

Vango continues to confirm open-pit potential at Marymia

Results received from first 3 priority open-pit targets – results pending from remaining 8 open-pits

Highlights

- Assay results received from drilling at Parrot and Apollo open pit targets in Vango's 2021 drilling campaign
- Drilling targeted un-mined high-grade mineralisation below the Parrot and Apollo open-pits, previously only mined to shallow depths
- In conjunction with historic intersections, the results continue to successfully confirm the continuity of mineralised structures below the open-pits Parrot open-pit results;
 - o 3m @ 1.3 g/t Au from 124m in VPARC0002
 - o 1m @ 2.5 g/t Au from 177m in VPARC0001
 - 12m @ 2.6 g/t Au from 43m in PARC0073
 - 2m @ 11.1 g/t Au from 99m in PBR7977
 - 8m @ 1.6 g/t Au from 67m in PBRD1753
- Apollo open-pit results;
 - o 2m @ 6.0 g/t Au from 80m in VAPRC0003
 - 6m @ 19.7 g/t Au from 50m in ARC0067
 - 4m @ 3.7 g/t Au from 56m in ARC0074
 - 4m @ 11.0 g/t Au from 54m in ARC0105
 - 8m @ 2.5 g/t Au from 52m in ARC0115
 - 3m @ 15.3 g/t Au from 40m in ARC0129
- Results continue to strengthen the significant open-pit potential at Marymia, and
 Phase 2 drilling at both pits is planned to further define resource potential

Vango Mining Limited (Vango, ASX: VAN) is pleased to announce further gold intersections from the Company's 2021 drilling campaign at its flagship Marymia Gold Project (Marymia, the Project) in the Mid-West region of Western Australia.

The latest assay results are from seven reverse circulation (RC) drill holes at the priority Parrot and Apollo open-pit targets – four holes for 815m at Parrot and three holes for 471m at Apollo. These holes follow-on from the recently released high-grade gold intersections from the Skyhawk open-pit (ASX: VAN 14/09/2021 and 21/09/2021).

Vango's 2021 drilling campaign is targeting open pits (Figure 1) not currently part of the Marymia JORC 2012 resource - 1.02Moz @ 3.0 g/t Au (ASX: VAN 20/05/2020). In conjunction with results from

previous drilling, it is designed to add significant near-surface resources amenable to open pit mining, as part of any future mining operation at the Project.

The drilling at the Parrot and Apollo open-pits targeted the identification of un-mined high-grade mineralisation below these pits, which were previously mined to shallow depths only at a time of low gold prices.

The results have successfully confirmed the continuity of the mineralised structures below the pits and in areas of previous gold mineralisation, and continue to strengthen the significant open-pit potential at Marymia.

Highlights results, including intersections from previous drilling, include;

Parrot open-pit

- 3m @ 1.3 g/t Au from 124m in VPARC0003
- 1m @ 2.5 g/t Au from 177m in VPARC0001
- 12m @ 2.6 g/t Au from 43m in PARC0073
- 2m @ 11.1 g/t Au from 99m in PBR7977
- 8m @ 1.6 g/t Au from 67m in PBRD1753

Apollo open-pit

- 2m @ 6.0 g/t Au from 80m in VAPRC0003
- 1m @ 1.5 g/t Au from 48m in VAPRC0002
- 6m @ 19.7 g/t Au from 50m in ARC0067
- 4m @ 3.7 g/t Au from 56m in ARC0074
- 4m @ 11.0 g/t Au from 54m in ARC0105
- 8m @ 2.5 g/t Au from 52m in ARC0115
- 3m @ 15.3 g/t Au from 40m in ARC0129

Significant Assay results from current drilling are shown in Table 3.

At Parrot (Figures 1 and 2), broad zones of elevated gold values associated with sulphides within the mineralising structures were returned, confirming the continuation of mineralised zones from historical drilling. The results from the Apollo drilling (Figures 3 and 4) have enhanced a gold mineralised zone, which includes un-mined previous high-grade intercepts (listed in this announcement).

Vango is now planning for a second phase of drilling at the Parrot and Apollo open-pits (as well as at the Skyhawk open-pit) to further test the mineralised zones to establish the tenor of the mineralisation and confirm potential resources.

