	-60	90	80			NSA
G	reen Creek	KMYC167	699411	7671001	205	-60	90	80	16	4	2.51
	ron Stirrup North	KMYC116	699440	7670402	193	-60	105	100			NSA
	ron Stirrup North	KMYC117	699480	7670395	195	-60	105	112			NSA
	ron Stirrup North	KMYC118	699535	7670257	195	-60	105	124			Pending Assays
	ron Stirrup North	KMYC119	699490	7670268	192	-60	105	124			Pending Assays
	ron Stirrup North	KMYC120	699715	7670194	202	-60	285	172			Pending Assays
	ron Stirrup North	KMYC168	699560	7670375	199	-60	285	120			NSA
С	Old Faithful	KMYC151	700113	7671617	217	-60	270	99			NSA
_	ld Faithful	KMYC152	700191	7671754	226	-60	270	105	36	8	0.58
C											
	Old Faithful	KMYC153	700316	7671717	226	-60	270	180	128	8	1.19
		KMYC153	700316	7671717	226	-60	270	180 including	128 128	8	1.19 1.71
		KMYC153	700316	7671717	226	-60	270				
		KMYC153	700316	7671717	226	-60	270		128	4	1.71
0		КМҮС153 КМҮС154	700316	7671717 7671714	226	-60	270	including	128 172	4 8	1.71 1.26
0	Old Faithful							including including	128 172 172	4 8 4	1.71 1.26 1.77
0	Old Faithful							including including 100	128 172 172 16	4 8 4 8	1.71 1.26 1.77 1.91
0	Old Faithful Dld Faithful	KMYC154	700341	7671714	227	-60	270	including including 100 including	128 172 172 16 16	4 8 4 8 4	1.71 1.26 1.77 1.91 2.58
0	Old Faithful Dld Faithful	KMYC154	700341	7671714	227	-60	270	including including 100 including	128 172 172 16 16 24	4 8 4 8 4 4	1.71 1.26 1.77 1.91 2.58 0.77
0	Old Faithful Old Faithful Old Faithful	КМҮС154 КМҮС155	700341 700394	7671714 7671707	227 229	-60	270 270	including including 100 including 180	128 172 172 16 16 24 172	4 8 4 8 4 4 4	1.71 1.26 1.77 1.91 2.58 0.77 0.51
0	Old Faithful Old Faithful Old Faithful	КМҮС154 КМҮС155	700341 700394	7671714 7671707	227 229	-60	270 270	including including 100 including 180 160	128 172 172 16 16 24 172 72	4 8 4 8 4 4 4 28	1.71 1.26 1.77 1.91 2.58 0.77 0.51 1.43
0	Old Faithful Old Faithful Old Faithful	КМҮС154 КМҮС155	700341 700394	7671714 7671707	227 229	-60	270 270	including including 100 including 180 160 including	128 172 172 16 16 24 172 72 76	4 8 4 4 4 4 28 4	1.71 1.26 1.77 1.91 2.58 0.77 0.51 1.43 1.13
0	Old Faithful Old Faithful Old Faithful	КМҮС154 КМҮС155	700341 700394	7671714 7671707	227 229	-60	270 270	including including 100 including 180 160 including including	128 172 172 16 16 24 172 72 76 80	4 8 4 4 4 4 28 4 4 4	1.71 1.26 1.77 1.91 2.58 0.77 0.51 1.43 1.13 1.63
0	Old Faithful Old Faithful Old Faithful	КМҮС154 КМҮС155	700341 700394	7671714 7671707	227 229	-60	270 270	including including 100 including 180 160 including including including	128 172 16 24 172 72 76 80 84	4 8 4 4 4 4 28 4 4 4 4	1.71 1.26 1.77 1.91 2.58 0.77 0.51 1.43 1.13 1.63 2.37
	Old Faithful Old Faithful Old Faithful	КМҮС154 КМҮС155	700341 700394	7671714 7671707	227 229	-60	270 270	including including 100 including 180 160 including including including including	128 172 172 16 16 24 172 72 76 80 84 88	4 8 4 4 4 4 28 4 4 4 4 4	1.71 1.26 1.77 1.91 2.58 0.77 0.51 1.43 1.13 1.63 2.37 1.67
	Old Faithful Old Faithful Old Faithful	KMYC154 KMYC155 KMYC156	700341 700394 700226	7671714 7671707 7671606	227 229 221	-60 -60	270 270 270	including including 100 including 180 160 including including including including including	128 172 172 16 16 24 172 72 76 80 84 88	4 8 4 4 4 4 28 4 4 4 4 4	1.71 1.26 1.77 1.91 2.58 0.77 0.51 1.43 1.13 1.63 2.37 1.67 1.65
