ASX ANNOUNCEMENT

28 October 2021

ASX:TBR

Board of Directors

Mr Otakar Demis

Mr Anton Billis Managing Director

Mr Gordon Sklenka

Mr Stephen Buckley

Company Secretary

Non-Executive Director

Secretary

Chairman & Joint Company

Quarterly Report for September 2021

Highlights

- During the quarter Rand and Tribune toll processed 138,407 tonnes of ore at 4.06 g/t from the EKJV operations at two process plants in the district, with Tribune's share equating to 103,805 tonnes.
- From that processing 16,981 ounces of gold was produced by Rand and Tribune, with Tribune's 75% share equating to 12,736 oz of Gold.
- A 31,198 tonne low grade parcel of Rand and Tribune ore was sold and treated through Evolution Mining's Mungari mill in the September quarter, with Tribune's share equating to 23,250 tonnes.
- Resource definition and exploration drilling continued at the Japa Project in Ghana with 6,078 metres completed in 51 holes.
- Diamond core drilling was completed, and the drill rig demobilised in the first week of July at the Diwalwal Gold Project in the Philippines. Assay results were received, and results included in this quarterly report.
- Tribune welcomed Evolution Mining Ltd (ASX: EVN) as Manager and Owner of 51% of the East Kundana Joint Venture.

Ore Stockpiles

STOCKPILES									
ROM Pad	OM Pad Ore Source		e Ore Grade Tonnes g/t						
	EKJV Stockpiles								
Rubicon ROM	RHP High Grade	29,861	3.19	36.75					
Rubicon ROM	RHP Low Grade	300	2.50	36.75					
Rubicon ROM	RHP Low Grade	3,644	1.52	36.75					
Tribune Share of EKJV Stockpiles12,4233.00100.00									
	Rand	and Tribune Stoc	kpiles						
Rubicon ROM	RHP High Grade	3,217	1.64	75.00					
Lakewood	RHP High Grade	816	3.50	75.00					
Lakewood	RHP Low Grade	18,789	1.64	75.00					
Tribune Share	of EKJV Stockpiles	17,116	1.71	100.00					
Tribune Share	e of All Stockpiles	29,540	2.25						

At the end of the quarter Tribune was entitled to a share of the following stockpiles -

Geology and Mining

EAST KUNDANA JOINT VENTURE

Raleigh Underground Mine Production

Raleigh remained on care and maintenance throughout the quarter.

Raleigh Underground Mine Development

At the end of the quarter, the bottom of the Raleigh Decline is at 5602 m RL, 743 m from the surface, the top of the Sadler Incline remains at 5989 m RL, 356 m from the surface and the bottom of the Sadler Decline remains at 5944 m RL, 401 m from the surface.

Rubicon-Hornet-Pegasus Underground Mine Production

Contained gold in stope and development ore mined during the quarter is tabulated below:

ORE BODY	Rubicon, Hornet & Pegasus						
Month	Tonnes	Tonnes Grade Ounces					
July	36,049	4.17	4,838				
August	40,048	4.35	5,604				
September	48,614	3.69	5,774				
September 21 Q	124,711	4.04	16,216				
June 21Q	172,006	4.13	22,859				

Quarterly mine production was 6,737 oz below the EKJV Managers production forecast.

The outlook for the next quarter is similar production to the September quarter.

Tribune's Mine Production Entitlement (36.75%)

	Rubicon, Hornet & Pegasus					
Quarter	Ore Grade		Ounces			
	t	g/t	troy oz			
September 21 Q	45,831	4.04	5,959			
June 21Q	63,212	4.13	8,401			

Rubicon-Hornet-Pegasus Underground Mine Development

Development performance for the quarter is summarised in the following table.

ORE BODY	Rubicon, Hornet & Pegasus						
Month	Capita	Operating					
	Decline Other		Development				
	(m)	(m)	(m)				
July	20	62	228				
August	4	84	301				
September	-	67	267				
September 21Q	24	213	796				

Mine operating costs for Rubicon, Hornet & Pegasus incurred by the EKJV during September 21 Quarter were \$157 per tonne mined or \$1,277 per ounce mined.

Toll Processing

During the quarter a total of 138,407 tonnes of Rand and Tribune ore at 4.06 g/t was processed under toll Milling contracts to recover 16,981 oz of gold at 93.92% gold recovery. Of this total, 19,550 tonnes were processed at Kanowna Belle and 118,857 tonnes were processed at Lakewood Mill.

Rand and Tribune gold production for the September 2021 quarter, along with Tribune's share is tabulated below.

Quarter	Rand and Tribune Gold (oz)	Tribune's share Au (oz)
September 21	16,981	12,736
June 21	15,863	11,897

Tribune Share of Ore Processed								
Campaign Location	Tonnes Milled	Head Grade Au (g/t)	Recovery (%)	Fine Au Produced (Oz)				
GMM Lakewood	89,143	4.02	94.38%	10,869				
NST Kanowna Belle	14,662	4.34	91.32%	1,867				
Total	103,805	4.06	93.92%	12,736				

31,198 tonnes of Rand and Tribune low grade ore was sold to Evolution Mining and processed through the Mungari mill in the quarter.

Underground Exploration

Drilling activity at EKJV was undertaken by two underground diamond drill rigs for a total of 156 completed holes with 23,133m of drilling. Drilling focused on confirming grade continuity on the main mineralised K2 structure below current development at Rubicon and between the declines in the area connecting Rubicon and Pegasus. Drilling continued to define ore body continuity and delineate extensions of mineralisation at Pode and Hera which are each situated in the hanging wall of the K2 structure. Several holes intercepted mineralisation outside the Pode and Hera wireframes keeping open the possibility of modest resource expansion downdip on both structures.

Figure 5: Long Section view looking East showing map of the drilling areas in the September quarter at EKJV, Mungari Operations

Startrek Exploration

Fourteen holes targeting the Startrek mineralisation returned significant mineralisation including a well laminated quartz vein intercepted in STKRT20082 (0.5m etw grading 20.9g/t Au). The Startrek mineralisation occurs in the footwall of the K2 structure and consists of several stacked mineralised lodes delineated in wide-spaced drilling. Drilling has intersected mineralisation at various locations in the footwall of Rubicon-Hornet-Pegasus over a strike length of approximately 1 kilometre. Significantly more drilling will be required to understand continuity of mineralisation along strike and downdip.

Full details of all EKJV exploration activities including significant intersections from results received are contained in the September 2021 Quarterly EKJV Exploration Report, released to the ASX on 27 October 2021.

Exploration Projects

Tribune Resources (Ghana) Limited (Tribune's Interest 100%)

The Company continued the major reverse circulation (RC) and diamond core (DC) drilling campaign at the 1.81 million-ounce Adiembra Resource during the quarter. The focus of this program is infill and extensional drilling of the defined Resource to elevate the classification of inferred and unclassified mineralisation to a minimum indicated category for future reserve estimation. In addition to drilling at Adiembra, reconnaissance traverses across proposed infrastructure areas within the Mining Lease have commenced, with other conceptual targets and extensions to the Japa-Dadieso trend also scheduled in this phase of work.

A total of 6,078 metres combined RC and DC were drilled in 51 holes during the September quarter. The drilling was accomplished utilising one RC rig and two DC rigs. The second DC rig commenced in April to complete diamond tails of prematurely suspended RC holes. Planned Adiembra infill drilling was completed during the quarter, awaiting resource estimation. Details of all holes drilled during the quarter are presented with the JORC Code Table 1 appended to this report.

Results received to date are consistent with expectations in terms of mineralisation orientation, thickness and grade and have also yielded robust intersections for both the infill and extensional components of the campaign, especially at the eastern end of the deposit and at depth both on the Central and Western lodes. Selected significant intersections are shown in the following table with a more comprehensive list of intersections accompanying the JORC Code Table 1 appended to this report.

Hole Number	Depth From	Depth To	Interval Length (m)	Grade ppm Au
JRC898	7	13	6	1.86
JRC898	61	73	12	3.30
JRC900	24	30	6	1.15
JRC901	8	14	6	0.59
JRC904	1	9	8	1.90
JRC904	12	21	9	2.34
JRC904	22	30	8	3.06
JRC595	264	283	19	9.65
JRC895	129	144	15	1.42
JRC895	162	171	9	28.01
JRC757	249	255	6	0.50
JRC803	202	207	5	0.60

Significant intersection parameters for Adiembra \geq 0.4ppm average gold grade with maximum 3 metres internal dilution of <0.4ppm gold. Table only presents intersections of greater than 5m interval length in metres multiplied by grade in ppm Au.

The diamond drilling component of the Adiembra resource definition program and the reconnaissance program testing conceptual targets within the mining lease was completed on the 24th of September 2021. An updated resource estimation for Adiembra will be reported in the December quarter.

Adiembra infill drilling conducted during September 2021 Quarter showing Plan view of Drillhole Sections

Plan of Adiembra infill and sterilisation drilling conducted during September 2021 quarter showing resource model pit shell limit with indicated and inferred resource blocks and unclassified mineralisation blocks colured by block grade.

