ASX RELEASE

9 November 2021

EUR increases Measured and Indicated Resource by 54%

- Targeted drilling by EUR has successfully increased the estimated Mineral Resource
- Actual drilling results support the geological model and vein continuity along strike and into depth
- Reliable modelling parameters for resource estimation used
- Estimation of inferred resources ongoing and to be separately announced
- EUR buys back legacy royalty over Wolfsberg, further improving project economics

European Lithium Limited (ASX:EUR, FRA:PF8, OTC:EULIF) (European Lithium or the Company) is pleased to announce an upgrade in The Wolfsberg Project's Measured and Indicated resource from 6.3Mt @1.17% Li₂O to 9.7Mt at 1.03 % Li₂O (refer to ASX Announcement 3 July 2017 for previous resource announcement).

This constitutes an increase of nearly 54% from the previous resource with further upside potential from existing exploration targets already identified along strike and in Zone 2.

Infill drilling comprising 20 drill holes and 7,953.3m of core was completed on 14 August 2021 with an average core recovery of 97.6%.

EUR has also agreed to buy back a legacy €1.50 royalty per tonne of mineral extracted from the Wolfsberg Project.

Jony Sage, EUR Non-Executive Chairman commented: "It's fantastic that the Company has reached another milestone by significantly increasing the resource at Wolfsberg. This and buying back the royalty are major positives for the Company in progressing with the DFS for Wolfsberg. This will see EUR taking advantage of the recent tremendous growth in the hydroxide price."

Geology and Interpretation

The spodumene bearing pegmatites occur in form of veins within in a regional anticline. The pegmatite veins are intruded into amphibolites and mica schists host rocks strictly concordant to their foliation. On the northern limb of this anticline, which is known as Zone 1, the strata uniformly strikes WNW-ESE 9 (average 120°) and dips to the NNE at an average of 60°. The amphibolite hosted pegmatites (AHP) are in stratigraphical hanging wall position relative to the mica schist hosted pegmatites (MHP) although they overlap. The AHP has greyish to greenish spodumene crystals aligned subparallel to the pegmatite contacts and average about 2-3 cm in length reaching a maximum of 15 cm. Spodumene cyrstals are more or less homogeneously distributed within a finegrained matrix of feldspar and quartz with flakes of muscovite. The MHP lack the typical features and textures of pegmatites having undergone a penetrative metamorphic overprint almost completely recrystallizing the original pegmatitic minerals. The spodumene minerals are in form of mm sized tenticular grains embedded into very fine feldspar, quartz and muscovite matrix.

A comprehensive description of the geology and mineralization is provided in the Independent Geologists Report' contained within the 'Second Replacement Prospectus' of 28th July 2016 that can be found on the Company website www.europeanlithium.com

Drilling

A total of 7953.3m of diamond core from 20 holes was drilled from the entire program. PQ diameter was used in the overburden and HQ in the mineralised sections of the deposit with 3m standard coring tube. Holes were angled to intercept the pegmatite perpendicular to their dip. Core was not orientated due to the nature of the pegmatitic mineralisation. Drill holes are not on a regular grid but were drilled nominally on 100m line spacing as infill to provide nominal sample spacing at 50m and not more than 100m.

The drill hole plan on page 35 shows hole locations and directions with orange points and lines. Drill hole cross sections showing drill hole dip and intersections of pegmatite (in pink) and samples Li2O (in blue) are shown from page 37 to 58. A reference plan showing section lines is included on page 36. The section titles refer to these section lines.

Sampling and Analysis

Only mineralized intervals of HQ core were cut in half and quartered to collect sample for assay. Core cutting was done by technicians and supervised by geologists. Samples with visible mineralization (spodumene) were taken regardless of the lithology and grade and ranging from 0.1 m to 1 m in thickness. All remaining core is stored securely in the Wolfsberg core shed. The CP is of the opinion that the sample size is appropriate to the grain size of the target mineralization. The HQ quarter core splits were sent to ALS laboratories for assay.

All sample preparation and assays were undertaken by ALS (Ireland), which is ISO 9001:2015 and ISO 17025:2017 accredited. Sample preparation was done using ALS procedure PREP31Y and Lithium analysis used ALS procedure LIOG63 by four acid digestion with ICP. A combination of Rare Earth and Trace Elements including major oxides were analyzed by ME-MS81 and ME-ICP06 including LOI.

Resource Estimation

A re-estimation of the Wolfsburg Project has been competed resulting in an increase to the overall estimate in excess of 50%.

The updated estimation used the additional data from the 7,953.3m of core from new drilling completed in August 2021. The new data was used to augment the existing 2016 and 2018 interpretations and to provide additional data density for re-estimation resulting in the upgraded resource.

The new estimation used data from infill drilling and ordinary kriging as the method of interpolation based on variograms calculated for each mineralised domain. Mineralisation was defined using wireframes as hard boundaries of the interpreted pegmatite veins, on some occasions containing internal dilution to varying degrees.

Nominal vein orientation throughout the mineralised pegmatites was interpreted as 60° towards 020°

For each sample the thickness perpendicular to the projection plane was measured using the relative orientation of both the borehole and the vein so that volume was correctly represented.

Block sizes were chosen as 25m x 25m, as a compromise between associated reliability and mine design requirements. Resulting block estimates are a kriged average of vein thickness and vein grade, accounting for any internal dilution that may have been present. Data was extrapolated along strike and down dip by 30m to 40m beyond the last sample, depending on variogram analysis.

Calculation of mean and variance of the local prediction of vein characteristic required the global knowledge of the spatial variance. This was given by the variograms calculated from the known sample data. The respective investigations have resulted in a maximum range of influence of about 75m for both thickness and grade. The ratio of unsystematic variation (nugget effect) for both parameters, is about 20% of total variance. For the interpretation in addition to the borehole data the investigation results of the drift data are used, because they reveal a better understanding of the low range variability.

The spatial borehole density is sufficient for an almost complete coverage of the vein extension. Areas exceeding the maximum distance of 75m are assigned to a zero-thickness and are therefore excluded from the volume calculation. The vein volume is calculated by the 2D space (block size) multiplied by the estimated thickness.

Modifying Factors including Mining and Metallurgy

With the exception of full vein width being interpreted as mineralization (as interpreted using a 0.5m minimum intersection thickness), there are no particular assumptions for mining methods. The full vein width assumption is based on the requirement for the entire width to be mined due to no

ability to separate dilution from the mined material during the mining process. For this reason, the modelled grade includes any dilutive material due to internal waste which was regularly observed.

Previous works as part of a Prefeasibility study concluded that long hole open stoping and cut and fill were appropriate mining methods. Minimum sampling width was 0.5 m. The economic minimum mining width still has to be established taking into account current studies to remove waste dilution by sensor based sorting. 13% of the sample composites had internal waste which has been included as internal dilution within the resource estimate.

Mining studies undertaken in 2017 by SRK Consulting included a preliminary mining layout utilising a standard stope shape of 25 m high by 75 m wide with 4 m rib and sill pillars. Based on the mining method selection criteria, SRK (2017) further recommended that the most appropriate underground mining method to be considered for low cost mining at Wolfsberg is a variant of sublevel stoping called Longhole Open Stoping. Pillar support and partial backfill was recommended to assure stability.

Extensive metallurgical testing conducted previously concluded that a 6% Li2O spodumene concentrate could be produced by crushing, grinding, flotation and magnetic separation. Saleable by-products of feldspar, quartz and mica were also obtained which have value with the projects location in Central Europe. Limited testwork also demonstrated that the spodumene concentrate was amenable to conversion to lithium carbonate.

Complex testwork at the company's pilot plant facility (Dorfner/Anzplan, in Hirschau, Germany) with mined bulk samples from the existing U/G mine (2,500t) has been undertaken by the company and did show that the spodumene concentrate from Wolfsberg can be successfully processed to battery grade lithium carbonate and lithium hydroxide, using commercially proven technology (see ASX announcement April 5, 2018).

Resource Classification

Measured classification of the estimated resources was based on the following conditions;

- Only blocks inside the extrapolation boundary are part of the resources.
- Only blocks with an estimated mean of more than 0.5m thickness are included in the resources
- Only blocks with an estimated mean of more than 0.2% Li₂O vein grade are included in the resources
- Only blocks within the strict vein extension (hull) are part of the measured resources
- Only blocks within the strike extension given by the currently existing exploration drifts are part of the measured resources. This corresponds with the area between the Minerex sections 9 and G, where the profile distance is about 50m. In the 2D representation (profile DE) the area is between ~250 and 300m.
- All remaining blocks that did not meet these conditions have been assigned to the indicated resource category.

Mineral Resources

All cells within the wireframed mineralization have been reported as resource with no cut-off grade for Li2O used in resource reporting. Assignment of mineralisation versus unmineralized material was done as part of the sectional interpretation using a minimum mineralized thickness of 0.5m for sampling. Intersections less than this were excluded with hard boundary wireframes, therefore all material identified as mineralization has been reported. This was chosen to align with the anticipated mining method of long hole open stoping whereby all material mined is taken as ore.

Category	Tonnage (Mt)	Grade (% Li ₂ O)
Measured	4 313 000	1.13
Indicated	5 430 000	0.95
Total (M+I)	9 743 000	1.03

The estimation of Inferred resources is ongoing and will be announced separately.

Buy back and cancellation of royalty

The Company has agreed with Exchange Minerals (who is not a related party or a person to whom Listing Rule 10.1 or 10.11 applies), the holder of a €1.50 per tonne royalty for all mineral products extracted from the Wolfsberg Lithium Project, to buy back and cancel the royalty. The Company has paid Exchange Minerals €500,000 and within 60 days a further €2 million (at the Company's election either cash or 15,552,850 fully paid ordinary EUR shares, with one attaching option (exercise price of \$0.20 and expiring 2 years from issue) for every 2 EUR shares issued).

Competent Person's Statement

The information in this announcement pertaining to the Wolfsberg Lithium Project, and to which this statement is attached, relates to Exploration Results, Mineral Resources or Ore Reserves and is based on and fairly represents information and supporting documentation provided by the Company and reviewed by Mr Don Hains, who is the independent Qualified Person to the Company and is a Member of the Association of Professional Geoscientists of Ontario with over 38 years' experience in the mining and resource exploration industry. Mr Haines has sufficient experience, as to qualify as a Competent Person as defined in the 2012 edition of the "Australian Code for Reporting of Mineral Resources and Ore reserves". Mr Hains consents to the inclusion in the report of the matters based on information in the form and context in which it appears. The company is reporting the historical exploration results under the 2012 edition of the Australasian Code for the Reporting of Results, Minerals Resources and Ore reserves (JORC code 2012).

This announcement has been authorised for release to the ASX by the Board of the Company.

Tony Sage Non-Executive Chairman European Lithium Limited

Visit the Company's website to find out more about the advanced Wolfsberg Lithium Project located in Austria.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma 7953, sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Diamond drilling used for the entire program Overburden drilling was performed in PQ diameter and for final core drilling HQ diameter was used. 3 m length standard coring tube is used. The drill core was not orientated.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recovery was measured for all runs and recorded into "Core Recovery Log" then later transferred into an Excel spreadsheet template for import to the database. Overall core recovery is excellent, and average is 97.63 %.

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Both lithology and geotechnical logging was undertaken by trained professional geologists. For lithology logging descriptions were done over the full length of drill coon paper "Lithology Logging Form", recording rock type, colour, foliation as structural characteristics, mineralogy, core recovery and a graphic learn representative of the lithology. Paper logs are later transferred to Exspreadsheets template for import to the database. The geotechnical logging is undertaken on a domain run interval basis we breaks made at points where the rock mass characteristics change. Data we recorded into previously prepared Excel spreadsheet logging templates. For the drilling campaign individual photographs of each core box were take using a Panasonic Lumix GX80 camera with a Lumix G Vario 12-32 optics. The photography include full metadata. To ensure consistency of scale, a fix frame was used to shoot down the core boxes at a fixed height. The core be is oriented that the starting depth is at the top left corner of the photograph and the drill hole number, box number, starting and ending depth of the cowith a scale bar included. Additionally a colour reference chart was included to enable calibration and correct reproduction of the digital images. The core photography was done in wet conditions.
Sub-sampling techniques and	taken.	Cutting of core was performed in the core shed after logging and sample man up. The core is not along a core social.
sample preparation	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the 	 The core is cut along core axis. Only mineralized intervals are cut in half in first instance and then one of the pieces split in two quarters. The cutting is done by technicians and supervise.
	sample preparation technique.	by geologists.
•	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the 	 Samples with visible mineralization (spodumene) are taken regardless of the lithology and grade and ranging from 0.1 m to 1 m in thickness. All remaining core is stored securely in the Wolfsberg core shed.
	 in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	• The CP is of the opinion that the sample size is appropriate to the grain size the target mineralization.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests		 The QA/QC actions taken to provide adequate confidence in data collection and processing are discussed above. In general, QAQC procedures involving duplicates in every stage (core duplicate, crush, pulp laboratory as well laboratory duplicates) is implemented. Duplicates, standards and blanks were introduced every 20 samples (5% frequency). Acceptable levels of accuracy and precision for standards and blanks were obtained. All sample preparation and assays were undertaken by ALS (Ireland), which is ISO 9001:2015 and ISO 17025:2017 accredited. Sample preparation was using ALS procedure PREP31Y Lithium analysis was using ALS procedure LIOG63 by four acid digestion and analyzed by ICP. Combination of Rare Earth and Trace Elements including major oxides analyzed by ME-MS81 and ME-ICP06 including LOI. Cerified stanadrds used are AMIS 0341, AMIS 0342 sourced from African Minerals Standards and GBW 07152, GBW 07153, NCS DC 86303, NCS DC 86304 and NC DC 86314 sourced form Brammer International Standards. Blank material was limestone BCS CRM 393
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Mineralized intersections visibly identified, verified and labeled by logging geologists. The independent CP has reviewed the drill logs and reported sample intervals and compared them against the core photos. The CP is satisfied that the sample intervals accurately represent the reported mineralized intervals. All the primary data was transferred into standardized Excel spreadsheet templates and imported into an Access database. Li assays were converted to Li2O for reporting using a conversion of Li2O% = Li% * 2.153. An electronic database containing collars, surveys, assays and geology is maintained by Mine-IT, an independent Mining Information Consultancy based in Leoben, Austria.
Location of a points	 Accuracy and quality of surveys used to locate drill holes (collar down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	• Drill hole collar survey is conducted by an external licensed surveyors company, using a total station instrument 1600 Leica with standard accuracies of +/-2mm per kilometre. All coordinates are tied into the state triangulation network and provided in the Austrian Gauss Kruger coordinate system (EPSG: 31252).