	Old Faithful Old Faithful Old Faithful Old Faithful	КМҮС154 КМҮС155 КМҮС156 КМҮС157	700341 700394 700226 700272	7671714 7671707 7671606 7671605	227 229 221 221	-60 -60 -60	270 270 270 270	including including 100 including 180 160 including including including including including 119	128 172 172 16 16 24 172 72 76 80 84 88	4 8 4 4 4 4 28 4 4 4 4 4	1.71 1.26 1.77 1.91 2.58 0.77 0.51 1.43 1.13 1.63 2.37 1.67 1.65 NSA
	DId Faithful DId Faithful DId Faithful DId Faithful DId Faithful	КМҮС154 КМҮС155 КМҮС156 КМҮС157 КМҮС158	700341 700394 700226 700222 700128	7671714 7671707 7671606 7671605 7671607	227 229 221 221 221 221 227	-60 -60 -60 -60	270 270 270 270 270	including including 100 including 180 160 including including including including 119 120	128 172 16 24 172 76 80 84 92	4 8 4 4 4 4 28 4 4 4 4 4 4	1.71 1.26 1.77 1.91 2.58 0.77 0.51 1.43 1.13 1.63 2.37 1.67 1.65 NSA NSA
	DId Faithful DId Faithful DId Faithful DId Faithful DId Faithful	КМҮС154 КМҮС155 КМҮС156 КМҮС157 КМҮС158	700341 700394 700226 700222 700128	7671714 7671707 7671606 7671605 7671607	227 229 221 221 221 221 227	-60 -60 -60 -60	270 270 270 270 270	including including 100 including 180 160 including including including including 119 120	128 172 172 16 24 172 72 76 80 84 88 92 44	4 8 4 4 4 4 28 4 4 4 4 4 4 8	1.71 1.26 1.77 1.91 2.58 0.77 0.51 1.43 1.13 1.63 2.37 1.67 1.65 NSA NSA 0.72
	DId Faithful DId Faithful DId Faithful DId Faithful DId Faithful	КМҮС154 КМҮС155 КМҮС156 КМҮС157 КМҮС158	700341 700394 700226 700222 700128	7671714 7671707 7671606 7671605 7671607	227 229 221 221 221 221 227	-60 -60 -60 -60	270 270 270 270 270	including including 100 including 180 160 including including including including 119 120	128 172 16 24 172 76 80 84 92 44 76	4 8 4 4 4 4 4 4 4 4 4 4 4 4 8 8 4	1.71 1.26 1.77 1.91 2.58 0.77 0.51 1.43 1.13 1.63 2.37 1.67 1.65 NSA NSA 0.72 0.54
	Old Faithful	КМҮС154 КМҮС155 КМҮС156 КМҮС157 КМҮС158 КМҮС159	700341 700394 700226 700272 700128 700181	7671714 7671707 7671606 7671605 7671607 7671360	227 229 221 221 227 215.5	-60 -60 -60 -60 -60	270 270 270 270 270 270 270	including including 100 including 180 160 including including including including 119 120 240	128 172 172 16 24 172 72 76 80 84 88 92 92 44 44 76 176	4 8 4 4 4 4 4 4 4 4 4 4 4 8 8 4 4 4	1.71 1.26 1.77 1.91 2.58 0.77 0.51 1.43 1.13 1.63 2.37 1.67 1.65 NSA NSA 0.72 0.54 0.70
	DId Faithful	КМҮС154 КМҮС155 КМҮС156 КМҮС157 КМҮС158 КМҮС159 КМҮС160	700341 700394 700226 7002272 700128 700181	7671714 7671707 7671606 7671605 7671607 7671360 7671360	227 229 221 221 227 215.5 208	-60 -60 -60 -60 -60	270 270 270 270 270 270 270	including including 100 including 180 160 including including including including 119 120 240	128 172 172 16 24 172 72 76 80 84 88 92 92 44 76 176 16	4 8 4 4 4 4 4 4 4 4 4 4 4 4 4	1.71 1.26 1.77 1.91 2.58 0.77 0.51 1.43 1.63 2.37 1.67 1.65 NSA NSA 0.72 0.54 0.70 0.58
	DId Faithful	КМҮС154 КМҮС155 КМҮС156 КМҮС157 КМҮС158 КМҮС159 КМҮС160 КМҮС161	700341 700394 700226 7002272 700128 700181 700000 700000	7671714 7671707 7671606 7671605 7671607 7671360 7671166 7671166	227 229 221 221 227 215.5 208 209	-60 -60 -60 -60 -60 -60	270 270 270 270 270 270 270 270 270	including including 100 including 180 160 including including including including 119 120 240 140 140	128 172 172 16 24 172 72 76 80 84 88 92 92 44 76 176 16 16	4 8 4 4 4 4 4 4 4 4 4 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4	1.71 1.26 1.77 1.91 2.58 0.77 0.51 1.43 1.13 1.63 2.37 1.67 1.65 NSA NSA 0.72 0.54 0.70 0.58 0.57