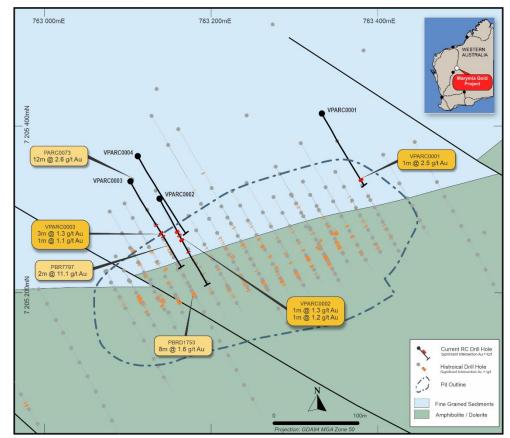


Figure 1: Parrot Drill Plan - Current Drilling.

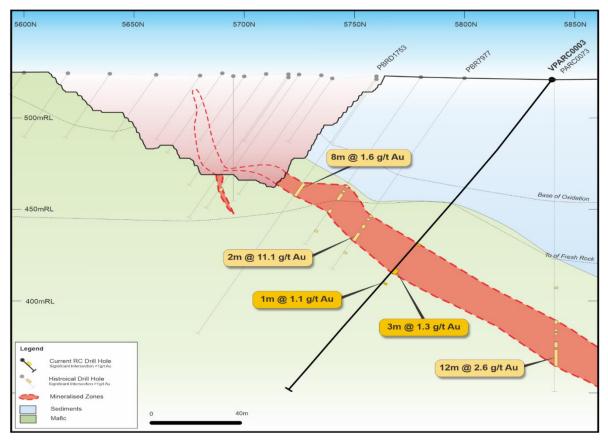


Figure 2: Cross-section Parrot 13200mE

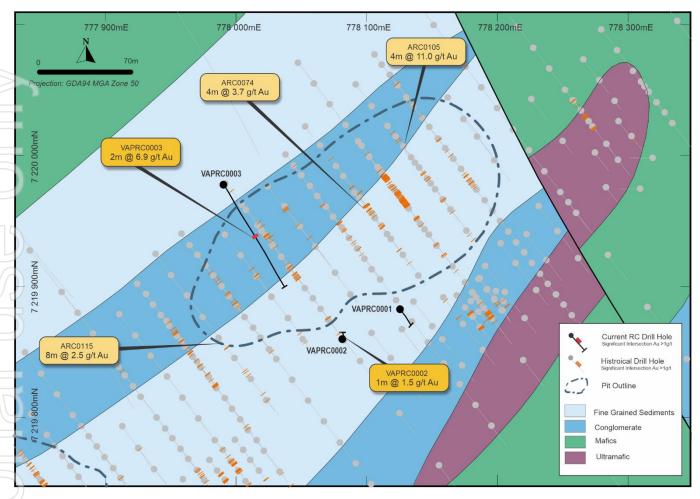


Figure 3: Apollo Plan view - current drilling.

2021 Drilling Campaign Progress and Next Steps

Vango is targeting 11 priority open-pits in its 2021 drilling campaign (Figure 5). Drilling is designed to add resources to the substantial existing Marymia resource base, and to deliver 'critical mass' to Marymia's resource base to support a proposed stand-alone mining operation at the Project.

The first phase of drilling in all 11 open pits has now been completed and consisted of 8,914 metres of RC drilling across 56 holes, as outlined in Table 1 below.

All results have now been reported from the Skyhawk, Parrot and Apollo open pits, and results from drilling at the remaining 8 open-pits will be progressively released as they become available.

Vango plans to conduct a follow-up, second phase of drilling at all targets that deliver positive results in the completed first round of drilling, to test for further extensions of gold mineralisation to add to the Marymia resource base.

Prospect	Holes Drilled	Metres
Skyhawk	7	1148
Parrot	4	815
Apollo	3	471
Prickleys	8	1196
Ibis	5	813
Rosella	5	801
Exocet	5	786
Speckled	5	843
Pigeon	5	690
Redfin	5	606
Kookaburra	4	745
Total	56	8914

