

ASX Code: CAE

EXCEPTIONAL, THICK COPPER INTERSECTIONS AT MT CANNINDAH IN HOLE 3 AGGREGATING TO 493m @ 1.17% Copper Equivalent (0.89% Cu, 0.26 g/t Au, 15.2 g/t Ag) FROM SURFACE..

HIGHLIGHTS

- Cannindah Resources is pleased to announce that recent assay results from drillhole 21CAEDD003 have resulted in a major expansion to known copper, gold and silver mineralisation at its 100% owned Mt Cannindah project.
- The total aggregated extent of mineralisation from surface in hole # 3 amounts to :
- 493m @ 1.17% Copper Equivalent,
- The significant copper, gold, silver mineralised zones can be divided into :
- A surface oxide zone (0m to 14m) leached of copper : 14m @ 0.4 g/t Au, 24 g/t Ag
- The supergene zone (14m to 33m) is enriched with copper : 19m @ 3.11%Cu, 0.74 g/t Au, 34 g/t Ag
- A supergene and upper primary zone (14m to 177m) : 163m @ 1.44 % Cu, 0.40 g/t Au, 36 g/t Ag.
- The upper primary zone contains significant intersections including :
- High grade primary zone (33m to 83m) : 50m @ 2.02%Cu, 0.75 g/t Au, 40 g/t Ag
- Wide chalcopyrite prominent zones eg. 32m @ 1.0% Cu, 28g/t Ag (83m to 115m)
- A lower primary zone (252m to 400m) : 148m @ 1.01% Cu, 0.22 g/ Au, 12.5 g/t Ag
- Hole 21CAEDD003 is testing the deep plunge of the copper mineralised zone at Mt Cannindah.

Hole # 3 is nearly at a right angle to the direction drilled by hole 21CAEDD002, recently reported which returned significant intercepts aggregating to 282m @ 1.28% Copper Equivalent including :

117m @ 1.08% Cu, 0.38 g/t Au ,28 g/t Ag. (34m to 151m).

92m @ 1.2% Cu, 13.5 Ag, 0.3 g/t Au.(205m to 297m).

Cannindah Resources Limited ("Cannindah", "CAE") is pleased to announce the next set of assay results from the drilling program currently underway at Mt Cannindah, copper gold silver project south of Gladstone near Monto in central Queensland (Figs 1 to 3). This drilling program was planned such that it may extend the current JORC resource, as well as test the continuity of higher-grade copper zones within the project area, and possibly locate new areas of interest for follow up and potential in-fill drilling. CAE has made major revisions to the planned drilling after Intersecting copper mineralisation over hundreds (100s) of metres in the first 7 completed holes. (Figs 4).

As CAE have stated previously, these intervals highlight the success of holes within the current drilling program in confirming the continuity of higher-grade copper zones within the project area, with the potential to increase the current JORC resource. It is also worth noting that the Cannindah Infill breccia mineralisation carries significant silver and gold in addition to copper. The controls on the higher grade Au and Ag zones are still to be delineated.

ASX Code: CAE

From	То	m	Cu	Au	Ag	Comment					
						Note this includes					
0.00	493.00	493.00	0.89	0.26	15.2	some low Cu zones					
Includes											
0.00	14.00	14.00	0.11	0.43	24.0	Oxide					
						Supergene &					
14.00	474.00	460.00	0.94	0.26	15.4	Primary					
which Incudes											
upper intervals											
14.00	177.00	163.00	1.44	0.40	26.1	Supergene & Primary					
which Incudes											
14.00	33.00	19.00	3.11	0.74	34.0	Supergene					
33.00	83.00	50.00	2.02	0.75	40.1	Primary					
lower intervals											
include											
						Primary, Note this					
						includes some low					
252.00	400.00	148.00	1.01	0.22	12.5	Cu zones					
	Table 1: Common of Deculter Inde 21045DD002										

Summary Highlights from the top of hole 21CAEDD003 include

Table 1: Summary of Results - hole 21CAEDD003

Fig 4 shows hole 21CAEDD003 in plan in relation to historic holes. This hole was designed to test the plunge of the mineralisation to the west, it was drilled approximately west (260° magnetic), which is effectively 50 plus degrees different to the south-south-west (207° magnetic) bearing of hole 21CAEDD002. It is also drilling in the opposite direction to the previous (one hundred plus) Mt Cannindah historic holes. A significant point is that 21CAEDD003 confirms the continuity and extent of mineralisation in cross section (Fig 5), linking many of the mineralied zones intersected in previous holes drilled from the opposite direction. Significantly, hole 21CAEDD003 pushed on further down plunge to the west and discovered previously unknown or poorly delineated copper zones. This successful strategy led to the extension of hole 21CAEDD003 in order to establish the extent of the Mt Cannindah copper-gold -silver mineralised system down plunge. Eventually the hole was terminated at 762.6m, at the limit of the drill rig's capability. Although copper values had dropped off, chalcopyrite blebs are present. Sulphidic mineralised hydrothermal breccia is present at the end of the hole, just as it is in hole 21CAEDD002 which contains elevated silver at depth. In spite of drilling the Cannindah system to great depths, we have not reached the limit of the mineralisation, encountering shows of copper, elevated silver and extensive intrusive-driven alteration and sulphidic breccia to the bottom of all deep holes drilled to date. CAE are encouraged that results to date show that adopting this targeted drilling approach will find more copper, gold and silver at Mt Cannindah in the future.

Both holes 21CAEDD002 and now 21CAEDD003 significantly contribute to understanding the geometry, control and continuity of grade in the Cannindah Cu-Au-Ag Breccia deposit, essential to maximising the opportunity to expand upon the existing JORC resource.

ASX Code: CAE

The close relationship of observed chalcopyrite , chalcocite and Cu grade is shown in histogram form on the cross section in Fig 6. The table in the appendix lists the complete Cu,Au,Ag assays and pyrite , chalcopyrite, chalcocite visual estimates for first 493m of hole 21CAEDD003..

Figs 8 to 13 and core photos which illustrate the chalcocite rich supergene iand nfill chalcopyrite rich breccia zones accompanied by their assayed copper grades, distributed for 19m to 364m.

151.3 °

EPM 14524

ML 3205

ASX Code: CAE

24.65 0

24.7 °

151.25 ° -24.65 ° EPM 15261 ML 3204 ML 3203 ML 3201 ML 3202 ML 3207 ML 3208 ML 3209 -24.7 2 © 2021 Microsoft Corporation © 2021 Maxar CCNES (2021) Distribution Airbus DS kilometers 151.25 ° Tenure **EPM 14524 EPM 15261** 9 sub-blocks 14 sub-blocks •~ 43.5 sq km ~ 28 sq km MLs 3201-3209 (contiguous) ~ 5.7 sq km

> Total of 71.5 sq km of Exploration Permits & 5.7 sq km of Mining Leases

OWNERSHIP The Mt Cannindah Project is 100% owned by Cannindah Resources Limited Mt Cannindah Projects

ML 3206

Kalpowe

Mt Cannindah Mining Pty Ltd wholly owned subsidiary of

Terra Search Pty Ltd March 2021 CAE MC 210001 Tenure2021.WOR

Fig 1. Mt Cannindah project Granted Mining Leases and EPMs, Central Queensland.

ASX Code: CAE

Mt Cannindah 5.5Mt @ 0.92 % Cu, 0.34 g/t Au & 14.9 g/t Ag (JORC, 2004)

Cannindah East 245,000 t @ 2.8 g/t Au (Non-JORC)

United Allies 2Mt @ 0.5% Cu, 179ppm Mo (Non-JORC) Monument/Lifesaver 8Mt @ 0.4% Cu Inferred (Non-JORC)

Apple Tree 30,000 t @ 2.1% Cu , 1.7 g/t Au & 20 g/t Ag (Non-JORC)

Mt Cannindah Projects Mineral Resources

Terra Search Pty Ltd March 2021 CAE_MC_210004_Resource.wor

Fig 2. Mt Cannindah project Location of identified resources & known targets

9 November, 2021

ASX Code: CAE

Fig 3. Mt Cannindah project geology and prospect areas

ASX Code: CAE

CAE_MC_210041_MtCann_DrillholePlanView_Nov2021.WOR

Fig 4. Mt Cannindah mine area, plan view of recent drillhole 21CAEDD002 & 3 traces in relation to previous drilling and copper results. Also shown are the mineralized envelopes at surface (400m RL) and 200m below surface. These envelopes are mainly defined by >0.3 % Cu, they contain the blocks within the current resource model.

350mE

Chalcocite (%)

Approximate

mineralized

envelope of

current resources.

restricted within

50

Chalcopyrite (%) Visual

Cannindah Resources

this envelope

Note, Ore blocks are

25,30006

21CAEDDOD

1770

Legend Cu (%) Assay LHS

> 2.5

1.0 - 2.5 0.5 - 1.0 0.25 - 0.5

< 0.25

0

meters Scale 1:2,000

RHS

> 5.0 2.5 - 5.0 1.0 - 2.5

0.5 - 1.0

< 0.5

Drill trace

Mt Cannindah Mine

Histogram

November 2021

Limited

ASX Code: CAE

325

,400mE

450mR

400mRL

350mRL

300mRL

250mRL

200mRL

150mRL

100mR

50mR

.0mRL

-50mRL

Fig 5. Mt Cannindah cross section showing trace of upper section to500m of hole 21CAEDD003 with lab copper assay results plotted against visual estimates of chalcopyrite and chalcocite as per Table 2. .Also shown is mineralized envelope containing the blocks within the current resource model.

9 November, 2021

Fig 6. Mt Cannindah cross section showing trace of upper section to 500m of hole 21CAEDD003 with lab copper assay results plotted agains Au lab results. Also shown is mineralized envelope.

Fig 7. Mt Cannindah cross section showing trace of upper section to 500m of hole 21CAEDD003 with lab copper assay results plotted agains Ag lab results. Also shown is mineralized envelope.

9 November, 2021

ASX Code: CAE

Fig 8. Supergene copper mineralisation Hole 21CAEDD003 ,10%-15% visual estimate of chalcocite in the intervals 19m-20m, Lab assay result 19m-19.5m 5.65% Cu, 59 g/t Ag,0.59 g/t Au. 19.5m-20.0m : 6.11% Cu, 34 g/t Ag,0.90 g/t Au.

Fig 9. Supergene copper mineralisation Hole 21CAEDD003 ,15% visual estimate of chalcocite in the intervals 24m-25m, Lab assay result 24m-24.5m 8.86% Cu, 64 g/t Ag,2.52 g/t Au. 24.5m-25.0m 5.93% Cu, 52 g/t Ag,2.60 g/t Au.

9 November, 2021

ASX Code: CAE

Fig 10. Primary copper mineralisation Hole 21CAEDD003 , 62m-64m , 10% visual estimate of chalcopyrite in the interval 63m-64m. Lab assay result 4.47% Cu, 0.86 g/t Au, 64 g/t Ag

Fig 11. Primary copper mineralisation Hole 21CAEDD003 , 267m-268m , 10% visual estimate of chalcopyrite in the interval 63m-64m. Lab assay result 2.72% Cu, 0.36 g/t Au, 54 g/t Ag.

Fig 12. Primary copper mineralisation Hole 21CAEDD003 333.6m, 8% visual estimate of chalcopyrite in the interval 333m-334m. Lab assay result 2.29 % Cu, 0.96 g/t Au, 54 g/t Ag. Hosted in infill polymict breccia, clasts hornfels,diorite, infill matrix carbonate, quartz, pyrite.

9 November, 2021

ASX Code: CAE

Fig 13. Primary copper mineralisation Hole 21CAEDD003 364.9m, 10% visual estimate of chalcopyrite in the interval 334m-365m. Lab assay result 6.05 % Cu, 0.64 g/t Au, 62 g/t Ag. Hosted in infill breccia, clasts hornfels, infill matrix carbonate, quartz, pyrite.

ASX Code: CAE

COMPETENT PERSON STATEMENT

The information in this report that relates to exploration results is based on information compiled by Dr. Simon D. Beams, a full-time employee of Terra Search Pty Ltd, geological consultants employed by Cannindah Resources Limited to carry out geological evaluation of the mineralisation potential of their Mt Cannindah Project, Queensland, Australia. Dr Beams is also a non-Executive Director of Cannindah Resources Limited.

Dr. Beams has BSc Honours and PhD degrees in geology; he is a Member of the Australasian Institute of Mining and Metallurgy (Member #107121) and a Member of the Australian Institute of Geoscientists (Member # 2689). Dr. Beams has sufficient relevant experience in respect to the style of mineralization, the type of deposit under consideration and the activity being undertaken to qualify as a Competent Person within the definition of the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ("JORC Code).

Dr. Beams consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

Disclosure:

Dr Beams' employer Terra Search Pty Ltd holds ordinary shares in Cannindah Resources Limited.

