

ASX/Media Release

2nd November 2021

Menzies Springfield Prospect delivers additional Nickel Results. Peak Assay of 1m @ 1.78% Ni, 0.21% Cr, 269ppm Mo, and 245ppm Cu from 98m.

Resources & Energy Group Limited (ASX: REZ or the Company) are pleased to advise it has received additional Multi Element Assays from the Springfield Prospect. These assays are from a number of sample intervals recovered from the Springfield drilling program. The intervals were selected to check anomalous Nickel results which were identified in the first Borehole, SFRC01.

The results for SFRC01 were released to the market on 13th September 2021 together with a program of follow up investigations. As part of that work, additional sample intervals from four of the scout holes SFRC01, SFRC04, SFRC05 and SFRC09 were re-submitted for Multi Element assays including Nickel, Cobalt, Chromium, Copper, Molybdenum, Zinc, Platinum and Palladium.

Significant intervals of mineralisation have been encountered in all four holes. Peak down the hole results at COG 0.5% Ni include:

- SFRC01-1m @1.78% Ni, 0.21% Cr, 5% S⁽¹⁾, 269ppm Mo and 245ppm Cu from 98m.
- SFRC04-1m @ 0.5 % Ni, 0.19% Cr, 4.4% S, from 88m
- SFRC05-2m @ 1.02% Ni, 0.6% Cr, 0.4% Zn, from 29m and 2m @ 1.1 % Ni, 1% Cr ⁽²⁾, 0.49% S, 0.45% Zn, 0.07% Co from 36m, included within 9m @ 0.8 % Ni, 0.62% Cr, 0.31% Zn from 29m

⁽¹⁾ Includes overlimit ME assay for Sulphur at 5% and overlimit assay for Chromium which is 1%-these are being re-tested

These intervals are enclosed within broader intervals of lower tenor Nickel in the order of 0.15-0.20%, Including:

- SFRC01-13m @ 0.31% Ni, 0.33% Cr, 0.39% S and 26ppm Mo from 93m
- SFRC04-11m @ 0.20% Ni, 0.32% Cr, 1.16% S from 85m
- SFRC05-42m @ 0.56% Ni, 0.57% Cr from 19m.
- SFRC09-16m @ 0.16% Ni, 0.38% Cr, 0.94% S from 61m

Anomalous intervals of Silver, up to 3.5ppm and Gold, up to 1.95ppm, Copper up to 504ppm, Cobalt up to 823ppm and Platinum+ Palladium up to 40ppb have also been reported. The location of the sampled drillholes is shown on Figure 1. Complete details including collar and assay results are presented in the accompanying appendix 1. The supporting JORC 2012 Table 1 check list is also provided in appendix 1 of this release.

Discussion

The Springfield area was identified by the Company following a review of historical BHP and CRA exploration results and historical gold mining activities. The documented occurrences of sulphides at Springfield and north at Cepline, are prospective features for the occurrence of volcanogenic nickel, precious and base metal deposits as well.

The Springfield area comprises three suites of volcano-sedimentary rocks which includes.

- I) Upper Mafic High Mg Basalts
- II) Sedimentary- Pyritic Chert, slate, banded amphibolite, fuchsite, tuffaceous metasediments
- III) Lower Ultra Mafic Meta komatiites (tremolite, actinolite, Talc, chlorite)

These sequences trend north-south for approximately 2km and have been brought to surface near position by thrust faulting and folding along the Springfield-Venn Fault Zone.

The mineralised intervals reported in this release are contained within the Lower Ultra-Mafic-Meta Komatiites and overlying pyritic cherts and tuffaceous metasediments. The Nickel and Chromium contents are markedly enriched in the ultra-mafic rocks, and Zinc in the meta sediments. At this stage the form in which these minerals are present is not known and requires petrological assessment.

Occasional higher sulphide contents support higher Nickel grades as indicated by SFRC01 with 1m @ 1.78% Ni, 0.21% Cr and +5% S from 98m within a broader interval of 13m @ 0.31% Ni, 0.33% Cr and 0.39% S from 93m.

The high Zinc contents obtained from SFRC05 peak at 1m @ 0.5% Zn from 44m, and possibly reflect the contact or interleaving between the lower ultra mafics and the sedimentary sequence. It is also likely that the entire package has been overprinted by hydrothermal activity. Some secondary supergene enrichment of Nickel and Cobalt has also taken place, however, in the main most of the mineralisation reported is in either lower Saprock or Fresh rock.

A zone of anomalous Copper was also encountered in Borehole SFRC05 comprising 22m @ 200ppm Cu from 62m, with a peak of 504ppm Cu and 1.77% S from 68-69m. This zone appears to be unrelated to the overlying high Ni, Cr and Zn occurrences in this hole which abruptly terminate at 57m.

Figure 1 Borehole Location Plan Showing Geology and Significant Results

Next Steps

The geochemical results obtained from these assays confirm that the Meta-Komatiites and overlying sediments at Springfield have significant concentrations of Nickel, Chromium and Zinc. The anomalous occurrences of Molybdenum, Copper, Silver, Gold and Platinum, are also noteworthy. The Company is arranging petrological assessment of sample from the program to understand the form in which these minerals occur. The program of work for the Springfield area will also need to be resubmitted to allow

for sump construction to capture bore water from future drilling activities. In this connection it is noted that three of the Springfield holes were terminated short of target due to excessive water make.