Criteria	JORC Code explanation	Commentary
		 Drill hole deviation is carried out internally by the drilling company GEOPS using DeviShot, with readings every 60m for azimuth and inclination.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Target Infill drilling is designed to close section spacing to no more than 100m and typically less than 50m. The current drill program is a continuation of drill programs undertaken in 2016-2019. Pegmatite intersections in drill core were sampled and assayed on widths up to 1m. For veins exceeding 1 m the samples up to 1 m were prepared, assayed separately and composited subsequently. A similar rationale was applied for the PFS in 2018(see ASX announcement 23.04.2018)
Orientation of data in relation to geological structure	 possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if 	 Drill hole was perpendicular to the dip of the pegmatite veins. No sampling bias was introduced.
sample security	material. • The measures taken to ensure sample security.	 All drill core was placed into labelled PVC core boxes with drill note and box number and run intervals. Drill core boxes were transferred to the Wolfsberg core shed and securely stored. All samples for sample preparation and assay were transported to ALS (Ireland). Chain of custody was followed insuring that only dedicated persona from ECM team and ALS lab had access to the sample at all stages of sampling process. Remaining coarse and pulp duplicates is returned after assaying and stored in Wolfsberg core shed.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Due to Covid-19 Situation no physical audit by the CP was done. It is planned in Q1/2022. The CP had previously undertaken site visits in 2014 and 2016 and has monitored drilling, logging and QA/QC procedures on a regular basis throughout the various drill campaigns.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Criteria	Joke Code explanation	Confinentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The 100% owned subsidiary in Austria, ECM Lithium AT GmbH, has 54 exploration licences in the Wolfsberg project area valid to 31 December 2024 and renewable for additional 5-year terms following demonstration that exploration work has been undertaken on any one licence in the preceeding 5 year term. ECM Lithium AT GmbH has 11 mining licences in the Wolfsberg project area. These are held in perpetuity as long as the terms of the mining licence are met. These licences obligate the Company to mine for at least 4 months per year but this requirement has been suspended by the Mining Authority until 31 December 2021 to allow technical studies to be undertaken. Land access is granted by the landowner who waived all rights to object to development of an underground mine on his land which is a commercial forest. ECM Lithium AT GmbH is obliged to pay the landowner compensation for use of forest roads and any emissions. This is documented in a waiver agreement dated 15 April 2011. A compensation rate of €2,000/month was agreed with the landowner in 2015 for this current work programme. There was a dispute with the landowner which has been referred to arbitration. Meanwhile the compensation amount of €2,000/month was being paid. The dispute has been settled with an amendment to the agreement from 15 April 2011, dated 27 May 2021. An amended compensation amount of €2,400/month is to be paid by ECM Lithium AT GmbH. All other clauses of the 15 April 2011 agreement remain in place.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The project was previously owned by the Austrian state company, Minerex, who conducted extensive exploration of the project area in 1981-1987. In total 9,940m3 of surface trenches, 12,012m of diamond drilling from surface, 4,715m of diamond drilling from underground and 1,389m of underground mine development were undertaken. A twin hole drill and data verification program completed in 2016 (see ASX announcement 16 Nov. 2016) enabled incorporation of historic data in the resource estimation).
Geology	Deposit type, geological setting and style of mineralisation.	• The spodumene bearing pegmatites occur in form of veins within in a regional anticline. The pegmatite veins are intruded into amphibolites and mica schists host rocks strictly concordant to their foliation. On the northern limb of this anticline, which is known as Zone 1, the strata uniformly strikes WNW-ESE

Criteria	JORC Code explanation	Commentary
		 (average 120°) and dips to the NNE at an average of 60°. The amphibolite hosted pegmatites (AHP) are in stratigraphical hanging wa position relative to the mica schist hosted pegmatites (MHP) although the overlap. The AHP has greyish to greenish spodumene crystals aligned subparallel to the pegmatite contacts and average about 2-3 cm in lengt reaching a maximum of 15 cm. Spodumene-xx are more or leshomogeneously distributed within a fine-grained matrix of feldspar an quartz with flakes of muscovite. The MHP lack the typical features an textures of pegmatites having undergone a penetrative metamorphi overprint almost completely recrystallizing the original pegmatitic minerals. The spodumene minerals are in form of mm sized lenticular grains embedde into very fine feldspar, quartz and muscovite matrix. A comprehensive description of the geology and mineralization is provided in the 'Independent Geologists Report' contained within the 'Secon Replacement Prospectus' of 28th July 2016 that can be found on the Compan website www.europeanlithium.com
	exploration results including a tabulation of the following I information for all Material drill holes: o easting and northing of the drill hole collar	cross sections.
Data aggregatio methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the 	stoping) requires taking all material within the stope width. • Pegmatite veins with a minimum width of 0.1m were sampled contact to contact and sample lengths up to 1.0m were taken and aggregated to provide a composite grade for the width of the intersection.

Criteria	JORC Code explanation	Commentary
	 procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	No metal equivalent values are reported
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The drill holes were made perpendicular to the dip of the pegmatite v intersections. The calculation of true thickness is based on the measured contact a between host rock and pegmatite veins. Calculation follows the formula: True Thickness = Measured Thickness \[
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	• Included.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting 	 All grades are reported from ALS Labs. Assay data for all twenty (20) batches for completed holes have been received and are listed in that appendix.

Criteria	JORC Code explanation	Commentary
	of Exploration Results.	
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 All observed data are recorded in separated files. This includes also geotech logging, density measurements, core recovery, and magnetic susceptibility. Density measurements are by the Archimedes method. Density samples are taken at regular intervals for all core and all lithological units.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Historical data derive from paper works from Minerex, the company which executed the exploration program in the 1980s. Data have been scanned or manually transcribed. There were multiple checking phases by comparing data with different sources (e.g. laboratory reports, annual summary reports, geological maps, core logging, etc.). Few contradictions were detected and any observed discrepancies were documented. Finally, the data were compiled into an Access database. See ASX announcement 5th April 2018 New data (2016-2021) were acquired and processed under a strict QA/QC procedure.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 The Competent Person has visited the site Oct. 24-31, 2014 and August 24- 27, 2016 to review twin hole drilling for historic data verification and resource drilling. The CP did not observe any areas of concern during the site

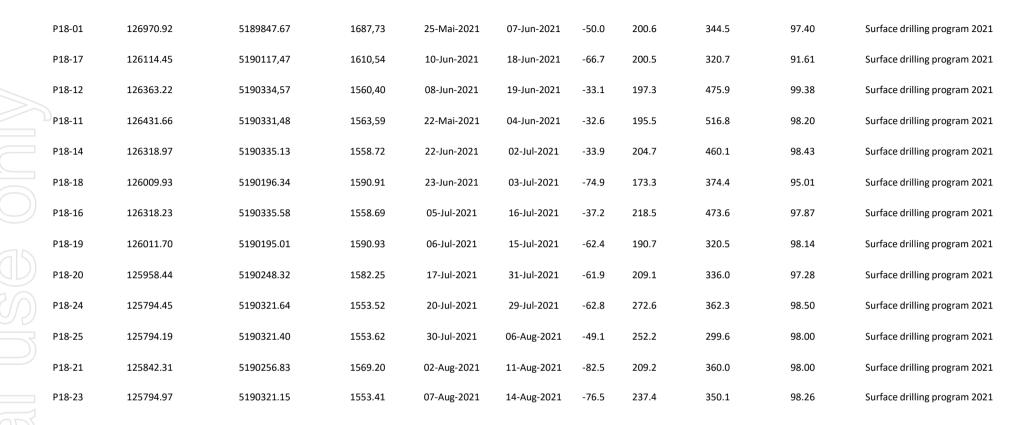
Criteria	JORC Code explanation	Commentary
)		 visits and data review. COVID-19 restrictions prevented a site visit in 2021. visit is planned for Q2/2022. An audit and site visit of application of the QA/QC procedures took place August 24-27, 2016, with no deviations found. Since then, audits of QA/QC procedures have been undertaken in conjunction with review of drill data i 2018 and 2021. In the opinion of the CP, QA/QC procedures are well developed and no areas of concern have bene identified.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 The fundamental basis of the geological interpretation (vein identification) was done by Minerex. By being in charge over the whole period of the exploration they are assumed to have the best knowledge about the deposit. Dr Richard Göd, the geology adviser to European Lithium Limited, was the Chief Geologist in charge of the Minerex exploration. The geological experts in charge now have not detected any flaws in the previous works and interpretations. Underground mine development was carried out by Minerex to intersect the pegmatite veins and follow them by drifting along strike, which confirmed the geological interpretation and demonstrated the vein continuity. Extensive mineralogical studies were made as part of the metallurgical testwork programme of Minerex. Data comprise listings (samples, etc.) and a wide range of geological maps. Although not directly used for resource estimation they are extremely helpful for understanding the deposit characteristics. So far, no alternative interpretation of the geology has been considered. The resource estimation recognizes the characteristics of the vein structure and makes estimates on a vein by vein basis The pegmatite intrusion visibly shows continuity along strike as evidenced by the underground drifting. Continuity down dip is evidenced from drillhol profiles.
imensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	 The currently explored deposit has an extension in strike of 1700 m. The maximum vertical extension is about 400 m (1650 masl to 1250 masl) along strike due to varying exploration strategies in the past. The veins are steep to medium dipping and most of them have expressions on the surface. It is expected that the deposit continues deeper than currently explored. The width of the veins averages 1.45 m with maximum width recorded at 5 m. Intersection lengths in the boreholes were logged but not sampled if less

Criteria	JORC Code explanation	Commentary
		than 0.1 m.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	For project evaluation vein thickness and grade are of paramount importance. For this situation a semi-3D modelling approach is most appropriate for both key figures. This is in particular true for vein thickney which can by this approach be treated by statistical and numerical method while by alternative solutions it has to be indirectly derived from wirefra surface distance. The modelling was done in Surpac and Leapfrog, with subject of this particular application. Interpolation parameters are derived from variography analysis. Variogranges are about 75 m for thickness and 75 m for grade, however both vevidence of a significant nugget ratio. The search distance is set at 75 m both. Variogram parameters for lithium grade and vein thickness are: Parameter Grade Thickness Nugget (CO) 0.081 0.24

Criteria	JORC Code explanation	Commentary
		the spodumene concentrate. That may limit access to the high quality glass/ceramic market, but is of no concern if converting to lithium hydroxide.
		 The block dimension of the model is 25 m x 25 m (with variable thickness). The size is very much determined by assumed stope dimensions rather than blast dimensions. This is because the mining methods under consideration have to extract the full panel size of a stope. Likewise modelling of the transverse grade distribution is not relevant because the whole width has to
		be mined as a total.Selectivity in mining is assumingly limited to selection and dimensioning of
		 stopes. Future deposit modelling investigations will focus on vein regularity because this is of relevance for dilution. Currently only thickness and grade is under investigation. No reasonable
		 correlation exists for these two parameters. The geological interpretation refers to the vein identification, i.e. assigning distinct drill hole intersections to a distinct vein. This is done primarily on
)		basis of the global geological structure, which is fairly well known. For adjacent located veins however, this is sometimes ambiguous. This is the prime basis for modelling, which handles only the interpolation between these geologically defined nodes for each vein.
1		 Before modelling was undertaken, an intensive study on the sample data (grade, partially thickness) was conducted. The distributions of both are reasonably similar to a Gaussian distribution and do not show any tendency
		 for outliers. Hence no particular measures for capping must be applied. Model results are always statistically compared with sample data. As far as possible this is done also for groupings such as by the host rock type. Comparisons were also done with records from former drifting. An essential
		part is also the evaluation of the plausibility of vein identification, which is still in progress. • Resources by vein and resource classification category are summarized