For further information, please contact:

Tom Pickett Executive Chairman Ph: 61 7 5557 8791

9 November, 2021

ASX Code: CAE

Appendix 1 Table of Cu,Au,Ag assays and chalcocite chalcopyrite, pyrite visual estimates, hole 21CAEDD003 0-493m

							Chalco-	
From	То					Pyrite	pyrite	
Depth	Depth	Cu	Au	Ag	Chalcocite	Visual	Visual	
m	m	%	g/t	g/t	%	%	%	Lithology
0	0.5	0.08	0.94	19.5				Oxidised gossanous hydrothermal breccia
0.5	1	0.06	0.33	30.0				Oxidised gossanous hydrothermal breccia
1	1.5	0.08	0.31	39.0				Oxidised gossanous hydrothermal breccia
1.5	2	0.10	0.19	24.7				Oxidised gossanous hydrothermal breccia
2	2.5	0.11	0.26	10.0				Oxidised gossanous hydrothermal breccia
2.5	3	0.11	0.45	45.7				Oxidised gossanous hydrothermal breccia
3	3.5	0.06	0.11	15.3				Oxidised gossanous hydrothermal breccia
3.5	4	0.10	0.15	25.3				Oxidised gossanous hydrothermal breccia
4	4.5	0.11	0.39	58.8				Oxidised gossanous hydrothermal breccia
4.5	5	0.11	0.21	20.1				Oxidised gossanous hydrothermal breccia
5	5.5	0.10	1.11	16.5				Oxidised gossanous hydrothermal breccia
5.5	6	0.08	2.34	36.1				Oxidised gossanous hydrothermal breccia
6	6.5	0.06	0.18	6.9				Oxidised gossanous hydrothermal breccia
6.5	7	0.08	0.05	6.6				Oxidised gossanous hydrothermal breccia
7	7.5	0.18	0.35	77.4				Oxidised gossanous hydrothermal breccia
7.5	8	0.13	0.18	8.2				Oxidised gossanous hydrothermal breccia
8	8.5	0.13	0.43	21.5				Oxidised gossanous hydrothermal breccia
8.5	9	0.14	0.46	26.3				Oxidised gossanous hydrothermal breccia
9	9.5	0.11	0.40	14.3				Oxidised gossanous hydrothermal breccia
9.5	10	0.18	1.06	24.0				Oxidised gossanous hydrothermal breccia
10	10.5	0.07	0.18	7.3				Oxidised gossanous hydrothermal breccia
10.5	11	0.11	0.27	5.8				Oxidised gossanous hydrothermal breccia

9 November, 2021

						- ··	Chalco-	
From	То	•		•		Pyrite	pyrite	
Depth	Depth	cu %	Au a/t	Ag a/t	Chalcocite %	visuai %	visuai %	Lithology
	111	70	g/ t	5/ L	70	70	70	Oxidised gossanous
11	11.5	0.11	0.28	11.8				hydrothermal breccia
								Oxidised gossanous
11.5	12	0.15	0.31	24.0				hydrothermal breccia
12	12.5	0.14	0.37	28.7				Oxidised gossanous hydrothermal breccia
12.5	13	0.10	0.18	10.8				Oxidised gossanous hydrothermal breccia
13	13.5	0.09	0.37	18.0				Oxidised gossanous hydrothermal breccia
13.5	14	0.16	0.26	38.1				Oxidised gossanous hydrothermal breccia
14	14.5	1.22	0.10	19.3	1.0			Supergene hydrothermal breccia
14 5	15	2 11	0.21	10.8	4.0			Supergene hydrothermal
14.5	15	2.11	0.21	10.0				Supergene hydrothermal
15	15.5	1.60	0.21	6.8	5.0			breccia
15.5	16	2.82	0.28	9.7	8.0			Supergene hydrothermal breccia
16	16.5	3.05	0.32	28.2	10.0	0.5		Supergene hydrothermal breccia
16.5	17	0.89	0.15	5.7	3.0	0.5		Supergene hydrothermal breccia
17	17 5	3.08	0.08	21.1	2.0	0.2		Supergene hydrothermal
17	17.5	5.00	0.00	21.1	2.0	0.2		Supergene hydrothermal
17.5	18	1.56	0.09	13.1	1.0	0.2		breccia
18	18.5	0.71	0.07	5.1	2.0	0.2		Supergene hydrothermal breccia
								Supergene hydrothermal
18.5	19	0.83	0.07	6.0	2.0	0.2		breccia
19	19.5	5.65	0.59	59.0	15.0			Supergene hydrothermal breccia
19.5	20	6.11	0.90	33.8	10.0			Supergene hydrothermal breccia
20	20.5	5.50	0.91	48.0	10.0			Supergene hydrothermal breccia
20.5	21	0.98	0.20	8.6	3.0			Supergene hydrothermal breccia
21	21.5	2.61	0.03	9.6	2.0	0.5		Supergene hydrothermal breccia
21.5	22	3.03	1.09	34.8	5.0	0.5		Supergene hydrothermal breccia
22	22.5	2.59	0.98	18.7	4.0			Supergene hydrothermal breccia

9 November, 2021

From	То	CII	Δ	٨σ	Chalcocite	Pyrite Visual	Chalco- pyrite Visual	
Depth m	Depth	%	g/t	g/t	%	%	%	Lithology
22.5	23	3.16	0.80	30.4	2.0			Supergene hydrothermal breccia
23	23.5	3.57	0.23	18.1	3.0			Supergene hydrothermal breccia
23.5	24	4.49	0.61	31.1	5.0			Supergene hydrothermal breccia
24	24.5	8.86	2.52	64.1	15.0		0.5	Supergene hydrothermal breccia
24.5	25	5.93	2.60	52.1	15.0		1.0	Supergene hydrothermal breccia
25	25.5	2.51	1.32	48.6	8.0	0.5		Supergene hydrothermal breccia
25.5	26	4.10	0.48	63.0	3.0	0.5	2.0	Supergene hydrothermal breccia
26	26.5	3.13	0.98	49.3	5.0	8.0	1.0	Supergene hydrothermal breccia
26.5	27	3.01	1.61	55.8	5.0	8.0		Supergene hydrothermal breccia
27	27.5	3.20	1.31	53.4	3.0	3.0	2.0	Supergene hydrothermal breccia
27.5	28	4.78	3.24	75.3	5.0	5.0	2.0	Supergene hydrothermal breccia
28	28.5	3.78	1.85	61.1	2.0	3.0	2.0	Supergene hydrothermal breccia
28.5	29	4.78	0.60	53.7	2.0	5.0	4.0	Supergene hydrothermal breccia
29	29.5	3.64	0.48	47.9	3.0	5.0	5.0	Supergene hydrothermal breccia
29.5	30	2.46	0.32	41.8	2.0	3.0	3.0	Supergene hydrothermal breccia
30	30.5	2.42	1.12	59.8	2.0	10.0	4.0	Supergene hydrothermal breccia
30.5	31	2.06	0.26	25.6	2.0	5.0	4.0	Supergene hydrothermal breccia
31	31.5	1.19	0.30	18.7	1.0	8.0	4.0	Hydrothermal Infill Breccia
31.5	32	2.48	0.43	36.1	0.5	10.0	4.0	Hydrothermal Infill Breccia
32	32.5	2.71	0.64	48.7		10.0	5.0	Hydrothermal Infill Breccia
32.5	33	1.46	0.19	21.6		5.0	4.0	Hydrothermal Infill Breccia
33	34	3.62	0.80	44.5	0.5	8.0	10.0	Hydrothermal Infill Breccia
34	35	1.34	0.56	31.3		8.0	3.0	Hydrothermal Infill Breccia
35	36	2.45	0.89	39.8		3.0	5.0	Hydrothermal Infill Breccia
36	37	1.58	0.86	35.2		5.0	5.0	Hydrothermal Infill Breccia
37	38	1.78	1.36	28.6	0.1	3.0	3.0	Hydrothermal Infill Breccia
38	39	3.43	3.72	64.6		5.0	15.0	Hydrothermal Infill Breccia

9 November, 2021

						Durito	Chalco-	
From	To	Cu	Δu	Δσ	Chalcocite	Visual	Visual	
Deptn	Deptn m	%	g/t	g/t	%	%	%	Lithology
39	40	2.53	0.84	77.6		5.0	8.0	Hydrothermal Infill Breccia
40	41	3.10	0.63	51.7	0.5	5.0	5.0	Hydrothermal Infill Breccia
41	42	2.20	1.42	35.7		3.0	5.0	Hydrothermal Infill Breccia
42	43	2.75	0.38	38.7		2.0	5.0	Hydrothermal Infill Breccia
43	44	1.80	0.61	32.6		8.0	3.0	Hydrothermal Infill Breccia
44	45	1.31	0.20	21.4		2.0	2.0	Hydrothermal Infill Breccia
45	46	0.89	0.99	16.6		3.0	0.5	Hydrothermal Infill Breccia
46	47	2.96	0.83	41.9		3.0	10.0	Hydrothermal Infill Breccia
47	48	3.55	0.47	35.1		1.0	10.0	Hydrothermal Infill Breccia
48	49	1.22	0.81	20.3		3.0	0.5	Hydrothermal Infill Breccia
49	50	0.95	0.38	36.6		2.0	2.0	Hydrothermal Infill Breccia
50	51	1.32	0.42	39.9		3.0	3.0	Hydrothermal Infill Breccia
51	52	2.48	1.21	41.0		5.0	8.0	Hydrothermal Infill Breccia
52	53	2.92	1.77	49.6		3.0	10.0	Hydrothermal Infill Breccia
53	54	2.77	1.63	58.4	0.5	5.0	10.0	Hydrothermal Infill Breccia
54	55	0.75	0.93	53.5		2.0	3.0	Hydrothermal Infill Breccia
55	56	1.84	3.07	31.9	0.5	2.0	5.0	Hydrothermal Infill Breccia
56	57	2.83	0.94	43.0		3.0	8.0	Hydrothermal Infill Breccia
57	58	1.80	0.53	30.6		2.0	5.0	Hydrothermal Infill Breccia
58	59	0.91	0.52	13.1		3.0	2.0	Hydrothermal Infill Breccia
59	60	2.53	0.60	44.7		2.0	5.0	Hydrothermal Infill Breccia
60	61	3.04	1.17	46.1		2.0	10.0	Hydrothermal Infill Breccia
61	62	4.60	0.53	110.3		1.0	10.0	Hydrothermal Infill Breccia
62	63	1.50	0.31	26.6		1.0	3.0	Hydrothermal Infill Breccia
63	64	4.47	0.86	69.5		3.0	10.0	Hydrothermal Infill Breccia
64	65	3.59	0.30	55.4		0.5	10.0	Hydrothermal Infill Breccia
65	66	2.89	0.35	44.9		2.0	10.0	Hydrothermal Infill Breccia
66	67	0.92	0.12	14.8		1.0	2.0	Hydrothermal Infill Breccia
67	68	0.35	0.08	6.0		2.0	0.2	Hydrothermal Infill Breccia
68	69	1.40	0.31	22.8		4.0	5.0	Hydrothermal Infill Breccia
69	70	2.34	0.35	33.9		2.0	8.0	Hydrothermal Infill Breccia
70	71	1.36	0.45	27.4		3.0	3.0	Hydrothermal Infill Breccia
71	72	1.58	0.34	27.4		1.0	5.0	Hydrothermal Infill Breccia
72	73	1.32	0.27	19.8		1.0	5.0	Hydrothermal Infill Breccia
73	74	3.77	0.47	62.3		2.0	10.0	Hydrothermal Infill Breccia
74	75	0.90	0.41	33.8		2.0	1.0	Fault/Crush Zone
75	76	0.81	0.23	51.1		3.0	0.5	Fault/Crush Zone
76	77	0.68	0.15	21.3		5.0	0.5	Fault/Crush Zone
77	78	1.74	0.22	62.7		5.0	2.0	Fault/Crush Zone

9 November, 2021

							Chalco-	
From	То					Pyrite	pyrite	
Depth	Depth	Cu	Au	Ag	Chalcocite	Visual	Visual	
m	m	%	g/t	g/t	%	%	%	Lithology
78	79	1.10	0.22	34.7		2.0	0.5	Hydrothermal Infill Breccia
79	80	0.62	0.14	18.2		2.0	1.0	Hydrothermal Infill Breccia
80	81	0.44	0.17	16.4		2.0	0.5	Diorite
81	82	2.19	0.44	73.6		3.0	5.0	Hydrothermal Infill Breccia
82	83	1.86	0.49	65.4		2.0	2.0	Hydrothermal Infill Breccia
83	84	0.66	0.05	26.5		1.0	1.0	Hydrothermal Infill Breccia
84	85	0.39	0.03	13.6		3.0	2.0	Hydrothermal Infill Breccia
85	86	0.80	0.05	28.4		5.0	5.0	Hydrothermal Infill Breccia
86	87	0.47	0.04	14.4		1.0	1.0	Hydrothermal Infill Breccia
87	88	0.54	0.05	17.1		4.0	1.0	Hydrothermal Infill Breccia
88	89	1.22	0.06	34.0		2.0	3.0	Hydrothermal Infill Breccia
89	90	1.44	0.08	64.2		3.0	4.0	Hydrothermal Infill Breccia
90	91	0.65	0.10	22.9		1.0	1.0	Hydrothermal Infill Breccia
91	92	2.30	0.12	60.1		2.0	8.0	Hydrothermal Infill Breccia
92	93	1.51	0.14	80.1		3.0	5.0	Hydrothermal Infill Breccia
93	94	1.28	0.11	41.7		2.0	2.0	Hydrothermal Infill Breccia
94	95	0.84	0.73	35.1		5.0	1.5	Hydrothermal Infill Breccia
95	96	1.22	0.26	38.4		5.0	3.0	Hydrothermal Infill Breccia
96	97	2.21	0.29	55.9		5.0	6.0	Hydrothermal Infill Breccia
97	98	1.24	0.16	38.4		3.0	3.0	Hydrothermal Infill Breccia
98	99	1.09	0.11	30.3		3.0	2.0	Fault/Crush Zone
99	100	1.22	0.06	33.5		1.0	3.0	Diorite
100	101	1.59	0.19	55.3		2.0	4.0	Hydrothermal Infill Breccia
101	102	1.05	1.25	32.9		1.0	3.0	Hydrothermal Infill Breccia
102	103	0.66	0.03	22.5		0.5	2.0	Hydrothermal Infill Breccia
103	104	0.32	0.05	9.6		5.0	1.0	Hydrothermal Infill Breccia
104	105	0.39	0.02	8.0		1.0	1.0	Hydrothermal Infill Breccia
105	106	0.73	0.06	11.5		0.5	2.0	Hydrothermal Infill Breccia
106	107	1.61	0.22	26.6		3.0	5.0	Hydrothermal Infill Breccia
107	108	1.89	0.24	32.6		1.0	5.0	Hydrothermal Infill Breccia
108	109	0.50	0.06	8.1		2.0	1.0	Diorite
109	110	1.17	0.14	18.6		2.0	4.0	Diorite
110	111	0.72	0.11	11.7		1.0	2.0	Hydrothermal Infill Breccia
111	112	0.60	0.06	9.6		3.0	1.0	Hydrothermal Infill Breccia
112	113	0.65	0.07	11.7		2.0	2.0	Diorite
113	114	0.79	0.08	11.8		1.0	2.0	Hydrothermal Infill Breccia
114	115	0.37	0.07	7.2		5.0	1.0	Diorite
115	116	0.39	0.07	8.4		1.0	0.5	Hydrothermal Infill Breccia
116	117	0.31	0.05	8.4		0.2	0.1	Hydrothermal Infill Breccia