KAIROS

Prospect	Hole	MGAE	MGAN	RL	Dip	Az	Total Depth (m)	From (m)	Length (m)	Au (ppm)
Old Faithful	KMYC164	700043	7671116	212	-60	270	120			NSA
Old Faithful	KMYC165	700143	7671160	218	-60	270	180			NSA
Old Faithful	KMYC166	700083	7671113	216	-60	270	140	12	48	0.65
							including	12	4	1.22
Iron Stirrup	KMYC169	699264	7669558	215	-60	100	80	72	4	2.19
Iron Stirrup	KMYC170	699259	7669502	224	-55	90	120			NSA
Iron Stirrup	KMYC171	699242	7669497	224	-55	90	150			NSA
Iron Stirrup	KMYC172	699112	7669319	200	-55	110	273			NSA
Iron Stirrup	KMYC201	699135	7669218	204	-50	90	238	28	16	0.86
							including	28	4	1.17
								184	4	0.74
Iron Stirrup	KMYC202	699423	7668782	215	-60	90	238			NSA
Iron Stirrup	KMYC203	699401	7668730	209	-60	90	238			NSA
Zakanaka	KMYC173	698008	7666281	195	-60	270	207			NSA
Zakanaka	KMYC174	697973	7666447	198	-60	270	260			NSA
Zakanaka	KMYC175	697928	7666454	198	-60	270	197			NSA
Zakanaka	KMYC176	697971	7666284	196	-60	270	120	36	4	2.61
								68	8	1.27
							including	72	4	1.74
Zakanaka	KMYC177	698117	7666219	194	-60	45	60	4	4	0.58
Zakanaka	KMYC178	698105	7666209	194	-60	45	60			NSA
Zakanaka	KMYC179	698098	7666199	194	-60	45	69	52	8	0.60
Zakanaka	KMYC180	697798	7666401	195	-60	45	150			NSA
Zakanaka	KMYC181	698046	7666007	190	-60	45	58			NSA
Zakanaka	KMYC182	698087	7666191	190	-60	45	112			NSA
Batavia	KMYC145	701578	7661555	204	-60	270	130			Pending Assa
Batavia	KMYC146	701480	7661553	204	-60	90	118			Pending Assa

Selected intercepts at 0.5g/t Au lower cut, 4m maximum internal waste (except for KMYC163 – 8m and KMYC166 – 12m). NSA: No Significant Assays.

Appendix 1 – Kairos Minerals – Pilbara Gold Project JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Section 1	Sampling Techniques and Data	
Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	 In Mount York Project the samples from RC dril were split on a 1 metre sample interval at the rig cyclone. Samples from this initial drilling program were collected on four meters composites. Additional individual single meters samples will collected if significant results return from the fou meters composites. All samples were delivered by Kairos personnel RGR Road Haulage in Port Hedland for transpor Intertek Minerals Laboratory in Perth WA for fir analysis. All samples from RC drilling are submitted for F Acid Multi-Element Analysis (4A/OE33), Fire A for Gold (FA/ICP-OES).
Drilling techniques	• Drill type (e.g., core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face- sampling bit, or other type, whether core is oriented and if so, by what method, etc).	 Reverse Circulation drilling is being carried out I Orlando Drilling company using a track-mounted In general, the material is recovered as pulverised and rock chip samples. All the holes are surveyed by the drilling supervisor/senior driller at regular intervals downhole, approximately 10 meters, using a Gyroscope survey instrument.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC samples were logged in detail at the drill site supervising geologists and recorded in the Comp database. Overall recoveries were excellent and there were significant sample recovery problems. Sample depths are continually checked against th rod string depth during the drilling process by the senior driller.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Detailed geological logging of the entirety of each hole by Kairos geologists is carried out on the Rechips and recorded as a qualitative description of colour, lithological type, grain size, structures, minerals, alteration, and various other features. Same geological logging workflow was executed Kangan Project samples along the field campaign. Representative material was sieved and collected 1m individual samples in number-coded plastic of trays and stored at the Company's site storage fact in Perth. Photography of chips is not routinely done. Detailed petrological studies are planned for sele samples to assist in ongoing evaluation.