Diwalwal Gold Project (Philippines) (Tribune's Legal Interest 40% and a further 20% earnt **Economic Interest**)

Resource definition drilling of Balite Vein was terminated by first week of July due to limited underground drill cuddy positions to intersect eastern vein extension at an optimal angle.

drill cuddy positions to intersect eastern vein extension at an optimal angle.							
Signific	cant inters	sections r	eceived dur	ing the quart	er are sui	mmarised in the following table.	
Hole	Depth	Depth	Interval	Estimated	Grade		
Number	From	То	Length	True	ppm	Remarks	Vein
			(m)	Width	Au		
UBADH-032	60.65	61.95	1.30	0.3	3.10		HW Spur Vein
UBADH-032	173.45	174.45	1.00	0.4	1.65		Balite Main
UBADH-032	180.00	189.70	9.70	3.8	11.10	Inc 2.15m @42.3ppm from 186.5m	Balite Main
UBADH-034	71.75	73.15	1.40	0.7	1.61		HW Spur Vein
UBADH-034	156.55	158.05	1.50	0.75	1.49		HW Spur Vein
UBADH-034	180.35	182.00	1.65	1.2	6.11		HW Spur Vein
	106 10	220.1	24.00	6m	11.2	Inc 7.8m @ 28.2ppm from 196.1m,	Balita Main
UDADII-034	190.10	220.1	24.00	OIII	11.2	1m @ 18.7ppm from 205.3m	Dante Main
UBADH-034	228.00	229.2	1.20	0.4	6.08		HW Spur Vein
UBADH-034	293.65	297.5	3.85	1.9	2.88		HW Spur Vein
UBADH-034	303.25	3.70	3.75	1.9	1.06		HW Spur Vein
UBADH-034	318.10	320.20	2.10	1.1	1.38		HW Spur Vein
UBADH-034	329.80	332.20	2.40	1.2	3.18		HW Spur Vein
UBADH-034	341.90	344.70	2.80	1.4	2.66	Inc 1.2m @5.57ppm from 341.9m	HW Spur Vein
6						Inc 2.4m @ 5.21ppm from 371.4m,	
D						1.8m @ 10.6ppm from 375.65m,	
	250.05	400.20	40.25	Orea	4 50	4.5m @ 8.12ppm from 379m,	Mangan Vain
UDADH-034	339.95	409.50	49.35	0111	4.50	4.7m @ 17.3ppm from 386.1m,	Morgan veni
2						0.8m @ 12ppm from 393.6m,	1
6						3.85m @ 4.65ppm from 400.65m	
UBADH-034	428.1	431.00	2.90	1.5	2.97	Inc 1m @ 6.53ppm from 430m	SE Split
UBADH-035	73.65	77.90	4.25	2.8	8.01	Inc 0.6m @53.2ppm from 75.7m	SE Split
UBADH-036	67.00	70.75	3.75	3.1	1.94		SE Split
UBADH-036	75.45	76.80	1.35	1.1	1.46		SE Split
UBADH-036	129.15	130.60	1.45	1.2	1.13		SE Split
UBADH-036	156.65	158.10	1.45	1.2	1.04		SE Split
UBADH-036	165.25	166.75	1.50	0.6	3.18		HW Spur Vein
UBADH-036	191.85	193.45	1.60	6m	1.86		Balite Main
UBADH-036	284.90	289.10	4.20	1.7	1.23		HW Spur Vein

Significant intersection parameters for Balite drilling are minimum 1 metre interval length \geq 1ppm gold with maximum 3 metres internal dilution of <0.5ppm gold.

Long projection view of Victory Tunnel looking north showing all holes completed to date and highlighting holes UBADH-032, UBADH-034 to UBADH-036 assay results. Drill hole traces are coloured by geology and mineralised intersections.

Underground mapping and sampling returned appreciable results in West Drift and L-585 areas. Continuous 1m average channel cut rock chip sampling returned 5.07, 9.53, 4.12, 6.89, 5.83 ppm Au in West Drift and 5.26 and 3.77 ppm Au in L-585. Gold-silver ratios are indicative of mineralised horizon together with the other tracer elements.

Plan view of Victory Tunnel showing coverage of recent underground mapping and sampling.

Surface exploration in Simulao prospect completed a regional campaign over an area of 1,300 hectares composed of stream sediment sampling of first to second order streams, ridge-and-spur soil sampling (B-Horizon) at 100m interval, and 15 line-kilometre geologic mapping and rock sampling. Initial geochemical results define a few faint to moderate gold-silver ridge-and-spur soil anomalies and weak gold rock geochemistry to the north.

Geological logging indicates a variety of rock types, with sulphide alteration and quartz veining relatively common. Sampling was initially via four metre composite samples which have been submitted to a commercial lab for assay. No results have been received to date.

500m

Late in the quarter a second program was commenced at White Lake, in the southeast of the project area. This program is grid pattern RC and diamond drilling on a nominal 100m by 100m spacing, with all holes to 200m, except for one hole to be completed to 300m. Six holes for 1,049m were completed, with several holes being abandoned before the target depth due to challenging drilling conditions. These holes may be extended to their design depth via diamond drilling at a later stage. Drilling in this area is continuing.

Holes Completed During the Quarter

Hole	MGA E	MGA N	RL	Depth	Dip	Az	Date Drilled	Туре
KRC031	340509	6596321	341	100	-60	60	14/08/2021	RC
KRC032	340493	6596307	341	100	-60	60	15/08/2021	RC
KRC033	340473	6596296	341	100	-60	60	15/08/2021	RC
KRC034	340629	6596152	341	100	-60	60	16/08/2021	RC
KRC035	340615	6596140	341	100	-60	60	16/08/2021	RC
KRC036	340656	6595918	341	100	-60	60	17/08/2021	RC
KRC037	340637	6595905	341	100	-60	60	17/08/2021	RC
KRC038	340628	6595889	341	100	-60	60	19/08/2021	RC
KRC039	341129	6595279	341	100	-60	60	19/08/2021	RC
KRC040	341439	6595015	341	100	-60	60	20/08/2021	RC
KRC041	341357	6594942	341	100	-60	60	20/08/2021	RC
KRC042	341808	6594683	341	72	-60	60	21/08/2021	RC
KRC043	342069	6594319	341	100	-60	60	22/08/2021	RC
KRC044	342006	6594205	341	100	-60	60	22/08/2021	RC
KRC045	342408	6593732	341	33	-60	60	23/08/2021	RC
KRC046	342603	6593387	341	100	-60	60	24/08/2021	RC
KRC047	342656	6593425	341	100	-60	60	24/08/2021	RC
KRC048	342403	6593742	341	100	-60	60	25/08/2021	RC
KRC049	342914	6593128	341	100	-60	60	25/08/2021	RC
KRC050	342864	6593081	341	100	-60	60	26/08/2021	RC
KRC051	342836	6593060	341	100	-60	60	26/08/2021	RC
KRC052	343048	6592720	341	100	-60	60	27/08/2021	RC
KRC053	343021	6592692	341	100	-60	60	29/08/2021	RC
KRC054	343010	6592677	341	100	-60	60	29/08/2021	RC
KRC055	343008	6592677	341	100	-60	60	30/08/2021	RC
KRC056	343632	6592162	341	100	-60	60	31/08/2021	RC
KRC057	344056	6591980	341	100	-60	60	31/08/2021	RC
KRC058	343795	6591772	341	100	-60	60	1/09/2021	RC
KRC059	343870	6591586	341	100	-60	60	1/09/2021	RC
KRC060	344048	6591465	341	100	-60	60	1/09/2021	RC
KRC061	338674	6592202	341	100	-60	60	2/09/2021	RC
KRC062	338747	6592443	341	100	-60	60	2/09/2021	RC
KRC063	338712	6592764	341	100	-60	60	2/09/2021	RC
TBRC078	348701	6583258	341	150	-60	90	17/09/2021	RC
TBRC079	348603	6583262	341	198	-60	90	21/09/2021	RC
TBRC080	348701	6583145	341	150	-60	90	26/09/2021	RC
TBRC081	348602	6583146	341	198	-60	90	27/09/2021	RC
TBRC082	348799	6583053	341	173	-60	90	28/09/2021	RC
TBRC083	348701	6583051	341	180	-60	90	30/09/2021	RC
Total				4,254				

The company has additional drilling underway. A further 6 RC holes for 1,200m and 15 RC/DD holes are proposed at White Lake and Kopai Ridge, whilst a further 12,000m of aircore is proposed testing various other targets in the southwest of the project area. It is anticipated that the RC and most of the diamond drilling will be completed during the next quarter, with the aircore to commence early in 2022. The aircore program will require a specialist lake rig and these are currently in high demand.

Competent Persons Statement

Information in this report relating to exploration results has been compiled by Mr Gregory Bennett Barnes in accordance with the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). Mr Gregory Barnes is a member of AUSIMM and a consultant to Tribune Resources and has sufficient relevant experience in the activities undertaken and styles of mineralisation being reported to qualify as a Competent Person under the JORC Code. Mr Gregory Barnes consents to the inclusion in this report of the information compiled by him in the form and context in which it appears.