9 November, 2021

						Pyrite	Chalco-	
From	Depth	Cu	Au	Ag	Chalcocite	Visual	Visual	
m	m	%	g/t	g/t	%	%	%	Lithology
117	118	0.13	0.02	2.3		0.2	0.1	Hydrothermal Infill Breccia
118	119	0.49	0.14	10.1		3.0	2.0	Hydrothermal Infill Breccia
119	120	0.14	0.07	3.2		5.0	0.2	Hydrothermal Infill Breccia
120	121	0.13	0.10	2.7		2.0	1.0	Hydrothermal Infill Breccia
121	122	0.25	0.02	5.4		1.0	0.2	Diorite
122	123	0.28	0.06	3.4		0.2	0.1	Diorite
123	124	0.32	0.09	5.2		0.3	0.2	Hydrothermal Infill Breccia
124	125	0.30	0.03	4.8		1.0	0.5	Hydrothermal Infill Breccia
125	126	0.26	0.03	4.0		0.5	0.5	Diorite
126	127	0.15	0.02	2.1		0.2	8.0	Diorite
127	128	2.14	0.29	32.7		3.0	8.0	Hydrothermal Infill Breccia
128	129	1.49	0.39	22.7		2.0	4.0	Hydrothermal Infill Breccia
129	130	0.61	0.22	15.9		1.0	2.0	Hydrothermal Infill Breccia
130	131	0.49	0.23	7.8		2.0	1.0	Hydrothermal Infill Breccia
131	132	0.17	0.02	2.2		2.0	0.2	Diorite
132	133	0.52	0.11	8.1		2.0	1.5	Hydrothermal Infill Breccia
133	134	0.13	0.03	1.8		1.0		Hydrothermal Infill Breccia
134	135	0.48	0.12	10.8		1.0	0.3	Hydrothermal Infill Breccia
135	136	0.72	0.06	10.8		1.0	0.3	Hydrothermal Infill Breccia
136	137	0.97	0.10	14.1		1.0	3.0	Hydrothermal Infill Breccia
137	138	0.16	0.04	2.9		2.0	0.5	Diorite
138	139	0.30	0.09	5.9		2.0	1.5	Diorite
139	140	1.41	0.21	20.5		5.0	4.0	Hydrothermal Infill Breccia
140	141	1.66	0.36	24.7		5.0	5.0	Hydrothermal Infill Breccia
141	142	2.79	1.02	42.7		8.0	8.0	Hydrothermal Infill Breccia
142	143	0.47	0.05	7.6		1.0	3.0	Hydrothermal Infill Breccia
143	144	0.60	0.07	8.8		1.0	0.5	Hydrothermal Infill Breccia
144	145	0.27	0.10	4.1		2.0	0.5	Hydrothermal Infill Breccia
145	146	0.63	0.18	13.0		5.0	2.0	Hydrothermal Infill Breccia
146	147	1.83	0.31	30.4		5.0	4.0	Hydrothermal Infill Breccia
147	148	0.33	0.02	4.6		2.0	1.0	Hydrothermal Infill Breccia
148	149	0.29	0.03	4.5		0.5	0.5	Hydrothermal Infill Breccia
149	150	0.16	0.14	7.1		2.0	1.0	Hydrothermal Infill Breccia
150	151	0.90	0.25	14.1		3.0	5.0	Hydrothermal Infill Breccia
151	152	0.50	0.12	8.1		3.0	1.5	Hydrothermal Infill Breccia
152	153	0.23	0.04	3.5		2.0	2.0	Hydrothermal Infill Breccia
153	154	0.52	0.10	5.8		2.0	3.0	Hydrothermal Infill Breccia
154	155	1.10	0.31	15.8		5.0	6.0	Hydrothermal Infill Breccia
155	156	1.14	0.12	16.1		3.0	4.0	Hydrothermal Infill Breccia

9 November, 2021

							Chalco-	
From	То	C 11	• • •	• -	Chalasaite	Pyrite	pyrite	
Depth	Depth	Cu %	Au a/t	Ag a/t		visuai %	visuai %	Lithology
156	167	/0	g/t	g/۱ 11.0	70	/0	/0	
150	107	0.74	0.12	11.8		1.0	2.0	
157	100	0.62	0.28	9.3		3.0	2.0	
158	159	0.29	0.27	6.1		2.0	3.0	Hydrothermal Inill Breccia
159	160	0.16	0.00	4.9		0.5	0.5	Hydrothermal Infill Breccia
160	161	0.84	0.47	12.8		2.0	3.0	Hydrothermal Infill Breccia
161	162	0.50	0.13	8.5		1.0	0.5	Hydrothermal Infill Breccia
162	163	0.33	0.11	6.2		1.0	0.5	Hydrothermal Infill Breccia
163	164	1.04	0.25	17.5		1.0	3.0	Hydrothermal Infill Breccia
164	165	1.32	0.24	22.4		2.0	3.0	Hydrothermal Infill Breccia
165	166	0.32	0.02	5.5		0.2	0.1	Hydrothermal Infill Breccia
166	167	0.72	0.84	20.9		2.0	3.0	Hydrothermal Infill Breccia
167	168	0.39	0.44	8.4		1.0	0.1	Hydrothermal Infill Breccia
168	169	0.46	0.09	10.6		2.0	0.5	Hydrothermal Infill Breccia
169	170	0.08	0.03	2.4		0.2	0.1	Hydrothermal Infill Breccia
170	171	0.15	0.04	4.3		1.0	0.1	Hydrothermal Infill Breccia
171	172	0.07	0.10	3.9		2.0	0.2	Hydrothermal Infill Breccia
172	173	0.25	0.20	10.6		1.0	0.5	Hydrothermal Infill Breccia
173	174	0.85	0.20	14.7		3.0	2.0	Hydrothermal Infill Breccia
174	175	4.03	0.60	49.6		3.0	10.0	Hydrothermal Infill Breccia
175	176	1.98	0.40	30.2		2.0	3.0	Hydrothermal Infill Breccia
176	177	0.65	0.12	10.3		2.0	1.0	Hydrothermal Infill Breccia
177	178	0.25	0.03	4.4		2.0	0.1	Hydrothermal Infill Breccia
178	179	0.12	0.01	2.5		1.0	0.2	Hydrothermal Infill Breccia
179	180	0.09	0.03	2.3		0.5	0.2	Hydrothermal Infill Breccia
180	181	0.24	1.23	23.4		3.0	0.5	Milled Breccia
181	182	0.08	0.11	3.6		3.0	0.2	Hydrothermal Infill Breccia
182	183	0.01	0.04	1.4		2.0	0.1	Hydrothermal Infill Breccia
183	184	0.08	0.21	8.7		2.0		Milled Breccia
184	185	0.05	0.38	7.3		3.0		Milled Breccia
185	186	0.06	0.13	2.8		2.0	0.1	Hydrothermal Infill Breccia
186	187	0.42	0.08	7.6		2.0	0.5	Hydrothermal Infill Breccia
187	188	1.56	0.31	43.9		2.0	5.0	Hydrothermal Infill Breccia
188	189	0.36	3.33	29.0		1.0	0.5	Milled Breccia
189	190	0.30	0.23	10.9		0.5		Hvdrothermal Infill Breccia
190	191	0.10	0.03	3.7		0.5		Altered Porphyry
191	192	0.37	0.05	7 1		0.5		Altered Porphyry
192	193	0.51	0.08	6.7		1.0	0.5	Hvdrothermal Infill Breccia
193	194	1 17	0.14	22.4		1.0	2.0	Hydrothermal Infill Breccia
100	107	1.17	0.17	22.7		1.0	2.0	Andesite Post Mineral
194	195	0.61	0.07	8.8		1.0	2.0	Dyke

9 November, 2021

							Chalco-	
From	То					Pyrite	pyrite	
Depth	Depth	Cu	Au	Ag	Chalcocite	Visual	Visual	
m	m	%	g/t	g/t	%	%	%	Lithology
195	196	0.01	0.00	0.0				Andesite Post Mineral Dyke
196	197	0.01	0.00	0.0				Andesite Post Mineral
197	198	0.77	0.11	12.0				Andesite Post Mineral
198	199	1.14	0.11	16.2		2.0	3.0	Hydrothermal Infill Breccia
199	200	0.37	0.17	10.0		2.0	1.0	Hvdrothermal Infill Breccia
200	201	0.68	0.17	13.0		8.0	1.0	Hvdrothermal Infill Breccia
201	202	0.63	0.43	21.4		0.3		Fault/Crush Zone
202	203	1.33	0.80	31.4		1.0	3.0	Hydrothermal Infill Breccia
203	204	0.38	0.18	12.0		1.0	0.2	Hydrothermal Infill Breccia
204	205	0.37	0.24	8.7		2.0	0.1	Fault/Crush Zone
205	206	0.04	0.02	1.4		2.0	0.1	Fault/Crush Zone
206	207	0.18	0.07	4.9		1.0	0.1	Fault/Crush Zone
207	208	1.20	0.17	23.6		1.0	1.0	Hydrothermal Infill Breccia
208	209	0.33	0.05	6.8		2.0	2.0	Hydrothermal Infill Breccia
209	210	0.44	0.36	8.7		2.0	3.0	Hydrothermal Infill Breccia
210	211	0.15	0.16	7.2		2.0	1.0	Hydrothermal Infill Breccia
211	212	0.05	0.23	3.0		5.0	0.2	Hydrothermal Infill Breccia
212	213	0.09	0.04	3.4		0.5	0.2	Hydrothermal Infill Breccia
213	214	0.25	0.07	7.1		1.0	0.5	Hydrothermal Infill Breccia
214	215	0.20	0.07	4.9		2.0	0.5	Hydrothermal Infill Breccia
215	216	0.17	0.49	5.7		2.0	0.2	Hydrothermal Infill Breccia
216	217	0.14	0.10	4.3		1.0	0.2	Hydrothermal Infill Breccia
217	218	0.21	0.11	7.3		2.0	0.5	Hydrothermal Infill Breccia
218	219	0.06	0.38	1.9		0.5	0.1	Hydrothermal Infill Breccia
219	220	0.05	0.01	1.5		0.5		Hydrothermal Infill Breccia
220	221	0.05	0.17	1.9		0.5	0.1	Hydrothermal Infill Breccia
221	222	0.07	0.15	3.3		0.5	0.1	Hydrothermal Infill Breccia
222	223	0.04	0.02	1.1		1.0	0.1	Hydrothermal Infill Breccia
223	224	1.01	0.58	21.8		3.0	3.0	Hydrothermal Infill Breccia
224	225	0.43	0.70	7.5		5.0	3.0	Hydrothermal Infill Breccia
225	226	0.05	0.02	1.0		1.0	0.1	Hydrothermal Infill Breccia
226	227	1.85	0.32	39.7		2.0	4.0	Hydrothermal Infill Breccia
227	228	0.22	0.09	8.9		3.0	2.0	Hydrothermal Infill Breccia
228	229	0.97	0.16	16.0		1.0	1.0	Hydrothermal Infill Breccia
229	230	0.71	0.11	11.2		3.0	3.0	Hydrothermal Infill Breccia
230	231	0.98	0.13	20.8		1.0	3.0	Hydrothermal Infill Breccia
231	232	0.34	0.13	5.6		1.0	1.0	Hydrothermal Infill Breccia
232	233	0.67	0.37	16.4		1.0	4.0	Hydrothermal Infill Breccia

9 November, 2021

							Chalco-	
From	То					Pyrite	pyrite	
Depth	Depth	Cu	Au	Ag	Chalcocite	Visual	Visual	
m	m	%	g/t	g/t	%	%	%	Lithology
233	3 234	0.33	0.05	8.4		0.5	0.5	Hydrothermal Infill Breccia
234	235	0.08	0.02	1.8		0.5	0.1	Hydrothermal Infill Breccia
235	5 236	0.07	0.04	2.4		1.0	0.1	Hydrothermal Infill Breccia
236	5 237	0.04	0.07	1.9		3.0	0.3	Hydrothermal Infill Breccia
237	238	0.49	0.32	16.0		2.0	0.1	Hydrothermal Infill Breccia
238	3 239	0.32	0.03	4.7		2.0	1.0	Hydrothermal Infill Breccia
239	240	0.27	0.26	5.5		2.0	0.5	Hydrothermal Infill Breccia
240) 241	0.47	0.58	9.9		3.0	1.5	Hydrothermal Infill Breccia
242	242	0.22	0.22	4.9		3.0	1.5	Hydrothermal Infill Breccia
242	2 243	0.13	1.34	8.7		3.0	0.2	Hydrothermal Infill Breccia
243	3 244	0.22	0.11	9.8		2.0	0.1	Hydrothermal Infill Breccia
244	245	0.04	0.03	3.0		1.0		Altered Porphyry
245	5 246	0.05	0.05	3.1		1.0		Altered Porphyry
246	6 247	0.06	0.05	2.7		1.0		Altered Porphyry
247	248	0.06	0.03	3.5		1.0		Altered Porphyry
248	3 249	0.12	0.03	2.9		1.0		Altered Porphyry
249	250	0.13	0.05	1.5		1.0		Altered Porphyry
250) 251	0.13	0.03	2.9		1.0	0.1	Altered Porphyry
25	252	0.12	0.04	2.5		1.0	0.1	Diorite
252	2 253	0.99	0.25	20.1		2.0	2.0	Hydrothermal Infill Breccia
253	3 254	2.50	0.54	32.1		2.0	8.0	Hydrothermal Infill Breccia
254	255	1.67	0.25	21.7		2.0	4.0	Hydrothermal Infill Breccia
255	5 256	0.38	0.14	7.2		3.0	4.0	Hydrothermal Infill Breccia
256	6 257	1.30	1.41	20.7		2.0	3.0	Hydrothermal Infill Breccia
257	258	1.03	0.14	18.9		3.0	5.0	Hydrothermal Infill Breccia
258	3 259	0.88	0.21	14.6		3.0	4.0	Hydrothermal Infill Breccia
259	260	3.05	0.40	33.0		3.0	5.0	Hydrothermal Infill Breccia
260	261	0.72	0.08	8.6		2.0	3.0	Hydrothermal Infill Breccia
26	262	1.47	0.16	15.6		1.0	4.0	Hydrothermal Infill Breccia
262	2 263	2.12	0.33	28.5		3.0	8.0	Hydrothermal Infill Breccia
263	3 264	0.08	0.03	5.2		0.5	0.5	Hydrothermal Infill Breccia
264	265	2.61	0.27	38.9		3.0	5.0	Hydrothermal Infill Breccia
265	5 266	0.71	0.12	28.2		4.0	5.0	Hydrothermal Infill Breccia
266	6 267	0.81	0.04	11.0		2.0	2.0	Hydrothermal Infill Breccia
267	268	2.72	0.36	53.8		4.0	5.0	Hydrothermal Infill Breccia
268	3 269	0.67	0.31	15.1		2.0	2.0	Hydrothermal Infill Breccia
269	270	1.20	0.19	16.9		3.0	4.0	Hydrothermal Infill Breccia
270) 271	0.96	0.11	14.8		1.0	4.0	Hydrothermal Infill Breccia
27	272	1.32	0.18	16.2		2.0	4.0	Hydrothermal Infill Breccia