Competent Persons Statement and Consent

The information in this release that relates to Exploration Results is based on and fairly represents information compiled by Mr. Michael Johnstone Principal Consultant for Minerva Geological Services (MGS). Mr Johnstone is a member of the Australasian Institute of Mining and Metallurgy and has sufficient experience that is relevant to the reporting of Exploration Results to qualify as a Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Johnstone consents to the inclusion in this release of the matters based on their information in the form and context in which it appears.

About Resources and Energy

Resources and Energy Group Limited (ASX: REZ) is an independent, ASX-listed mineral resources explorer, and miner with projects located in premier mining jurisdictions in Western Australia and Queensland. In Western Australia, the company's flagship is the East Menzies Gold project (EMGP), situated 130km north of Kalgoorlie. The EMGP represents a +100km2 package of contiguous mining, exploration, and prospecting licenses, which are located within a significant orogenic lode gold province figure 2 and 3.

6725000mN

6715000mN-

6710000mN

Jorgensen Granite

Dolerite

Dyke

Jorgensen Granite

Menzies Goldfields Tenements

Gigante Grande

Exploration &

Resource Drilling

Moriarty

Shear Zone

320000mE

Picnic Hill

Cock Robin

🔾 Wedgetail

Oliver North

Kota Paxi 🔾

Hills View

0

Gigante Granite

Gigante Grande

0

For resource growth, the company's focus is presently exploring the eastern and southwestern sides of the project area (Gigante Grande and Springfield Prospects). On the western side of the project area studies to investigate opportunities for renewed mining operations in M29/189 Granny Venn, M29/141 Goodenough, and M29/427 Maranoa have commenced. Most recently the company completed grade control drilling within the Granny Venn open pit and has resumed mining operations at the Granny Venn Open Pit Gold Mine. As of End July 2021, the Company has combined gold and silver resources (JORC 2012) of 192k oz/au and 862k oz/au ag; refer to table 1.

		Cut-off	Indicated						Inferred				In	Indicated and Inferred				
Deposit	osit Material	(gt/Au)	Tonnes (kt)		Ag (g/t)	Au (koz)	Ag (koz)	Tonnes (kt)	Au (g/t)	Ag (g/t)	Au (koz)	Ag (koz)	Tonnes (kt)	Au (g/t)	Ag (g/t)	Au (koz)	Ag (koz)	
Mount	Oxide	0.35	500	1.09	8	18	136	700	0.96	4	21	87	1200	1.02	6	39	223	
Mackenzie (1)	Primary	0.55	1200	1.25	13	48	482	1030	1.28	5	42	157	2220	1.27	9	90	639	
Goodenough ⁽²⁾	Primary	1	634	1.84		38		82	1.99		5.2		716	2.07		43		
Granny Venn ⁽³⁾	Primary	1	134	2.03		9		41	2.14		2.9		175	2.1		12		
Maranoa ⁽⁴⁾	Primary	1						46			8	8.05	46	5.7		8		
Total			2468			113	618	1899			79	252	4357			192	862	

Table 1 Gold and Silver Resource Summary

In Queensland, the company has a 12km2 Mineral Development Licence over the Mount Mackenzie Mineral Resource and retains a further 15km2 as an Exploration Permit. These Development and Exploration Licences are in the Connors-Auburn Arc and are prospective for high, intermediate, and low sulphidation gold and base metals mineralisation. The current resource has been estimated at 3.42Mt @ 1.18g/t gold and 9g/t silver for a total of 129,000 oz gold and 862k oz silver. A metallurgical test program is currently underway to investigate processing options for primary mineralisation below the current resource extents.

Further information:

Richard Poole Executive Director E: communications@rezgroup.com.au P: +61 2 9227 8900