Table 1: Holes and metres drilled to date for each open pit

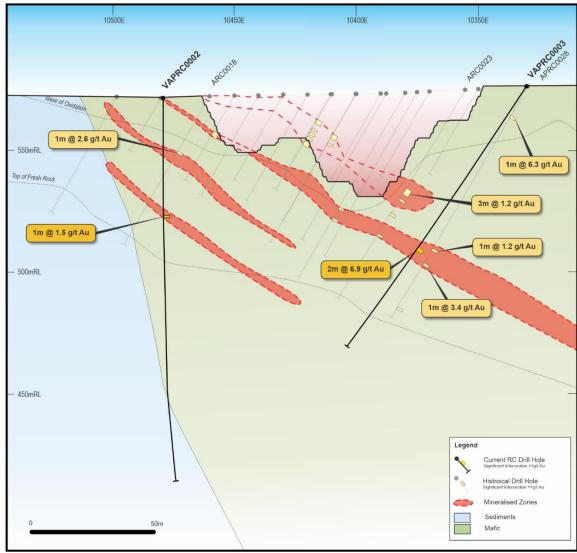


Figure 4: Apollo Cross Section 18750mN

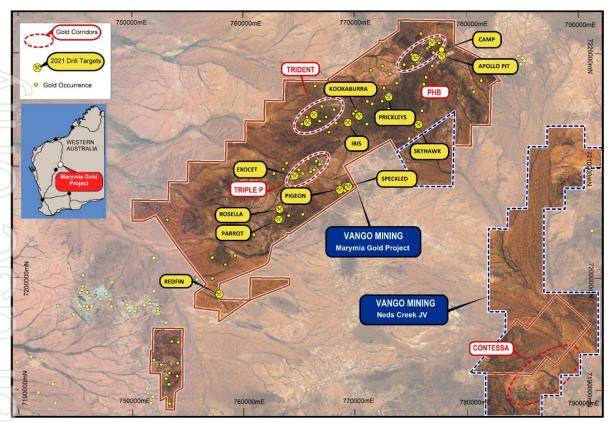


Figure 5: Marymia Gold Project showing the 11 priority open pits. First results are from Skyhawk open-pit – circled in red

	Hole ID	MGA_N	MGA_E	RL	North	East	Depth	Dip	Az	Pit
	VAPRC0001	7219882	778126	650	18798.01	10487.44	157	-85	142.5	Parrot
=	VAPRC0002	7219859	778082	650	18749.1	10479.16	157	-90	143	Parrot
	VAPRC0003	7219977	777991	650	18747.98	10330.25	157	-56	145	Parrot
I	VPARC0001	7205415	763333	600	5798.805	13439.35	193	-61	150.66	Apollo
	VPARC0002	7205313	763138	600	5804.52	13219.45	199	-54.92	152.23	Apollo
4	VPARC0003	7205333	763103	600	5839.004	13198.6	206	-57.31	150.84	Apollo
5	VPARC0004	7205364	763112	600	5861.704	13221.53	217	-62.61	152.03	Apollo

Table 2: 2021 Drilling - Parrot and Apollo

Authorised for release by the Board of Vango Mining Limited.

-ENDS-

For further information, contact:

Bruce McInnes James Moses
Chairman Investor Relations

info@vangomining.com james@mandatecorporate.com.au

+61 418 183 466 +61 420 991 574

The information in this announcement is extracted from reports lodged as market announcements:

- TSX-V: SGI Superior Gold Inc., Corporate Website <u>www.superior-gold.com</u>
- ASX: VAN 18/04/2019 "New Trident High-Grade Resource Upgrade"
- ASX: VAN 20/05/2020 "Vango Mineral Increases to One Million Ounces"
- ASX: VAN 14/09/2021 "Drill Results Confirm Potential Open-Pit Model at Marymia"
- ASX: VAN 21/09/2021 "Wide High-Grade Gold Intercept at Skyhawk"

The Company confirms that it is not aware of any new information that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original market announcements.

About Vango Mining

Vango Mining Limited (ASX: VAN) is a minerals exploration mining company with ambitions of becoming a high-grade WA gold miner by developing the 100% owned Marymia Gold Project (**Marymia**) in the mid-west region of Western Australia. The Project comprises 45 granted mining leases over 300km. It has an established high-grade resource of 1Moz @ 3g/t Au (ASX: VAN 20/05/2020), underpinned by the Trident Deposit, whose resource is 410koz @ 8g/t Au (ASX: VAN 20/05/2020), with immediate extensions open at depth/along strike.