9 November, 2021

From m To bepth Cu w Au g/t Ag g/t Chalcocite wisual Pyrite visual Pyrite visual Lithology 272 273 1.09 0.09 12.0 2.0 3.0 Hydrothermal Infill Breccia 273 274 1.58 0.40 24.8 5.0 8.0 Hydrothermal Infill Breccia 275 276 0.16 0.05 3.4 0.5 0.5 Hydrothermal Infill Breccia 276 277 1.04 0.19 19.5 3.0 2.0 Hydrothermal Infill Breccia 278 278 0.45 0.08 4.4 4.0 4.0 Hydrothermal Infill Breccia 278 280 0.60 0.66 12.1 4.0 5.0 Hydrothermal Infill Breccia 281 0.78 0.99 8.0 5.0 8.0 Hydrothermal Infill Breccia 282 2.60 0.44 25.6 2.0 2.0 Hydrothermal Infill Breccia 284 285 1.14 0.19 1.0 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Chalco-</th> <th></th>								Chalco-	
Depth m Cu m Au g/t g/t g/t Size % Visual % Visual Lithology 272 273 1.09 0.09 12.0 2.0 3.0 Hydrothermal Infill Breccia 273 274 1.58 0.40 24.8 5.0 8.0 Hydrothermal Infill Breccia 275 276 0.16 0.05 3.4 0.5 5.0 Hydrothermal Infill Breccia 277 278 0.45 0.08 4.4 4.0 4.0 Hydrothermal Infill Breccia 279 2.65 0.70 40.5 5.0 10.0 Hydrothermal Infill Breccia 280 0.60 0.06 12.1 4.0 5.0 Hydrothermal Infill Breccia 281 282 2.60 0.44 25.6 2.0 8.0 Hydrothermal Infill Breccia 284 1.85 0.19 8.0 5.0 Hydrothermal Infill Breccia 284 285 1.14 0.19 13.0 2.0 0.40 Hydrothermal Infill Breccia	From	То					Pyrite	pyrite	
m % g/t % % % % kthology 272 273 1.09 0.09 12.0 2.0 3.0 Hydrothermal Infill Breccia 273 274 1.58 0.40 24.8 5.0 8.0 Hydrothermal Infill Breccia 274 275 0.98 0.12 14.4 0.5 5.0 Hydrothermal Infill Breccia 276 277 1.04 0.19 19.5 3.0 2.0 Hydrothermal Infill Breccia 277 278 0.45 0.08 4.4 4.0 4.0 Hydrothermal Infill Breccia 277 278 0.45 0.08 5.0 10.0 Hydrothermal Infill Breccia 279 280 0.60 0.66 1.1 4.0 5.0 Hydrothermal Infill Breccia 281 0.78 0.99 8.0 5.0 8.0 Hydrothermal Infill Breccia 284 285 1.4 0.19 1.0 2.0 4.0 Hydrothermal Infill Breccia<	Depth	Depth	Cu	Au	Ag	Chalcocite	Visual	Visual	
272 273 1.09 0.09 12.0 2.0 3.0 Hydrothermal Infill Breccia 273 274 1.58 0.40 24.8 5.0 8.0 Hydrothermal Infill Breccia 274 1.58 0.40 24.8 5.0 8.0 Hydrothermal Infill Breccia 275 276 0.16 0.05 3.4 0.5 5.0 Hydrothermal Infill Breccia 276 277 1.04 0.19 19.5 3.0 2.0 Hydrothermal Infill Breccia 277 278 0.45 0.08 4.4 4.0 4.0 Hydrothermal Infill Breccia 279 280 0.60 0.06 12.1 4.0 5.0 Hydrothermal Infill Breccia 281 282 2.60 0.44 25.6 2.0 2.0 Hydrothermal Infill Breccia 282 283 7.72 0.38 24.5 2.0 8.0 Hydrothermal Infill Breccia 284 285 1.14 0.19 13.0 2.0 4.0 Hydrothermal Infill Breccia 285 286 0.62 <t< th=""><th>m</th><th>m</th><th>%</th><th>g/t</th><th>g/t</th><th>%</th><th>%</th><th>%</th><th>Lithology</th></t<>	m	m	%	g/t	g/t	%	%	%	Lithology
273 274 1.58 0.40 24.8 5.0 8.0 Hydrothermal Infill Breccia 274 275 0.98 0.12 14.4 0.5 5.0 Hydrothermal Infill Breccia 276 0.16 0.05 3.4 0.5 0.5 Hydrothermal Infill Breccia 276 2.76 0.45 0.08 4.4 4.0 4.0 Hydrothermal Infill Breccia 277 278 0.45 0.08 4.4 4.0 4.0 Hydrothermal Infill Breccia 279 2.80 0.60 0.06 1.1 4.0 5.0 Hydrothermal Infill Breccia 280 2.81 0.78 0.09 8.0 5.0 8.0 Hydrothermal Infill Breccia 281 2.82 2.60 0.44 25.6 2.0 2.0 Hydrothermal Infill Breccia 284 2.82 1.85 0.19 16.6 2.0 5.0 Hydrothermal Infill Breccia 284 2.85 1.14 0.19 1.0 2.0 4.0 Hydrothermal Infill Breccia 285 2.86 0.62	272	273	1.09	0.09	12.0		2.0	3.0	Hydrothermal Infill Breccia
274 275 0.98 0.12 14.4 0.5 5.0 Hydrothermal Infill Breccia 275 276 0.16 0.05 3.4 0.5 0.5 Hydrothermal Infill Breccia 276 277 1.04 0.19 19.5 3.0 2.0 Hydrothermal Infill Breccia 277 278 0.45 0.08 4.4 4.0 4.0 Hydrothermal Infill Breccia 278 279 2.65 0.70 40.5 5.0 10.0 Hydrothermal Infill Breccia 280 281 0.78 0.09 8.0 5.0 8.0 Hydrothermal Infill Breccia 281 282 2.60 0.44 25.6 2.0 8.0 Hydrothermal Infill Breccia 282 283 2.72 0.38 24.5 2.0 8.0 Hydrothermal Infill Breccia 284 285 1.14 0.19 1.0 2.0 4.0 Hydrothermal Infill Breccia 285 286 0.62 0.06 7.0	273	274	1.58	0.40	24.8		5.0	8.0	Hydrothermal Infill Breccia
275 276 0.16 0.05 3.4 0.5 0.5 Hydrothermal Infill Breccia 276 277 1.04 0.19 19.5 3.0 2.0 Hydrothermal Infill Breccia 277 278 0.45 0.08 4.4 4.0 4.0 Hydrothermal Infill Breccia 279 2.65 0.70 40.5 5.0 10.0 Hydrothermal Infill Breccia 280 2.81 0.78 0.09 8.0 5.0 8.0 Hydrothermal Infill Breccia 281 282 2.60 0.44 25.6 2.0 2.0 Hydrothermal Infill Breccia 282 283 2.72 0.38 24.5 2.0 8.0 Hydrothermal Infill Breccia 284 285 1.14 0.19 13.0 2.0 4.0 Hydrothermal Infill Breccia 285 286 0.62 0.06 7.0 1.5 1.5 Hydrothermal Infill Breccia 287 288 0.90 0.15 9.5 1.0	274	275	0.98	0.12	14.4		0.5	5.0	Hydrothermal Infill Breccia
276 277 1.04 0.19 19.5 3.0 2.0 Hydrothermal Infill Breccia 277 278 0.45 0.08 4.4 4.0 4.0 Hydrothermal Infill Breccia 278 279 2.65 0.70 40.5 5.0 10.0 Hydrothermal Infill Breccia 280 0.60 0.66 12.1 4.0 5.0 Hydrothermal Infill Breccia 281 282 2.60 0.44 25.6 2.0 2.0 Hydrothermal Infill Breccia 282 283 2.72 0.38 24.5 2.0 8.0 Hydrothermal Infill Breccia 284 1.85 0.19 16.6 2.0 5.0 Hydrothermal Infill Breccia 285 286 0.62 0.06 7.0 1.5 1.5 Hydrothermal Infill Breccia 286 287 0.92 0.10 9.0 2.0 3.0 Hydrothermal Infill Breccia 289 1.00 0.15 9.5 1.0 3.0 Hydrothermal	275	276	0.16	0.05	3.4		0.5	0.5	Hydrothermal Infill Breccia
277 278 0.45 0.08 4.4 4.0 4.0 Hydrothermal Infill Breccia 278 279 2.65 0.70 40.5 5.0 10.0 Hydrothermal Infill Breccia 279 280 0.60 0.06 12.1 4.0 5.0 Hydrothermal Infill Breccia 280 281 0.78 0.09 8.0 5.0 8.0 Hydrothermal Infill Breccia 281 282 2.60 0.44 25.6 2.0 2.0 Hydrothermal Infill Breccia 282 283 2.72 0.38 24.5 2.0 8.0 Hydrothermal Infill Breccia 284 285 1.14 0.19 13.0 2.0 4.0 Hydrothermal Infill Breccia 286 0.62 0.06 7.0 1.5 1.5 Hydrothermal Infill Breccia 287 288 0.90 0.15 9.5 1.0 3.0 Hydrothermal Infill Breccia 289 290 0.80 0.99 8.4 1.0	276	277	1.04	0.19	19.5		3.0	2.0	Hydrothermal Infill Breccia
278 279 2.65 0.70 40.5 5.0 10.0 Hydrothermal Infill Breccia 279 280 0.60 0.06 12.1 4.0 5.0 Hydrothermal Infill Breccia 280 281 0.78 0.09 8.0 5.0 8.0 Hydrothermal Infill Breccia 281 282 2.60 0.44 25.6 2.0 2.0 Hydrothermal Infill Breccia 282 283 2.72 0.38 24.5 2.0 8.0 Hydrothermal Infill Breccia 284 285 1.14 0.19 13.0 2.0 4.0 Hydrothermal Infill Breccia 285 286 0.62 0.06 7.0 1.5 1.5 Hydrothermal Infill Breccia 286 287 0.30 0.15 9.5 1.0 3.0 Hydrothermal Infill Breccia 288 290 0.80 0.09 8.4 1.0 2.0 Hydrothermal Infill Breccia 291 292 2.42 0.47 30.1	277	278	0.45	0.08	4.4		4.0	4.0	Hydrothermal Infill Breccia
279 280 0.60 0.06 12.1 4.0 5.0 Hydrothermal Infill Breccia 280 281 0.78 0.09 8.0 5.0 8.0 Hydrothermal Infill Breccia 281 282 2.60 0.44 25.6 2.0 2.0 Hydrothermal Infill Breccia 282 283 2.72 0.38 24.5 2.0 8.0 Hydrothermal Infill Breccia 283 284 1.85 0.19 16.6 2.0 5.0 Hydrothermal Infill Breccia 284 285 1.14 0.19 13.0 2.0 4.0 Hydrothermal Infill Breccia 286 287 0.92 0.10 9.0 2.0 3.0 Hydrothermal Infill Breccia 287 288 0.90 0.15 9.5 1.0 3.0 Hydrothermal Infill Breccia 289 290 0.80 0.09 8.4 1.0 2.0 Hydrothermal Infill Breccia 290 291 0.57 0.06 5.5	278	279	2.65	0.70	40.5		5.0	10.0	Hydrothermal Infill Breccia
280 281 0.78 0.09 8.0 5.0 8.0 Hydrothermal Infill Breccia 281 282 2.60 0.44 25.6 2.0 2.0 Hydrothermal Infill Breccia 282 283 2.72 0.38 24.5 2.0 8.0 Hydrothermal Infill Breccia 283 284 1.85 0.19 16.6 2.0 5.0 Hydrothermal Infill Breccia 285 286 0.62 0.06 7.0 1.5 1.5 Hydrothermal Infill Breccia 286 287 0.92 0.10 9.0 2.0 3.0 Hydrothermal Infill Breccia 286 287 0.92 0.10 9.0 2.0 3.0 Hydrothermal Infill Breccia 288 289 1.20 0.16 13.1 1.0 2.0 Hydrothermal Infill Breccia 290 291 0.57 0.06 5.5 2.0 3.0 Hydrothermal Infill Breccia 292 293 1.29 0.17 17.9	279	280	0.60	0.06	12.1		4.0	5.0	Hydrothermal Infill Breccia
281 282 2.60 0.44 25.6 2.0 2.0 Hydrothermal Infill Breccia 282 283 2.72 0.38 24.5 2.0 8.0 Hydrothermal Infill Breccia 283 284 1.85 0.19 16.6 2.0 5.0 Hydrothermal Infill Breccia 284 285 1.14 0.19 13.0 2.0 4.0 Hydrothermal Infill Breccia 285 286 0.62 0.06 7.0 1.5 1.5 Hydrothermal Infill Breccia 286 287 0.92 0.10 9.0 2.0 3.0 Hydrothermal Infill Breccia 288 289 1.20 0.16 13.1 1.0 2.0 Hydrothermal Infill Breccia 290 291 0.57 0.06 5.5 2.0 3.0 Hydrothermal Infill Breccia 292 293 1.29 0.17 17.9 3.0 8.0 Hydrothermal Infill Breccia 292 293 1.29 0.17 17.9	280	281	0.78	0.09	8.0		5.0	8.0	Hydrothermal Infill Breccia
282 283 2.72 0.38 24.5 2.0 8.0 Hydrothermal Infill Breccia 283 284 1.85 0.19 16.6 2.0 5.0 Hydrothermal Infill Breccia 284 285 1.14 0.19 13.0 2.0 4.0 Hydrothermal Infill Breccia 285 286 0.62 0.06 7.0 1.5 1.5 Hydrothermal Infill Breccia 286 287 0.92 0.10 9.0 2.0 3.0 Hydrothermal Infill Breccia 288 289 1.20 0.16 13.1 1.0 2.0 Hydrothermal Infill Breccia 289 290 0.80 0.99 8.4 1.0 2.0 Hydrothermal Infill Breccia 290 291 0.57 0.06 5.5 2.0 3.0 Hydrothermal Infill Breccia 291 292 2.42 0.47 30.1 2.0 8.0 Hydrothermal Infill Breccia 292 293 1.29 0.17 17.9	281	282	2.60	0.44	25.6		2.0	2.0	Hydrothermal Infill Breccia
283 284 1.85 0.19 16.6 2.0 5.0 Hydrothermal Infill Breccia 284 285 1.14 0.19 13.0 2.0 4.0 Hydrothermal Infill Breccia 285 286 0.62 0.06 7.0 1.5 1.5 Hydrothermal Infill Breccia 286 287 0.92 0.10 9.0 2.0 3.0 Hydrothermal Infill Breccia 287 288 0.90 0.15 9.5 1.0 3.0 Hydrothermal Infill Breccia 288 289 1.20 0.16 13.1 1.0 2.0 Hydrothermal Infill Breccia 290 291 0.57 0.06 5.5 2.0 3.0 Hydrothermal Infill Breccia 291 292 2.42 0.47 30.1 2.0 8.0 Hydrothermal Infill Breccia 292 293 1.29 0.17 17.9 3.0 8.0 Hydrothermal Infill Breccia 294 295 2.56 1.12 71.4	282	283	2.72	0.38	24.5		2.0	8.0	Hydrothermal Infill Breccia
284 285 1.14 0.19 13.0 2.0 4.0 Hydrothermal Infill Breccia 285 286 0.62 0.06 7.0 1.5 1.5 Hydrothermal Infill Breccia 286 287 0.92 0.10 9.0 2.0 3.0 Hydrothermal Infill Breccia 287 288 0.90 0.15 9.5 1.0 3.0 Hydrothermal Infill Breccia 288 289 1.20 0.16 13.1 1.0 2.0 Hydrothermal Infill Breccia 289 290 0.80 0.09 8.4 1.0 2.0 Hydrothermal Infill Breccia 290 291 0.57 0.06 5.5 2.0 3.0 Hydrothermal Infill Breccia 292 293 1.29 0.17 17.9 3.0 8.0 Hydrothermal Infill Breccia 292 293 1.29 0.17 17.9 3.0 5.0 Hydrothermal Infill Breccia 294 295 2.56 1.12 71.4	283	284	1.85	0.19	16.6		2.0	5.0	Hydrothermal Infill Breccia
285 286 0.62 0.06 7.0 1.5 1.5 Hydrothermal Infill Breccia 286 287 0.92 0.10 9.0 2.0 3.0 Hydrothermal Infill Breccia 287 288 0.90 0.15 9.5 1.0 3.0 Hydrothermal Infill Breccia 288 289 1.20 0.16 13.1 1.0 2.0 Hydrothermal Infill Breccia 289 290 0.80 0.09 8.4 1.0 2.0 Hydrothermal Infill Breccia 290 291 0.57 0.06 5.5 2.0 3.0 Hydrothermal Infill Breccia 291 292 2.42 0.47 30.1 2.0 8.0 Hydrothermal Infill Breccia 293 294 1.90 0.32 21.5 3.0 5.0 Hydrothermal Infill Breccia 294 295 2.56 1.12 71.4 3.0 5.0 Hydrothermal Infill Breccia 296 297 0.52 0.08 9.4	284	285	1.14	0.19	13.0		2.0	4.0	Hydrothermal Infill Breccia