Approved for Release by the REZ Board

Appendix 1

Table 1 Collar details and Assay Intervals

			Easting	Northing		Azimuth		Interva	al (m)	Ag	As	Со	Cu	Мо	Ni	Cr	s	Zn	Au	Pt	Pd
	Hole Ref	TD (m)	Mga Z51		RL	(Mn)	Dip	From	То	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppb)	(ppb)
)								31	32	0.52	158.7	41.2	16.5	0.53	537.6	1559	<0.01	80	9	8	7
								32	33	0.41	293.4	71.2	46	0.56	775.4	1932	<0.01	96	17	11	10
								33	34	0.4	1178	112.5	74	0.58	1650	3128	0.07	83	38	18	14
								34 35	35 36	0.8 1.44	4193 890.1	221.5 46.4	77.5 46.9	1.03 6.67	3296 815.7	4851 846	1.31 4.51	124 1525	54 86		19 4
								36	37	1.44	230.7	24.9	71.4	5.23	284.1	207	3.39	1368	115		1
								37	38	0.56	432	30.2	14	12.84	248.2	266	>5.00	2166	179	3	3
								38	39	0.69	429.3	44.4	42.5	7.31	367	725	1.32	191	44	7	6
								39	40	0.6	114.8	27.1	36.9	4.26	175.4	277	1.22	274	92	7	6
								40	41 42	0.73	114.8	51.6	114.1	4.2	260.2	471 682	1.52	75	50		12
								41 42	42	0.6	208.6 202.3	37.1 38.1	46.7 64.3	2.1 4.49	200 221.8	685	0.74	75 148	51 86	13 12	11 10
								43	44	1.66	174	17.9	59.1	16.91	170.5	86	1.82	445	112	1	2
								44	45	1.54	289.8	29.8	29.2	6.32	352.6	647	1.49	239	91	4	4
								45	46	0.68	439.3	34	38.7	1.72	342.9	584	0.82	41	63		7
								46	47	0.59	133.5	50.1	71.5	1.73	169.2	423	0.84	93	58		4
								47 48	48 49	0.47	6.6 7.7	46.2 47.4	73 84.1	1.55 1.25	39.9 43.6	33 49	0.29	152 170	26 20		<1 <1
								49	50	0.49	1.2	51	164	1.54	36.9	33	0.4	158	28		<1
								50	51	0.49	1.7	48.7	135.5	1.4	33.8	26	0.53	162	31	<1	<1
								51	52	0.53	<0.5	49.3	110.9	1.23	36	28	0.47	156	9	<1	<1
								52	53	0.39	< 0.5	48.2	99.4	1.46	35.4	26	0.43	150	216		<1
								53 54	54 55	0.89	<0.5 3.7	48.4 47.8	105.8 97.8	1.41 2.08	35.2 36.7	29 41	0.38	140 151	1950 8		<1 <1
								55	56	0.43	<0.5	50.4	96.9	2.27	33.8	27	0.37	149	12		<1
	SFRC01	150	316299.2	6710553	439.53	90	-55	56	57	0.43	0.6	45.1	90.4	1.45	35.3	31	0.33	152	13	<1	<1
								57	58	0.5	155.1	80.9	80.2	1.37	709.3		0.52	115	20	4	4
								58	59	0.37	125.5	108.7	45.1	0.93	1764	1929	0.43	83	6		10
								59 60	60 61	0.11	384.7 272.6	110.4 134.2	16.6 31.6	2.23 1.04	2093 2899	2530 2958	0.23	107 104	6		9
								62	63	2.16	272.0	21.2	55.8	4.58	483.1	2938	3.25	351	0	- 11	5
								63	64	1.05	214.6	19.5	49.3	6.17	469	173	1.13	275			
								64	65	0.49	241.5	19.4	15.9	1.47	196.2	169	0.26	64			
								65	66	0.65	4371	81.1	29.4	2.3	2078	1299	4.75	43			
								66 67	67 68	0.35	617.4 418	56.6 73.4	15.1 20.9	1.25 1.48	708.6 1343	1704 2691	0.42	36 58			
								68	69	0.22	83	31.9	6.9	1.48	259.3	797	0.33	35			
								69	70	0.17	46	29.3	6.8	0.74	148	534	0.18	29			
								93	94	0.32	1.2	76.1	22.3	4.38	1773	2807	0.46	142	3	7	2
								94	95	0.22	<0.5	64.8	12.7	1.09	1557	3126	0.36	224	2		2
								95 96	96 97	0.16	<0.5 <0.5	77.7 67.7	10.8 17.5		1770	3430	0.29	336 323	2	3	3
								96 97	97 98	0.14	1.7	82.3	41.2	1.36 19.33	1535 2743	2924 3487	0.37	298	3		3
								98	99	0.97	8	229.2	241.8	269.4	17806	2134	>5.00	207	17		3
								99	100	0.28	0.6	81.1	18.4	9.65	1981	2878	0.44	202	3	3	2
								100	101	0.15	<0.5	79.9	12.8	2.74	1758	2688	0.3	172	2		3
								101	102	0.14	< 0.5	90.1 87.0	15.1	1.84	2005 1891	2845	0.36	180 198	2		4
								102 103	103 104	0.19 0.19	<0.5 <0.5	87.9 90.7	11.6 14	1.92 1.16	2021	2975 3674	0.29 0.45	198	2		3
								103	105	0.17	1.8	87.2	5.5	1.03	1916	3354	0.31	141	2	4	3
								105	106	0.37	1.5	84.1	8.1	1.07	1833	3314	0.38	155	2	3	3
								54	55	0.19	165.9	59.9	8.3	0.53	790.5	2606	0.33	56			
								55	56	0.18	242.9	38.4	6	1	565.8	1863	0.27	27			
								56 57	57 58	0.2	956.7 452.6	80.6 85.2	3.2 6.3	0.87	1364 1422	3160 3406	0.19	60 66			
	CED COA	00	216020.2	6710702	420.44	70		58	59	0.86	1594	88.5	20.8	1.12	1914	2998	4.31	58			
	SFRC04	96	316020.2	0/10/82	439.44	70	-55	59	60	0.67	1012	96	17.6	1.11	1754	3604	2.33	95			
								60	61	0.38	604.3	65	9.5	0.97	1372	2947	0.92	73			
								61	62	0.35	960.2	68.2	12.6	1.22	1448	2346	1.39	74			
								62 63	63 64	0.45 0.59	625.5 190.8	49.6 71.1	7.5 6.4	1.23 1.02	811.7 1325	2197 4209	0.8 0.6	59 58			
						1		05	04	0.59	10.0	/1.1	0.4	1.02	1972	4209	0.0	20			