The Marymia Project has the potential to become one of Australia's largest high-grade producers. The Greenstone Belt in the Marymia region includes six major gold corridors, which remain largely un-tested beyond 100m depth supported with an extensive drilling and geophysical database. Previous mining between 1992-2001, produced 580,000 ounces of gold almost entirely from open-pits.

Vango is focused on growing its high-grade gold resource to support a proposed stand-alone gold mining and production operation at Marymia. The Project is located along strike, immediately to the north of Superior Gold's (TSX-V: SGI) Plutonic Gold Mine which has produced more than 5.5Moz of gold.

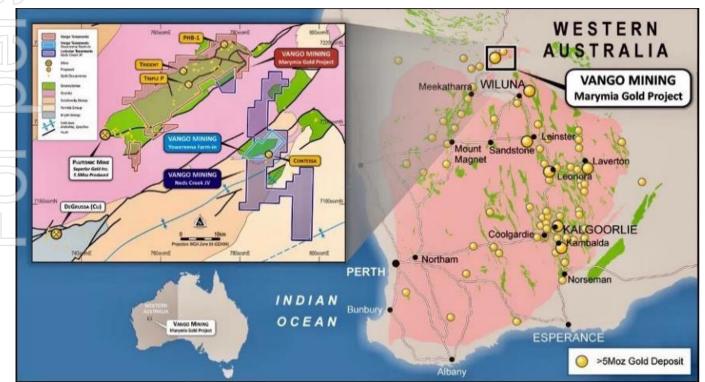


Figure 6: Location of Marymia Gold Project in the Yilgarn block of Western Australia.

JORC compliant Mineral Resource Estimate (ASX:VAN Announcement dated 20 May 2020)

N	MARYMIA GOLD PROJECT JORC 2012 MINERAL RESOURCE ESTIMATE - MAY 2020										
Deposit	Cut-off		Indicated			Inferred			Total		
Mineral Resource	Au g/t	Κt	g/t	K oz	Κt	g/t	Oz	Kt	g/t	K oz	
Open Pits	0.5	5,300	1.8	311	2,950	1.6	150	8,250	1.7	461	
Underground	3.0	1,142	9.6	352	992	5.9	189	2,134	7.9	541	
Total		6,442	3.2	663	3,942	2.7	339	10,384	3.0	1,002	

^{*} VAN confirms all material assumptions and technical parameters underpinning the Resource Estimate and Reserve continue to apply, and have not materially changed as per Listing Rule 5.23.2

Mineral Resources reported in accordance with the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (Joint Ore Reserves Committee Code – JORC 2012 Edition). Open pit resources reported within optimised conceptual pit shells at A\$2,500/oz gold price above a 0.5 g/t Au cut off and include oxide, transition and fresh material.

Trident underground resources are retained as first reported 18 April 2019 above a 3.0 g/t Au cut-off grade, and modelled at a gold price of A\$2,000/oz, on the basis that the information has not materially changed since last reported. Other underground resources reported above a 3.0 g/t Au cut off (with minor 2.5 g/t Au cut-off material included for continuity purposes) and includes fresh material only. Totals may differ due to rounding, Mineral Resources reported on a dry in-situ basis.

Competent Persons Statements

The Statement of Mineral Resource Estimates has been compiled by Dr. Spero Carras who is a full-time employee of Carras Mining Pty Ltd and a Fellow of the Australian Institute of Mining and Metallurgy ("FAusIMM"). Dr. Carras has sufficient experience, including over 40 years' experience in gold mine evaluation, relevant to the style of mineralisation and type of deposits under consideration to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee ("JORC") Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves. Dr. Carras consents to the inclusion in this report of the matters based on this information in the form and context in which it appears. The information in this report that relates to exploration results has been reviewed, compiled and fairly represented by Mr David Jenkins, a Member of the Australian Institute of Geologists and a full time employee of Terra Search Pty Ltd. Mr Jenkins has sufficient experience, including over 29 years' experience in exploration and resource evaluation relevant to the style of mineralisation and type of deposits under consideration to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee ('JORC') Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves. Mr Jenkins consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.