286 287 0.92 0.10 9.0 2.0 3.0 Hydrothermal Infill Breccia 287 288 0.90 0.15 9.5 1.0 3.0 Hydrothermal Infill Breccia 288 289 1.20 0.16 13.1 1.0 2.0 Hydrothermal Infill Breccia 289 290 0.80 0.09 8.4 1.0 2.0 Hydrothermal Infill Breccia 290 291 0.57 0.06 5.5 2.0 3.0 Hydrothermal Infill Breccia 291 292 2.42 0.47 30.1 2.0 8.0 Hydrothermal Infill Breccia 292 293 1.29 0.17 17.9 3.0 8.0 Hydrothermal Infill Breccia 294 295 2.56 1.12 71.4 3.0 5.0 Hydrothermal Infill Breccia 294 295 2.06 1.86 0.42 24.1 2.0 3.0 Hydrothermal Infill Breccia 296 2.97 0.52 0.08	285	286	0.62	0.06	7.0		1.5	1.5	Hydrothermal Infill Breccia
287 288 0.90 0.15 9.5 1.0 3.0 Hydrothermal Infill Breccia 288 289 1.20 0.16 13.1 1.0 2.0 Hydrothermal Infill Breccia 289 290 0.80 0.09 8.4 1.0 2.0 Hydrothermal Infill Breccia 290 291 0.57 0.06 5.5 2.0 3.0 Hydrothermal Infill Breccia 291 292 2.42 0.47 30.1 2.0 8.0 Hydrothermal Infill Breccia 292 293 1.29 0.17 17.9 3.0 8.0 Hydrothermal Infill Breccia 293 294 1.90 0.32 21.5 3.0 5.0 Hydrothermal Infill Breccia 294 295 2.56 1.12 71.4 3.0 2.0 Hydrothermal Infill Breccia 295 296 1.86 0.42 24.1 2.0 3.0 Hydrothermal Infill Breccia 296 297 0.52 0.08 9.4	286	287	0.92	0.10	9.0		2.0	3.0	Hydrothermal Infill Breccia
288 289 1.20 0.16 13.1 1.0 2.0 Hydrothermal Infill Breccia 289 290 0.80 0.09 8.4 1.0 2.0 Hydrothermal Infill Breccia 290 291 0.57 0.06 5.5 2.0 3.0 Hydrothermal Infill Breccia 291 292 2.42 0.47 30.1 2.0 8.0 Hydrothermal Infill Breccia 292 293 1.29 0.17 17.9 3.0 8.0 Hydrothermal Infill Breccia 292 293 1.29 0.17 17.9 3.0 8.0 Hydrothermal Infill Breccia 293 294 1.90 0.32 21.5 3.0 5.0 Hydrothermal Infill Breccia 294 295 2.56 1.12 71.4 3.0 2.0 Hydrothermal Infill Breccia 295 296 1.86 0.42 24.1 2.0 3.0 Hydrothermal Infill Breccia 297 298 0.82 0.11 12.6	287	288	0.90	0.15	9.5		1.0	3.0	Hydrothermal Infill Breccia
289 290 0.80 0.09 8.4 1.0 2.0 Hydrothermal Infill Breccia 290 291 0.57 0.06 5.5 2.0 3.0 Hydrothermal Infill Breccia 291 292 2.42 0.47 30.1 2.0 8.0 Hydrothermal Infill Breccia 292 293 1.29 0.17 17.9 3.0 8.0 Hydrothermal Infill Breccia 293 294 1.90 0.32 21.5 3.0 5.0 Hydrothermal Infill Breccia 294 295 2.56 1.12 71.4 3.0 5.0 Hydrothermal Infill Breccia 294 295 2.56 1.12 71.4 3.0 2.0 Hydrothermal Infill Breccia 296 296 1.86 0.42 24.1 2.0 3.0 Hydrothermal Infill Breccia 296 297 0.52 0.08 9.4 3.0 2.0 Hydrothermal Infill Breccia 298 299 1.79 0.31 17.9	288	289	1.20	0.16	13.1		1.0	2.0	Hydrothermal Infill Breccia
290 291 0.57 0.06 5.5 2.0 3.0 Hydrothermal Infill Breccia 291 292 2.42 0.47 30.1 2.0 8.0 Hydrothermal Infill Breccia 292 293 1.29 0.17 17.9 3.0 8.0 Hydrothermal Infill Breccia 293 294 1.90 0.32 21.5 3.0 5.0 Hydrothermal Infill Breccia 294 295 2.56 1.12 71.4 3.0 5.0 Hydrothermal Infill Breccia 294 295 2.56 1.12 71.4 3.0 2.0 Hydrothermal Infill Breccia 296 296 1.86 0.42 24.1 2.0 3.0 Hydrothermal Infill Breccia 296 297 0.52 0.08 9.4 3.0 2.0 Hydrothermal Infill Breccia 297 298 0.82 0.11 12.6 3.0 2.0 Hydrothermal Infill Breccia 298 299 1.79 0.31 17.9	289	290	0.80	0.09	8.4		1.0	2.0	Hydrothermal Infill Breccia
291 292 2.42 0.47 30.1 2.0 8.0 Hydrothermal Infill Breccia 292 293 1.29 0.17 17.9 3.0 8.0 Hydrothermal Infill Breccia 293 294 1.90 0.32 21.5 3.0 5.0 Hydrothermal Infill Breccia 294 295 2.56 1.12 71.4 3.0 5.0 Hydrothermal Infill Breccia 295 2.96 1.86 0.42 24.1 2.0 3.0 Hydrothermal Infill Breccia 296 297 0.52 0.08 9.4 3.0 2.0 Hydrothermal Infill Breccia 296 297 0.52 0.08 9.4 3.0 2.0 Hydrothermal Infill Breccia 297 298 0.82 0.11 12.6 3.0 2.0 Hydrothermal Infill Breccia 298 299 1.79 0.31 17.9 3.0 4.0 Hydrothermal Infill Breccia 300 301 1.89 0.39 17.8	290	291	0.57	0.06	5.5		2.0	3.0	Hydrothermal Infill Breccia
292 293 1.29 0.17 17.9 3.0 8.0 Hydrothermal Infill Breccia 293 294 1.90 0.32 21.5 3.0 5.0 Hydrothermal Infill Breccia 294 295 2.56 1.12 71.4 3.0 5.0 Hydrothermal Infill Breccia 295 296 1.86 0.42 24.1 2.0 3.0 Hydrothermal Infill Breccia 296 297 0.52 0.08 9.4 3.0 2.0 Hydrothermal Infill Breccia 297 298 0.82 0.11 12.6 3.0 2.0 Hydrothermal Infill Breccia 298 299 1.79 0.31 17.9 3.0 4.0 Hydrothermal Infill Breccia 298 299 1.28 0.21 12.4 5.0 3.0 Hydrothermal Infill Breccia 300 301 1.89 0.39 17.8 3.0 5.0 Hydrothermal Infill Breccia 301 302 1.09 0.21 9.4	291	292	2.42	0.47	30.1		2.0	8.0	Hydrothermal Infill Breccia
293 294 1.90 0.32 21.5 3.0 5.0 Hydrothermal Infill Breccia 294 295 2.56 1.12 71.4 3.0 5.0 Hydrothermal Infill Breccia 295 296 1.86 0.42 24.1 2.0 3.0 Hydrothermal Infill Breccia 296 297 0.52 0.08 9.4 3.0 2.0 Hydrothermal Infill Breccia 296 297 0.52 0.08 9.4 3.0 2.0 Hydrothermal Infill Breccia 297 298 0.82 0.11 12.6 3.0 2.0 Hydrothermal Infill Breccia 298 299 1.79 0.31 17.9 3.0 4.0 Hydrothermal Infill Breccia 300 301 1.89 0.39 17.8 3.0 5.0 Hydrothermal Infill Breccia 301 302 1.09 0.21 9.4 3.0 3.0 Hydrothermal Infill Breccia 301 302 0.00 0.00 0.0	292	293	1.29	0.17	17.9		3.0	8.0	Hvdrothermal Infill Breccia
294 295 2.56 1.12 71.4 3.0 5.0 Hydrothermal Infill Breccia 295 296 1.86 0.42 24.1 2.0 3.0 Hydrothermal Infill Breccia 296 297 0.52 0.08 9.4 3.0 2.0 Hydrothermal Infill Breccia 297 298 0.82 0.11 12.6 3.0 2.0 Hydrothermal Infill Breccia 297 298 0.82 0.11 12.6 3.0 2.0 Hydrothermal Infill Breccia 298 299 1.79 0.31 17.9 3.0 4.0 Hydrothermal Infill Breccia 298 299 1.79 0.31 17.9 3.0 4.0 Hydrothermal Infill Breccia 300 301 1.89 0.39 17.8 3.0 5.0 Hydrothermal Infill Breccia 301 302 1.09 0.21 9.4 3.0 3.0 Hydrothermal Infill Breccia 301 302 1.09 0.21 9.4	293	294	1.90	0.32	21.5		3.0	5.0	Hvdrothermal Infill Breccia
295 296 1.86 0.42 24.1 2.0 3.0 Hydrothermal Infill Breccia 296 297 0.52 0.08 9.4 3.0 2.0 Hydrothermal Infill Breccia 297 298 0.82 0.11 12.6 3.0 2.0 Hydrothermal Infill Breccia 297 298 0.82 0.11 12.6 3.0 2.0 Hydrothermal Infill Breccia 298 299 1.79 0.31 17.9 3.0 4.0 Hydrothermal Infill Breccia 299 300 1.28 0.21 12.4 5.0 3.0 Hydrothermal Infill Breccia 300 301 1.89 0.39 17.8 3.0 5.0 Hydrothermal Infill Breccia 301 302 1.09 0.21 9.4 3.0 3.0 Hydrothermal Infill Breccia 302 303 0.33 0.09 3.7 2.0 2.0 Hydrothermal Infill Breccia 303 304 0.01 0.00 0.0	294	295	2.56	1.12	71.4		3.0	5.0	Hydrothermal Infill Breccia
296 297 0.52 0.08 9.4 3.0 2.0 Hydrothermal Infill Breccia 297 298 0.82 0.11 12.6 3.0 2.0 Hydrothermal Infill Breccia 298 299 1.79 0.31 17.9 3.0 4.0 Hydrothermal Infill Breccia 298 299 1.79 0.31 17.9 3.0 4.0 Hydrothermal Infill Breccia 299 300 1.28 0.21 12.4 5.0 3.0 Hydrothermal Infill Breccia 300 301 1.89 0.39 17.8 3.0 5.0 Hydrothermal Infill Breccia 301 302 1.09 0.21 9.4 3.0 3.0 Hydrothermal Infill Breccia 302 303 0.33 0.09 3.7 2.0 2.0 Hydrothermal Infill Breccia 303 304 0.01 0.00 0.0 Andesite Post Mineral 304 305 0.00 0.00 0.0 Andesite Post Mineral <	295	296	1.86	0.42	24.1		2.0	3.0	Hydrothermal Infill Breccia
200 201 0102 0	296	297	0.52	0.08	9.4		3.0	2.0	Hydrothermal Infill Breccia
201 202 0.01 12.0 3.0 1.0 1.0 Nytrentermal main process 298 299 1.79 0.31 17.9 3.0 4.0 Hydrothermal Infill Breccia 299 300 1.28 0.21 12.4 5.0 3.0 Hydrothermal Infill Breccia 300 301 1.89 0.39 17.8 3.0 5.0 Hydrothermal Infill Breccia 301 302 1.09 0.21 9.4 3.0 3.0 Hydrothermal Infill Breccia 301 302 1.09 0.21 9.4 3.0 3.0 Hydrothermal Infill Breccia 302 303 0.33 0.09 3.7 2.0 2.0 Hydrothermal Infill Breccia 303 304 0.01 0.00 0.0 Andesite Post Mineral Dyke 304 305 0.00 0.00 0.0 Dyke Andesite Post Mineral 305 306 0.00 0.00 0.0 Dyke Andesite Post Mineral	297	298	0.82	0.11	12.6		3.0	2.0	Hydrothermal Infill Breccia
200 200 <td>298</td> <td>299</td> <td>1 79</td> <td>0.31</td> <td>17.9</td> <td></td> <td>3.0</td> <td>4.0</td> <td>Hydrothermal Infill Breccia</td>	298	299	1 79	0.31	17.9		3.0	4.0	Hydrothermal Infill Breccia
100 100 <td>299</td> <td>300</td> <td>1 28</td> <td>0.21</td> <td>12.4</td> <td></td> <td>5.0</td> <td>3.0</td> <td>Hydrothermal Infill Breccia</td>	299	300	1 28	0.21	12.4		5.0	3.0	Hydrothermal Infill Breccia
301 302 1.09 0.21 9.4 3.0 3.0 Hydrothermal Infill Breccia 302 303 0.33 0.09 3.7 2.0 2.0 Hydrothermal Infill Breccia 303 304 0.01 0.00 0.0 Andesite Post Mineral Dyke 304 305 0.00 0.00 0.0 Dyke 305 306 0.00 0.00 0.0 Dyke 305 306 0.00 0.0 Dyke 306 307 0.00 0.0 Andesite Post Mineral Dyke 307 308 0.00 0.0 Andesite Post Mineral Dyke	300	301	1.20	0.21	17.8		3.0	5.0	Hydrothermal Infill Breccia
302 303 0.33 0.09 3.7 2.0 2.0 Hydrothermal Infill Breccia 303 304 0.01 0.00 0.0 Andesite Post Mineral Dyke 304 305 0.00 0.00 0.0 Andesite Post Mineral Dyke 305 306 0.00 0.00 0.0 Dyke 305 306 0.00 0.00 Andesite Post Mineral Dyke 306 307 0.00 0.00 0.0 307 308 0.00 0.0 Andesite Post Mineral Dyke	301	302	1.00	0.35	9.4		3.0	3.0	Hydrothermal Infill Breccia
302 303 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 Andesite Post Mineral Dyke 304 305 0.00 0.00 0.00 0.00 Dyke 305 306 0.00 0.00 0.00 Dyke Andesite Post Mineral Dyke 306 307 0.00 0.00 0.00 Dyke Andesite Post Mineral Dyke 307 308 0.00 0.00 0.00 Andesite Post Mineral Dyke	302	303	0.33	0.21	3.7		2.0	2.0	Hydrothermal Infill Breccia
303 304 0.01 0.00 0.0 Dyke 304 305 0.00 0.00 0.0 Dyke 304 305 0.00 0.00 0.0 Dyke 305 306 0.00 0.00 0.0 Dyke 306 307 0.00 0.00 0.0 Dyke 307 308 0.00 0.0 Andesite Post Mineral Dyke	002	000	0.55	0.09	5.7		2.0	2.0	Andesite Post Mineral
3043050.000.000.00Andesite Post Mineral Dyke3053060.000.000.00Andesite Post Mineral Dyke3063070.000.000.00Andesite Post Mineral Dyke3073080.000.000.00Andesite Post Mineral Dyke	303	304	0.01	0.00	0.0				Dyke
305 306 0.00 0.00 0.00 Dyke 305 306 0.00 0.00 0.00 Dyke 306 307 0.00 0.00 0.00 Dyke 307 308 0.00 0.00 Andesite Post Mineral Dyke	304	305							Andesite Post Mineral
305 306 0.00 0.00 0.00 0.00 Dyke 306 307 0.00 0.00 0.00 Dyke Andesite Post Mineral Dyke 307 308 0.00 0.00 0.00 Andesite Post Mineral Dyke			0.00	0.00	0.0				Dyke Andeoite Deet Mineral
306 307 0.00 0.00 0.00 Andesite Post Mineral Dyke 307 308 0.00 0.00 Andesite Post Mineral Dyke	305	306	0.00	0.00	0.0				Dyke
300 307 0.00 0.00 0.0 Dyke 307 308 500 500 Andesite Post Mineral	200	207							Andesite Post Mineral
307 308 Andesite Post Mineral	306	307	0.00	0.00	0.0				Dyke
	307	308	0.00	0.00	0.0				Andesite Post Mineral