Hole Ref	TD (m)			RL	Azimuth	Dip	Interva	ıl (m)	Ag	As	Co	Cu	Мо	Ni	Cr	S	Zn	Au	Pt	F
	19 (11)	Mga Z51	MgA Z51	ing.	(Mn)	Bip	From	То		(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)		(ppb)	(ppb)	(p
							85	86	0.14	52.6	73.3	7.1	1.23	1538	4819	0.34	96			┢
							86	87	0.18	20.0	71.2	12.9	1.12	1384	5261	0.42	125 80			┢
							87 88	88 89	0.25	30.9 311.4	84 102.2	31.9 89	0.94 6.34	1783 5048	3119 1902	4.44	39			┢
							89	90	0.98	35.7	76.6	20.8	1.72	1570	3558	0.67	51			t
SFRC04	96	316020.2	6710782	439.44	70	-55	90	91	0.25	46.4	79	22.3	1.1	1745	3482	1.06	53			
							91	92	0.38	13.1	71.7	5.6	1.01	1756	2805	0.92	28			L
							92	93	0.2	20.3	74.1	6.1	0.93	1765	2777	1.06	19			
							93	94	0.36	50.4	89	6.1	1.45	1695	2705	1.02	17			_
							94	95	0.23	51.6	83.6	6.8	1.3	1641	2490	1.26	23			+
							95	96	0.27	22.4	84.3	5.4	1.21	2131	3258 4890	0.78	28			┢
							16 17	17 18	0.21	265.2 163.3	87 95.4	10 7.4	0.59	1759 1963	4890	0.08	253 265			┢
							18	19	0.20	189.9	181	8.9	0.5	3188	3173	0.02	511			t
							19	20	0.23	125.1	252.9	5.9	0.19	2667	3762	0.01	240			T
							20	21	0.14	103.6	174.3	7.6	0.24	2619	4049	0.01	205			Γ
							21	22	0.26	116.1	236.5	5	0.2	3151	4158	0.01	250			
							22	23	0.5	345.3	799.6	9.3	0.89	5858	4016	0.03	812			
							23	24	0.44	386.6	358.2	22.2	0.68	5149	4011	0.02	1007			Ļ
							24	25	0.7	572.6	248	29.8	0.7	3535	5013	0.02	1124			ł
							25	26	1.24	187.5	313.6	4.9	0.48	4544	1045	0.01	1414			╀
							26	27	0.38	552.4	221.7	8.3	0.84	4543	4389	0.02	1414			╉
							27 28	28 29	0.43	740.8 475.2	266.4 258.1	18.9 14.7	1.17 0.74	4782 5017	4186 6103	0.03	1553 1589			t
							29	30	1.28	906.1	447.7	17.4	0.89	11288	6647	< 0.01	3845			t
							30	31	1.47	595.1	311.4	15.6	0.59	9243	5411	< 0.01	4264			t
							31	32	1.83	481	231.9	11.1	0.5	7307	3122	< 0.01	3317			Î
							32	33	0.45	412.3	160.7	11.8	0.64	4546	2959	< 0.01	1624			Ĩ
							33	34	0.77	1088	317.2	19.3	0.92	4372	6311	0.01	1512			I
							34	35	0.71	1382	448.4	46.9	1.14	8669	6067	0.03	3230			ļ
							35	36	0.61	740.3	245.3	25.8	0.81	4249	5684	0.02	1754			ļ
							37	38	0.75	5518	823.3	206.8	9.06	9567	10000	0.71	4604			╀
							38	39	2.2	2216	51.9	50.6	40.17	752	9429	0.1	1784			╉
							39 40	40 41	2.35 1.41	1431 3756	23.4 78.6	51.3 119	18.5 21.32	452 1071	3253 7533	0.08	618 1337			ł
							40	41	0.71	1034	26.7	49	8.9	365.1	6176	0.2	1285			t
SFRC05	84	316070.6	6710886	439.15	60	-55	42	43	1.06	1854	305.1	251.5	7.46	5199	8318	0.36	2521			t
							43	44	3.35	541.5	251.6	100.8	0.8	7560	6925	0.03	3623			t
							44	45	2.57	924.2	376	64.3	0.87	13604	>10000	0.03	5086			Ī
							45	46	1.06	690.9	277.3	48	0.78	9308	5589	0.02	3891			Ī
							46	47	0.32	271	153.4	15.6	0.36	5815	6239	<0.01	1957			
							47	48	0.48	306.8	133.7	28.8	0.55	4312	5920	0.01	1349			ļ
							48	49	0.85	549.2	170	30.1	0.61	6076	9932	0.01	1836			ł
							49	50	0.43	864.8		32.1	0.89		>10000	0.01	1926			╀
							50	51	0.47	1005		43.6	0.99	8203 9351	8726 7531	0.02	1971 2279			ł
							51 52	52 53	0.23	938.5 963.9		44 45.9	0.86	9008	7321	< 0.01	2015			t
							53	54	1.21	339.5	109.9	24.9	0.67	2782	996	<0.01	573			t
							54	55	0.44	189.4	94.8	17.4	0.7	1699	2629	< 0.01	225			t
							55	56	0.77	270.9	124.7	69.2	0.95	2622	4904	1.55	221			Ī
							56	57	0.3	76.9	116.4	50.3	0.78	2050	4457	1.7	65			Ī
							57	58	0.19	40.5	124.5	47	2.02	2002	6586	0.26	140			
							58	59	0.23	26.4	43.8	71.2	1.31	368.3	494	0.26	67			ļ
							59	60	0.25	26.4	47.8	96.1	0.97	164.7	192	0.37	77			ļ
							60	61	0.23	24.9	51.4	88.1	1.13	239.9	269	0.24	112			ļ
							61	62	0.26	8	47.4	104.1	1.27	131.4	134	0.23	84			┦
							62	63	0.4	8.1	49.4	133.5	1.12	141.4	107	0.14	89			ł
							63	64	0.32	4.6	49.3		1.08	110.4	133	0.12	90			ł
							64	65	0.23	9.6	53		1.01	114.7	114	0.31	95			ł
							65 66	66 67	0.3	7.8 30.9	54.3 50.5	160.7 207.3	0.89	122.8 162.2	127 176	0.41	94 97			t
					1	1	66	ر ں	0.34	30.9	50.5	∠∪/.3	1.UQ	102.2	1/0	1.01	9/			∔