Corporate

Summary of Cashflows

The attached Appendix 5B is prepared on a consolidated basis and includes the cash inflows and cash outflows of its subsidiaries including Rand Mining Limited. Cash and cash equivalents were \$6.961m as at 30 September 2021 compared to \$4.163m as at 30 June 2021. Receipts from customers was up by \$270k to \$36.83m for the quarter ending 30 September 2021. Production costs were down from \$20.5m for the June quarter to \$17.7m in the September quarter. Directly related to the increased receipts, income tax was up from \$3.7m in the June quarter to \$6m in the September quarter. The result being that there was a net positive cash flow in operating activities of \$7.51m for the September quarter compared to the net positive cash flow in operating activities of \$1.03m in the June quarter.

Exploration expenditure for the Japa Project increased by \$1.23m to \$4.11m for the September quarter compared to \$2.88m the June quarter. Exploration expenditure on the Diwalwal Gold Project for the September quarter was down by \$240k to \$533k when compared to the June quarter.

Share Buy-Back

The Company operated a buyback during the quarter, but no shares were bought back during the period. The current buyback expires on 21 February 2022 unless it is extended by the Company.

Payments to related parties of the entity and their associates

In item 6 of the attached Appendix 5B cash flow report for the quarter, payments to related parties of \$290,204 comprised director fees and superannuation for Anthony Billis of \$54,308, director fees for Gordon Sklenka of \$10,000, rental and outgoings paid to a related party of Anthony Billis of \$49,000, royalty payment to a related party of Anthony Billis of \$3,229 and re- imbursement of operating expenses to a related party of Anthony Billis of \$173,667.

This report and the attached Appendix 5B have been authorised by the Board of Tribune Resources Limited.

For Shareholder Enquiries Stephen Buckley

Joint Company Secretary E: stephen.buckley@tribune.com.au Ph: + 61 8 9474 2113

For Media and Broker Enquiries Peter Klinger Cannings Purple E: pklinger@canningspurple.com.au Ph: + 61 411 251 540

INTERESTS IN MINING TENEMENTS

Project/Tenements	Location	Held at end of quarter*	Acquired	Disposed
		_	during the	during the
			quarter	quarter
Kundana	WA,			
	Australia			
M15/1413		49.00%		
M15/993		49.00%		
M16/181		49.00%		
M16/182		49.00%		
M16/308		49.00%		
M16/309		49.00%		
M16/325		49.00%		
M16/326		49.00%		
M16/421		49.00%		
M16/428		49.00%		
M24/924		49.00%		
West Kundana	WA,			
	Australia			
M16/213		24.50%		
M16/214		24.50%		
M16/218		24.50%		
M16/310		24.50%		
Seven Mile Hill	WA,			
	Australia			
E15/1664		100.00%		
M15/1233		100.00%		
M15/1234		100.00%		
M15/1291		100.00%		
M15/1388		100.00%		
M15/1394		100.00%		
M15/1409		100.00%		
M15/1743		100.00%		
M26/563		100.00%		
P15/6370		100.00%		
P15/6398		100.00%		
P15/6399		100.00%		
P15/6400		100.00%		
P15/6401		100.00%		
P15/6433		100.00%		
P15/6434		100.00%		
P26/4173		100.00%		
Unallocated	WA.			
	Australia			
P26/4476		100.00%		
P26/4477		100.00%		
Japa Concession	Ghana, West	100.00%		
_	Africa			
Diwalwal Gold	Mindanao,			
Project	Philippines			
729 Area ¹		Up to 40% legal interest,		
		20% legal interest and up to		
		an additional 20% legal		
		interest economic interest		

Project/Tenements	Location	Held at end of quarter*	Acquired during the quarter	Disposed during the quarter
452 Area ¹		Up to 40% legal interest,		
		20% legal interest and up to		
		an additional 20% legal		
		interest economic interest		
Upper Ulip Area ¹		Up to 40% legal interest,		
		20% legal interest and up to		
		an additional 20% legal		
		interest economic interest		

LEASES UNDER APPLICATION

Project/Tenements	Location	Held at end of quarter*	Acquired during the quarter	Disposed during the quarter
West Kimberly	WA, Australia			
E04/2548		100.00%		

* Note, includes Rand Mining Ltd's, Rand Exploration NL's and Prometheus Developments where applicable.

¹ Prometheus has entered an Investment Agreement with Paraiso Consolidated Mining Corporation ("Pacominco") and a Joint Venture agreement with JB Management Mining Corporation ("JB Management" or "JBMMC"). These agreements allow Prometheus to acquire an 80% economic interest and 40% legal interest in three mining tenements covering the Diwalwal Gold Project. Through the JB Management Joint Venture Agreement, Tribune Resources Ltd (via its 100% owned subsidiary Prometheus Developments Pte Ltd) is earning a 40% legal interest and 80% economic interest in the 452 Area. To date Prometheus Developments is yet to earn any legal or economic interest in this JV as the JV company is yet to be incorporated.

Japa Gold Project, Ghana

JORC Code, 2012 Edition – Table 1

>		Section 1 Sampling Techn	iques and Data
	Criteria	JORC Code explanation	Commentary
	Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Reverse Circulation (RC) percussion and Diamond Core Drilling techniques were employed. RC samples were collected from a cone splitter mounted on the rig cyclone at predominantly one and three metre composite intervals. Samples submitted to the laboratory, whether single metre or composite samples, were nominally 3 kilograms in weight. Diamond core was sampled over intervals ranging from 0.3 metres to 1.2 metres length by electric core saw cut, or trowel cut in heavily oxidized material. All samples submitted for analysis were pulverised to nominally minus 75 microns and a 50-gram subsample was split off for fire assay determination of gold.
	Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Face sampling RC Hammer and Diamond Core drilling methods were employed. RC hole diameter either 133mm or 140mm. Diamond core size is either NQ2 or HQ3. HQ3 or NQ2 core was collected with 3 metre standard barrel. HQ3 core was drilled from surface to fresh competent core, then changed over to NQ2 NQ2 core holes were drilled as tails from RC holes and are up to 258 metres in length. HQ3 or NQ2 core were orientated using Reflex ACT II or ACT III orientation tools.
	Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	 Visual measure of RC chip sample recoveries was made and recorded where significantly less than expected volume. Monitoring of sample quantity and quality was maintained by geologists and technicians attending the rigs during drilling operations.

Criteria	JORC Code explanation		Commentary
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	•	Sample recovery maximized through use of auxiliary and booster compressors to manage sample return and ground water inflow. Sample system hygiene checked and maintained at rod changes. Sample systems were purged of groundwater and associated contaminants prior to drilling the next rod. No relationship between RC sample recovery and assay grade has been determined. Sample bias has not been detected. RC Drilling was discontinued when dry sampling was no longer achievable. Diamond core recovery is measured and recorded every run. Due to the mineralisation being hosted in quartz veins and interpreted post- mineralisation fracturing of zones within the overall lode, most core loss instances were in heavily veined intervals where veins had been naturally shattered and it is expected that this has downgraded many of these affected intervals although this has not been quantified.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	•	All RC chip samples were geologically logged on an individual metre basis. Logging is qualitative and captures details of lithology, oxidation, texture, mineralisation, alteration, veining, sample quality and recovery. Representative samples of all individual RC samples were retained in chip trays. Diamond Core logging is both qualitative and quantitative. All core was logged for lithology, oxidation, texture, mineralisation, alteration, veining, sample quality and recovery. In addition, dip and dip direction details of structures, contacts, fabric and veins were captured from definitively orientated core using a Reflex IQ Logger tool. Core was photographed prior to sampling. Core samples of all oxidation and weathering stages are subject to specific gravity determination. The data captured from geological logging is of appropriate standard, focus and detail to support future Mineral Resource estimations, mining studies and metallurgical studies.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to 	•	RC samples were collected by cone splitter in one and three metre composites. Where required, samples were riffle split to achieve appropriate weight of sample for laboratory submission. Excessively wet samples were subsampled by grab or tube spear methods where complete drying was not practicable. Diamond core was cut using an electric Clipper saw. Where necessary due to extreme weathering or friability, core is cut using a trowel, paint scraper or bolster chisel.