Criteria	JORC Code explanation	Comm	entary								
		belov	v:								
		vein	me	asured		ind	icated			total	
		code		Li2O	thick	Vol		thick	Vol	Li20	thick
		0.0	44.435	0,68	1,05	24.763	0,73	0,94	69.198	0,70	1,01
		0.1	16.600	1,06	1,06	83.671	0,83	1,74	100.271	0,87	1,57
		0.2	9.548	1,43	0,96	14.272	1,35	0,91	23.820	1,38	0,93
		0.3	42.663	0,78	1,20	17.032	1,05	0,78	59.695	0,86	1,04
		1.1	153.585	1,20	1,32	64.088	0,75	1,31	217.673	1,07	1,32
		1.2	181.878	0,57	1,85	101.921	0,77	1,90	283.799	0,64	1,87
		2.1	214.265	1,45	1,74	81.723	0,96	1,25	295.988	1,31	1,57
		2.2	111.150	1,24	1,19	44.581	1,23	1,02	155.731	1,24	1,13
		3.1	262.468	1,48	1,51	63.829	1,06	0,98	326.297	1,40	1,37
		3.2	73.249	1,24	0,80	62.944	1,22	0,88	136.193	1,23	0,83
		4	72.641	1,01	0,91	129.426	0,82	0,98	202.067	0,89	0,95
		6.1	4.843	0,96	0,70	109.303	0,73	0,94	114.146	0,74	0,92
		6.2	127.137	1,12	1,25	400.864	0,90	1,63	528.001	0,95	1,52
		7	271.188	0,93	1,64	750.524	1,05	2,35	1.021.712	1,02	2,11
		0	0	0,00	0,00	47.218	0,63	1,40	47.218	0,63	1,40
		total	1.585.650	1,13	1,37	1.996.159	0,95	1,52	3.581.809	1,03	1,45
		total	1.303.030	1,10	1,37	1.330.133	0,55	1,52	3.301.003	1,03	1,40
		tonnage	4.312.968			5.429.552			9.742.520		
loisture	Whether the tonnages are estimated on a dry basis or with natural	• The n	nodel resul nments by	drill ho	le and	reviewed l intersectio	on.		eapfrog to		
1oisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	The nassignThe protocolortrans valida	nodel resul	drill ho culation into to d (dry)	le and n is a vennage t	reviewed l intersection olumetric c the density	on. one bas y figure	sed on deter	eapfrog to vein geon mined dur	netry. F	or the
Moisture Cut-off parameters	moisture, and the method of determination of the moisture	 The nassign The programmer of the progra	nodel resul nments by rinciple cal- formation ation is use	culation into too did (dry) tions. off for curs be did hence finas be eported	n is a vonnage of consideration of the consideratio	reviewed lintersection of the density derations of thickness only samples continued as the Neable process.	on. one bas y figure on mois or grad les with ribute to	sed on deter sture v e is us a leng o the r data i	vein geon mined dur vill be subj ed. Indirec gth of mor resources. ndicated t	netry. Fing dat ect of total	or the a he ut-off 0.5 m

	Commentary
determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 and no selectivity is conceivable for any separation within the vein. For this reason, the modelled grade includes also the dilution due to interbeddings which are observed regularly. The Minerex Prefeasibility study concluded that long hole open stoping and cut and fill were appropriate mining methods. Minimum sampling width was 0.5 m. The economic minimum mining width still has to be established taking into account current studies to remove waste dilution by sensor based sorting. 13% of the sample composites had interbedding which has been included as internal dilution within the resource estimate. Mining studies undertaken in 2017 by SRK Consulting included a preliminary mining layout utilising a standard stope shape of 25 m high by 75 m wide with 4 m rib and sill pillars. Based on the mining method selection criteria, SRK (2017) further recommended that the most appropriate underground mining method to be considered for low cost mining at Wolfsberg is a variant of sublevel stoping called Longhole Open Stoping. Pillar support and partial backfill was recommended to assure stability.
Metallurgical factors or assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Minerex conducted extensive metallurgical testing and concluded that a 6% Li2O spodumene concentrate could be produced by crushing, grinding, flotation and magnetic separation. Saleable by-products of feldspar, quartz and mica were also obtained which have value with the projects location in Central Europe. Limited testwork also demonstrated that the spodumene concentrate was amenable to conversion to lithium carbonate. Complex testwork at the company's pilot plant facility (Dorfner/Anzplan, in Hirschau, Germany) with mined bulk samples from the existing U/G mine (2,500t) has been undertaken by the company and did show that the spodumene concentrate from Wolfsberg can be successfully processed to battery grade lithium carbonate and lithium hydroxide, using commercially proven technology (see ASX announcement April 5, 2018). This coupled to the fact that the deposit is technically and economically viable, and may be mined economically using long hole open stoping, means that the deposit meets the criterion for eventual economic extraction as required for a


Criteria	JORC Code explanation	Commentary
Environmen-tal factors or assumptions	• Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	 It is envisioned that the waste from mining and processing will be utilised a fill in the mine and that there will be no permanent tailings dam. The mine area is in a commercial forest and there are no nature conservation or water protection zones.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 The measurements of density for pegmatite and the major host rocks, amphibolite and mica schist. For mineralised pegmatite zones routine density information was determined at regular intervals every 0.5 m. The procedure follows the Archimedes method by weighing samples of ful core diameter in 10-15 cm lengths in air and in water. Results obtained from 565 samples of pegmatite were 2.70± 0.07; from 18 amphibolite samples (3.00±0.1) and 2.83±0.08 for 2936 samples of mica schist.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 Former exploration activities comprise underground drifts following some selected veins. In this way the continuity of the veins was demonstrated a investigated, as well as the reasons for the occurrence of disturbances. The appraisal is supported by the statistical analysis of the variability based on the drill hole data. Measured resources are stated for the veins immediately above and below the underground workings that visibly show continuity to the extent of the underground drilling which results in profiles at 50 m along strike. Indicated resources are stated for the main cross-sections, where there were at least three drill holes not more than 50 m apart.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	• The resource estimate has been prepared by Mine-IT Sanak Oberndorfer (Prof. Dr. Thomas Oberndorfer) and audited by the independent Competer Person, Mr Don Hains, P. Geo.

Criteria	JORC Code explanation	Commentary
Discussion of relative accuracy/confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The relative accuracy of the Mineral Resource estimate is reflected in the reporting of the Mineral Resource as per the guidelines of the JORC Code (2012). The resource estimate refers to global estimates of tonnes and grade.

Appendix

Drill Hole Collar Table "Infill Drilling Campaign 2021"

Drill Hole ID	E_GK	N_GK	Collar Elevation	Start Date	End Date	Dip	Azimuth	Total_Depth	Total_ Core_ Recovery_%	Notes
P18-09	126545.18	5190059.39	1623.79	26-Feb-2021	08-Mär-2021	-69.3	198.4	440.7	97.30	Surface drilling program 2021
P18-10	126473.88	5190036.64	1630.04	10-Mär-2021	17-Mär-2021	-66.8	198.1	359.7	98.00	Surface drilling program 2021
P18-06	126715.76	5190050.70	1636.92	19-Mär-2021	29-Mär-2021	-55.2	199.8	419.3	98.70	Surface drilling program 2021
P18-05	126810.54	5190082.92	1646.02	02-Apr-2021	14-Apr-2021	-50.2	194.5	470.4	98.30	Surface drilling program 2021
P18-04	126810.33	5190082.40	1646.05	15-Apr-2021	24-Apr-2021	-38.4	194.0	448.9	98.50	Surface drilling program 2021
P18-03	126920.03	5190015.28	1656.58	27-Apr-2021	08-Mai-2021	-30.6	198.8	444.0	97.20	Surface drilling program 2021
P18-02	126970.92	5189847.67	1687.73	12-Mai-2021	20-Mai-2021	-30.5	199.0	345.5	98.60	Surface drilling program 2021

Coordinates are reported in Austrian Gauss-Kruger System. EPSG Code: 31252

Assay Results – Individual Samples

BHID	ID	from	to	Li₂O
P18-09	2000494	49,30	49,60	0,05
P18-09	2000495	109,95	110,10	0,66
P18-09	2000496	110,40	110,56	1,59
P18-09	2000497	127,95	128,15	0,03
P18-09	2000499	139,00	139,20	0,01
P18-09	2000500	174,50	174,70	0,03

P18-09	2000501	175,00	175,40	0,09
P18-09	2000502	192,90	193,43	0,12
P18-09	2000503	198,15	198,48	0,48
P18-09	2000504	198,86	199,19	0,12
P18-09	2000505	202,15	203,05	1,95
P18-09	2000507	214,40	215,15	0,13
P18-09	2000508	222,70	223,20	0,22
P18-09	2000509	227,30	227,80	0,03
P18-09	2000510	231,35	231,70	0,80
P18-09	2000511	232,50	233,00	1,32
P18-09	2000513	234,66	234,89	0,13
P18-09	2000514	235,29	235,40	0,18
P18-09	2000515	236,15	236,30	1,56
P18-09	2000516	241,30	242,20	0,29
P18-09	2000517	248,65	249,24	2,22
P18-09	2000518	249,24	249,83	2,40
P18-09	2000526	271,89	272,00	0,02
P18-09	2000527	298,55	299,18	1,99
P18-09	2000528	299,18	299,80	1,72
P18-09	2000529	309,00	309,40	0,04
P18-09	2000531	343,00	343,30	0,13
P18-09	2000532	403,80	404,33	0,59
P18-09	2000533	408,20	408,50	0,42
P18-09	2000535	426,55	426,80	0,02
P18-09	2000536	427,10	427,50	0,20
P18-09	2000537	427,86	428,19	0,34
P18-10	2000538	63,15	63,39	0,02
P18-10	2000539	93,90	94,40	0,59
P18-10	2000542	150,70	150,80	1,07
P18-10	2000543	155,10	155,40	1,76
P18-10	2000544	161,70	162,15	1,88
P18-10	2000545	164,60	164,95	2,29

P18-10	2000546	169,85	170,10	0,69
P18-10	2000547	176,81	176,92	0,04
P18-10	2000548	177,95	178,50	0,08
P18-10	2000550	185,17	185,77	0,97
P18-10	2000551	185,77	186,36	1,29
P18-10	2000552	190,26	191,06	0,15
P18-10	2000553	191,06	191,85	0,13
P18-10	2000555	194,15	194,70	0,06
P18-10	2000556	197,00	197,23	1,37
P18-10	2000557	197,60	197,95	1,47
P18-10	2000558	208,00	208,20	0,08
P18-10	2000559	217,98	218,28	0,74
P18-10	2000560	241,80	241,88	0,02
P18-10	2000562	253,90	254,17	0,02
P18-10	2000563	261,37	261,85	1,33
P18-10	2000564	264,18	264,24	0,40
P18-10	2000565	289,90	290,60	0,62
P18-10	2000566	291,10	291,18	0,04
P18-10	2000567	328,72	329,06	0,25
P18-10	2000568	336,00	337,00	1,30
P18-10	2000569	337,00	338,00	1,32
P18-10	2000577	352,93	353,13	0,05
P18-10	2000579	353,20	353,35	0,05
P18-06	2000580	115,80	115,92	0,04
P18-06	2000581	116,65	116,95	0,07
P18-06	2000582	163,95	164,50	0,30
P18-06	2000584	174,36	174,52	0,24
P18-06	2000585	180,20	181,00	0,14
P18-06	2000586	201,05	201,23	0,04
P18-06	2000587	201,40	201,56	0,02
P18-06	2000588	203,67	203,89	0,01
P18-06	2000590	215,75	216,08	0,07
			_	

P18-06	2000591	222,77	222,94	0,06
P18-06	2000593	224,16	224,34	0,11
P18-06	2000594	224,46	224,86	0,07
P18-06	2000595	232,24	232,43	0,06
P18-06	2000596	232,60	232,96	0,06
P18-06	2000597	237,13	237,25	0,19
P18-06	2000598	239,70	239,82	0,53
P18-06	2000599	249,05	250,11	2,31
P18-06	2000600	250,11	251,18	1,60
P18-06	2000608	251,30	251,60	1,20
P18-06	2000610	251,76	252,00	0,12
P18-06	2000611	253,13	253,72	1,81
P18-06	2000612	254,32	254,48	0,07
P18-06	2000613	255,18	255,30	0,07
P18-06	2000614	259,98	260,25	0,07
P18-06	2000615	274,50	275,21	0,66
P18-06	2000616	298,80	299,68	1,37
P18-06	2000617	301,30	302,10	1,05
P18-06	2000618	302,10	302,92	0,92
P18-06	2000619	306,12	306,60	1,50
P18-06	2000621	340,84	341,26	0,49
P18-06	2000622	381,06	381,15	0,03
P18-06	2000623	386,67	387,02	0,66
P18-06	2000624	388,60	389,00	0,74
P18-06	2000626	398,37	398,44	0,10
P18-06	2000627	398,60	398,75	0,53
P18-06	2000628	403,47	403,60	0,35
P18-05	2000629	16,74	17,07	0,03
P18-05	2000630	19,52	19,70	0,03
P18-05	2000631	42,42	42,56	1,48
P18-05	2000632	42,84	43,17	1,43
P18-05	2000633	71,09	71,29	0,02