	Hole Ref	TD (m)	Easting Mga Z51	Northing MgA Z51	RL	Azimuth (Mn)
	SFRC05	84	316070.6	6710886	439.15	60
D D						
	SFRC09	150	316257.2	6710757	444.01	90

	TD ()	Easting	Northing	DI	Azimuth	D '	Interva	al (m)	Ag	As	Со	Cu	Мо	Ni	Cr	S	Zn	Au	Pt	Pd
Hole Ref	TD (m)	Mga Z51	MgA Z51	RL	(Mn)	Dip	From	То	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppb)	(ppb)
							68	69	0.59	9	53.2	504.2	1.3	107.8	125	1.77	74			
							69 70	70 71	0.37 0.41	30 6.1	45.2 45.5	262.6 165.2	1.75 1.27	102.9 99.7	111 125	1.01 0.59	91 91			
							70	72	0.41	4.1	45.4	140.1	1.27	109.3	113	0.42	88			
							72	73	0.32	29.6	47.8	201.3	1.37	145.7	154	0.68	108			
							73	74	0.31	13.2	43.2	198.5	0.96	129.5	120	0.78	90			
							74	75	0.26	6.7	46		1.02	117.9	109	0.54	91			
SFRC05	84	316070.6	6710886	439.15	60	-55	75 76	76 77	0.24	7.3 24.2	39.9 56.6		1.41 1.22	83.6 119.4	98 134	0.67	72 79			
							77	78	0.35	20.8	42.3	228.4	1.54	100.6	125	0.68	85			
							78	79	0.39	152.8	68.1	212.9	1.76	885.1	922	0.75	265		<u> </u>	
							79 80	80 81	0.32	28.6 9.8	44.5 44.7	190.2	1.37 1.5	138.2	140 116	0.68	93 91			
							81	82	0.24	10.2	44.7	171.3 172.8	1.17	110.3 118.8	110	0.53	95			
							82	83	0.27	24.7	46	243.3	1.26	113.5	131	0.6	98			
							83	84	0.16	5.4	43	86.3	1.25	103.1	123	0.25	97			
							59	60	0.32	112.5	73.1	16.5	0.67	772.9	2250	< 0.01	67			
							60 61	61 62	0.23	118.5 661.5	53.1 159.4	4.5 25.7	0.53	893.5 1954	2273 5567	<0.01 <0.01	46 35			
							62	63	0.17	1240	253.9	25.2	0.84	2617	8781	<0.01	21			
							63	64	0.29	312	117.9	18	0.56	1686	5086	<0.01	30			
							64	65	0.23	246.4	139.2	3.1	0.46	2085	3011	<0.01	102			
							65 66	66 67	0.17	175.4 24.9	82.9 131.5	16.5 24.7	0.69	1199 1891	2948 3964	0.58 1.04	36 67			
							67	68	0.21	13	85.7	14.1	0.90	1366	4034	0.48	65			
							68	69	0.42	8.9	98.8	16.2	2.99	1569	4291	0.54	80			
							69	70	0.41	6.8	72.8	<0.5	1.93	1358	2794	0.16	47			
							70 71	71 72	1.84 0.61	3	60.4 103	3.1 28.4	3.27 1.16	1036 1637	1678 2407	0.4	42 71			
							71	72	0.81	5.9	65.7	4.1	1.10	1263	1989	0.41	42			
							73	74	0.19	<0.5	102.9	30	0.61	1799	4166	2.2	65			
							74	75	0.19	<0.5	86.4	11.8	0.82	1571	3249	1.64	55			
							76	77	0.19	1.9	100.7	23.3	1.99	1952	4510	1.18	79			
							118 119	119 120	0.18	87.3 71.8	58 55.1	48.2 46.3	1.71 1.85	565.5 552.8	1335 1288	0.42	29 31			
							120	121	0.18	113.3	61.1	32.9	1.32	581.8	1370	0.18	17			
							121	122	0.12	93	49.2	31.7	1.38	531.5	1074	0.28	33			
							122	123	0.23	236.1	69	48.9	1.23	649.3	1314	0.32	33			
							123 124	124 125	0.23	278.4 191.1	59.8 54.1	3.6 2.3	1.22 1.39	593.1 526.4	1344 1467	0.06	38 32			
SFRC09	150	316257.2	6710757	444.01	90	-55	125	125	0.09	231.8	60.4	8.3	1.55	598.3	1423	0.04	25			
							126	127	0.12	105.7	60.1	32.5	1.27	687.2	1479	0.1	23			
							127	128	0.07	121.9	62.7	9.7	1.28	733.3	1426	0.09	27			
							128 129	129 130	0.12	6.1 16.6	66.2 71.8	16.6 54.4	0.87	616.7 722.8	1585 1644	0.09	51 40			
							130	130	0.15	8.3	64.9	26.8	0.98	657	1417	0.11	71			
							131	132	0.16	46.9	74.2	30	1.18	1041	1351	0.12	47			
							132	133	0.12	30.2	81	64	0.67	1144	1465	0.16	49			
							133	134	0.22	0.9	52.3	53.5	0.69	491.8	1178	0.28	70 66			
							134 135	135 136	0.24	10.3 8.1	57 62.4	59.7 20.7	0.57	499 567.4	1174 1339	0.14	42			
							136	137	0.4	18.1	48.1	41.9	1.02	281.2	726	0.27	54			
							137	138	0.17	21.7	44.1	28.3	1.48	404.5	1070	0.18	40			
							138	139	0.08	279.6	62.7	15.7	1.17	666.5	1349	0.16	43			
							139 140	140 141	0.1	553.7 319.7	117.5 119.8	1 <0.5	1.22 0.21	1401 1584	2283 1930	0.13	81 100			
							140	141	0.11	125.6	80.8	57	0.21	851.2	1463	0.59	92			
							142	143	0.24	72.3	77.6	26.7	1.14	750.5	1443	0.52	79			
							143	144	0.72	18.7	73.5	14.8	0.94	684.3	1691	0.09	95			
							144	145	0.11	50.4	73.8	25.9	0.78	841.6	1497	0.1	70			
							145 146	146 147	0.08	5 5.6	68 56.9	13.8 19.9	0.59	836 688.3	1214 1067	0.09	54 42			
							147	148	0.12	0.7	76.4	33.6	0.63	1398	1477	0.35	44			
							148	149	0.12	<0.5	88.2	34	0.24	1464	1516	0.31	57			
							149	150	0.08	<0.5	71	20.3	0.4	1064	1092	0.23	48			