Criteria	JORC Code explanation		Commentary	
	 maximise representivity of samples. Measures taken to ensure that the sampling is representative of the insitu material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Hall core was submitted for analysis and hall core was retained. Original and the corresponding duplicate core samples are submitted as quarter core samples. Field duplicates are collected and submitted for analysis at regular intervals throughout the drilling campaigns. Approximately 5% of RC samples and 5% of core samples are duplicated and submitted for analysis. Sample weights are such that the entire sample submitted to the laboratory is dried, crushed and pulverised to nominally minus 75 microns in an LM3 or LM5 pulveriser. From this pulp a nominally 200-gram subsample is split and retained. From the 200-gram pulp a 50-gram subsample is taken for fire assay charge. Subsampling methods employed throughout the laboratory process are appropriate for the material and deposit type. Grind checks are conducted at a frequency of 2% of samples from every batch processed. 		
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	•	Drill samples were subject to fire assay of a 50 gram pulverised subsample giving total gold analysis of a representative sample of the in- situ material determined by atomic absorption spectrometry to a lower detection limit of 0.01 parts per million gold. Approximately 12% of all samples submitted are for quality control purposes. Field duplicates are collected at regular intervals throughout the drilling and sampling process and analysed with the primary samples. Approximately 5% of RC samples and 5% of core samples are duplicated. Commercially prepared Standard Reference Materials, including coarse blank material, are submitted with each batch of samples to monitor potential contamination in the preparation process and accuracy and consistency of the analysis process. Standards and blanks constitute approximately 8% of all samples analysed. No geophysical methods were used for elemental determinations.	
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	•	All drilling data including significant intersections is verified and validated by other geologists or Competent Persons within the organisation. Dedicated twinning of holes has previously been employed in a limited capacity to verify mineralisation intersected in historic drilling campaigns. The natural sub-surface ground conditions and the extensive recent surface disturbance precludes close spaced duplication of previously drilled holes. Current drilling is	

Criteria	JORC Code explanation	Commentary
Location of data	 Accuracy and quality of surveys used 	 infilling the drill spacing for additional Resource evaluation and verifies historic RC and diamond drilling intersections with respect to location, nature and tenor of mineralisation. Drilling data is manually and digitally captured according to written procedures and a library of standard logging codes appropriate to this project and purpose. Manually captured data is transferred to digital templates where it is validated and then loaded to an externally managed and maintained database, again with validation protocols. Original data and reports are stored at the Company's Headquarters. No adjustments to assay data have been made. Raw assay data is provided to the external database managers where it is loaded to the database, securely stored and quarantined. All planned drill holes and drilled hole collars
points	 The formation of the second second	 are surveyed using Trimble R8 RTK DGPS. Drill hole trajectories are measured using Reflex EZ-Trac or Reflex EZ-Gyro down hole survey tools. Drill rigs are aligned using Reflex TN14 Gyro Compass. Grid is WGS84 Zone 30N and Vertical Datum is referenced to mean sea level. RTK DGPS positioning is calibrated against pre-established primary planimetric survey control with tie-in to the Geodetic Reference Network. Topographic control is a combination of physical survey traverses and unmanned aerial vehicle surveys which is adequate for the purpose.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill holes are designed at an irregular spacing in this campaign principally to infill drill coverage for Resource definition and estimation purposes. Earlier work has established the required parameters for Mineral Resource classification. The drilling data will be used in a Mineral Resource estimation. Sample compositing for RC drilling is predominantly over either one or three metre intervals. Drill hole intersections reported are length weighted averages of raw assay data. Where results for three metre composites are reported this is stated.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised 	• The primary controls on the gold mineralisation are presently well understood. Drill holes in this campaign were designed to intersect the mineralisation as normal to the primary control orientation as possible to reduce or eliminate any possible sampling bias.

Criteria	JORC Code explanation	Commentary
	structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	
Sample security	• The measures taken to ensure sample security.	• Chain of custody for samples is managed by Tribune personnel and contractors on site. Samples are stored on site until collection by Intertek Laboratory personnel for transport to the Tarkwa laboratory facility.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• Data and data collection methods are continuously reviewed for accuracy and adherence to procedures by Tribune and Principal Contractor personnel. No material issues have been noted. No official audits have been undertaken at this stage.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary			
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Work was conducted within Mining Lease P.L.2/310 owned by Tribune Resources (Ghana) Limited. The lease covers an area of 26.2km² and is situated in the Wassa Amenfi East District of the Western Region of Ghana approximately 270km west of Accra and 50km north of Tarkwa. The Ghana Government holds a 10% free carried interest in the project. All tenure is secure and in good standing with no known impediments. 			
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	• Exploration has been conducted within and adjacent to the tenement over an extended period. Particularly relevant is the work done by Cluff/Anglogold during the 1990's and the information from that work was integral in the target generation and evaluation that resulted in Tribune acquiring its interest in the Project.			
Geology	• Deposit type, geological setting and style of mineralisation.	• Target is orogenic lode and vein hosted gold mineralisation. The project area straddles the Akropong Belt, a sequence of Proterozoic Birimian volcano-sedimentary rocks that parallels the highly endowed Ashanti Belt.			
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar 	• Details of the location, orientation, and depth of drill holes completed together with significant gold assay results are provided in the body of the report to which this table refers and/or are appended to this table.			

Criteria	JORC Code explanation	Commentary
	 elevation or RL (Reduced Level elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Significant intersections are reported as length weighted averages of all samples within the composite interval. Criteria used to calculate significant intersections can vary and are presented with each table of results. No top cut of grades has been applied to the results reported. Significant intersections are reported in the context of any likely mining extraction scenario. In the case of the Adiembra deposit, and notwithstanding the outcomes of any future Mineral Resource update or Reserve estimation, the likely mining scenario would be by open pit only and the significant intersections are presented with appropriate grade cut-offs and internal dilution criteria to reflect that method of extraction.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Primary gold mineralisation occurs within steeply dipping quartz veins. Holes are drilled normal to the dominant mineralised quartz vein orientation, and hence normal to the mineralised zones, at nominally -55° dip. Intersection widths reported are down hole aggregate widths and vary between 120% to 170% of the true width of the mineralised intervals.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	• This document is not reporting a significant discovery. The exploration results reported are from infill drilling designed to enable an update to the Adiembra Mineral Resource Estimate to be undertaken.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high 	• All significant intersections from the relevant drilling campaign and the interpretation of those results is reported.

Criteria	JORC Code explanation	Commentary
	grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.	
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Geological observations are reported. Specific gravity determinations from core samples have been completed. Metallurgical test work is ongoing from samples collected during the previous campaign.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 A Mineral Resource estimation for the Adiembra deposit has been published. The outcomes of this infill drill campaign are anticipated to allow an update to the Mineral Resource and subsequent Reserve estimation to be undertaken. Further metallurgical and geotechnical studies and sterilisation drilling for future infrastructure is anticipated. Exploration drilling at other prospects within the Japa Mining Lease has been planned.

	Hole Number	Collar Easting (WGS84 Zone 30N)	Collar Northing (WGS84 Zone 30N)	Collar RL	Dip at Collar	Azimuth at Collar (True North)	Metres drilled during quarter	Hole Depth	Hole Status
	ADDD040	605730.066	730.066 644064.883 156.52		-60	90	306.4	306.4	Complete
	ADDD041	605880.191	644225.082	141.426	-60	90	300.1	300.1	Complete
	JRC595	605629.243	644263.936	170.578	-55	260	172.3	334.3	Complete
	JRC596	605525.956	644265.246	142.039	-51	79	54	204	Complete
	JRC631	605451.942	644275.088	137.886	-51	88	115.2	277.2	Complete
	JRC632A	605449.89	644276.862	137.997	-55	65	168.3	306.3	Complete
	JRC643	605677.208	644330.153	142.259	-50	54	171.2	351.2	Complete
	JRC663	606062.7	644804.2	144.51	-56	73	24	198	Complete
	JRC683	605640.328	644430.114	139.952	-55	70	114	300	Complete
	JRC708	605908.336	644517.358	151.776	-51	52	198	360	Complete
	JRC712	605909.334	644516.754	151.986	-58	61	126.2	276.2	Complete
	JRC720	605791.037	644529.537	139.022	-70	53	48.3	186.3	Complete
	JRC730	605985.801	644543.419	138.038	-51	247	105	315	Complete
1	JRC734	605874.795	644558.484	151.835	-51	85	96.3	336.3	Complete
	JRC735	605871.463	644558.928	151.735	-52	59	162.3	324.3	Complete
	JRC743	605773.384	644574.38	140.957	-70	63	39.36	183.36	Complete
	JRC746	605771.836	644576.03	141.103	-65	67	132.5	282.5	Complete
	JRC751	606106.87	644587.938	141.567	-54	65	71.2	203.2	Complete
	JRC754	606040.028	644610.007	134.712	-55	70	177	321	Complete
	JRC755	606070	644620	134	-55	70	171	321.3	Complete
	JRC757	606128.066	644635.087	133.964	-55	70	186.6	312.6	Complete
	JRC802	605510.495	644641.673	144.117	-60	250	50.3	200.3	Complete
	JRC803	606158.106	644644.033	133.356	-55	70	143.3	233.3	Complete
	JRC804	605540.637	644650.206	150.019	-60	245	56.5	206.5	Complete
	JRC805	606189.264	644654.128	133.796	-55	70	104.3	230.3	Complete
	JRC806	606123.623	644657.732	134.232	-52	257	168.3	288.3	Complete
	JRC814	606155.912	644676.619	137.996	-51	234	131	263	Complete
	JRC817	605849.801	644713.015	158.467	-56	55	102.2	264.2	Complete
	JRC820	605662.489	644747.098	142.437	-56	80	87.2	201.2	Complete
	JRC824	606062.135	644805.542	144.546	-53	65	62	218	Complete
	JRC829	606106.147	644860.437	162.605	-59	70	81.7	225.7	Complete
	JRC841	605764.649	644724.755	150.169	-57	250	108	240	Complete
	JRC864	606221.42	644800.144	147.08	-60	70	47	203	Complete
	JRC865	606198.198	644804.022	153.359	-60	80	47.5	200.5	Complete
	JRC869	606072.565	644746.408	150.373	-60	70	76.8	202.8	Complete
	JRC879	606140.367	644608.157	133.185	-55	70	80.1	242.1	Complete
	JRC880	606167.669	644617.835	133.232	-55	70	56.4	212.4	Complete
	JRC889	606252	644618	133	-60	70	150	150	Complete

Table of Japa Project drilling completed during the September 2021 quarter.