P18-05	2000634	169,29	169,45	0,02
P18-05	2000637	218,08	218,33	1,52
P18-05	2000638	218,80	219,15	2,37
P18-05	2000639	219,75	220,52	1,34
P18-05	2000641	257,17	257,75	0,33
P18-05	2000642	262,91	263,03	0,03
P18-05	2000643	263,70	264,20	0,03
P18-05	2000644	270,89	271,04	0,01
P18-05	2000645	276,45	276,70	1,52
P18-05	2000647	282,00	282,50	1,92
P18-05	2000648	282,50	283,13	0,88
P18-05	2000649	285,25	285,45	0,04
P18-05	2000650	288,95	290,20	1,20
P18-05	2000651	293,74	294,27	0,76
P18-05	2000659	298,02	298,46	0,41
P18-05	2000660	300,05	300,36	0,02
P18-05	2000661	305,94	306,35	0,03
P18-05	2000662	306,48	307,13	0,06
P18-05	2000663	307,85	308,20	1,07
P18-05	2000664	310,27	310,38	1,86
P18-05	2000665	310,69	310,90	0,56
P18-05	2000667	330,34	330,62	0,13
P18-05	2000668	331,10	331,90	0,46
P18-05	2000670	331,90	332,72	1,25
P18-05	2000671	340,00	340,50	0,03
P18-05	2000673	347,50	347,67	0,03
P18-05	2000674	363,20	363,40	0,02
P18-05	2000675	408,85	409,10	0,86
P18-05	2000676	409,58	409,88	0,13
P18-05	2000677	411,49	411,89	0,19
P18-05	2000678	412,20	412,41	0,02
P18-05	2000679	421,45	421,56	1,02

P18-05	2000680	422,60	422,78	0,04
P18-05	2000682	436,87	437,59	0,94
P18-05	2000683	447,57	447,69	0,02
P18-04	2000684	14,90	15,10	0,01
P18-04	2000685	17,71	17,82	0,02
P18-04	2000688	69,69	70,06	0,09
P18-04	2000690	214,99	215,56	1,24
P18-04	2000692	221,23	221,47	1,01
P18-04	2000693	222,25	222,45	0,88
P18-04	2000694	235,83	235,98	1,19
P18-04	2000695	240,03	240,15	0,02
P18-04	2000697	259,41	259,53	0,06
P18-04	2000699	261,63	261,73	0,04
P18-04	2000700	266,69	267,14	1,17
P18-04	2000701	271,20	271,30	0,46
P18-04	2000702	275,98	276,35	1,14
P18-04	2000703	279,14	279,51	0,05
P18-04	2000704	282,48	283,06	1,15
P18-04	2000705	283,06	283,56	2,19
P18-04	2000706	284,00	284,36	1,93
P18-04	2000707	285,82	286,08	0,90
P18-04	2000708	288,63	288,77	0,02
P18-04	2000711	301,04	301,69	1,53
P18-04	2000712	304,13	304,30	1,40
P18-04	2000713	318,63	318,96	0,17
P18-04	2000714	325,38	325,79	0,12
P18-04	2000715	326,92	327,81	0,21
P18-04	2000723	328,53	329,50	1,51
P18-04	2000724	329,50	330,31	1,11
P18-04	2000725	332,55	332,95	1,46
P18-04	2000727	360,50	361,10	0,03
P18-04	2000728	396,32	396,47	0,02