9 November, 2021

						Durita	Chalco-	
From	То	C 11	A	۸-	Chalassita	Pyrite	pyrite	
Depth	Depth	Cu %	Au a/t	Ag a/t		visuai %	visuai %	Lithology
m	m	70	g/t	g/t	/0	/0	/0	Andesite Post Mineral
308	309	0.00	0.00	0.0				Dyke
309	310							Andesite Post Mineral
	010	0.00	0.00	0.6				Dyke Andesite Dest Mineral
310	311	0.00	0.00	0.0				Dvke
211	210							Andesite Post Mineral
311	512	0.00	0.00	0.0				Dyke
312	313	0.45	0.07	4.4		0.2	0.5	Hydrothermal Infill Breccia
313	314	0.67	0.10	6.9		3.0	3.0	Hydrothermal Infill Breccia
314	315	1.38	0.18	13.3		5.0	5.0	Hydrothermal Infill Breccia
315	316	1.73	0.61	15.2		2.0	6.0	Hydrothermal Infill Breccia
316	317	0.72	0.10	6.7		4.0	4.0	Hydrothermal Infill Breccia
317	318	0.33	0.05	3.5		3.0	3.0	Hydrothermal Infill Breccia
318	319	0.01	0.01	0.0				Andesite Post Mineral
		0.01	0.01	0.0				Dyke Andesite Post Mineral
319	320	0.02	0.05	0.0				Dyke
320	321							Andesite Post Mineral
520	521	0.02	0.01	0.0				Dyke
321	322	0.63	0.10	8.0		2.0	2.0	Hydrothermal Infill Breccia
322	323	1.32	0.12	15.2		3.0	2.0	Hydrothermal Infill Breccia
323	324	0.93	0.17	12.3		2.0	2.0	Hydrothermal Infill Breccia
324	325	1.55	0.34	14.0		3.0	4.0	Hydrothermal Infill Breccia
325	326	0.54	0.94	5.0		0.5	1.0	Hydrothermal Infill Breccia
326	327	1.93	0.54	18.7		4.0	4.0	Hydrothermal Infill Breccia
327	328	1.67	0.17	14.8		2.0	3.0	Hydrothermal Infill Breccia
328	329	0.65	0.07	7.1		1.0	1.0	Hydrothermal Infill Breccia
329	330	0.80	0.13	8.0		2.0	3.0	Hydrothermal Infill Breccia
330	331	1.00	0.17	12.8		4.0	4.0	Hydrothermal Infill Breccia
331	332	0.47	0.10	6.9		2.0	2.0	Hydrothermal Infill Breccia
332	333	2.06	0.76	20.3		4.0	5.0	Hydrothermal Infill Breccia
333	334	2.29	0.48	21.8		3.0	8.0	Hydrothermal Infill Breccia
334	335	1.43	0.27	13.2		2.0	5.0	Hydrothermal Infill Breccia
335	336							Andesite Post Mineral
		0.03	0.01	0.0				Dyke Andeoite Deet Mineral
336	337	0.01	0.00	0.0				Dvke
227	220							Andesite Post Mineral
337	330	0.01	0.00	0.0				Dyke
338	339	0.00	0.00	0.0				Andesite Post Mineral
		0.00	0.00	0.0				Andesite Post Mineral
339	340	0.00	0.00	0.0				Dyke
340	341	2.90	0.35	35.3		3.0	5.0	Hvdrothermal Infill Breccia

9 November, 2021

From	То					Pyrite	Chalco- pyrite	
Depth	Depth	Cu	Au	Ag	Chalcocite	Visual	Visual	
m	m	%	g/t	g/t	%	%	%	Lithology
341	342	0.59	0.07	5.2		0.5	1.0	Hornfels
342	343	0.89	0.12	8.8		1.0	2.0	Hydrothermal Infill Breccia
343	344	1.34	0.28	14.3		2.0	3.0	Hydrothermal Infill Breccia
344	345	1.84	0.46	19.0		2.0	3.0	Hydrothermal Infill Breccia
345	346	1.90	0.35	48.2		3.0	4.0	Hydrothermal Infill Breccia
346	347	2.45	0.43	28.2		3.0	4.0	Hydrothermal Infill Breccia
347	348	1.81	0.32	20.1		3.0	4.0	Hydrothermal Infill Breccia
348	349	2.09	0.47	23.6		3.0	10.0	Hydrothermal Infill Breccia
349	350	2.59	0.73	32.1		3.0	5.0	Hydrothermal Infill Breccia
350	351	3.10	0.62	34.4		3.0	8.0	Hydrothermal Infill Breccia
351	352	1.63	0.24	18.1				Hydrothermal Infill Breccia
352	353							Andesite Post Mineral
002	000	0.02	0.01	0.0				Dyke
353	354	0.01	0.00	0.0				Andesite Post Mineral
054	055	0.01	0.00	0.0				Andesite Post Mineral
354	355	0.01	0.00	0.0				Dyke
355	356	0.00	0.00	0.0				Andesite Post Mineral
		0.00	0.00	0.0				Dyke Andesite Post Mineral
356	357	0.00	0.00	0.0				Dyke
357	358							Andesite Post Mineral
	000	0.00	0.00	0.0				Dyke
358	359	0.00	0.00	0.0				Andesite Post Mineral
250	200	0.00	0.00	0.0				Andesite Post Mineral
359	360	0.02	0.01	0.0		0.2	0.2	Dyke
360	361	0.90	0.18	11.2		1.0	5.0	Hydrothermal Infill Breccia
361	362	0.02	0.01	0.0		0.3		Hornfels
362	363	0.02	0.01	0.0		0.3		Hornfels
363	364	1.51	0.26	14.6		1.0	2.0	Hornfels
364	365	6.05	0.64	61.8		5.0	10.0	Hydrothermal Infill Breccia
365	366	4.24	0.51	43.2		5.0	8.0	Hydrothermal Infill Breccia
366	367	4.70	4.17	48.4		5.0	8.0	Hydrothermal Infill Breccia
367	368	0.66	0.10	7.3		0.5	0.5	Hornfels
368	369	1.04	0.18	15.1		2.0	3.0	Hydrothermal Infill Breccia
369	370	0.53	0.05	5.0		3.0	3.0	Hydrothermal Infill Breccia
370	371	0.35	0.06	7.2		8.0	0.3	Hydrothermal Infill Breccia
371	372	0.39	0.07	4.0		2.0	3.0	Hydrothermal Infill Breccia
370	372							Andesite Post Mineral
512	515	0.00	0.00	0.0				Dyke
373	374	0.24	0.06	32		0.5	1.0	Andesite Post Mineral
374	375	0.32	0.16	5.3		1.0	1.0	Hydrothermal Infill Breccia

9 November, 2021

							Chalco-	
From	То					Pyrite	pyrite	
Depth	Depth	Cu	Au	Ag	Chalcocite	Visual	Visual	
m	m	%	g/t	g/t	%	%	%	Lithology
375	376	0.24	0.21	5.5		2.0	2.0	Hydrothermal Infill Breccia
376	377	0.53	0.15	6.3		2.0	1.0	Hydrothermal Infill Breccia
377	378	0.73	0.07	6.6		1.0	0.5	Hydrothermal Infill Breccia
378	379	0.54	0.07	5.7		1.5	2.0	Hydrothermal Infill Breccia
379	380	1.14	0.11	9.2		1.0	1.5	Hydrothermal Infill Breccia
380	381	1.18	0.55	13.9		2.0	4.0	Hydrothermal Infill Breccia
381	382	0.56	0.06	7.9		2.0	1.0	Hydrothermal Infill Breccia
382	383	1.80	0.21	18.6		3.0	5.0	Hydrothermal Infill Breccia
383	384	0.91	0.12	9.0		2.0	1.5	Hydrothermal Infill Breccia
384	385	0.56	0.42	6.2		2.0	1.5	Hydrothermal Infill Breccia
385	386	1.23	0.27	14.0		3.0	2.0	Hydrothermal Infill Breccia
386	387	1.14	0.20	13.1		3.0	5.0	Hydrothermal Infill Breccia
387	388	0.03	0.01	0.0		0.1	0.1	Hornfels
388	389	0.04	0.01	0.8		0.1	0.1	Hornfels
389	390	0.40	0.04	3.8		0.5	0.5	Hydrothermal Infill Breccia
390	391	1.08	0.46	10.7		2.0	2.5	Hydrothermal Infill Breccia
391	392	0.13	0.03	1.5		0.2	0.2	Hydrothermal Infill Breccia
392	393	0.09	0.01	1.2		0.2	0.1	Hydrothermal Infill Breccia
393	394	0.16	0.01	2		0.2	0.5	Hydrothermal Infill Breccia
394	395	0.43	0.03	2.6		0.2	0.5	Hydrothermal Infill Breccia
395	396	0.45	0.12	11.2		3.0	1.0	Hydrothermal Infill Breccia
396	397	0.66	0.08	5		2.0	2.0	Hydrothermal Infill Breccia
397	398	0.85	0.11	5.5		1.0	3.0	Hydrothermal Infill Breccia
398	399	0.26	0.02	1.9		3.0	2.0	Hydrothermal Infill Breccia
399	400	0.44	0.05	2.2		0.5	1.0	Hydrothermal Infill Breccia
400	401							Andesite Post Mineral
400	401	0.00	0.00	0				Dyke
401	402	0.00	0.00	0				Andesite Post Mineral
100	100	0.00	0.00					Andesite Post Mineral
402	403	0.00	0.00	0				Dyke
403	404	0.00	0.00					Andesite Post Mineral
		0.00	0.00	0				Dyke Andesite Post Minoral
404	405	0.00	0.00	0				Dvke
405	406							Andesite Post Mineral
405	400	0.00	0.00	0				Dyke
406	407	0.00	0.00	0				Andesite Post Mineral
		0.00	0.00	0				Andesite Post Mineral
407	408	0.00	0.00	0				Dyke
408	409	0.54	0.12	3.6			1.0	Hydrothermal Infill Breccia
409	410	0.01	0.01	0		2.0	0.1	Hydrothermal Infill Breccia