Hole Number	Collar Easting (WGS84 Zone 30N)	Collar Northing (WGS84 Zone 30N)	Collar RL	Dip at Collar	Azimuth at Collar (True North)	Metres drilled during quarter	Hole Depth	Hole Status	
JRC891	606204.525	644600.392	132.314	-60	70	77	209	Complete	
JRC894	606133.608	644579.111	137.477	-60	70	53.7	205.7	Complete	
JRC895	606106.509	644568.946	141.493	-60	70	174	174	Complete	
JRC896	606078.927	644570.167	138.229	-60	80	198	198	Complete	
JRC898	606184.798	644924.985	153.021	-55	70	102	102	Complete	
JRC899	606209.979	644935.043	152.095	-55	70	84	84	Complete	
JRC900	606187.634	644965.318	164.559	-55	70	84	84	Complete	
JRC901	606211.607	644975.598	153.622	-55	70	72	72	Complete	
JRC902	605010.361	644500.041	127.918	-55	80	188	302	Complete	
JRC903	605040.014	644519.972	126.102	-55	80	138	138	Complete	
JRC904	605247.181	644570.075	131.823	-50	259	132	132	Complete	
JRC905	605198.389	644577.306	132.428	-52	245	95	227	Complete	
JRC906	605278.68	644648.073	137.168	-50	234	188.2	338.2	Complete	

Table of Japa Project drilling intersections received during the Sept 2021 quarter. Intervals calculated at \geq 0.3 metre down hole length, \geq 0.4ppm Au, \leq 3 metres internal dilution of <0.4ppm Au. Table presents only those intersections of greater than 1 interval length in metres multiplied by grade in ppm Au.

Hole Number	Depth From	Depth To	Interval Length (m)	Grade ppm Au	Hole Number	Depth From	Depth To	Interval Length (m)	Grade ppm Au
JRC643	262	264	2	0.37	JRC898	25	28	3	0.82
JRC643	312	313	1	0.83	JRC898	54	57	3	0.41
JRC746	235	236	1	0.78	JRC898	61	73	12	3.3
JRC746	261	262	1	1.01	JRC899	0	4	4	0.41
JRC746	265	279	1.4	1.52	JRC899	6	10	4	0.69
JRC746	267	270	3	1	JRC899	28	30	2	1.09
JRC805	128	130	2	0.36	JRC900	24	30	6	1.15
JRC805	140	144	4	0.75	JRC900	31	32	1	0.78
JRC805	153	157	4	1.69	JRC900	33	34	1	0.63
JRC805	158	160	2	0.36	JRC900	35	37	2	1.65
JRC805	161	162	1	0.84	JRC900	42	44	2	1.13
JRC805	165	166	1	31.21	JRC900	68	70	2	3.27
JRC805	183	185	2	0.91	JRC901	5	7	2	1.93
JRC805	191	194	3	1.2	JRC901	8	14	6	0.59
JRC814	190	194	4	1.6	JRC902	46	47	1	1.03
JRC814	195	198	3	1.58	JRC902	119	122	3	0.82
JRC814	217	218	1	5.4	JRC902	271	273	2	0.75
JRC814	224	226	2	0.64	JRC903	86	87	1	2.93
JRC841	135	136	1	3.12	JRC903	92	94	2	0.4
JRC841	138	139	1	0.91	JRC903	105	106	1	3.72
JRC841	140	141	1	7.25	JRC903	120	124	4	1.32
JRC841	236	237	1	0.94	JRC904	1	9	8	1.9
JRC889	56	58	2	0.51	JRC904	12	21	9	2.34
JRC889	103	104	1	0.94	JRC904	22	30	8	3.06
JRC889	105	106	1	1.15	JRC904	31	33	2	0.51
JRC889	109	111	2	1.1	JRC904	34	37	3	0.7
JRC889	133	135	2	0.58	JRC904	41	42	1	1.41
JRC889	148	150	2	0.42	JRC904	50	54	4	3.4
JRC896	66	67	1	4.24	JRC904	81	82	1	3.39
JRC896	88	91	3	0.47	JRC904	83	87	4	1.82
JRC896	99	101	2	3.16	JRC904	87	89	2	0.35
JRC896	103	105	2	0.49	JRC905	22	24	2	2.79
JRC896	117	120	3	0.7	JRC905	31	33	2	1
JRC896	130	132	2	1.33	JRC905	34	37	3	2.29
JRC898	7	13	6	1.86	JRC905	40	42	2	1.34

	Hole Number	Depth From	Depth To	Interval Length (m)	Grade ppm Au		Hole Number	Depth From	Depth To	Interval Length (m)
	JRC905	44	45	1	0.87		JRC754	162	165	3
	JRC905	151	152	1	1.14	-	JRC754	168	169	1
ĺ	JRC905	190	191	1	0.55		JRC754	174	175	1
ĺ	JRC906	280	282	2	0.42		JRC754	176	177	1
	JRC906	324	325	1	0.45		JRC754	208	209	1
	JRC595	236	238	2	8.55		JRC754	228	229	1
Ì	JRC595	240	241	1	0.64		JRC754	240	241	1
	JRC595	242	243	1	0.57		JRC754	260	262	2
	JRC595	264	283	19	9.65		JRC754	270	272	2
Ì	JRC595	287	288	1	0.5		JRC754	297	299	2
Ì	JRC754	162	165	3	0.74		JRC754	301	302	1
Ì	IRC754	168	169	1	0.63		JRC663	188	189	1
	IRC754	174	175	1	0.75	-	JRC757	130	134	4
ľ	IRC754	176	177	1	1.02		JRC757	137	139	2
	IRC754	208	2.09	1	0.66		JRC757	155	157	2
Ì	IRC754	228	229	1	0.77		JRC757	174	175	1
	IRC754	240	241	1	0.64		JRC757	184	187	3
	IRC754	260	262	2	1.06		JRC757	195	197	2
	IRC754	270	272	2	0.4		JRC757	204	205	1
	IRC754	297	299	2	2 54		JRC757	249	255	6
	IRC754	301	302	1	0.73	-	JRC757	265	267	2
	IRC869	159	160	1	0.72	-	JRC824	190	192	2
	IRC869	194	195	1	1.05		JRC824	213	214	1
	IRC869	196	197	1	7.05		JRC864	175	178	3
	IRC869	198	199	1	1.16		JRC865	195	197	2
	IRC869	201	202	1	1.25		JRC803	118	119	1
	IRC829	169	170	1	3.85		JRC803	126	127	1
	IRC829	178	180	2	0.81		JRC803	156	157	1
	IRC755	165	167	2	1 45		JRC803	202	207	5
	IRC755	180	182	2	0.46	-	JRC632A	198	199	1
	IRC755	190	192	2	0.40	-	JRC632A	209	211	2
	IRC755	213	214	1	0.4	-	JRC632A	217	218	1
	IRC755	213	214	1	0.76	-	JRC631	163	165	2
	IRC755	243	244	1	1 29	-	JRC631	196	198	2
	IRC755	255	256	1	2.92	-	JRC631	206	207	1
	IRC755	255	250	1	0.76	-	JRC631	248	249	1
	IRC755	200	201	1	0.70	-	JRC879	178	179	1
	IRC691	245	246	1	0.72	-	JRC879	181	183	2
	IPC601	245	240	2	154	-	JRC879	194	195	1
	IRC709	244	245	1	0.35	1	JRC891	191	193	2
	IRC700	244	243	1	0.55	1	JRC891	195	196	1
	JRC/00	2//	2/0	1	0.50	1	JRC894	174	175	1
	JRC700	340 226	347 727	1	4.12	1	ADDD041	9	10	1
	JRC/30	230	237	1	4.12	1	ADDD041	61	62.7	1.7

3.24

297

1

296

JRC730

0.91

Grade ppm Au 0.74 0.63 0.75 1.02 0.66 0.77 0.64 1.06 0.4 2.54 0.73 0.64 0.685 0.745 1.115 0.97 0.58 0.795 1.25 0.5 0.43 3.76 1.3 0.4 0.53 1.65 2.17 1.37 0.6 1.33 0.59 1.42 0.73 0.73 1.69 2.79 1.51 0.485 1.93 0.38 1.31 3.72 1.23

JRC806	129	132	3	1.12
JRC895	48	49	1	0.82
JRC895	61	63	2	5.41
JRC895	66	70	4	1.575
JRC895	108	111	3	1.72
Hole Number	Depth From	Depth To	Interval Length (m)	Grade ppm Au
JRC751	164	167	3	10.74
JRC751	176	179	3	0.73
JRC751	183	185	2	1
JRC751	187	191	4	0.715
JRC880	176	177	1	1.25
JRC880	200	203	3	0.55
ADDD040	30	31	1	0.64
ADDD040	103	105	2	0.615
ADDD040	114	115	1	7.25
ADDD040	266	267	1	2.01