Appendix 2 JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry stand- ard measurement tools appropri- ate to the minerals under investi- gation, such as down hole gamma sondes, or handheld XRF instru- ments, etc). These examples should not be taken as limiting the broad meaning of sampling. 	The results are based on samples recovered from RC Drilling.
	 Include reference to measures taken to ensure sample repre- sentivity and the appropriate cali- bration of any measurement tools or systems used. 	 The RC samples were collected for every 1 meter drilled using a cone splitter. A 1m primary sample was collected from the splitter, with a second field duplicate sample generally collected every 20th metre. Samples were reported dry and free flowing.
	• Aspects of the determination of mineralisation that are Material to the Public Report.	• The report only includes RC drilling results from recent drilling activities completed at the Companies Springfield Prospect.
	 In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circu- lation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other 	 Industry standard RC drilling was used to obtain one metre samples from which 3kg for each sample and pulverised and sub-divided in the laboratory to produce a 500gm charge for Photon Assay or 25gm charge for fire assay or Multi Element Assay by ICPOES. The sampling method are industry standard.

Criteria	JORC Code explanation	Commentary
	cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual com- modities or mineralisation types (eg submarine nodules) may war- rant disclosure of detailed infor- mation.	
Drilling tech- niques	 Drill type (eg core, reverse circula- tion, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, tri- ple or standard tube, depth of dia- mond tails, face-sampling bit or other type, whether core is ori- ented and if so, by what method, etc). 	 The exploration results are based on Reverse Circulation drilling using a 141mm face sampling percussion hammer.
Drill sample recovery	Method of recording and as- sessing core and chip sample re- coveries and results assessed.	 Recoveries for RC samples were visually assessed in the field and weighed and recorded at the laboratory. Results are uploaded into the database and sample weights were analysed as part of QAQC protocols.
	• Measures taken to maximise sam- ple recovery and ensure repre- sentative nature of the samples.	 Field procedures included checking the splitter every sample to ensure no residue remained from the previously drilled interval. The cyclone and housing are also checked regularly and cleaned with com- pressed air. Checks on splitter level are made using a spirit level. Each calico sample collected weighed on average 3kg.
	Whether a relationship exists be- tween sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No relationship has been identified at this stage.

Criteria	JORC Code explanation	Commentary
Logging	Whether core and chip samples have been geologically and ge- otechnically logged to a level of detail to support appropriate Min- eral Resource estimation, mining studies and metallurgical studies.	 RC samples have been geologically logged with alteration, colour, weathering, texture, mineralisation and main lithology reported.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photog- raphy.	 Logging is qualitative and descriptive using look up tables. Chip trays for recent drilling are labelled and photographed and have been retained and stored for future reference.
	• The total length and percentage of the relevant intersections logged.	 100% of the drilling has been logged and has lithological information present.
Sub-sampling techniques and sample	• If core, whether cut or sawn and whether quarter, half or all core taken.	Not applicable.
preparation	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	 For RC samples, a cone splitter was used to obtain 1m sub samples with a weight of approximately 3kg. In the majority cases the sample has been classified dry. The Multi Element assays were based RC sam- ples which were collected over selected intervals of interest. Three RC holes encountered unmanagea- ble water flows and were terminated before reaching the targeted intervals.
	• For all sample types, the nature, quality and appropriateness of the sample preparation technique.	• The field procedures adopted for RC drilling are industry standard, adequate and appropriate. After initial collection in the field all subsequent sample preparation is carried out in a laboratory, under controlled conditions and specified by the relevant standards.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	• The programme QAQC involved inserting Certified Reference Materials, blanks and collecting field duplicates samples per 20 metres drilled. The field duplicates were collected from the 2 nd chute of the cone splitter. CRMs were typically inserted in zones of interest. Random duplicates were inserted into the RAB drilling sample.
	Measures taken to ensure that the	Pre-numbered continuous Primary and Duplicate calico samples were collected every metre drilled.