9 November, 2021

F	Ta					Pyrite	Chalco- pyrite	
Prom Depth	TO Depth	Cu	Au	Ag	Chalcocite	Visual	Visual	
m	m	%	g/t	g/t	%	%	%	Lithology
410	411	0.00	0.00	0				Andesite Post Mineral Dvke
411	412	0.00	0.00	0				Andesite Post Mineral Dvke
412	413	0.00	0.00	0				Andesite Post Mineral Dvke
413	414	0.00	0.00	0				Andesite Post Mineral Dvke
414	415	0.00	0.00	0				Andesite Post Mineral Dyke
415	416	0.00	0.00	0				Andesite Post Mineral Dyke
416	417	0.00	0.00	0				Andesite Post Mineral Dyke
417	418	0.00	0.00	0				Andesite Post Mineral Dyke
418	419	0.00	0.00	0				Andesite Post Mineral Dyke
419	420	0.00	0.00	0				Andesite Post Mineral Dyke
420	421	0.00	0.00	0				Andesite Post Mineral Dyke
421	422	0.01	0.00	0				Andesite Post Mineral Dyke
422	423	0.07	0.02	1.4		1.0	0.2	Hydrothermal Infill Breccia
423	424	0.06	0.00	1.1		1.0	0.3	Hydrothermal Infill Breccia
424	425	0.55	0.13	11.5		10.0	2.0	Hydrothermal Infill Breccia
425	426	0.36	0.03	5.5		2.0	1.0	Hydrothermal Infill Breccia
426	427	0.41	0.02	6		3.0	3.0	Hydrothermal Infill Breccia
427	428	0.32	0.10	4.2		3.0	1.0	Hydrothermal Infill Breccia
428	429	1.41	0.33	18.6		5.0	6.0	Hydrothermal Infill Breccia
429	430	1.33	0.21	14.7		3.0	5.0	Hydrothermal Infill Breccia
430	431	0.80	0.12	8.4		0.5	2.0	Andesite Post Mineral Dyke
431	432	0.01	0.00	0				Andesite Post Mineral Dyke
432	433	0.67	0.14	13.3		5.0	4.0	Hydrothermal Infill Breccia
433	434	0.32	0.15	6.1		3.0	1.0	Hydrothermal Infill Breccia
434	435	0.26	0.04	4.1		2.0	1.0	Hydrothermal Infill Breccia
435	436	0.51	0.07	8.1		3.0	3.0	Hydrothermal Infill Breccia
436	437	0.52	0.17	9.9		3.0	3.0	Hydrothermal Infill Breccia
437	438	0.19	0.05	3.2		3.0	1.0	Hydrothermal Infill Breccia
438	439	0.25	0.04	2.5		2.0	1.0	- Hydrothermal Infill Breccia
439	440	0.44	0.10	7.3		2.0	1.0	- Hydrothermal Infill Breccia
440	441	0.65	0.13	8.1		2.0	3.0	Hydrothermal Infill Breccia
	From h 410 411 412 413 414 415 416 417 418 419 420 421 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440	FrommToppth410411411412411412412413413414414415415416416417417418418419419420419422421422422423423424424425425426426427427428428429429430431432432433433434434435435436436437437438438439439440440441	From mTop mCu %4104110.0004114120.0004114120.0004124130.0004134140.0004144150.0004154160.0004164170.0004174180.0004184190.0004194200.0014194200.0014194200.0014204210.0014214220.014224230.014234240.054244250.554254260.314264270.414274280.324284291.414294301.334304310.674334340.514344350.254354360.514364370.524374380.194384390.254394400.441	From mNo ben mAu ben m4104110.000.004114120.000.004114120.000.004124130.000.004134140.000.004144150.000.004154160.000.004164170.000.004174180.000.004184190.000.004194200.000.004194200.000.004204210.000.004214220.010.004224230.010.004234240.050.134254260.360.134264270.410.024274280.320.104284291.410.334294300.320.144304310.800.124314320.250.144334340.320.154344350.620.144354360.120.014364370.250.174374380.120.054384390.250.144394400.440.65	From mToo ben mLo wAu g/tAg g/t4104110.000.000.04114120.000.000.04124130.000.000.04124130.000.000.04134140.000.000.04144150.000.000.04154160.000.000.04164170.000.000.04174180.000.000.04184190.000.000.04194200.000.000.04114220.010.000.04204210.000.001.14214220.010.001.14224230.010.001.14244250.550.131.154254260.360.035.54264270.410.031.154254260.360.131.44260.310.211.44274330.320.151.44304310.320.151.44334340.320.151.44334340.320.151.44354360.510.078.14364370.520.141.34374380.520.142.543843	From DepthTo DepthLuAu MAg g/LChalcocite4100.4110.000.000.04114120.000.000.04114120.000.000.04114130.000.000.04114140.000.000.04114150.000.000.04114160.000.000.04114170.000.000.04114180.000.000.04114180.000.000.04114180.000.000.04114180.000.000.04114180.000.000.04114180.000.000.04114190.000.000.04114180.000.000.04114190.000.000.04114190.000.000.04114120.010.001.14124220.010.001.14124230.150.131.154124240.020.11.14124240.00.01.14124250.50.11.14124260.50.11.14124260.50.11.14124270.10.00.041	From bernTo bernLuAu g/tAg 	Form Depth mTo w mCu %Au g/tAg g/tChalcocthe %Pyrike visual %Chalco- pyrike visual %411041110.00 </td

9 November, 2021

							Chalco-	
From	То					Pyrite	pyrite	
Depth	Depth	Cu	Au	Ag	Chalcocite	Visual	Visual	
m	m	%	g/t	g/t	%	%	%	Lithology
441	442	0.29	0.11	4.6		3.0	2.0	Hydrothermal Infill Breccia
442	443	0.93	0.14	17		3.0	3.0	Hydrothermal Infill Breccia
443	444	0.57	0.08	10.9		3.0	3.0	Hydrothermal Infill Breccia
444	445	0.10	0.03	29				Andesite Post Mineral
		0.10	0.03	2.9				Andesite Post Mineral
445	446	0.00	0.00	0				Dyke
446	447	0.00	0.00	0				Andesite Post Mineral Dyke
447	448	0.05	0.01	1.1		2.0	0.5	Hydrothermal Infill Breccia
448	449	0.32	0.06	3.6		2.0	1.0	Hydrothermal Infill Breccia
449	450	0.29	0.06	3.2		3.0	1.0	Hydrothermal Infill Breccia
450	451	0.63	0.07	7.1		3.0	2.0	Hydrothermal Infill Breccia
451	452	0.56	0.11	12.8		3.0	2.0	Hydrothermal Infill Breccia
452	453	0.59	0.11	6		3.0	2.0	Hydrothermal Infill Breccia
453	454	1.22	0.17	13.6		3.0	3.0	Hydrothermal Infill Breccia
454	455	0.25	0.02	4.2			1.0	Andesite Post Mineral
455	450	0.35	0.02	4.2		2.0	1.0	Dyke
455	400	0.75	0.09	9.8		3.0	2.0	Hydrothermal Inill Breccia
450	457	0.91	0.16	9.2		3.0	3.0	Hydrothermal Infill Breccia
457	458	0.73	0.13	5.7		3.0	2.0	Hydrothermal Infill Breccia
458	459	0.88	0.31	9.8		3.0	3.0	Hydrothermal Infill Breccia
459	460	0.19	0.05	1.9		3.0	1.0	Hydrothermal Infill Breccia
460	461	0.00	0.00	0				Andesite Post Mineral Dyke
461	462	0.00	0.00	0				Andesite Post Mineral
		0.00	0.00	0				Dyke Andesite Post Mineral
462	463	0.00	0.00	0				Dyke
463	464	1.50	0.00			1.0	2.0	Andesite Post Mineral
404	405	1.56	0.33	14.4		1.0	3.0	Dyke
464	465	0.81	0.14	7.8		2.0	2.0	Hydrothermal Infill Breccia
465	466	0.05	0.01	0.6		2.0	0.5	Hydrothermal Infill Breccia
466	467	0.13	0.04	1.3		2.0	0.3	Hydrothermal Infill Breccia
467	468	0.04	0.01	0.7		3.0	0.3	Hydrothermal Infill Breccia
468	469	0.70	0.21	8.4		3.0	3.0	Hydrothermal Infill Breccia
469	470	0.03	0.03	0.7		2.0	0.3	Hydrothermal Infill Breccia
470	471	0.25	0.06	2.4		2.0	1.0	Hydrothermal Infill Breccia
471	472	0.73	0.25	8.2		2.0	3.0	Hydrothermal Infill Breccia
472	473	0.29	0.08	3.6		3.0	1.5	Hydrothermal Infill Breccia
473	474	0.20	0.04	1.6		3.0	1.0	Hydrothermal Infill Breccia
474	475	0.07	0.03	1.3		3.0	0.2	Hydrothermal Infill Breccia
475	476	0.02	0.05	1		3.0	0.2	Hydrothermal Infill Breccia

9 November, 2021

From Depth	To Depth	Cu	Au	Ag	Chalcocite	Pyrite Visual	Chalco- pyrite Visual	
m	m	%	g/t	g/t	%	%	%	Lithology
476	477	0.04	0.03	1		5.0	0.2	Hydrothermal Infill Breccia
477	478	0.02	0.01	0.5		3.0	0.2	Hydrothermal Infill Breccia
478	479	0.17	0.03	2.1		3.0	0.3	Hydrothermal Infill Breccia
479	480	0.04	0.02	0.6		3.0	0.2	Hydrothermal Infill Breccia
480	481	0.01	0.01	0.7		3.0	0.2	Hydrothermal Infill Breccia
481	482	0.01	0.01	0		5.0	0.2	Hydrothermal Infill Breccia
482	483	0.01	0.01	0		5.0	0.2	Hydrothermal Infill Breccia
483	484	0.02	0.01	0.9		3.0	0.2	Hydrothermal Infill Breccia
484	485	0.02	0.01	0.8		3.0	0.2	Hydrothermal Infill Breccia
485	486	0.05	0.01	1.3		3.0	0.2	Hydrothermal Infill Breccia
486	487	0.23	0.10	5.2		3.0	0.5	Hydrothermal Infill Breccia
487	488	1.97	0.34	31.3		3.0	4.0	Hydrothermal Infill Breccia
488	489	0.03	0.00	0.6		3.0	0.2	Hydrothermal Infill Breccia
489	490	0.03	0.01	0		3.0	0.2	Hydrothermal Infill Breccia
490	491	0.03	0.01	0		5.0	0.2	Hydrothermal Infill Breccia
491	492	0.02	0.01	0		3.0	0.2	Hydrothermal Infill Breccia
492	493	0.10	0.02	1.1		5.0	0.5	Hydrothermal Infill Breccia

ASX Code: CAE

Appendix 2: JORC Code Table 1 Cannindah Resources Limited announcement 9 November, 2021.

Section 1: Sampling Techniques and Data

Criteria	Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.) These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sampling representivity and the appropriate calibration of any	. Sampling results are based on sawn half core samples of both PQ ,HQ and NQ diameter diamond drill core. An orientation line was marked along all core sections. One side of the core was consistently sent for analysis and the other side was consistently retained for archive purposes. The orientation line was consistently preserved.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Half core samples were sawn up on a diamond saw on a metre basis for HQ,NQ diameter core and a 0.5m basis for PQ diameter core. Samples were forwarded to commercial NATA standard laboratories for crushing, splitting and grinding ,Laboratory used in this instance is Intertek Genalysis , Townsville. Analytical sample size was in the order of 2.5kg to 3kg.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.)	Drill type is diamond core. Core diameter at top of hole is PQ, below 30m core diameter is HQ and NQ.Triple tube methodology was deployed for PQ & HQ, which resulted in excellent core recovery throughout the hole.Core was oriented, utilizing an Ace Orientaion equipment and rigorously supervised by on-site geologist.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Core recovery was recorded for all drill runs and documented in a Geotechnical log. The Triple Tube technology and procedure ensured core recoveries were excellent throughout the hole.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Triple tube methodology ensure excellent core recoveries. Core was marked up in metre lengths and reconciled with drillers core blocks. An orientation line was drawn on the core . Core sampling was undertaken by an experienced operator who ensured that half core was sawn up

9 November, 2021

Criteria	Explanation	Commentary
		with one side consistently sent for analysis and the other side was consistently retained for archive purposes. The orientation line was consistently preserved.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Core recoveries were good. An unbiased, consistent half core section was submitted for the entire hole, on the basis of continuous 1m sampling. 0.5m in the case of PQ.The entire half core section was crushed at the lab and then split, The representative subsample was then fine ground and a representative unbiased sample was extracted for further analysis.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies	Geological logging was carried out by well- trained/experienced geologist and data entered via a well-developed logging system designed to capture descriptive geology, coded geology and quantifiable geology. All logs were checked for consistency by the Principal Geologist. Data captured through Excel spread sheets and Explorer 3 Relational Data Base Management System. A geotechnical log was prepared.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel etc.) photography.	Logging was qualitative in nature. A detailed log was described on the basis of visual observations. A comprehensive Core photograph catalogue was completed with full core dry, full core wet and half core wet photos taken of all core.
	The total length and percentage of the relevant intersections logged.	The entire length of all drill holes has been geologically logged.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Half core samples were sawn up on a diamond saw on a metre basis for HQ, NQ diameter core and a 0.5m basis for PQ diameter core
	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	All sampling was of diamond core
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The above techniques are considered to be of a high quality, and appropriate for the nature of mineralisation anticipated.
	Quality control procedures adopted for all sub-sampling stages to maximise representativity of samples.	QA/QC protocols were instigated such that they conform to mineral industry standards and are compliant with the JORC code.
		Terra Search's input into the Quality Assurance (QA) process with respect to chemical analysis of mineral exploration diamond core samples includes the addition of blanks, standards to each batch so that checks can be done after they are analysed. As part of the Quality Control (QC) process, Terra Search checks the resultant assay data against known or previously determined assays to determine the quality of the analysed batch of samples. An assessment is made on