P18-04 2000729 410,73 410,93 0,05 P18-04 2000731 411,30 411,50 0,74 P18-04 2000732 423,00 423,50 1,10 P18-04 2000733 423,50 424,04 1,38 P18-04 2000734 434,26 434,55 0,02 P18-04 2000735 263,11 263,52 0,02 P18-03 2000736 11,20 11,52 2,07 P18-03 2000737 11,79 12,18 0,03 P18-03 2000738 46,86 47,40 1,26 P18-03 2000740 49,95 50,12 0,03 P18-03 2000741 127,32 127,55 0,06 P18-03 2000742 130,56 130,74 0,07 P18-03 2000743 130,83 131,08 0,05 P18-03 2000744 197,00 197,33 1,72 P18-03 2000745 199,88 200,00 0,					
P18-04 2000732 423,00 423,50 1,10 P18-04 2000733 423,50 424,04 1,38 P18-04 2000734 434,26 434,55 0,02 P18-04 2000735 263,11 263,52 0,02 P18-03 2000736 11,20 11,52 2,07 P18-03 2000737 11,79 12,18 0,03 P18-03 2000738 46,86 47,40 1,26 P18-03 2000740 49,95 50,12 0,03 P18-03 2000741 127,32 127,55 0,06 P18-03 2000742 130,56 130,74 0,07 P18-03 2000743 130,83 131,08 0,05 P18-03 2000744 197,00 197,33 1,72 P18-03 2000744 197,00 197,33 1,72 P18-03 2000747 200,70 201,51 2,80 P18-03 2000748 201,91 202,60 1,	P18-04	2000729	410,73	410,93	0,05
P18-04 2000733 423,50 424,04 1,38 P18-04 2000734 434,26 434,55 0,02 P18-04 2000735 263,11 263,52 0,02 P18-03 2000736 11,20 11,52 2,07 P18-03 2000737 11,79 12,18 0,03 P18-03 2000740 49,95 50,12 0,03 P18-03 2000740 49,95 50,12 0,03 P18-03 2000741 127,32 127,55 0,06 P18-03 2000742 130,56 130,74 0,07 P18-03 2000743 130,83 131,08 0,05 P18-03 2000744 197,00 197,33 1,72 P18-03 2000744 197,00 197,33 1,72 P18-03 2000745 199,88 200,00 0,62 P18-03 2000747 200,70 201,51 2,80 P18-03 2000750 209,66 209,84 0,	P18-04	2000731	411,30	411,50	0,74
P18-04 2000734 434,26 434,55 0,02 P18-04 2000735 263,11 263,52 0,02 P18-03 2000736 11,20 11,52 2,07 P18-03 2000737 11,79 12,18 0,03 P18-03 2000740 49,95 50,12 0,03 P18-03 2000740 49,95 50,12 0,03 P18-03 2000741 127,32 127,55 0,06 P18-03 2000742 130,56 130,74 0,07 P18-03 2000743 130,83 131,08 0,05 P18-03 2000744 197,00 197,33 1,72 P18-03 2000745 199,88 200,00 0,62 P18-03 2000745 199,88 200,00 0,62 P18-03 2000747 200,70 201,51 2,80 P18-03 2000750 209,66 209,84 0,07 P18-03 2000751 210,16 210,90 0,	P18-04	2000732	423,00	423,50	1,10
P18-04 2000735 263,11 263,52 0,02 P18-03 2000736 11,20 11,52 2,07 P18-03 2000737 11,79 12,18 0,03 P18-03 2000740 49,95 50,12 0,03 P18-03 2000741 127,32 127,55 0,06 P18-03 2000742 130,56 130,74 0,07 P18-03 2000743 130,83 131,08 0,05 P18-03 2000744 197,00 197,33 1,72 P18-03 2000744 197,00 197,33 1,72 P18-03 2000745 199,88 200,00 0,62 P18-03 2000747 200,70 201,51 2,80 P18-03 2000748 201,91 202,60 1,52 P18-03 2000750 209,66 209,84 0,07 P18-03 2000751 210,16 210,90 0,62 P18-03 2000752 234,71 234,83	P18-04	2000733	423,50	424,04	1,38
P18-03 2000736 11,20 11,52 2,07 P18-03 2000737 11,79 12,18 0,03 P18-03 2000738 46,86 47,40 1,26 P18-03 2000740 49,95 50,12 0,03 P18-03 2000741 127,32 127,55 0,06 P18-03 2000742 130,56 130,74 0,07 P18-03 2000743 130,83 131,08 0,05 P18-03 2000744 197,00 197,33 1,72 P18-03 2000745 199,88 200,00 0,62 P18-03 2000745 199,88 200,00 0,62 P18-03 2000747 200,70 201,51 2,80 P18-03 2000748 201,91 202,60 1,52 P18-03 2000750 209,66 209,84 0,07 P18-03 2000751 210,16 210,90 0,62 P18-03 2000752 234,71 234,83 0,	P18-04	2000734	434,26	434,55	0,02
P18-03 2000738 46,86 47,40 1,26 P18-03 2000740 49,95 50,12 0,03 P18-03 2000740 49,95 50,12 0,03 P18-03 2000741 127,32 127,55 0,06 P18-03 2000742 130,56 130,74 0,07 P18-03 2000743 130,83 131,08 0,05 P18-03 2000744 197,00 197,33 1,72 P18-03 2000745 199,88 200,00 0,62 P18-03 2000747 200,70 201,51 2,80 P18-03 2000748 201,91 202,60 1,52 P18-03 2000750 209,66 209,84 0,07 P18-03 2000751 210,16 210,90 0,62 P18-03 2000752 234,71 234,83 0,03 P18-03 2000753 237,46 237,57 0,06 P18-03 2000754 238,27 238,47	P18-04	2000735	263,11	263,52	0,02
P18-03 2000738 46,86 47,40 1,26 P18-03 2000740 49,95 50,12 0,03 P18-03 2000741 127,32 127,55 0,06 P18-03 2000742 130,56 130,74 0,07 P18-03 2000743 130,83 131,08 0,05 P18-03 2000744 197,00 197,33 1,72 P18-03 2000745 199,88 200,00 0,62 P18-03 2000747 200,70 201,51 2,80 P18-03 2000748 201,91 202,60 1,52 P18-03 2000750 209,66 209,84 0,07 P18-03 2000751 210,16 210,90 0,62 P18-03 2000752 234,71 234,83 0,03 P18-03 2000753 237,46 237,57 0,06 P18-03 2000754 238,27 238,47 0,03 P18-03 2000755 245,22 245,55 <t< td=""><td>P18-03</td><td>2000736</td><td>11,20</td><td>11,52</td><td>2,07</td></t<>	P18-03	2000736	11,20	11,52	2,07
P18-03 2000740 49,95 50,12 0,03 P18-03 2000741 127,32 127,55 0,06 P18-03 2000742 130,56 130,74 0,07 P18-03 2000743 130,83 131,08 0,05 P18-03 2000744 197,00 197,33 1,72 P18-03 2000745 199,88 200,00 0,62 P18-03 2000747 200,70 201,51 2,80 P18-03 2000748 201,91 202,60 1,52 P18-03 2000750 209,66 209,84 0,07 P18-03 2000751 210,16 210,90 0,62 P18-03 2000752 234,71 234,83 0,03 P18-03 2000753 237,46 237,57 0,06 P18-03 2000754 238,27 238,47 0,03 P18-03 2000755 245,22 245,55 0,06 P18-03 2000756 247,26 247,98	P18-03	2000737	11,79	12,18	0,03
P18-03 2000741 127,32 127,55 0,06 P18-03 2000742 130,56 130,74 0,07 P18-03 2000743 130,83 131,08 0,05 P18-03 2000744 197,00 197,33 1,72 P18-03 2000745 199,88 200,00 0,62 P18-03 2000747 200,70 201,51 2,80 P18-03 2000748 201,91 202,60 1,52 P18-03 2000750 209,66 209,84 0,07 P18-03 2000751 210,16 210,90 0,62 P18-03 2000752 234,71 234,83 0,03 P18-03 2000753 237,46 237,57 0,06 P18-03 2000754 238,27 238,47 0,03 P18-03 2000755 245,22 245,55 0,06 P18-03 2000756 247,26 247,98 0,17 P18-03 2000758 265,38 265,53	P18-03	2000738	46,86	47,40	1,26
P18-03 2000742 130,56 130,74 0,07 P18-03 2000743 130,83 131,08 0,05 P18-03 2000744 197,00 197,33 1,72 P18-03 2000745 199,88 200,00 0,62 P18-03 2000747 200,70 201,51 2,80 P18-03 2000748 201,91 202,60 1,52 P18-03 2000750 209,66 209,84 0,07 P18-03 2000751 210,16 210,90 0,62 P18-03 2000752 234,71 234,83 0,03 P18-03 2000753 237,46 237,57 0,06 P18-03 2000754 238,27 238,47 0,03 P18-03 2000755 245,22 245,55 0,06 P18-03 2000756 247,26 247,98 0,17 P18-03 2000758 265,38 265,53 0,04 P18-03 2000759 273,82 274,61	P18-03	2000740	49,95	50,12	0,03
P18-03 2000743 130,83 131,08 0,05 P18-03 2000744 197,00 197,33 1,72 P18-03 2000745 199,88 200,00 0,62 P18-03 2000747 200,70 201,51 2,80 P18-03 2000748 201,91 202,60 1,52 P18-03 2000750 209,66 209,84 0,07 P18-03 2000751 210,16 210,90 0,62 P18-03 2000752 234,71 234,83 0,03 P18-03 2000753 237,46 237,57 0,06 P18-03 2000754 238,27 238,47 0,03 P18-03 2000755 245,22 245,55 0,06 P18-03 2000756 247,26 247,98 0,17 P18-03 2000758 265,38 265,53 0,04 P18-03 2000759 273,82 274,61 0,04 P18-03 2000760 276,23 276,54	P18-03	2000741	127,32	127,55	0,06
P18-03 2000744 197,00 197,33 1,72 P18-03 2000745 199,88 200,00 0,62 P18-03 2000747 200,70 201,51 2,80 P18-03 2000748 201,91 202,60 1,52 P18-03 2000750 209,66 209,84 0,07 P18-03 2000751 210,16 210,90 0,62 P18-03 2000752 234,71 234,83 0,03 P18-03 2000753 237,46 237,57 0,06 P18-03 2000754 238,27 238,47 0,03 P18-03 2000755 245,22 245,55 0,06 P18-03 2000756 247,26 247,98 0,17 P18-03 2000757 257,13 257,40 0,10 P18-03 2000758 265,38 265,53 0,04 P18-03 2000760 276,23 276,54 0,73 P18-03 2000762 291,83 291,94	P18-03	2000742	130,56	130,74	0,07
P18-03 2000745 199,88 200,00 0,62 P18-03 2000747 200,70 201,51 2,80 P18-03 2000748 201,91 202,60 1,52 P18-03 2000750 209,66 209,84 0,07 P18-03 2000751 210,16 210,90 0,62 P18-03 2000752 234,71 234,83 0,03 P18-03 2000753 237,46 237,57 0,06 P18-03 2000754 238,27 238,47 0,03 P18-03 2000755 245,22 245,55 0,06 P18-03 2000756 247,26 247,98 0,17 P18-03 2000757 257,13 257,40 0,10 P18-03 2000758 265,38 265,53 0,04 P18-03 2000759 273,82 274,61 0,04 P18-03 2000760 276,23 276,54 0,73 P18-03 2000763 293,29 294,16	P18-03	2000743	130,83	131,08	0,05
P18-03 2000747 200,70 201,51 2,80 P18-03 2000748 201,91 202,60 1,52 P18-03 2000750 209,66 209,84 0,07 P18-03 2000751 210,16 210,90 0,62 P18-03 2000752 234,71 234,83 0,03 P18-03 2000753 237,46 237,57 0,06 P18-03 2000754 238,27 238,47 0,03 P18-03 2000755 245,22 245,55 0,06 P18-03 2000756 247,26 247,98 0,17 P18-03 2000757 257,13 257,40 0,10 P18-03 2000758 265,38 265,53 0,04 P18-03 2000760 276,23 276,54 0,73 P18-03 2000762 291,83 291,94 0,11 P18-03 2000763 293,29 294,16 0,66 P18-03 2000764 296,12 296,34	P18-03	2000744	197,00	197,33	1,72
P18-03 2000748 201,91 202,60 1,52 P18-03 2000750 209,66 209,84 0,07 P18-03 2000751 210,16 210,90 0,62 P18-03 2000752 234,71 234,83 0,03 P18-03 2000753 237,46 237,57 0,06 P18-03 2000754 238,27 238,47 0,03 P18-03 2000755 245,22 245,55 0,06 P18-03 2000756 247,26 247,98 0,17 P18-03 2000757 257,13 257,40 0,10 P18-03 2000758 265,38 265,53 0,04 P18-03 2000759 273,82 274,61 0,04 P18-03 2000760 276,23 276,54 0,73 P18-03 2000762 291,83 291,94 0,11 P18-03 2000764 296,12 296,34 0,90	P18-03	2000745	199,88	200,00	0,62
P18-03 2000750 209,66 209,84 0,07 P18-03 2000751 210,16 210,90 0,62 P18-03 2000752 234,71 234,83 0,03 P18-03 2000753 237,46 237,57 0,06 P18-03 2000754 238,27 238,47 0,03 P18-03 2000755 245,22 245,55 0,06 P18-03 2000756 247,26 247,98 0,17 P18-03 2000757 257,13 257,40 0,10 P18-03 2000758 265,38 265,53 0,04 P18-03 2000759 273,82 274,61 0,04 P18-03 2000760 276,23 276,54 0,73 P18-03 2000762 291,83 291,94 0,11 P18-03 2000763 293,29 294,16 0,66 P18-03 2000764 296,12 296,34 0,90	P18-03	2000747	200,70	201,51	2,80
P18-03 2000751 210,16 210,90 0,62 P18-03 2000752 234,71 234,83 0,03 P18-03 2000753 237,46 237,57 0,06 P18-03 2000754 238,27 238,47 0,03 P18-03 2000755 245,22 245,55 0,06 P18-03 2000756 247,26 247,98 0,17 P18-03 2000757 257,13 257,40 0,10 P18-03 2000758 265,38 265,53 0,04 P18-03 2000759 273,82 274,61 0,04 P18-03 2000760 276,23 276,54 0,73 P18-03 2000762 291,83 291,94 0,11 P18-03 2000763 293,29 294,16 0,66 P18-03 2000764 296,12 296,34 0,90	P18-03	2000748	201,91	202,60	1,52
P18-03 2000752 234,71 234,83 0,03 P18-03 2000753 237,46 237,57 0,06 P18-03 2000754 238,27 238,47 0,03 P18-03 2000755 245,22 245,55 0,06 P18-03 2000756 247,26 247,98 0,17 P18-03 2000757 257,13 257,40 0,10 P18-03 2000758 265,38 265,53 0,04 P18-03 2000759 273,82 274,61 0,04 P18-03 2000760 276,23 276,54 0,73 P18-03 2000762 291,83 291,94 0,11 P18-03 2000763 293,29 294,16 0,66 P18-03 2000764 296,12 296,34 0,90	P18-03	2000750	209,66	209,84	0,07
P18-03 2000753 237,46 237,57 0,06 P18-03 2000754 238,27 238,47 0,03 P18-03 2000755 245,22 245,55 0,06 P18-03 2000756 247,26 247,98 0,17 P18-03 2000757 257,13 257,40 0,10 P18-03 2000758 265,38 265,53 0,04 P18-03 2000759 273,82 274,61 0,04 P18-03 2000760 276,23 276,54 0,73 P18-03 2000762 291,83 291,94 0,11 P18-03 2000763 293,29 294,16 0,66 P18-03 2000764 296,12 296,34 0,90	P18-03	2000751	210,16	210,90	0,62
P18-03 2000754 238,27 238,47 0,03 P18-03 2000755 245,22 245,55 0,06 P18-03 2000756 247,26 247,98 0,17 P18-03 2000757 257,13 257,40 0,10 P18-03 2000758 265,38 265,53 0,04 P18-03 2000759 273,82 274,61 0,04 P18-03 2000760 276,23 276,54 0,73 P18-03 2000762 291,83 291,94 0,11 P18-03 2000763 293,29 294,16 0,66 P18-03 2000764 296,12 296,34 0,90	P18-03	2000752	234,71	234,83	0,03
P18-03 2000755 245,22 245,55 0,06 P18-03 2000756 247,26 247,98 0,17 P18-03 2000757 257,13 257,40 0,10 P18-03 2000758 265,38 265,53 0,04 P18-03 2000759 273,82 274,61 0,04 P18-03 2000760 276,23 276,54 0,73 P18-03 2000762 291,83 291,94 0,11 P18-03 2000763 293,29 294,16 0,66 P18-03 2000764 296,12 296,34 0,90	P18-03	2000753	237,46	237,57	0,06
P18-03 2000756 247,26 247,98 0,17 P18-03 2000757 257,13 257,40 0,10 P18-03 2000758 265,38 265,53 0,04 P18-03 2000759 273,82 274,61 0,04 P18-03 2000760 276,23 276,54 0,73 P18-03 2000762 291,83 291,94 0,11 P18-03 2000763 293,29 294,16 0,66 P18-03 2000764 296,12 296,34 0,90	P18-03	2000754	238,27	238,47	0,03
P18-03 2000757 257,13 257,40 0,10 P18-03 2000758 265,38 265,53 0,04 P18-03 2000759 273,82 274,61 0,04 P18-03 2000760 276,23 276,54 0,73 P18-03 2000762 291,83 291,94 0,11 P18-03 2000763 293,29 294,16 0,66 P18-03 2000764 296,12 296,34 0,90	P18-03	2000755	245,22	245,55	0,06
P18-03 2000758 265,38 265,53 0,04 P18-03 2000759 273,82 274,61 0,04 P18-03 2000760 276,23 276,54 0,73 P18-03 2000762 291,83 291,94 0,11 P18-03 2000763 293,29 294,16 0,66 P18-03 2000764 296,12 296,34 0,90	P18-03	2000756	247,26	247,98	0,17
P18-03 2000759 273,82 274,61 0,04 P18-03 2000760 276,23 276,54 0,73 P18-03 2000762 291,83 291,94 0,11 P18-03 2000763 293,29 294,16 0,66 P18-03 2000764 296,12 296,34 0,90	P18-03	2000757	257,13	257,40	0,10
P18-03 2000760 276,23 276,54 0,73 P18-03 2000762 291,83 291,94 0,11 P18-03 2000763 293,29 294,16 0,66 P18-03 2000764 296,12 296,34 0,90	P18-03	2000758	265,38	265,53	0,04
P18-03 2000762 291,83 291,94 0,11 P18-03 2000763 293,29 294,16 0,66 P18-03 2000764 296,12 296,34 0,90	P18-03	2000759	273,82	274,61	0,04
P18-03 2000763 293,29 294,16 0,66 P18-03 2000764 296,12 296,34 0,90	P18-03	2000760	276,23	276,54	0,73
P18-03 2000764 296,12 296,34 0,90	P18-03	2000762	291,83	291,94	0,11
	P18-03	2000763	293,29	294,16	0,66
P18-03 2000765 305,66 305,92 0,03	P18-03	2000764	296,12	296,34	0,90
	P18-03	2000765	305,66	305,92	0,03

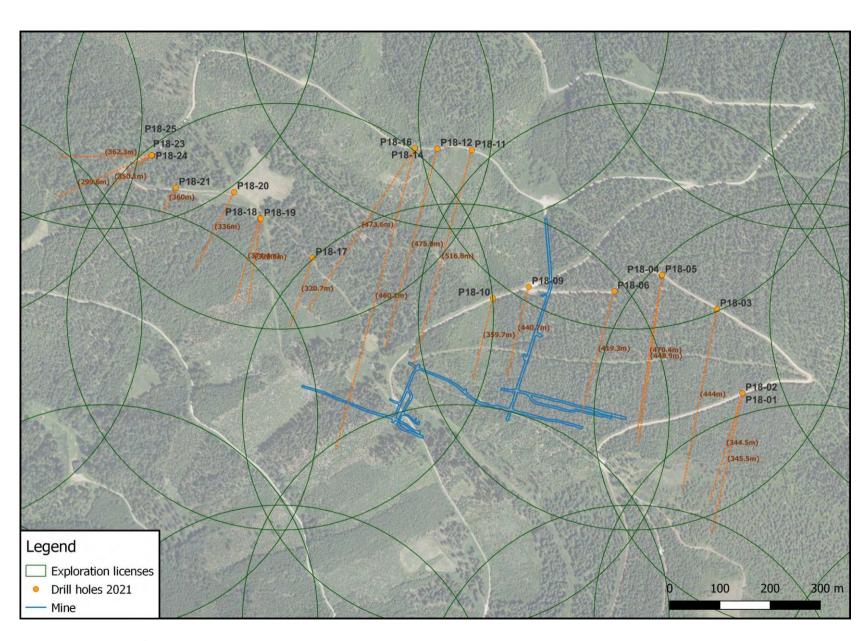
P18-03	2000767	363,38	363,59	0,05
P18-03	2000768	364,00	364,16	0,05
P18-03	2000769	371,24	371,41	0,04
P18-03	2000770	373,01	373,32	1,18
P18-03	2000771	373,62	374,23	0,16
P18-03	2000779	388,71	389,42	1,10
P18-03	2000780	403,87	404,50	0,98
P18-03	2000781	404,50	405,13	1,59
P18-03	2000783	405,34	406,05	1,20
P18-03	2000784	415,47	415,93	0,02
P18-02	2000785	44,20	44,38	0,01
P18-02	2000787	100,58	100,71	0,09
P18-02	2000788	100,81	101,01	0,05
P18-02	2000789	101,50	101,69	0,05
P18-02	2000790	103,00	103,34	1,30
P18-02	2000791	116,04	116,30	0,05
P18-02	2000793	146,66	147,23	0,68
P18-02	2000794	147,23	147,80	1,13
P18-02	2000795	149,68	149,78	0,08
P18-02	2000796	150,20	150,36	0,08
P18-02	2000797	156,66	156,86	0,04
P18-02	2000798	158,34	158,95	0,16
P18-02	2000806	196,64	196,74	0,07
P18-02	2000807	197,55	198,43	0,94
P18-02	2000808	209,74	210,45	2,02
P18-02	2000810	212,78	212,91	1,07
P18-02	2000811	219,70	219,83	0,12
P18-02	2000812	228,63	229,52	1,11
P18-02	2000813	285,12	285,33	0,02
P18-02	2000814	286,23	286,67	0,02
P18-02	2000815	293,38	294,00	1,21
P18-02	2000816	294,00	294,63	0,92
	•		•	•