ADDD041	93	95	2	0.655
ADDD041	264	268	4	1.1
ADDD041	270	272	2	1.1
JRC751	158	159	1	1.44
JRC754	208	209	1	0.66

Diwalwal Gold Project, Philippines

JORC Code, 2012 Edition – Table 1

JORC Code, 2012 Edition – Table 1		
	Section 1 Sampling Te	chniques and Data
Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Diamond Core Drilling techniques were employed. Diamond core was sampled over intervals ranging from 0.2 metres to 2.55 metres length by electric core saw cut. Half core or quarter core samples are submitted for analysis. All samples submitted for analysis are pulverised to nominally minus 75 microns and a 50-gram subsample is split off for fire assay AAS determination of gold. Samples are also analysed for a multielement suite by four acid digest optical emission spectrometry.
/ Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Diamond Core drilling methods were employed. Diamond core size is NQ2. NQ2 core was collected with 1.5 metre or 3 metre standard barrel. Diamond core holes were drilled from underground platforms up to 530.7 metres in length. NQ2 core is orientated using Reflex ACT II orientation tool.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Diamond core recovery is physically measured and recorded every run. No sample bias is suspected nor determined.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Diamond Core logging is both qualitative and quantitative. All core is logged for lithology, oxidation, texture, mineralisation, alteration, veining, sample quality and recovery. In addition, dip and dip direction details of structures, contacts, fabric and veins are captured from definitively orientated core using a Reflex IQ Logger tool. Core is photographed prior to sampling. Selected core samples especially at the ore zone are also subject to specific gravity determination. The data captured from geological logging is of appropriate standard, focus and detail to support future Mineral Resource estimations, mining studies and metallurgical studies.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Diamond core is cut using an electric Clipper saw. Where necessary due to extreme fracturing or friability, core is sampled by parting and grab. Half or quarter core is submitted for analysis and half core is retained. Field duplicates are collected and submitted for analysis at regular intervals throughout the drilling campaigns. Approximately More than 1% 2% of core samples are duplicated and quarter core submitted for analysis. Sample weights are such that the entire sample submitted to the laboratory is dried, crushed and pulverised to nominally minus 75 microns in an LM3 or LM5 pulveriser. From this pulp a nominally 200 gram subsample is split and retained. From the 200 gram pulp a 50 gram subsample is taken for fire assay charge and AAS determination of gold content. Samples have an additional subsample analysed for a suite of elements by four acid digest with ICP-OES elemental determination. Subsampling methods employed throughout the laboratory process are appropriate for the material and deposit type. Grind checks are conducted at a frequency of 2% of samples from every batch processed.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Drill samples are subject to fire assay of a 50 gram pulverised subsample giving total gold analysis of a representative sample of the in-situ material determined by atomic absorption spectrometry to a lower detection limit of 0.005 parts per million gold. Selected Samples have an additional subsample analysed for a suite of elements by four acid digest with ICP-OES elemental determination to various detection limits. Approximately 15% of all samples submitted are for quality control purposes. Field duplicates are collected at regular intervals throughout the sampling process and analysed with the primary samples. Approximately More than 1% 2% of core samples are duplicated. Commercially prepared Standard Reference Materials, including coarse blank material, are submitted with each batch of samples to monitor potential contamination in the preparation process. No geophysical methods were used for elemental determinations.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All drilling data including significant intersections is verified and validated by other geologists or Competent Persons within the organisation. Dedicated twinning of holes is being employed in a limited capacity, where possible, to verify mineralisation intersected in previous drilling campaigns. Current drilling is designed to verify and confirm diamond drilling intersections with respect to location, nature and tenor of mineralisation. Drilling data is manually and digitally captured according to written procedures and a library of standard logging codes appropriate to this project and purpose. Manually captured data is transferred to digital templates where it is validated and then loaded to an externally managed and maintained database, again with validation protocols. Original data and reports are stored at the Company's Headquarters. Raw assay data is provided to the external database managers where it is loaded to the database, securely stored and quarantined.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All planned drill holes and drilled hole collars are surveyed using Electronic Total Station (ETS) instrument. Drill hole trajectories are measured using Reflex EZ-Trac or Reflex EZ-Gyro down hole survey tools. Drill rig alignment is controlled using Reflex TN14 Gyro Compass. Grid is Philippine Reference System of 1992 (PRS92) and Vertical Datum is referenced to mean sea level. Surface topographic and location surveys are by GNSS-RTK. Positioning is calibrated against pre-

Criteria	JORC Code explanation
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.
Orientation of data in relation to geological structure Sample security	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. The measures taken to ensure sample security.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.

Commentary

drilling.

report.

campaign.

underground mine.

•

•

•

•

•

•

•

are conducted using ETS.

underground mine.

Mineral Resource estimation.

established primary planimetric survey control with tie-in to the PRS92. Underground surveys

Drill holes are designed to provide nominally 40

metre to 80 metre spaced pierce points of the target horizon to both infill drill coverage and

confirm mineralisation evident from existing

designed to intersect the mineralisation in an

confidently modelled, notwithstanding the limitations on drilling positions and drill hole orientations as a function of operating in an

The drilling data is intended to be used in a

Drill hole intersections are calculated and

The spacing, depth and orientation of drill holes is

optimal orientation for the mineralisation controls and to allow continuity of the mineralisation to be

reported as length weighted averages of raw assay data. Parameters for calculation are detailed with the tables of results included in the body of the

The primary controls on the gold mineralisation

Drill holes in this campaign are designed to intersect the mineralisation with intersection

where possible, again notwithstanding the

Chain of custody for samples is managed by

Tribune personnel and contractors on site. Samples are securely stored on site and

reviewed for accuracy and adherence to

transported to the Intertek Surigao Laboratory.

Data and data collection methods are continuously

procedures by Tribune and Principal Contractor personnel. No material issues have been noted. No official audits have been undertaken at this stage.

limitations on drilling positions and drill hole orientations as a function of operating in an

are presently reasonably well understood and are

being confirmed in the initial stages of this drilling

lengths less than twice the true width of the lode,

\geq	Criteria	JORC Code explanation	Commentary
	Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Work was conducted within the 729 Area of the Diwalwal Mineral Reservation, located approximately 120km northeast of Davao City on Mindanao Island in the Republic of the Philippines. Tribune has a relevant interest in the 729 Area. All tenure is secure and in good standing with no known impediments.
	Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	• Exploration, prospecting and small scale mining has been conducted within and adjacent to the tenement over a period of several decades since significant gold was discovered in 1983. Drilling of the Balite Vein was undertaken by the Philippine Mining Development Corporation during 2005 to 2007.
	Geology	• Deposit type, geological setting and style of mineralisation.	• Target is epithermal vein gold-silver mineralisation. Known veins are of low sulphidation epithermal type.
	Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Details of the location, orientation, depth and significant intersections of drill holes are provided in the body of the report to which this table is appended.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut- off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Significant intersections are reported as length weighted averages of all samples within the composite interval. Criteria used to calculate significant intersections can vary and are presented with each table of results. No top cut of grades has been applied to the results reported. Significant intersections are reported in the context of any likely mining extraction scenario. In this case any future mining would be by underground methods and as such significant intersections are reported above relevant cutoff grades with limited internal dilution included.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	• Significant intersections are reported as down hole length together with an estimation of true width where that estimate is possible.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Significant intersections and appropriate sectional views of drill holes and intersections are presented in the body of the report to which this table refers.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All significant intersections from the relevant drilling campaign and the interpretation of those results are reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results: geochemical 	 Geological logging and geochemical analysis of completed drill holes has demonstrated that the quartz vein intervals are generally consistent in location, width and tenor relative to historic drilling. Further analysis and modelling is required as results are received and the

Criteria	JORC Code explanation	Commentary
	survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	exploration program progresses.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Step out drilling will be undertaken to the East to test for down dip and lateral extensions to the Balite Vein system. upon completion of this confirmatory drilling phase.

 Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg 	 Diamond Core Drilling techniques were employed. Diamond core was sampled over intervals ranging from 0.2 metres to 2.55 metres length by electric core saw cut. Half core or quarter core samples are submitted for analysis. All samples submitted for analysis are pulverised to nominally minus 75 microns and a 50-gram subsample is split off for fire assay AAS determination of gold. Samples are also analysed for a multielement suite by four acid digest optical emission spectrometry.