Forward Looking Statements

This announcement contains 'forward-looking information' that is based on the Company's expectations, estimates and projections as of the date on which the statements were made. This forward-looking information includes, among other things, statements with respect to the Company's business strategy, plans, development, objectives, performance, outlook, growth, cash flow, projections, targets and expectations, mineral reserves and resources, results of exploration and related expenses. Generally, this forward-looking information can be identified by the use of forward-looking terminology such as 'outlook', 'anticipate', 'project', 'target', 'potential', 'likely', 'believe', 'estimate', 'expect', 'intend', 'may', 'would', 'could', 'should', 'scheduled', 'will', 'plan', 'forecast', 'evolve' and similar expressions. Persons reading this announcement are cautioned that such statements are only predictions, and that the Company's actual future results or performance may be materially different. Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the Company's actual results, level of activity, performance or achievements to be materially different from those expressed or implied by such forward-looking information.

Table 3 Historical Drill collars Apollo and Parrot

Hole ID	MGA_N	MGA_E	RL	North	East	Depth	Dip	Az	Pit
PARC0073	7205335	763103.3	599	5840.8	13199.9	170	-90	0	Parrot
PBR7977	7205300	763123.2	600	5800	13200	120	-60	150	Parrot
PBRD1753	7205265	763142.7	601	5760	13200	162	-60	150	Parrot
ARC0018	7219875	778070.5	650.8	18749.7	10460.2	70	-60	142	Apollo
ARC0023	7219958	778007.4	653.5	18750.0	10355.4	100	-60	141	Apollo
APRC0028	7219979	777991.8	654.9	18750.0	10329.7	110	-60	141	Apollo
ARC0067	7219719	777685.8	651	18349.5	10351.3	89	-60	142	Apollo
ARC0074	7219972	778090.4	651	18824.1	10394.9	75	-60	142	Apollo
ARC0105	7220007	778128.1	650	18875.4	10389.7	75	-60	142	Apollo
ARC0115	7219909	777950	651	18674.3	10360.2	80	-60	142	Apollo
ARC0129	7219750	777757.6	649	18425.5	10369.8	57	-60	142	Apollo

Table 4 Significant Assays current drilling

Hole ID	Sample	From	То	Sample Type	Au	Au1	Prospect
VAPRC0001	5211569	56	57		-0.005		APOLLO
VAPRC0001	5211570	57	58	INT	0.2		APOLLO
VAPRC0001	2021255	58	62	СОМР	0.049		APOLLO
VAPRC0001	2021256	62	66	COMP	0.01		APOLLO
VAPRC0002	5211710	19	20	INT	0.081		APOLLO
VAPRC0002	5211711	20	21	. INT	0.124		APOLLO
VAPRC0002	5211712	21	22	INT	0.169		APOLLO
VAPRC0002	5211713	22	23	INT	0.26		APOLLO
VAPRC0002	5211714	23	24	INT	0.14		APOLLO
VAPRC0002	2021265	24	28	COMP	0.175		APOLLO
VAPRC0002	5211719	28	29	INT	0.057		APOLLO
VAPRC0002	5211721	28	29	DUP	0.082		APOLLO
VAPRC0002	5211723	29	30	INT	0.093		APOLLO
VAPRC0002	2021266	29	33	COMP	0.214		APOLLO
VAPRC0002	5211724	30	31	. INT	0.27		APOLLO
VAPRC0002	5211725	31	32	INT	0.082		APOLLO
VAPRC0002	5211726	32	33	INT	0.056		APOLLO
VAPRC0002	2021267	33	37	COMP	0.017		APOLLO
VAPRC0002	2021268	37	41	СОМР	0.026		APOLLO
VAPRC0002	2021269	41	45	COMP	0.09		APOLLO
VAPRC0002	5211741	45	46	DUP	0.116		APOLLO
VAPRC0002	5211739	45	46	INT	0.133		APOLLO
VAPRC0002	5211743	46	47	INT	0.049		APOLLO
VAPRC0002	2021270	46	50	COMP	0.589		APOLLO
VAPRC0002	5211744	47	48	INT	0.114		APOLLO
VAPRC0002	5211745	48	49	INT	1.482		APOLLO
VAPRC0002	5211746	49	50	INT	0.115		APOLLO
VAPRC0003	5211953	69	70	INT	0.105		APOLLO
VAPRC0003	5211954	70	7:	. INT	0.12		APOLLO