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all cores taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality, and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Most RC samples were dry. Minor water ingress occurred during rod/bit changes however samples were generally dry once active drilling recommenced. Samples were collected at 1m intervals via on-board cone splitters then laid out on the ground in the case of RC work collected in large, numbered calico bags. Sample quality was ensured by monitoring sample volume and by regularly cleaning the rig cyclone & sample splitters (RC). Sampling sheets were prepared and checked by Kairos' site geologists and field technicians to ensure correct sample representation. In RC drilling QAQC samples are included at the rates 1:25 as certified reference material (standard). Duplicate samples were collected, and blanks were also included. The QAQC samples will be analysed, and the results compared with the original sample to provide an assessment of the sampling procedures and
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established. 	 laboratory results. Kairos RC drilling samples are submitted to Intertek laboratory in Perth for Four Acid Multi-Element Analysis ICP-OES (4A/OE33). The gold analysis will be carried out via the FA 25/OE or MS technique being Fire Assay with 25g lead collection fire assay in new pots, analysed by Inductively Coupled Plasma Mass Spectrometry. Fire Assay is an industry-standard for gold, and it is considered appropriate. Certified Reference Materials (CRM or standards) are inserted every 25th sample to assess the assaying accuracy of the external laboratories. No laboratory audits were undertaken.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Primary data (geological) was collected using previously defined standard codes and the information uploaded in Excel files on laptop computers by Senior Supervising Geologists. No twin holes were drilled. All data is received and stored securely in digital format in the Company's database. Final data is rigorously interpreted by Kairos' geoscientific personnel. All RC holes were surveyed down-hole with northseeking gyroscopic survey instruments by the supervising/senior driller.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Kairos collars surveyed by handheld GPS with an accuracy of +/- 5m. All holes are in MGA94 Zone 50 (GDA94).
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Minimal sample spacing for assay samples is 1m and maximum composite sample spacing is 4m. In RC drilling at Mount York Project, the hole spacing varies according to the target and geological setting along section lines.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is 	 Most RC holes are drilled at -60 deg to provide true width intersections of the targeted horizon. Holes are designed to intersect the geological contacts/targets as close to perpendicular as possible in order to provide approximate true width intercepts.

	Criteria	JORC Code explanation	Commentary
		considered to have introduced a sampling bias, this should be assessed and reported if material.	
	Sample security	• The measures taken to ensure sample security.	 The sample chain of custody is managed by Kairos. All samples were collected in the field at the project site in number-coded calico bags/secure labelled poly weave sacks by Kairos' geological and field personnel. All samples were delivered directly to the responsible laboratory or associated carrier by Kairos personnel before being transported to the laboratory in Perth WA for final analysis.
Ŀ	Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	• No audits have been completed.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Aineral • enement and land enure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 Kairos Minerals owns the Tenements 100%. The Mount York Project has eleven granted Prospecting License 45/2987 to 2989 and 45/2991 to 45/2998. Kairos is not aware of any existing impediments nor of any potential impediments which may impact ongoing exploration and development activities at the project site.
Exploration done by • other parties	Acknowledgment and appraisal of exploration by other parties.	• In Mount York Project significant historical gold exploration including surface geochemical sampling, airborne and ground electromagnetic surveys, RAB, AC, RC, and DD drilling was already acknowledged in previous ASX announcements.
•	Deposit type, geological setting, and style of mineralisation.	• Mount York Project is in the Strelley greenstone belt of Pilbara Craton. The local style indicates that the gold mineralisation is hosted mainly by the banded iron formation associated with quartz-veins and breccias.
Drill hole Information •	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar. elevation and RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	• The coordinates and other attributes of the drill holes relevant to the work performed at Mt York Project is included in Table 2 at the end of the release.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	• The result from the Mount York drilling program was reported with 0.5g/t cut-off for Au. With a maximum internal dilution of 8m.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	 All intercepts reported are measured in down-hole metres. All holes are oriented to provide intersections that are orthogonal to the respective targeted horizon.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	• Relevant diagrams have been reported in this document.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.	• All relevant results for this stage have been reported.
Other substantive	• Other exploration data, if meaningful and material, should be reported including	• All relevant and meaningful data has been reported.
Criteria	JORC Code explanation	Commentary

Criteria	JORC Code explanation	Commentary
Exploration data	 (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	• The qualitative analysis relies on <i>in situ</i> geological observations and correlation with local and regional previous results.
Further work	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Assay results from the Mount York RC drilling. AC drilling program at Kangan Project. Mining studies for the Mt York Project. Geochemistry sampling results from Mt York, Wodgina, Kangan and Skywell projects. Additional heritage surveys at Kangan and Skywell projects.