P18-02	2000817	313,51	313,85	0,04
P18-02	2000818	315,97	316,10	0,03
P18-02	2000819	319,17	319,28	0,04
P18-02	2000821	321,88	322,06	0,29
P18-02	2000822	331,86	332,50	1,01
P18-02	2000824	332,50	333,14	0,92
P18-11	2000825	24,25	24,50	0,04
P18-11	2000828	53,04	53,17	2,20
P18-11	2000829	156,91	157,04	0,03
P18-11	2000830	166,49	166,83	0,03
P18-11	2000831	170,80	171,06	1,57
P18-11	2000832	195,53	195,66	1,81
P18-11	2000833	294,84	295,00	0,59
P18-11	2000834	297,05	297,52	1,46
P18-11	2000835	300,11	300,27	0,04
P18-11	2000836	309,05	309,59	0,56
P18-11	2000837	310,31	310,62	0,03
P18-11	2000839	310,91	311,08	1,14
P18-11	2000840	316,86	317,70	0,69
P18-11	2000841	317,70	318,54	1,30
P18-11	2000842	320,73	321,50	0,16
P18-11	2000843	321,50	322,43	0,89
P18-11	2000844	326,25	326,66	1,66
P18-11	2000845	326,72	327,08	1,74
P18-11	2000847	332,24	332,70	1,19
P18-11	2000848	335,73	335,97	0,59
P18-11	2000849	350,00	350,18	0,03
P18-11	2000850	384,32	384,72	1,52
P18-11	2000851	419,32	419,51	0,05
P18-11	2000852	419,68	419,90	0,33
P18-11	2000853	420,03	420,34	0,22
P18-11	2000854	420,91	421,50	1,27

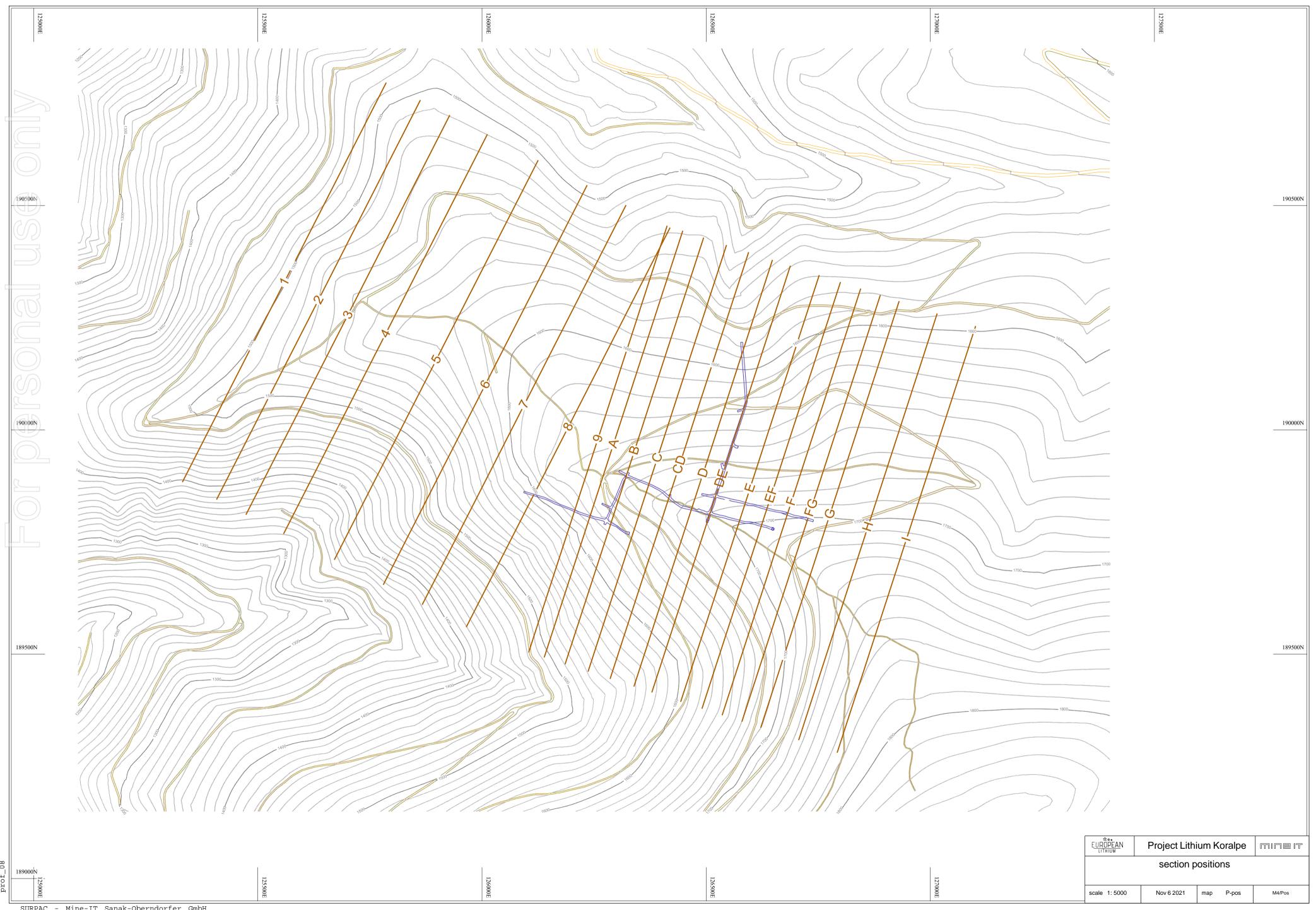
P18-11	2000855	421,50	422,05	1,29
P18-11	2000857	466,03	466,61	0,35
P18-11	2000865	467,18	467,32	0,03
P18-11	2000866	475,00	475,33	0,09
P18-11	2000867	477,38	478,00	1,05
P18-11	2000868	478,46	478,69	1,12
P18-11	2000869	478,92	479,25	0,47
P18-11	2000870	494,87	495,10	0,23
P18-11	2000871	495,41	495,76	0,98
P18-11	2000873	503,64	504,38	1,18
P18-01	2000874	22,50	22,73	0,03
P18-01	2000875	44,30	44,55	0,02
P18-01	2000876	59,61	59,71	0,03
P18-01	2000877	95,71	95,94	0,94
P18-01	2000886	100,26	100,37	0,02
P18-01	2000887	104,42	104,66	0,04
P18-01	2000888	106,26	106,80	0,03
P18-01	2000889	108,39	108,98	0,33
P18-01	2000890	110,22	110,40	0,02
P18-01	2000891	119,16	119,26	0,03
P18-01	2000892	119,40	119,64	0,03
P18-01	2000893	120,75	121,04	0,07
P18-01	2000894	149,12	149,32	0,03
P18-01	2000895	151,73	151,90	0,02
P18-01	2000896	160,37	160,77	0,07
P18-01	2000897	162,90	163,34	0,04
P18-01	2000899	165,25	165,35	0,08
P18-01	2000900	200,57	200,69	0,02
P18-01	2000901	204,61	205,16	0,69
P18-01	2000902	206,76	207,02	0,92
P18-01	2000903	215,65	216,16	0,98
P18-01	2000904	216,47	216,97	0,93

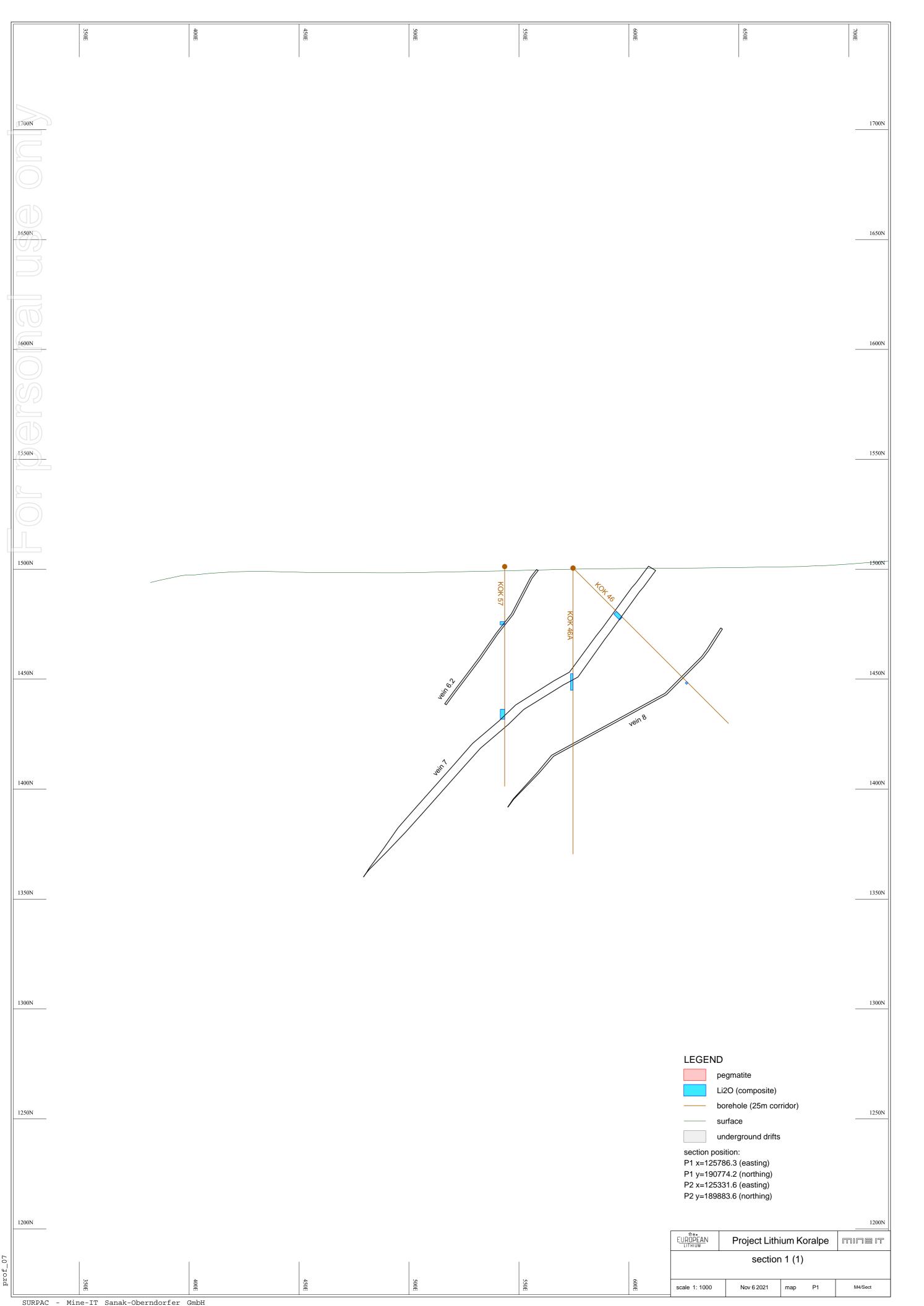
P18-01	2000905	216,97	217,52	0,16
P18-01	2000906	279,92	280,38	0,03
P18-01	2000907	292,31	292,90	1,23
P18-01	2000909	292,90	293,43	1,69
P18-01	2000910	293,62	294,09	0,84
P18-01	2000911	294,28	294,70	0,85
P18-01	2000912	309,40	309,83	0,62
P18-01	2000914	322,92	323,60	0,96
P18-01	2000915	323,60	324,25	1,33
P18-01	2000916	324,56	324,66	1,80
P18-01	2000917	324,95	325,34	1,04
P18-01	2000919	336,33	336,44	0,02
P18-01	2000920	341,20	341,32	0,03
P18-01	2000921	341,38	341,59	0,02
P18-17	2000922	51,80	52,40	0,60
P18-17	2000924	134,71	134,90	0,02
P18-17	2000926	147,87	148,40	1,27
P18-17	2000927	148,40	148,96	1,68
P18-17	2000928	176,90	177,19	0,53
P18-17	2000929	180,00	180,11	0,03
P18-17	2000931	214,28	214,46	0,05
P18-17	2000933	215,03	215,24	0,03
P18-17	2000934	227,32	228,00	1,38
P18-17	2000935	228,00	228,60	1,76
P18-17	2000936	228,60	229,20	1,05
P18-17	2000937	229,20	229,83	0,80
P18-17	2000939	243,94	244,13	0,02
P18-17	2000940	270,04	270,18	0,06
P18-17	2000941	270,54	270,91	0,03
P18-17	2000949	289,56	290,20	1,37
P18-17	2000950	290,20	290,80	1,65
P18-17	2000951	290,80	291,40	1,35