Hole ID	Sample	From	То	Sample Type	Au	Au1	Prospect
VAPRC0003	5211955	71	72	INT	0.042		APOLLO
VAPRC0003	5211956	72	73	INT	0.169		APOLLO
VAPRC0003	5211957	73	74	INT	0.159		APOLLO
VAPRC0003	5211958	74	75	INT	0.19		APOLLO
VAPRC0003	5211961	75	76	DUP	0.234		APOLLO
VAPRC0003	5211959	75	76	INT	0.428		APOLLO
VAPRC0003	5211963	76	77	INT	0.239		APOLLO
VAPRC0003	2021302	76	80	COMP	0.444		APOLLO
VAPRC0003	5211964	77	78	INT	0.506		APOLLO
VAPRC0003	5211965	78	79	INT	0.31		APOLLO
VAPRC0003	5211966	79	80	INT	0.77		APOLLO
VAPRC0003	2021303	80	84	COMP	2.203		APOLLO
VAPRC0003	5211967	80	81	INT	8.655		APOLLO
VAPRC0003	5211968	81	82	INT	3.244		APOLLO
VAPRC0003	5211969	82	83	INT	0.485		APOLLO
VAPRC0003	5211970	83	84	INT	0.167		APOLLO
VAPRC0003	2021304	84	88	COMP	0.332		APOLLO
VAPRC0003	5211971	84	85	INT	0.665		APOLLO
VAPRC0003	5211972	85	86	INT	0.202		APOLLO
VAPRC0003 VAPRC0003	5211973 5211974	86 87	87 88	INT	0.124 0.145		APOLLO APOLLO
VAPRC0003	2021305	88	92	COMP	0.143		APOLLO
VPARC0001	5210675	112	113	INT	0.006		PARROT
VPARC0001	5210676	113	114	INT	0.007		PARROT
VPARC0001	5210677	114	115	INT	0.309		PARROT
VPARC0001	5210678	115	116	INT	0.008		PARROT
VPARC0001	5210679	116	117	INT	0.1		PARROT
VPARC0001	5210681	116	117	DUP	0.134		PARROT
VPARC0001	5210683	117	118	INT	0.041		PARROT
VPARC0001	5210684	118	119	INT	0.006		PARROT
VPARC0001	5210748	173	174	INT	0.013		PARROT
VPARC0001	5210749	174	175	INT	0.006		PARROT
VPARC0001	5210750	175	176	INT	-0.005		PARROT
VPARC0001	5210751	176	177	INT	0.628		PARROT
VPARC0001	5210752	177	178	INT	2.492	2.35	PARROT
VPARC0001	5210753	178	179	INT	0.522		PARROT
VPARC0001	5210754	179	180	INT	0.245		PARROT
VPARC0001	5210755	180	181	INT	0.586		PARROT
VPARC0001	5210756	181	182	INT	0.039		PARROT
VPARC0001	5210757	182	183	INT	0.025		PARROT
VPARC0001	5210758	183	184	INT	0.03		PARROT
VPARC0001	5210759	184	185	INT	0.033		PARROT
VPARC0002	5210856	73	74	INT	-0.005		PARROT
VPARCO002	5210857	74	75	INT	0.01		PARROT
VPARC0002	5210858	75	76	INT	0.808		PARROT