Criteria	JORC Code explanation	Commentary
R	sampling is representative of the in situ material collected, includ- ing for instance results for field duplicate/second-half sampling.	Blanks and CRMs were inserted every 20 metres, with multiple grade ranges of appropriate matrix ma- terial selected for the CRMs. Laboratory procedures also include the use of certified reference samples and blanks for internal QA/QC assurance.
	• Whether sample sizes are appro- priate to the grain size of the ma- terial being sampled.	 Sample sizes for the RC sampling were typically 3kg which is considered appropriate given nature of the material being sampled.
Quality of as- say data and laboratory tests	• The nature, quality and appropri- ateness of the assaying and labor- atory procedures used and whether the technique is consid- ered partial or total.	 The primary assay technique used was Mass and Optical Spectrometry (MA40MS) and (MA450OES) offered by MinAnalytical Pty Ltd. Gold, Platinum and Palladium were tested by Fire Assay (FA25MS). Overlimit Ore grade Nickel values were retested using MA41OES. The overlimit assays for Ni use a four acid digestion followed by ICP AES. All of the methods used for assaying and laboratory procedures are appropriate and to industry standards
	• For geophysical tools, spectrome- ters, handheld XRF instruments, etc, the parameters used in deter- mining the analysis including in- strument make and model, read- ing times, calibrations factors ap- plied and their derivation, etc.	 Not applicable, the results are not based on these instruments.
	 Nature of quality control proce- dures adopted (eg standards, blanks, duplicates, external labor- atory checks) and whether ac- ceptable levels of accuracy (ie lack of bias) and precision have been established. 	• Exploration is at an early stage and is too early to provide an assessment. Recent RC sample datasets have been analysed, with no significant issues related to bias to date.
	• The verification of significant	All drilling intersections are verified by the Field Geologist, who has been present on site during the
)		

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	intersections by either independ- ent or alternative company per- sonnel.	complete drilling process. The sampled intersections are also checked by the Supervising Geologist b reference to hole number, drilling depths, sample numbers, blanks and standards introduced into th sampling stream.
	•	•
	• The use of twinned holes.	No twin holes have been carried out.
	• Documentation of primary data, data entry procedures, data verifi- cation, data storage (physical and	 The primary data was collected at the drill site as drilling progressed by the Field Geologist and Field Technician. The Field Geologist recorded all lithological logging data directly into digital format via rugged computer. The sample data, including allocation of sample number to interval, sample qual ity/recovery data, and insertion of QA/QC samples was recorded on a field sheet by the Field Technician
	electronic) protocols.	and reviewed by the Field Geologist in the field. This data was later validated against assay files and checked by the Supervising Geologist. For recent drilling field sheets are kept on file and digital data backed up. The project data is stored in a MS access database on a cloud server.
	 Discuss any adjustment to assay data. 	No adjustments have been made to the assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estima- tion. 	 All EMGP drill collars were initially located in the field by hand-held GPS, a final relocation survey has been carried out using a dGPS by a qualified surveyor. Down-the hole surveys were completed using a north seeking Axis Champ Gyro which sits behind the overshot taking surveys every 30m during drilling operations to monitor deviation, and a continuous survey at the completion of each hole.
)	• Specification of the grid system used.	The grid system used is MGA94_51s.
	• Quality and adequacy of topo- graphic control.	• Topographic controls have not been undertaken and are not relevant to the results being reported.
	• Data spacing for reporting of Exploration Results.	• The RC holes are typically in the range of 200-500m apart.

Criteria	JORC Code explanation	Commentary
Data spacing and distribu- tion	• Whether the data spacing and dis- tribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Re- serve estimation procedure(s) and classifications applied	This is not applicable as a Mineral Resource or Ore Reserve is not being determined.
	Whether sample compositing has been applied	Drill holes have not been composited.
Orientation of data in re- lation to geo- logical struc- ture	• Whether the orientation of sam- pling achieves unbiased sampling of possible structures and the ex- tent to which this is known, con- sidering the deposit type.	 Based on present understanding, the drill holes have been orientated 60/090 and 60/060. These orientations are reasonably perpendicular to the interpreted Springfield Fault structure which is believed to be dipping west.
	 If the relationship between the drilling orientation and the orien- tation of key mineralised struc- tures is considered to have intro- duced a sampling bias, this should be assessed and reported if mate- rial. 	The selected orientation has minimized potential for introducing sampling bias.
Sample secu- ity	• The measures taken to ensure sample security.	 A chain of custody procedure was put in place. Samples were checked against the sample record sheet in the field prior to collection into sequentially numbered plastic bags. The plastic bags were sealed with cable ties before being secured along with sample submission sheets. The sample batches were loaded by the field team and transported directly to the Laboratory. Sample security measures for earlier drill- ing are not known. The sample batches were loaded by the field team and transported directly to the Laboratory by a 3rd party contractor. The receiving laboratory verified sample numbers against the sam- ple submission sheet/manifest and confirmed receipt. After receipt, the samples were bar coded and tracked through the entire analytical process.

Criteria	JORC Code explanation	Commentary
Audits or re- views	• The results of any audits or re- views of sampling techniques and data.	No audits have been undertaken.