9 November, 2021

Criteria	Explanation	Commentary
		the data and a report on the quality of the data is compiled.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	The lab results are checked against visual estimations and PXRF sampling of sludge and coarse crush material.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The standard 2kg -5kg sample is more than appropriate for the grainsize of the rock-types and sulphide grainsize. The sample sizes are considered to be appropriate to represent the style of the mineralisation, the thickness and consistency of the intersections.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	After crushing splitting and grinding at Intertek/Genalysis lab Townsville samples were assayed for gold using the 50g fire assay method The primary assay method used is designed to measure both the total gold in the sample as per classic fire assay.
		The total amount of economic metals tied up in sulphides and oxides such as Cu, Pb, Zn, Ag, As, Mo, Bi,S is captured by the 4 acid digest method ICP finish. This is regarded as a total digest method and is checked against QA-QC procedures which also emploty these total techniques. Major elements which are present in silicates, such as K, Ca, Fe, Ti, Al, Mg are also digested by the 4 acid digest Total method. The techniques are considered to be entirely appropriate for the porphyry, skarn and vein style deposits in the area. The economically important elements in these deposits are contained in sulphides which is liberated by 4 acid digest, all gold is determined with a classic fire assay.
	For geophysical tools, spectrometers, handheld XRF instruments, etc. the parameters used in determining the analysis including instrument make and model, reading times, calibration factors applied and their derivation, etc.	Magnetic susceptibility measurements utilizing Exploranium KT10 instrument, zeroed between each measurement. No PXRF results are reported here. although PXRF analysis has been utilized to provide multi-element data for the prospect and will be reported separately. The lab pulps are considered more than appropriate samples for this purpose. PXRF Analysis is carried out in an air- conditioned controlled environment in Terra Search offices in Townsville. The instrument used was Terra Search's portable Niton XRF analyser (Niton 'trugeo' analytical mode) analysing for a suite of 40 major and minor elements. in. The PXRF equipment is set up on a bench and the sub-sample (loose powder in a thin clear plastic freezer bac) is placed in a

Cannindah Resources Limited

ASX RELEASE

9 November, 2021

Criteria	Explanation	Commentary
		lead-lined stand. An internal detector autocalibrates the portable machine, and Terra Search standard practice is to instigate recalibration of the equipment every 2 to 3 hours. Readings are undertaken for 60 seconds on a circular area of approximately 1cm diameter. A higher number of measurements are taken from the centre of the circle and decreasing outwards. PXRF measures total concentration of particular elements in the sample. Reading of the X-Ray spectra is effected by interferences between different elements. The matrix of the sample eg iron content has to be taken into account when interpreting the spectra. The reliability and accuracy of the PXRF results are checked regularly by reference to known standards. There are some known interferences relevant to particular elements eg W & Au; Th & Bi, Fe & Co. Awareness of these interferences is taken into account when assessing the results.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	QAQC samples are monitored on a batch- by-batch basis, Terra Search has well established sampling protocols including blanks, certified reference material, and in- house standards which are matrix matched against the samples in the program. Terra Search quality control included determinations on certified OREAS samples and analyses on duplicate samples interspersed at regular intervals through the sample suite of both the commercial laboratory batch. Standards were checked and found to be within acceptable tolerances. Laboratory assay results for these quality control samples
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	are within 5% of accepted values. Significant intersections were verified by Terra Search Pty Ltd, geological consultants who conducted drilling. Validation is checked by comparing assay results with logged mineralogy eg sulphide material in relation to copper and gold gradse.
	The use of twinned holes.	There has been little direct twinning of holes, the hole reported here pass close to earlier drill holes , assay results and geology are entirely consisted with previous results.
	Documentation of primary data, data entry procedures, data verifications, data storage (physical and electronic) protocols.	Data is collected by qualified geologists and experienced field assistants and entered into excel spreadsheets.

9 November, 2021

Criteria	Explanation	Commentary
		Data is imported into database tables from the Excel spreadsheets with validation checks set on different fields. Data is then checked thoroughly by the Operations Geologist for errors. Accuracy of drilling data is then validated when imported into MapInfo.
		Location and analysis data are then collated into a single Excel spreadsheet. Data is stored on servers in the Consultants office and also with CAE. There have been regular backups and archival copies of the database made. Data is also stored at Terra Search's Townsville Office. Data is validated by long-standing procedures within Excel Spreadsheets and Explorer 3 data base and spatially validated within MapInfo GIS
	Discuss any adjustment to assay data.	No adjustments are made to the Commercial lab assay data. Data is imported into the database in its original raw format.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Collar location information was originally collected with a Garmin 76 hand held GPS. X-Y accuracy is estimated at 3-5m, whereas height is +/- 10m.Coorinates will be reassessed with DGPS survey.
		Down hole surveys were conducted on all holes using a Reflex downhole digital camera. Surveys were generally taken every 30m downhole, dip, magnetic azimuth and magnetic field were recorded.
	Specification of the grid system used.	Coordinate system is UTM Zone 55 (MGA) and datum is GDA94
	Quality and adequacy of topographic control.	Pre-existing DTM is high quality and available.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	At the Mt Cannindah mine area previous drilling program total over 100 deep diamond and Reverse Circulation percussion holes Almost all have been drilled in 25m to 50m spaced fences , from west to east, variously positioned over a strike length of 350m and a cross strike width of at least 500m Down hole sample spacing is in the order of 1m to 2m which is entirely appropriate for the style of the deposit and sampling procedures.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Previous resource estimates on Mt Cannindah include Golders 2008 for Queensland Ores and Helman & Schofield 2o12 for Drummond Gold. Both these estimates utilised 25m to 50m fences of west to east drillholes, but expressed concerns regarding confidence in assay continuity both between 50m sections and between holes within the plane of the cross

9 November, 2021

Criteria	Explanation	Commentary
		sections. The hole reported here addresses some of the concerns about grade continuity, by linking mineralisation from section to section and also in the plane of the cross sections. Further drilling is necessary to enhance and fine tune the previous Mineral Resource. estimates at Mt Cannindah and lift the category from Inferred to Indicated and Measured and compliant with JORC 2012.
	Whether sample compositing has been applied	No sample compositing has been applied, Most are 0.5m to 1m, downhole samples
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The main objective of hole 21CAEDD003, reported here is to establish grade continuity down plunge, The hole is oriented within the 100m plus-wide infill breccia zone at Mt Cannindah. The hole was drilled to the west (260 mag azimuth) , the Infill breccia is massive textured and clasts and matrix have a generally random, non-preferred orientation . Pre and post mineral dykes cut the drill hole , generally in two orientations , east west, semi-parallel to the hole , and north south , right angles to the hole.
	If the relationship between drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	As the infill breccia is massive textured and clasts and matrix infill have a generally random, non-preferred orientation, no sampling bias is evident in the logging, or the presentation of results or drill cross and long sections. The breccia zone at Mt Cannindah is of sufficient width and depth that drillhole 21CAEDD003 provides valuable unbiased information concerning grade continuity of the breccia body. The complete geometry of the breccia body is unknown at this stage.
Sample security	The measures taken to ensure sample security.	Chain of custody was managed by Terra Search Pty Ltd. Core trays were freighted in sealed pallets from Monto were they were dispatched by Terra Search . The core was processed and sawn in Terra Search's Townsville facilities and half core samples were delivered by Terra Search to Intertek/Genalysis laboratory Townsville lab.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	There have been numerous independent reviews carried out on the Mt Cannindah project reviewing sampling, data sets, geological controls, the most notable ones are Newcrest circa 1996; Coolgardie Gold1999; Queensland Ores 2008;Metallica ,2008; Drummond Gold, 2011; CAE 2014.

ASX Code: CAE

APPENDIX 3 – JORC Code Table 2

Section 2: Reporting of Exploration Results

<i>Mineral tenement and land tenure status</i>	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national and environmental settings.	Exploration conducted on MLs 2301, 2302, 2303, 2304, 2307, 2308, 2309, EPM 14524, and EPM 15261. 100% owned by Cannindah Resources Pty Ltd. The MLs were acquired in 2002 by Queensland Ores Limited (QOL), a precursor company to Cannindah Resources Limited. QOL acquired the Cannindah Mining Leases from the previous owners, Newcrest and MIM, As part of the purchase arrangement a 1.5% net smelter return (NSR) royalty on any production is payable to MIM/Newcrest and will be shared 40% by MIM and 60% by Newcrest.
		landholders in in place.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.	No impediments to operate are known.
Exploration done by other parties	Acknowledgement and appraisal of exploration by other parties.	Previous exploration has been conducted by multiple companies. Data used for evaluating the Mt Cannindah project include : Drilling & geology, surface sampling by MIM (1970 onwards) drilling data Astrik (1987), Drill,Soil, IP & ground magnetics and geology data collected by Newcrest (1994-1996), rock chips collected by Dominion (1992),. Drilling data collected by Coolgardie Gold (1999), Queensland Ores (2008-2011), Planet Metals-Drummond Gold (2011-2013). Since 2014 Terra Search Pty Ltd, Townsville QLD has provided geological consultant support to Cannindah Resources.
Geology	Deposit type, geological setting and style of mineralisation.	Breccia and porphyry intrusive related Cu- Au-Ag-Mo , base metal skarns and shear hosted Au bearing quartz veins occur adjacent to a Cu-Mo porphyry.
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and northing of the drill hole collar Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar Din and azimuth of the hole 	A major drill data base exists for the Mt Cannindah district amounting to over 400 holes. Selected Cu and Au down hole intervals of interest have been listed in CAE's ASX announcement, March,2021.

9 November, 2021

Data aggregation	 Down hole length and interception depth Hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	No cut-offs have been routinely applied in
methods	averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	reporting of the historical drill results or the drillhole 21CAEDD002 reported here.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations be shown in detail	The Cu-Au-Ag breccia style mineralisation at Mt Cannindah is developed over considerable downhole lengths. The breccia is generally mineralised, although copper grade and sulphide content is variable. In addition pre and post mineral dykes and intrusive bodies can mask the mineralisation .Down hole Cu-Au-Ag intercepts have been quoted both as a semi-continuous, aggregated down hole interval and also as tighter higher grade Cu-Au-Ag sections. In addition, historical results have been reported in the aggregated form displayed in the ASX Announcement for CAE , March,2021, many times previously. There are some zones of high grade which can influence the longer intercepts, however the variance in copper and gold grade is generally of a low order
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	A copper equivalent has been used to report the wider intercept that carries Au and Ag credits with copper being dominant. Only raw economic values have been used based on current metal prices. No formal metallurgical work is available for Mt Cannindah at this stage, so metal recoveries have not been used in the copper equivalent calculation. 30 day average prices in USD for October,2021, have been used for Cu, Au, Ag, specifically copper @ USD\$9250/tonne, gold @ USD\$1750/oz and silver @ USD\$23/oz.
Relationship between mineralisation widths and intercept lengths	The relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. down hole length, true width not known).	21CAEDD002 reported here is oriented across the strike of the 100m plus-wide infill breccia zone at Mt Cannindah. The hole was drilled to the west (260 mag azimuth), the Infill breccia is massive textured and clasts and matrix have a generally random, non-preferred orientation. Pre and post mineral dykes cut the drill hole, generally in two orientations, north south, semi-parallel to the hole, and east west, right angles to the hole. Previous resource estimations at

			Mt Cannindah model the breccia body as elongated NNE-SSW and at least 100m plus thick in an east west direction. Previous estimations indicate a potentially depth extension to 350m plus The breccia body geometry, as modelled at surface has the long axis oriented NNE- SSW which is right angles to hole 21CAEDD003 reported here. In this context, this hole is drilled down the plunge of the breccia body with the potential true width of the body oriented at an oblique ange to hole 21CAEDD003. However, geological consultants, Terra Search argue that the dimensions of the mineralised body are uncertain , the longest axis could well be plunging to greater depths, and the upper and lower contacts are still to be firmly established
)	Diagrams	Appropriate maps and sections (with scale) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Sections and plans of the drillhole 21CAEDD003 reported here are included in this report.Geological data is still beging assembled at the time of this report.
	Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading reporting of Exploration Results.	All Cu,Au,Ag assays from the 0m to 493m section of hole 21CAEDD003 are listed with this report. Significant intercepts are tabulated. All holes were sampled over their entire length,Reported intercepts have been aggregated where mineralization extends over significant down hole widths. This aggregation has allowed for the order of 10m non mineralized late dykes or lower grade breccia sections to be incorporated within the reported intersections.
)	Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	The latest drill results from the Mt Cannindah project are reported here. The report concentrates on the Cu,Au, Ag results. Other data, although not material to this update will be collected and reported in due course.
)	Further work	The nature and scale of planned further work (e.g. test for lateral extensions or depth extensions or large-scale step-out drilling).	Drill targets are identified and further drilling is required. Drilling has continued after the completion of hole 21CAEDD003. To date a further 4 holes have been drilled Other drilling is planned at Mt Cannindah Breccia.
]		Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Not yet determined, further work is being conducted.

9 November, 2021

ASX Code: CAE

APPENDIX 4– JORC Code Table 2

Section 3: Estimation and Reporting of Mineral Resources

Audits or Review The results of audits and reviews of any There have been several resource ore resource Estimates. estimations made over the various deposits at Mt Cannindah. These have been in the public domain for a number of years. The most recent resource statement by by Hellman & Schofield in 2011 is for Drummond Gold on the resource at Mt Cannindah itself. This was reported under the JORC 2004 code and has not been updated to comply with JORC 2012 on the basis that the information has not materially changed since it was last reported. T\he resource statement from the Drummond Gold 2013 report is set out below. Mt Cannindah (Hellman & Schofield for Drummond Gold,2011) JORC,2004

Deposit							
Area	Mt Cannindah						
					Estimated indicative		
	Hellman & Schofield 2011				contained In situ		
Source	Using JORC 2004				Metal		
		Copper	Gold	Silver			
Category	Tonnage	%	g/t	g/t	Cu tonnes	Au ozs	Ag ozs
Measured							
(H&S)	1,888,290	0.96	0.39	16.2	18,128	23,680	983,611
Indicated							
(H&S)	2,529,880	0.86	0.34	14.5	21,757	27,658	1,182,780
Inferred							
(H&S)	1,135,000	0.97	0.27	13.6	11,010	9,854	494,875
Total	5,553,170	0.92	0.34	14.9	50,894	61,191	2,661,265

Note: Mt Cannindah Project Previously identified Resources. CAE advises that no economic or mining parameters have been applied to the estimated indicative in-situ contained metal amounts. All resources are contained in granted mining leases.