Criteria	JORC Code explanation	Commentary
	submarine nodules) may warrant disclosure of detailed information.	
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Diamond Core drilling methods were employed. Diamond core size is NQ2. NQ2 core was collected with 1.5 metre or 3 metre standard barrel. Diamond core holes were drilled from underground platforms up to 530.7 metres in length. NQ2 core is orientated using Reflex ACT II orientation tool.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Diamond core recovery is physically measured and recorded every run. No sample bias is suspected nor determined.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Diamond Core logging is both qualitative and quantitative. All core is logged for lithology, oxidation, texture, mineralisation, alteration, veining, sample quality and recovery. In addition, dip and dip direction details of structures, contacts, fabric and veins are captured from definitively orientated core using a Reflex IQ Logger tool. Core is photographed prior to sampling. Selected core samples especially at the ore zone are also subject to specific gravity determination. The data captured from geological logging is of appropriate standard, focus and detail to support future Mineral Resource estimations, mining studies and metallurgical studies.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the 	 Diamond core is cut using an electric Clipper saw. Where necessary due to extreme fracturing or friability, core is sampled by parting and grab. Half or quarter core is submitted for analysis and half core is retained. Field duplicates are collected and submitted for analysis at regular intervals throughout the drilling campaigns. More than 1% of core samples are duplicated and quarter core submitted for analysis. Sample weights are such that the entire sample submitted to the laboratory is dried, crushed and pulverised to nominally minus 75 microns in an LM3 or LM5 pulveriser. From this pulp a nominally 200 gram subsample is split and

Criteria	JORC Code explanation	Commentary
	 sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 retained. From the 200 gram pulp a 50 gram subsample is taken for fire assay charge and AAS determination of gold content. Samples have an additional subsample analysed for a suite of elements by four acid digest with ICP-OES elemental determination. Subsampling methods employed throughout the laboratory process are appropriate for the material and deposit type.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Drill samples are subject to fire assay of a 50 gram pulverised subsample giving total gold analysis of a representative sample of the in-situ material determined by atomic absorption spectrometry to a lower detection limit of 0.005 parts per million gold. Samples have an additional subsample analysed for a suite of elements by four acid digest with ICP-OES elemental determination to various detection limits. Approximately 15% of all samples submitted are for quality control purposes. Field duplicates are collected at regular intervals throughout the sampling process and analysed with the primary samples. More than 1% of core samples are duplicated. Commercially prepared Standard Reference Materials, including coarse blank material, are submitted with each batch of samples to monitor potential contamination in the preparation process. No geophysical methods were used for elemental determinations.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All drilling data including significant intersections is verified and validated by other geologists or Competent Persons within the organisation. Dedicated twinning of holes is being employed in a limited capacity, where possible, to verify mineralisation intersected in previous drilling campaigns. Current drilling is designed to verify and confirm diamond drilling intersections with respect to location, nature and tenor of mineralisation. Drilling data is manually and digitally captured according to written procedures and a library of standard logging codes appropriate to this project and purpose. Manually captured data is transferred to digital templates where it is validated and then loaded to an externally managed and maintained database, again with validation protocols. Original data and reports are stored at the Company's Headquarters. Raw assay data is provided to the external database managers where it is loaded to the database, securely stored and quarantined.

Criteria	JORC Code explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All planned drill holes and drilled hole collars are surveyed using Electronic Total Station (ETS) instrument. Drill hole trajectories are measured using Reflex EZ-Trac or Reflex EZ-Gyro down hole survey tools. Drill rig alignment is controlled using Reflex TN14 Gyro Compass. Grid is Philippine Reference System of 1992 (PRS92) and Vertical Datum is referenced to mean sea level. Surface topographic and location surveys are by GNSS-RTK. Positioning is calibrated against preestablished primary planimetric survey control with tie-in to the PRS92. Underground surveys are conducted using ETS.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill holes are designed to provide nominally 40 metre to 80 metre spaced pierce points of the target horizon to both infill drill coverage and confirm mineralisation evident from existing drilling. The spacing, depth and orientation of drill holes is designed to intersect the mineralisation controls and to allow continuity of the mineralisation to be confidently modelled, notwithstanding the limitations on drilling positions and drill hole orientations as a function of operating in an underground mine. The drilling data is intended to be used in a Mineral Resource estimation. Drill hole intersections are calculated and reported as length weighted averages of raw assay data. Parameters for calculation are detailed with the tables of results included in the body of the report.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The primary controls on the gold mineralisation are presently reasonably well understood and are being confirmed in the initial stages of this drilling campaign. Drill holes in this campaign are designed to intersect the mineralisation with intersection lengths less than twice the true width of the lode, where possible, again notwithstanding the limitations on drilling positions and drill hole orientations as a function of operating in an underground mine.
Sample security	• The measures taken to ensure sample security.	• Chain of custody for samples is managed by Tribune personnel and contractors on site. Samples are securely stored on site and transported to the Intertek Surigao Laboratory.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• Data and data collection methods are continuously reviewed for accuracy and adherence to procedures by Tribune and Principal Contractor personnel. No material issues have been noted. No

Criteria	JORC Code explanation	Commentary
		official audits have been undertaken at this stage.

Section 2 Reporting of Exploration Results			
	Criteria	JORC Code explanation	Commentary
	Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Work was conducted within the 729 Area of the Diwalwal Mineral Reservation, located approximately 120km northeast of Davao City on Mindanao Island in the Republic of the Philippines. Tribune has a relevant interest in the 729 Area. All tenure is secure and in good standing with no known impediments.
	Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	• Exploration, prospecting and small scale mining has been conducted within and adjacent to the tenement over a period of several decades since significant gold was discovered in 1983. Drilling of the Balite Vein was undertaken by the Philippine Mining Development Corporation during 2005 to 2007.
	Geology	• Deposit type, geological setting and style of mineralisation.	• Target is epithermal vein gold-silver mineralisation. Known veins are of low sulphidation epithermal type.
	Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the 	 Details of the location, orientation, depth and significant intersections of drill holes are provided in the body of the report to which this table is appended.

a of Exploration Re culto

Competent Person should

Criteria	JORC Code explanation	Commentary
	clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut- off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Significant intersections are reported as length weighted averages of all samples within the composite interval. Criteria used to calculate significant intersections can vary and are presented with each table of results. No top cut of grades has been applied to the results reported. Significant intersections are reported in the context of any likely mining extraction scenario. In this case any future mining would be by underground methods and as such significant intersections are reported above relevant cutoff grades with limited internal dilution included.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Significant intersections are reported as down hole length together with an estimation of true width where that estimate is possible.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Significant intersections and appropriate sectional views of drill holes and intersections are presented in the body of the report to which this table refers.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All significant intersections from the relevant drilling campaign and the interpretation of those results are reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological 	• Geological logging and geochemical analysis of completed drill holes has demonstrated that the quartz vein intervals are generally consistent in location, width and tenor relative to historic

Criteria	JORC Code explanation	Commentary
	observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	drilling. Further analysis and modelling is required as results are received and the exploration program progresses.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• Step out drilling will be undertaken to the East to test for down dip and lateral extensions to the Balite Vein system.

Seven Mile Hill Project, WA

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Non core samples were derived from cone splits from each metre drilled. No geophysical tools were used. Samples were considered representative of each metre drilled. The samples were geologically logged to assess potential mineralization. Reverse circulation drilling was used to obtain 1m samples which may be assayed via a 50 gram fire assay charge from 3kg sub samples. These individual samples will be assayed if the four metre composite samples return anomalous values. The composite samples were collected similarly to the single metre samples and will be assayed via similar methods.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	• Reverse Circulation (RC), non oriented and non core.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Recoveries were logged and recorded visually onto hardcopy paper logs. Recoveries were maximized via the use of a cyclone. The cyclone was cleaned out at regular intervals to avoid contamination of subsequent samples. No relationship between sample recovery and grade is considered likely, nor is any sample bias probable.

Criteria	JORC Code explanation	Commentary	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged 	 Non core chip samples were geologically logged at a suitable level of detail. No detailed geotechnical logging was possible. The logging was qualitative by its nature. 100% of all metres were logged. 	
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Non core samples were cone split, regardless of whether wet or dry. The sample collection is considered appropriate. Standard Reference samples (standards and blanks) were regularly inserted into the sample string. No duplicate sampling was undertaken. This can be carried out at a later date if required. The size of the sampling is considered appropriate for the nature of the mineralization being tested. 	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The assaying is being carried out by a reputable commercial lab using industry standard techniques. Assaying is considered to be total by its nature. No geophysical tools have been used. Standards and blanks have been extensively used. 	
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No results have been received to date. No twinned holes have been completed to date. Data is primarily collected onto hand written sheets then data entered into an electronic database where it is checked for gross errors. Data storage is by duplicate electronic copies and the paper originals. 	

1

Criteria	JORC Code explanation	Commentary
		No assays have been received to date.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Holes have been picked up using a hand held GPS with a nominal accuracy of 5 metres. Down hole surveys were via gyroscopic tool, with measurements taken at regular intervals on completion of each hole. Grid system is Map Grid of Australia. Topographical control is from a digital terrain model derived from an earlier aeromagnetic survey, corrected where necessary using government survey bench marks. This control is considered very good and accurate to the nearest metre.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The holes are irregularly spaced and designed to follow up previous aircore and RAB intersections. Holes vary from 20m by 200m to 40m by 400m spacings. The data spacings are not sufficient to allow any resource. Initial sampling for lab submission are 4 metre composites. Any one metre samples will be assayed should the composites return anomalous values.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The drillholes were drilled approximately at right angles to any known mineralized structures. The known orientation has been tested in a suitable direction and no bias is suspected.
Sample security	• The measures taken to ensure sample security.	• Samples were collected daily and secured in a locked storage facility before being dispatched to the lab at regular intervals.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 No results have been received from this drilling to date.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteri a	JORC Code explanation	Commentary
Minera l	 Type, reference name/number, location and ownership including agreements or 	• The drilling to date has been completed on M26/563, M15/1291, 1490,

Criteri a	JORC Code explanation	Commentary
teneme nt and land tenure status	 material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 E15/1664. These are all held jointly by Tribune Resources and Rand Mining. These are located about 10km west of Kalgoorlie. No third party royalties are known to exist, nor are there any historical sites, native title interests, or other areas of concern. The tenements were granted by the Minister of Mines in Western Australia with no unusual conditions.
Explor ation done by other parties	• Acknowledgment and appraisal of exploration by other parties.	• All previous work has been conducted by the company and its partner.
Geolog y	• Deposit type, geological setting and style of mineralisation.	• The geological setting is Archaean Greenstone belt. The geological setting of the known mineralization along strike is generally shear hosted with quartz veining and sulphide alteration. Known mineralization along strike occurs in many widely different rock types.
Drill hole Inform ation	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 The collar details of the holes drilled during the reporting period are listed elsewhere in this report. No material information has been excluded.
Data aggreg ation metho ds	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical 	 No results have been received from this drilling to date.