Section 2 Reporting of Exploration Results

Criteria	IORC Code explanation	Commentary
Mineral tene- ment and land tenure status	• Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overrid- ing royalties, native title inter- ests, historical sites, wilderness or national park and environ- mental settings.	• The results have been obtained from prospecting licenses P29/2500. This tenement is wholly owned by Resources and Energy Group through a purchase agreement completed in December 2018. The land, from which the Exploration Results have been derived does not encompass Strategic cropping lands, wilderness, or protected landscapes.
	• The security of the tenure held at the time of reporting along with any known impediments to ob- taining a licence to operate in the area.	• At the time of writing, the tenements are in good standing. There are no known impediments which would prohibit operations in accordance with the license conditions.
)		

Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Exploration on the tenements has been completed over a number of campaigns and years with significant contributions by CRA who completed mapping over the area in the late 1960's. In 1985 geologists (J.E Martyn I G Johnson) mapped the Springfield area and provided key observations as to the nature of the Interflow Sediments, and Komatiites in the area. During the 1994-1998 Golden State Resources completed a number of RAB and Auger drillholes over the Springfield area, which at that time was known as Merry Well. The work was focussed on gold exploration but provides a good reference for the geology of the area. In 2012 Dr D Gee completed a review and data compilation of the area on behalf of Resource Assets Pty Ltd. In 2014 Stratum Metals commissioned a HeliTem survey by Fugro Pty Ltd over the greater East Menzies Goldfield and an interpretation of results by Core Geophysics Pty Ltd. In 2015-2016 Menzies Goldfield Pty Ltd completed 2 programs of MMI sampling over the prospect area.
Geology	• Deposit type, geological setting, and style of mineralisation.	 The Springfield Area occurs within an Archaean Geological Terrane, which is part of the Wiluna-Norseman Greenstone Belt-a significant Orogenic lode gold province. At prospect scale the project comprises three suites of volcano-sedimentary rocks which includes. Upper Mafic – High Mg Basalts Sedimentary- Pyritic Chert, slate, banded amphibolite, fuchsite, tuffaceous metasediments Lower Ultra Mafic - Meta komatiites (tremolite, actinolite, Talc, chlorite) The documented occurrences of sulphides are prospective features for the occurrence of volcanogenic nickel and base metal deposits as well as gold. The scout program was investigating the potential for mineralisation along the Springfield-Venn fault zone and in particular sulphidic interflow sediments, which were predicted to occur within a tightly folded and thrust faulted sequence of Mafic and Ultramafic rocks. The metamorphic grade ranges from upper green schists to lower amphibolite.
Drill hole In- formation	 A summary of all information material to the understanding of the exploration results including a tabulation of the following in- formation for all Material drill holes: easting and northing of the drill hole collar 	 Co-ordinate locations, elevation, depth, dip, and azimuth of all recent drillholes is provided in the ac- companying documentation. Downhole length, interception depths and assay results have been fur- nished the accompanying documentation.

	 elevation or RL (Reduced Level – elevation above sea level in me- tres) of the drill hole collar dip and azimuth of the hole down hole length and intercep- tion depth hole length. 	
	 If the exclusion of this infor- mation is justified on the basis that the information is not Mate- rial and this exclusion does not detract from the understanding of the report, the Competent Per- son should clearly explain why this is the case. 	 All RC drilling results which are available to the company have been included in the accompanying doc- umentation.
Data aggre- gation meth- ods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. 	• The appendix 1 shows all results which have been received, whether or not they have significant inter- cepts. No grades have been changed or truncated. Holes with NSR indicate No Significant Results en- countered. Blank fields are untested
	 Where aggregate intercepts in- corporate short lengths of high- grade results and longer lengths of low grade results, the proce- dure used for such aggregation should be stated and some typi- cal examples of such aggrega- tions should be shown in detail. 	• All intervals are reported at 1m in length for Multi Element analysis. A few intervals have also been reported as mathematical averages over zones of specific interest. In these cases, the cut-off limits have been stated.
1	The assumptions used for any re- porting of metal equivalent val- ues should be clearly stated.	Metal equivalents have not been used.

	Relationship between min- eralisation	• These relationships are particu- larly important in the reporting of Exploration Results.	
	widths and in- tercept lengths	 If the geometry of the minerali- sation with respect to the drill hole angle is known, its nature should be reported. 	The drillholes are believed to be reasonably perpendicular to mineralisation.
0)	 If it is not known and only the down hole lengths are reported, there should be a clear state- ment to this effect (eg 'down hole length, true width not known'). 	 All sample intervals have been reported as down hole lengths.
	Diagrams		 The accompanying documentation includes plans showing specific areas of interest within the project area.
	Balanced re- porting	• Where comprehensive reporting of all Exploration Results is not practicable, representative re- porting of both low and high grades and/or widths should be practiced to avoid misleading re- porting of Exploration Results.	• Comprehensive reporting of all material data has been adopted. The Multi Element Analysis includes assays for 80 elements. Only those results which are relevant to the mineralisation being reported have been reported, this includes Silver, Arsenic, Cobalt, Copper, Molybdenum, Nickel, Chromium, Sulphur, Gold, Platinum and Palladium.
	Other sub- stantive ex- ploration data	 Other exploration data, if mean- ingful and material, should be re- ported including (but not limited to): geological observations; geo- physical survey results; 	 This is in an early stage of investigation, which has not yet generated any other substantive exploration data.

geochemical survey results; bulk	
samples – size and method of	
treatment; metallurgical test re-	
sults; bulk density, groundwater,	
geotechnical and rock character-	
istics; potential deleterious or	
contaminating substances.	
• The nature and scale of planned	• Recommendations for future work are contained within the announcement and accompanying maps.
further work (eg tests for lateral	
extensions or depth extensions or	
large-scale step-out drilling).	
• Diagrams clearly highlighting the	Maps that shows possible extensions to mineralisation have been included in the main body of the
areas of possible extensions, in-	release
cluding the main geological in-	
terpretations and future drilling	
areas, provided this information	
is not commercially sensitive.	
-	 samples – size and method of treatment; metallurgical test re- sults; bulk density, groundwater, geotechnical and rock character- istics; potential deleterious or contaminating substances. The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, in- cluding the main geological in- terpretations and future drilling areas, provided this information