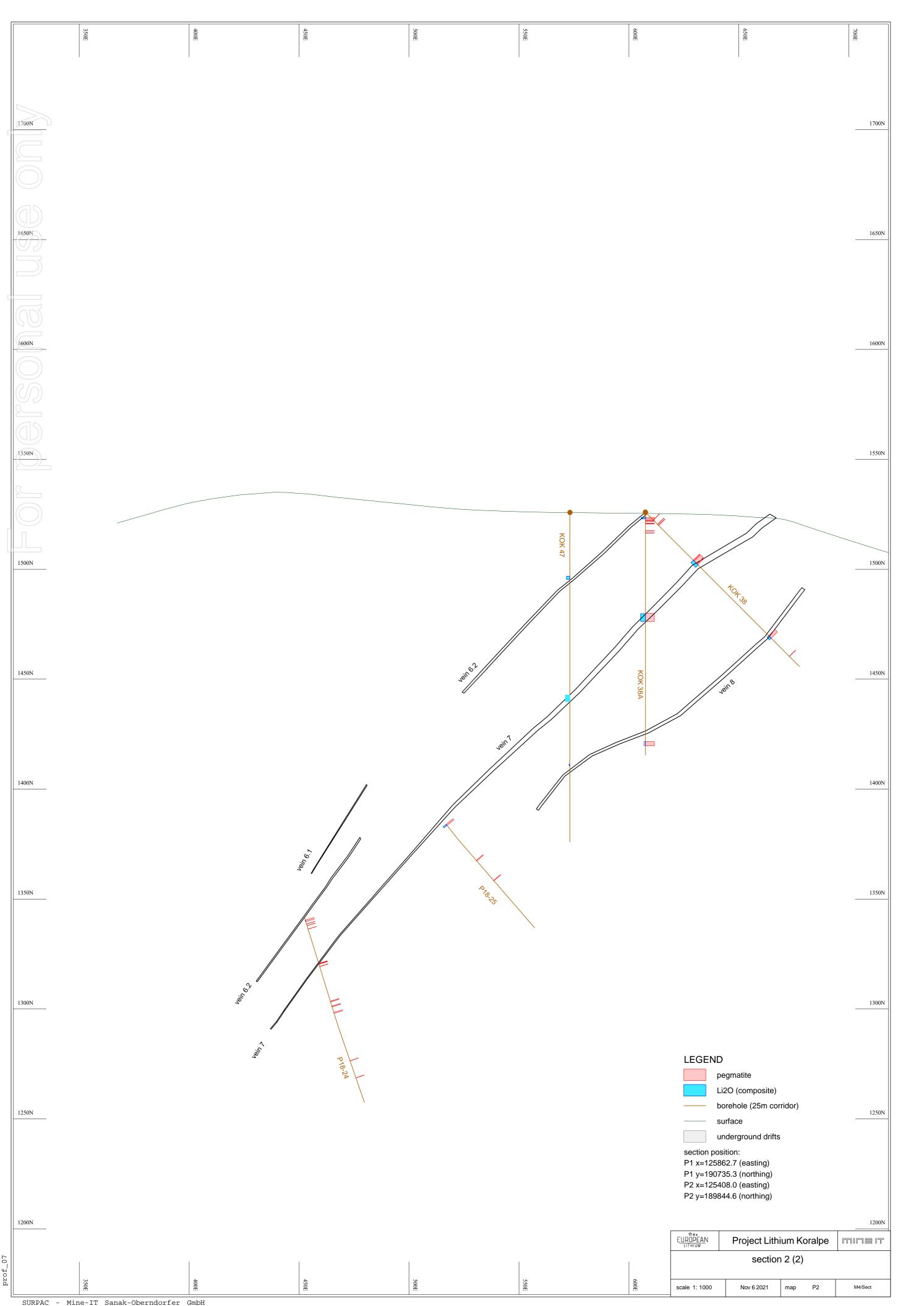
P18-17	2000952	291,40	292,02	1,38
P18-17	2000954	292,61	292,80	0,03
P18-12	2000955	3,59	3,75	2,82
P18-12	2000956	13,85	14,45	0,10
P18-12	2000958	14,45	15,14	0,74
P18-12	2000959	15,22	15,47	0,92
P18-12	2000960	25,00	25,20	0,02
P18-12	2000961	44,00	44,43	0,00
P18-12	2000962	95,93	96,07	0,03
P18-12	2000963	97,34	97,44	0,04
P18-12	2000964	135,67	135,73	1,54
P18-12	2000965	158,00	158,10	0,02
P18-12	2000966	162,69	162,95	0,50
P18-12	2000968	163,16	163,28	0,03
P18-12	2000969	167,62	167,75	0,02
P18-12	2000970	210,96	211,15	0,17
P18-12	2000971	217,52	217,79	0,05
P18-12	2000972	223,33	223,54	0,03
P18-12	2000973	225,96	226,07	0,03
P18-12	2000974	229,40	229,66	0,40
P18-12	2000975	236,42	236,66	0,01
P18-12	2000976	238,40	239,09	0,02
P18-12	2000977	241,50	241,79	0,05
P18-12	2000979	242,21	242,60	0,05
P18-12	2000980	245,21	245,47	0,02
P18-12	2000981	260,73	260,83	0,05
P18-12	2000982	261,67	262,28	0,12
P18-12	2000983	262,79	263,40	0,87
P18-12	2000984	268,87	269,07	0,03
P18-12	2000985	269,35	269,84	0,02
P18-12	2000986	276,68	276,82	0,01
P18-12	2000987	279,68	279,83	0,02

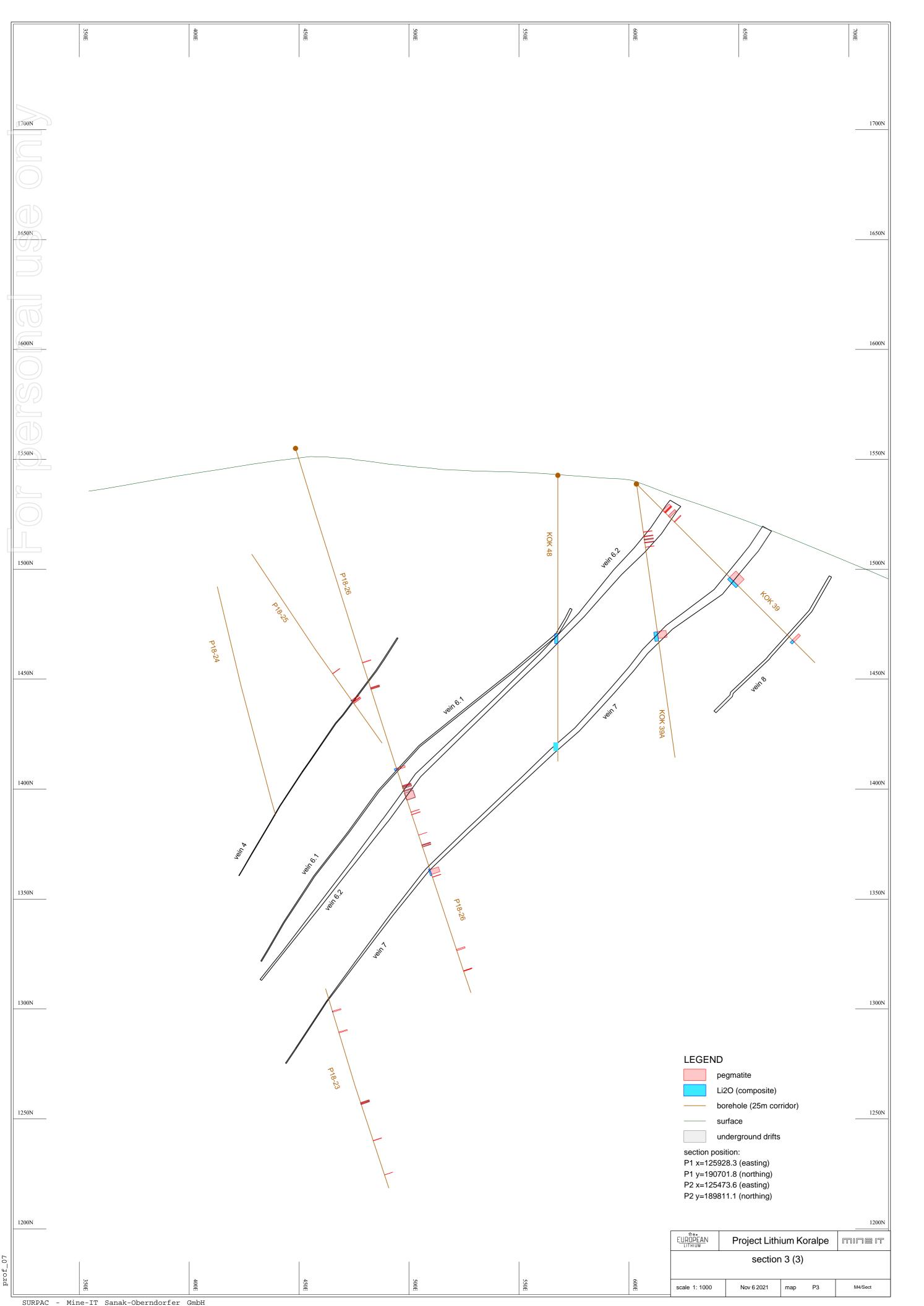

P18-12	2000988	283,40	283,57	0,66
P18-12	2000989	283,72	284,07	1,18
P18-12	2000990	284,07	284,57	0,93
P18-12	2000991	284,57	285,07	1,12
P18-12	2000992	285,07	285,88	0,94
P18-12	2000993	286,60	286,97	0,90
P18-12	2001001	292,66	293,14	0,17
P18-12	2001002	296,30	296,47	0,02
P18-12	2001003	298,70	299,22	0,91
P18-12	2001004	346,70	346,95	1,03
P18-12	2001005	346,99	347,56	1,88
P18-12	2001006	352,74	352,95	0,02
P18-12	2001008	362,04	362,14	0,01
P18-12	2001009	385,27	385,39	0,04
P18-12	2001010	386,41	387,10	1,17
P18-12	2001011	387,10	387,70	0,78
P18-12	2001012	391,40	391,49	0,03
P18-12	2001013	429,51	429,91	0,09
P18-12	2001014	444,24	444,41	0,04
P18-12	2001015	445,35	445,99	1,40
P18-12	2001017	446,50	446,63	0,51
P18-12	2001018	447,19	447,76	0,08
P18-12	2001019	466,50	466,67	0,64
P18-12	2001020	467,09	467,67	0,65
P18-12	2001021	468,28	468,62	0,43
P18-14	2001024	58,09	58,17	0,00
P18-14	2001025	60,40	60,66	0,02
P18-14	2001026	91,90	92,04	0,05
P18-14	2001028	97,78	97,90	0,04
P18-14	2001029	117,44	117,58	0,04
P18-14	2001030	133,47	133,57	0,08
P18-14	2001031	134,49	134,66	0,06