Hole ID	Sample	From	То	Sample Type	Au	Au1	Prospect
VPARC0002	5210861	76	77	DUP	0.337		PARROT
VPARC0002	5210859	76	77	INT	0.436		PARROT
VPARC0002	5210863	77	78	INT	0.213		PARROT
VPARC0002	5210864	78	79	INT	1.28	1.187	PARROT
VPARC0002	5210865	79	80	INT	0.493		PARROT
VPARC0002	5210866	80	81	INT	0.214		PARROT
VPARC0002	5210867	81	82	INT	0.078		PARROT
VPARC0002	5210868	82	83	INT	0.117		PARROT
VPARC0002	5210869	83	84	INT	0.142		PARROT
VPARC0002	5210870	84	85	INT	0.13		PARROT
VPARC0002	5210871	85	86	INT	1.223	1.173	PARROT
VPARC0002	5210872	86	87	INT	0.183		PARROT
VPARC0002	5210873	87	88	INT	0.062		PARROT
VPARC0002	5210874	88	89	INT	0.021		PARROT
VPARC0002	5210875	89	90	INT	0.089		PARROT
VPARC0002	5210876	90	91	INT	0.013		PARROT
VPARC0002	5210877	91	92	INT	0.122		PARROT
VPARC0002	5210878	92	93	INT	0.159		PARROT
VPARCO002	5210879	93	94	INT	0.047		PARROT
VPARC0002	5210881	93 94	94	DUP INT	0.059		PARROT
VPARC0002 VPARC0002	5210883 5210884	95	96	INT	0.507 0.771		PARROT PARROT
VPARC0002	5210885	96	97	INT	0.771		PARROT
VPARC0002	5210885	97	98	INT	0.754		PARROT
VPARC0002	5210887	98	99	INT	0.016		PARROT
VPARC0002	5210888	99	100	INT	0.007		PARROT
VPARC0002	5210894	105	106	INT	0.01		PARROT
VPARC0002	5210895	106		INT	-0.005		PARROT
VPARC0002	5210896	107	108	INT	0.016		PARROT
VPARC0002	5210897	108	109	INT	0.388		PARROT
VPARC0002	5210898	109	110	INT	0.012		PARROT
VPARC0002	5210901	110	111	DUP	0.014		PARROT
VPARC0002	5210912	120	121	INT	0.013		PARROT
VPARC0002	5210913	121	122	INT	0.037		PARROT
VPARC0002	5210914	122	123	INT	0.146		PARROT
VPARC0002	5210915	123	124	INT	0.519		PARROT
VPARC0002	5210916	124	125	INT	0.036		PARROT
VPARC0002	5210917	125	126	INT	0.026		PARROT
VPARC0002	5210918	126	127	INT	0.023		PARROT
VPARC0002	5210919	127	128	INT	0.012		PARROT
VPARC0002	5210921	127	128	DUP	0.018		PARROT
VPARC0002	5210923	128	129	INT	0.018		PARROT
VPARC0002	5210924	129	130	INT	0.018		PARROT
VPARC0002	5210925	130	131	INT	0.22		PARROT
VPARC0002	5210926	131	132	INT	0.046		PARROT

	Hole ID	Sample	From	То	Sample Type	Au	Au1	Prospect
	VPARC0002	5210927	132	133	INT	0.038		PARROT
	VPARC0003	5211127	103	104	INT	0.109		PARROT
	VPARC0003	5211128	104	105	INT	0.024		PARROT
	VPARC0003	5211129	105	106	INT	0.025		PARROT
	VPARC0003	5211130	106	107	INT	0.028		PARROT
	VPARC0003	5211131	107	108	INT	0.692		PARROT
	VPARC0003	5211132	108	109	INT	0.027		PARROT
	VPARC0003	5211133	109	110	INT	0.069		PARROT
	VPARC0003	5211134	110	111	INT	0.016		PARROT
	VPARC0003	5211135	111	112	INT	0.012		PARROT
	VPARC0003	5211136	112	113	INT	0.034		PARROT
(6/1	VPARCO003	5211137	113	114	INT	0.104		PARROT
	VPARCO003	5211138	114	115	INT	0.188		PARROT
	VPARC0003 VPARC0003	5211141 5211139	115 115	116 116	DUP INT	0.039		PARROT PARROT
	VPARCO003	5211139	116	117	INT	0.054		PARROT
	VPARC0003	5211143	117	117	INT	0.02		PARROT
	VPARC0003	5211144	117	119	INT	0.488		PARROT
ID	VPARC0003	5211146	119	120	INT	0.021		PARROT
90	VPARC0003	5211147	120	121	INT	0.013		PARROT
	VPARC0003	5211148	121	122	INT	0.441		PARROT
	VPARC0003	5211149	122	123	INT	0.379		PARROT
	VPARC0003	5211150	123	124	INT	0.476		PARROT
	VPARC0003	5211151	124	125	INT	1.809	1.795	PARROT
	VPARC0003	5211152	125	126	INT	0.657		PARROT
	VPARC0003	5211153	126	127	INT	1.305	1.335	PARROT
	VPARC0003	5211154	127	128	INT	0.011		PARROT
	VPARC0003	5211155	128	129	INT	0.015		PARROT
	VPARC0003	5211156	129	130	INT	0.007		PARROT
	VPARC0003	5211157	130	131	INT	0.006		PARROT
	VPARC0003	5211158	131	132	INT	-0.005		PARROT
	VPARC0003	5211161	132	133	DUP	0.023		PARROT
	VPARC0003	5211159	132	133	INT	0.074		PARROT
	VPARC0003	5211163	133	134	INT	1.101	1.173	PARROT
	VPARC0003	5211164	134	135	INT	0.029		PARROT
Пп	VPARC0003	5211165	135	136	INT	0.071		PARROT
	VPARC0003	5211166	136	137	INT	0.007		PARROT
	VPARC0003	5211167	137	138	INT	0.289		PARROT
	VPARCO003	5211168	138	139	INT	0.293		PARROT
	VPARCO003	5211169	139	140	INT	0.033		PARROT
	VPARCO003	5211170	140	141	INT	0.008		PARROT
	VPARCO003	5211171	141	142	INT	0.016		PARROT
	VPARC0003 VPARC0004	5211172 2021242	142 109	143 113	INT COMP	0.156 0.025		PARROT PARROT
	VPARC0004 VPARC0004	5211379	113	113	INT	0.023	0.213	PARROT
	VFARCUUU4	22113/9	113	114	IIVI	0.237	0.213	PARKUI