Criteri	JORC Code explanation	Commentary
a		
	 examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relatio nship betwee n minera lisatio n widths and interce pt lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 No results have been received from this drilling to date.
Diagra ms	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 No results have been received from this drilling to date.
Balanc ed reporti ng	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 No results have been received from this drilling to date.
Other substa ntive explor ation data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 No results have been received from this drilling to date.
Furthe r work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• Further work may consist of reassying of single metre samples from the holes drilled to date. For the southern area drilling is continuing. For the western area further work will consist of follow up aircore drilling.

Appendix 5B

Mining exploration entity or oil and gas exploration entity quarterly cash flow report

Name of entity			
Tribune Resources Ltd (ASX:TBR)			
ABN	Quarter ended ("current quarter")		
11 009 341 539	30 September 2021		

Cons	olidated statement of cash flows	Current quarter \$A'000	Year to date (3 months) \$A'000
1.	Cash flows from operating activities		
1.1	Receipts from customers	36,831	36,831
1.2	Payments for		
	(a) exploration & evaluation (if expensed)	(2,744)	(2,744)
	(b) development	(908)	(908)
	(c) production	(17,724)	(17,724)
	(d) staff costs	(514)	(514)
	(e) administration and corporate costs	(1,364)	(1,364)
1.3	Dividends received (see note 3)	-	-
1.4	Interest received	5	5
1.5	Interest and other costs of finance paid	(16)	(16)
1.6	Income taxes paid	(6,053)	(6,053)
1.7	Government grants and tax incentives	-	-
1.8	Other (provide details if material)	-	-
1.9	Net cash from / (used in) operating activities	7,513	7,513

2.	Ca	sh flows from investing activities		
2.1	Pay	ments to acquire:		
	(a)	entities	-	-
	(b)	tenements	-	-
	(c)	property, plant and equipment	(545)	(545)
	(d)	exploration & evaluation (if capitalised)	(3,581)	(3,581)
	(e)	investments	-	-
	(f)	other non-current assets	-	-

Con	solidated statement of cash flows	Current quarter \$A'000	Year to date (3 months) \$A'000
2.2	Proceeds from the disposal of:		
	(a) entities	-	-
	(b) tenements	-	-
	(c) property, plant and equipment	36	36
	(d) investments	-	-
	(e) other non-current assets	-	-
2.3	Cash flows from loans to other entities	-	-
2.4	Dividends received (see note 3)	-	-
2.5	Other (provide details if material)	-	-
2.6	Net cash from / (used in) investing activities	(4,090)	(4,090)

3.	Cash flows from financing activities		
3.1	Proceeds from issues of equity securities (excluding convertible debt securities)	-	-
3.2	Proceeds from issue of convertible debt securities	-	-
3.3	Proceeds from exercise of options	-	-
3.4	Transaction costs related to issues of equity securities or convertible debt securities	-	-
3.5	Proceeds from borrowings	-	-
3.6	Repayment of borrowings	(621)	(621)
3.7	Transaction costs related to loans and borrowings	-	-
3.8	Dividends paid	-	-
3.9	Other (provide details if material)	-	-
3.10	Net cash from / (used in) financing activities	(621)	(621)

4.	Net increase / (decrease) in cash and cash equivalents for the period		
4.1	Cash and cash equivalents at beginning of period	4,163	4,163
4.2	Net cash from / (used in) operating activities (item 1.9 above)	7,513	7,513
4.3	Net cash from / (used in) investing activities (item 2.6 above)	(4,090)	(4,090)
4.4	Net cash from / (used in) financing activities (item 3.10 above)	(621)	(621)

Consolidated statement of cash flows		Current quarter \$A'000	Year to date (3 months) \$A'000
4.5	Effect of movement in exchange rates on cash held	(4)	(4)
4.6	Cash and cash equivalents at end of period	6,961	6,961

5.	Reconciliation of cash and cash equivalents at the end of the quarter (as shown in the consolidated statement of cash flows) to the related items in the accounts	Current quarter \$A'000	Previous quarter \$A'000
5.1	Bank balances	6,911	4,113
5.2	Call deposits	50	50
5.3	Bank overdrafts	-	-
5.4	Other (provide details)	-	-
5.5	Cash and cash equivalents at end of quarter (should equal item 4.6 above)	6,961	4,163

6.	Payments to related parties of the entity and their
	associates

- 6.1 Aggregate amount of payments to related parties and their associates included in item 1
- 6.2 Aggregate amount of payments to related parties and their associates included in item 2

Current quarter \$A'000	
290	
-	

7.	Financing facilities Note: the term "facility' includes all forms of financing arrangements available to the entity. Add notes as necessary for an understanding of the sources of finance available to the entity.	Total facility amount at quarter end \$A'000	Amount drawn at quarter end \$A'000
7.1	Loan facilities	-	-
7.2	Credit standby arrangements	-	-
7.3	Other (please specify)	2,673	2,673
7.4	Total financing facilities	2,673	2,673
7.5	Սոսsed financing facilities available at զւ	uarter end	-
7.6	Include in the box below a description of eac rate, maturity date and whether it is secured	ch facility above, including or unsecured. If anv add	the lender, interest itional financing

7.6 Include in the box below a description of each facility above, including the lender, interest rate, maturity date and whether it is secured or unsecured. If any additional financing facilities have been entered into or are proposed to be entered into after quarter end, include a note providing details of those facilities as well.

Item 7.3 - Various finance leases (EKJV Leases) cover underground mining equipment. The terms range between 30-36months. Details relating to lease providers and rates is considered commercially sensitive.

_		
8.	Estimated cash available for future operating activities	\$A'000
8.1	Net cash from / (used in) operating activities (Item 1.9)	7,513
8.2	Capitalised exploration & evaluation (Item 2.1(d))	(3,581)
8.3	Total relevant outgoings (Item 8.1 + Item 8.2)	3,932
8.4	Cash and cash equivalents at quarter end (Item 4.6)	6,961
8.5	Unused finance facilities available at quarter end (Item 7.5)	-
8.6	Total available funding (Item 8.4 + Item 8.5)	6,961
8.7	Estimated quarters of funding available (Item 8.6 divided by Item 8.3)	N/A

Note: if the entity has reported positive relevant outgoings (ie a net cash inflow) in item 8.3, answer item 8.7 as "N/A". Otherwise, a figure for the estimated quarters of funding available must be included in item 8.7

8.8 If Item 8.7 is less than 2 quarters, please provide answers to the following questions:

1. Does the entity expect that it will continue to have the current level of net operating cash flows for the time being and, if not, why not?

Ansv	ver: Not applicable
2.	Has the entity taken any steps, or does it propose to take any steps, to raise further cash to fund its operations and, if so, what are those steps and how likely does it believe that they will be successful?
Ansv	ver: Not applicable
3.	Does the entity expect to be able to continue its operations and to meet its business objectives and, if so, on what basis?
Ansv	ver: Not applicable

Compliance statement

- 1 This statement has been prepared in accordance with accounting standards and policies which comply with Listing Rule 19.11A.
- 2 This statement gives a true and fair view of the matters disclosed.

Date: 28 October 2021

Authorised by: By the Board (Name of body or officer authorising release – see note 4)

Notes

- This quarterly cash flow report and the accompanying activity report provide a basis for informing the market about the entity's activities for the past quarter, how they have been financed and the effect this has had on its cash position. An entity that wishes to disclose additional information over and above the minimum required under the Listing Rules is encouraged to do so.
- 2. If this quarterly cash flow report has been prepared in accordance with Australian Accounting Standards, the definitions in, and provisions of, AASB 6: Exploration for and Evaluation of Mineral Resources and AASB 107: Statement of Cash Flows apply to this report. If this quarterly cash flow report has been prepared in accordance with other accounting standards agreed by ASX pursuant to Listing Rule 19.11A, the corresponding equivalent standards apply to this report.
- 3. Dividends received may be classified either as cash flows from operating activities or cash flows from investing activities, depending on the accounting policy of the entity.
- 4. If this report has been authorised for release to the market by your board of directors, you can insert here: "By the board". If it has been authorised for release to the market by a committee of your board of directors, you can insert here: "By the [name of board committee – eg Audit and Risk Committee]". If it has been authorised for release to the market by a disclosure committee, you can insert here: "By the Disclosure Committee".
- 5. If this report has been authorised for release to the market by your board of directors and you wish to hold yourself out as complying with recommendation 4.2 of the ASX Corporate Governance Council's Corporate Governance Principles and Recommendations, the board should have received a declaration from its CEO and CFO that, in their opinion, the financial records of the entity have been properly maintained, that this report complies with the appropriate accounting standards and gives a true and fair view of the cash flows of the entity, and that their opinion has been formed on the basis of a sound system of risk management and internal control which is operating effectively.