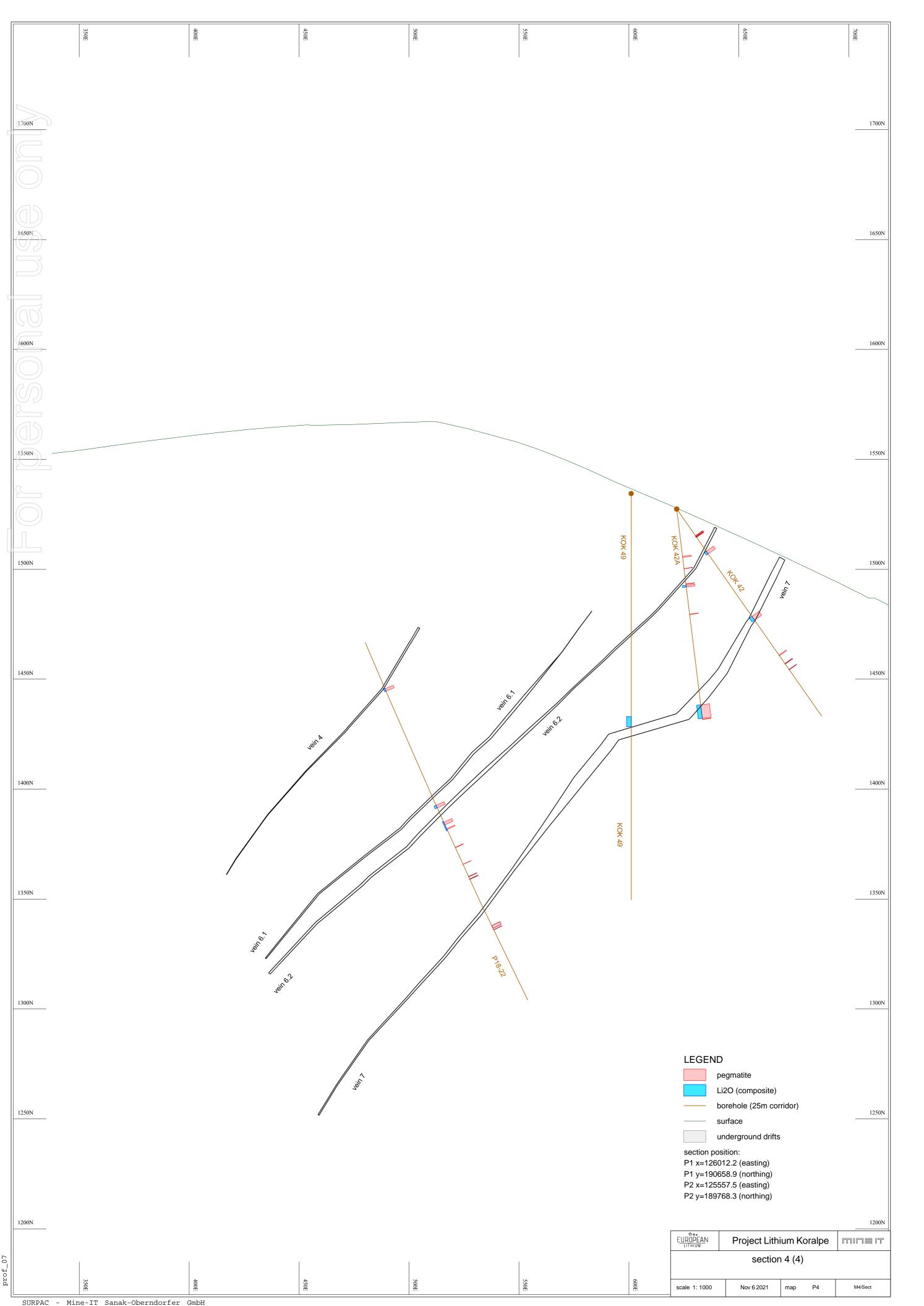
P18-14	2001032	143,54	143,72	0,14
P18-14	2001033	145,21	145,33	0,05
P18-14	2001034	197,21	197,83	0,90
P18-14	2001035	201,45	201,96	1,36
P18-14	2001043	215,41	215,56	0,02
P18-14	2001045	216,50	216,61	0,03
P18-14	2001046	222,57	222,92	1,68
P18-14	2001047	227,43	227,55	0,03
P18-14	2001048	228,20	228,4	0,02
P18-14	2001049	232,53	232,6	0,02
P18-14	2001050	232,70	233,04	1,38
P18-14	2001051	301,01	301,2	0,01
P18-14	2001052	311,74	312,29	0,64
P18-14	2001054	317,8	317,9	0,02
P18-14	2001055	357,41	357,58	0,03
P18-14	2001056	358,6	359,02	0,91
P18-14	2001058	359,15	359,79	0,40
P18-14	2001059	398,8	399,22	0,11
P18-14	2001060	408,25	408,9	0,94
P18-14	2001061	409,12	410,1	0,80
P18-14	2001062	411,16	411,6	0,84
P18-14	2001063	437,79	437,89	0,04
P18-14	2001064	441,32	441,91	0,11
P18-14	2001066	441,91	442,42	0,97
P18-14	2001067	444,85	445,16	0,56
P18-18	2001068	145,80	146,00	0,01
P18-18	2001069	203,52	204,30	0,89
P18-18	2001071	204,30	205,12	0,99
P18-18	2001072	205,70	205,82	0,05
P18-18	2001073	210,30	210,49	0,02
P18-18	2001074	254,87	255,28	0,42
P18-18	2001076	255,28	255,86	0,05


P18-18	2001084	272,18	273,15	1,26
P18-18	2001085	273,54	274,01	0,28
P18-18	2001087	322,50	322,66	0,03
P18-18	2001089	327,79	328,30	0,35
P18-18	2001090	360,83	361,37	0,74
P18-18	2001091	361,68	361,76	1,08
P18-18	2001092	361,80	361,85	0,32
P18-18	2001094	362,38	362,55	1,08
P18-18	2001095	363,95	364,09	0,04
P18-18	2001096	364,21	364,86	0,02
P18-16	2001124	51,23	51,34	0,03
P18-16	2001125	52,58	52,73	0,02
P18-16	2001126	76,93	77,05	0,05
P18-16	2001127	90,02	90,20	0,35
P18-16	2001129	108,93	109,03	0,62
P18-16	2001130	111,87	112,00	0,03
P18-16	2001131	141,66	142,03	1,18
P18-16	2001133	144,84	145,01	0,37
P18-16	2001134	184,72	185,09	1,46
P18-16	2001135	188,19	188,57	1,05
P18-16	2001143	192,60	192,93	0,43
P18-16	2001144	208,75	208,87	0,21
P18-16	2001146	210,60	211,25	0,55
P18-16	2001147	214,24	214,44	0,05
P18-16	2001148	273,41	273,69	0,02
P18-16	2001149	299,26	299,40	0,01
P18-16	2001150	341,57	341,78	0,02
P18-16	2001151	344,88	345,87	1,15
P18-16	2001152	398,43	398,81	0,07
P18-16	2001154	408,58	408,98	0,63
P18-16	2001155	409,34	410,02	1,60
P18-16	2001157	411,77	412,1	0,04


Maps and Sections


P18-16 2001158 434,75 434,89 0,02 P18-16 2001159 451,23 451,57 0,59 P18-16 2001160 452,54 452,75 0,04 P18-19 2001097 40,47 40,84 0,02 P18-19 2001099 138,07 138,16 0,02 P18-19 2001100 143,84 143,92 0,02 P18-19 2001101 181,23 181,76 0,11 P18-19 2001103 184,69 184,90 0,04 P18-19 2001105 223,43 223,64 0,53 P18-19 2001106 223,91 224,28 0,43 P18-19 2001107 235,40 236,30 1,12 P18-19 2001108 236,85 237,20 0,23 P18-19 2001109 250,81 251,15 0,02 P18-19 2001111 271,24 271,39 0,02 P18-19 2001120 292,90 293,86					
P18-16 2001160 452,54 452,75 0,04 P18-19 2001097 40,47 40,84 0,02 P18-19 2001099 138,07 138,16 0,02 P18-19 2001100 143,84 143,92 0,02 P18-19 2001101 181,23 181,76 0,11 P18-19 2001103 184,69 184,90 0,04 P18-19 2001105 223,43 223,64 0,53 P18-19 2001106 223,91 224,28 0,43 P18-19 2001107 235,40 236,30 1,12 P18-19 2001108 236,85 237,20 0,23 P18-19 2001109 250,81 251,15 0,02 P18-19 2001111 271,24 271,39 0,02 P18-19 2001112 292,00 292,90 1,48 P18-19 2001120 292,90 293,86 1,52	P18-16	2001158	434,75	434,89	0,02
P18-19 2001097 40,47 40,84 0,02 P18-19 2001099 138,07 138,16 0,02 P18-19 2001100 143,84 143,92 0,02 P18-19 2001101 181,23 181,76 0,11 P18-19 2001103 184,69 184,90 0,04 P18-19 2001105 223,43 223,64 0,53 P18-19 2001106 223,91 224,28 0,43 P18-19 2001107 235,40 236,30 1,12 P18-19 2001108 236,85 237,20 0,23 P18-19 2001109 250,81 251,15 0,02 P18-19 2001111 271,24 271,39 0,02 P18-19 2001112 292,00 292,90 1,48 P18-19 2001120 292,90 293,86 1,52	P18-16	2001159	451,23	451,57	0,59
P18-19 2001099 138,07 138,16 0,02 P18-19 2001100 143,84 143,92 0,02 P18-19 2001101 181,23 181,76 0,11 P18-19 2001103 184,69 184,90 0,04 P18-19 2001105 223,43 223,64 0,53 P18-19 2001106 223,91 224,28 0,43 P18-19 2001107 235,40 236,30 1,12 P18-19 2001108 236,85 237,20 0,23 P18-19 2001109 250,81 251,15 0,02 P18-19 2001111 271,24 271,39 0,02 P18-19 2001112 292,00 292,90 1,48 P18-19 2001120 292,90 293,86 1,52	P18-16	2001160	452,54	452,75	0,04
P18-19 2001100 143,84 143,92 0,02 P18-19 2001101 181,23 181,76 0,11 P18-19 2001103 184,69 184,90 0,04 P18-19 2001105 223,43 223,64 0,53 P18-19 2001106 223,91 224,28 0,43 P18-19 2001107 235,40 236,30 1,12 P18-19 2001108 236,85 237,20 0,23 P18-19 2001109 250,81 251,15 0,02 P18-19 2001111 271,24 271,39 0,02 P18-19 2001112 292,00 292,90 1,48 P18-19 2001120 292,90 293,86 1,52	P18-19	2001097	40,47	40,84	0,02
P18-19 2001101 181,23 181,76 0,11 P18-19 2001103 184,69 184,90 0,04 P18-19 2001105 223,43 223,64 0,53 P18-19 2001106 223,91 224,28 0,43 P18-19 2001107 235,40 236,30 1,12 P18-19 2001108 236,85 237,20 0,23 P18-19 2001109 250,81 251,15 0,02 P18-19 2001111 271,24 271,39 0,02 P18-19 2001112 292,00 292,90 1,48 P18-19 2001120 292,90 293,86 1,52	P18-19	2001099	138,07	138,16	0,02
P18-19 2001103 184,69 184,90 0,04 P18-19 2001105 223,43 223,64 0,53 P18-19 2001106 223,91 224,28 0,43 P18-19 2001107 235,40 236,30 1,12 P18-19 2001108 236,85 237,20 0,23 P18-19 2001109 250,81 251,15 0,02 P18-19 2001111 271,24 271,39 0,02 P18-19 2001112 292,00 292,90 1,48 P18-19 2001120 292,90 293,86 1,52	P18-19	2001100	143,84	143,92	0,02
P18-19 2001105 223,43 223,64 0,53 P18-19 2001106 223,91 224,28 0,43 P18-19 2001107 235,40 236,30 1,12 P18-19 2001108 236,85 237,20 0,23 P18-19 2001109 250,81 251,15 0,02 P18-19 2001111 271,24 271,39 0,02 P18-19 2001112 292,00 292,90 1,48 P18-19 2001120 292,90 293,86 1,52	P18-19	2001101	181,23	181,76	0,11
P18-19 2001106 223,91 224,28 0,43 P18-19 2001107 235,40 236,30 1,12 P18-19 2001108 236,85 237,20 0,23 P18-19 2001109 250,81 251,15 0,02 P18-19 2001111 271,24 271,39 0,02 P18-19 2001112 292,00 292,90 1,48 P18-19 2001120 292,90 293,86 1,52	P18-19	2001103	184,69	184,90	0,04
P18-19 2001107 235,40 236,30 1,12 P18-19 2001108 236,85 237,20 0,23 P18-19 2001109 250,81 251,15 0,02 P18-19 2001111 271,24 271,39 0,02 P18-19 2001112 292,00 292,90 1,48 P18-19 2001120 292,90 293,86 1,52	P18-19	2001105	223,43	223,64	0,53
P18-19 2001108 236,85 237,20 0,23 P18-19 2001109 250,81 251,15 0,02 P18-19 2001111 271,24 271,39 0,02 P18-19 2001112 292,00 292,90 1,48 P18-19 2001120 292,90 293,86 1,52	P18-19	2001106	223,91	224,28	0,43
P18-19 2001109 250,81 251,15 0,02 P18-19 2001111 271,24 271,39 0,02 P18-19 2001112 292,00 292,90 1,48 P18-19 2001120 292,90 293,86 1,52	P18-19	2001107	235,40	236,30	1,12
P18-19 2001111 271,24 271,39 0,02 P18-19 2001112 292,00 292,90 1,48 P18-19 2001120 292,90 293,86 1,52	P18-19	2001108	236,85	237,20	0,23
P18-19 2001112 292,00 292,90 1,48 P18-19 2001120 292,90 293,86 1,52	P18-19	2001109	250,81	251,15	0,02
P18-19 2001120 292,90 293,86 1,52	P18-19	2001111	271,24	271,39	0,02
	P18-19	2001112	292,00	292,90	1,48
P18-19 2001121 294 11 294 20 0 48	P18-19	2001120	292,90	293,86	1,52
1 10 13 2001121 254,20 0,40	P18-19	2001121	294,11	294,20	0,48
P18-19 2001122 306,27 306,38 0,02	P18-19	2001122	306,27	306,38	0,02




Map 1: Overview map of showing drill hole locations and projected pathways.