Hole ID	Sample	From	То	Sample	Au	Au1	Prospect
				Type			
VPARC0004	5211381	113	114	DUP	0.247	0.219	PARROT
VPARC0004	2021243	114	118	COMP	0.006		PARROT
VPARC0004	2021244	118	122	COMP	0.008		PARROT
VPARC0004	2021245	122	126	COMP	-0.005		PARROT
VPARC0004	2021246	126	130	COMP	0.767	0.749	PARROT
VPARC0004	5211401	130	131	DUP	0.058		PARROT
VPARC0004	5211399	130	131	INT	0.071		PARROT

JORC Code, 2012 Edition: Table 1 Section 1: Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 RC Drilling assays are from 1m samples cone split on the cyclone for the key intercepts. 4m composites from these 1m splits are taken in zones of lower prospectivity at the Laboratory. Where the composite samples return > 0.2g/t Au, they are re-assayed on 1m intervals Historical drilling has been sampled on a 1m basis. By Resolute and Barrick Gold – split at rig. Duplicates are taken of the second quarter of core every 20 samples to ensure the samples were representative.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	Face Sampling, Reverse Circulation hammer
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC drilling was bagged on 1m intervals and an estimate of sample recovery has been made on the size of each sample.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	Reverse Circulation holes are being logged on 1m intervals
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	Duplicates taken every 20 samples by sampling a second quarter of the NQ core, or from a second split directly from cyclone.
	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise samples representivity 	Standards submitted every 20 samples of tenor similar to those expected in the sampling.
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half 	Cone splitter on the cyclone was used to produce a 1m sub-sample on

Criteria	JORC Code explanation	Commentary
	 sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	the RC rig.Blanks were inserted every 20 samples also
		 In un-prospective lithologies these 1m samples were composited at the lab over 4m intervals.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF 	 Samples analysed at Intertek Laboratories in Perth, WA, using a 50g Fire Assay method.
	instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	 Samples are dried, crushed and pulverised prior to analysis. Barrick Gold assays at Amdel labs at
))]	 Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	their Plutonic site
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adj5ustment to assay data. 	 Intercepts have been calculated generally using a 1g/t cut off or as otherwise stated (see Table 1) and internal waste of up to 3m thickness with total intercepts greater than 1g/t. All repeats and duplicates have been included. Historical work has been cross referenced against WAMEX reports A47532 (Resolute) and A68298 (Barrick)
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. 	 DGPS has been used to locate the drillholes. REFLEX Gyro Tool used for downhole surveys on all holes
Data spacing and distribution	 Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	 Sample data down hole is at no more than 1m intervals Data spacing varies from approx. 20m Assessment as to whether sufficient data has been generated t establish the degree of geological and grade continuity appropriate for Mineral Resource and estimation procedure(s) is underway and, if necessary, additional drilling will be carried out to establish continuity.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Intercepts given are downhole widths with the true widths not determined.

Criteria	JORC Code explanation		Commentary
Sample security	The measures taken to ensure sample security.	9	Samples sealed in bulka bag with Security seal, unbroken when delivered to lab
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	[6	Review of standards, blanks and Duplicates indicate sampling and analysis has been effective for current and historical drilling where QA/QC has been available

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary			
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Located in the Marymia - Plutonic Greenstone Belt ~218km northeast of Meekatharra in the Midwest mining district in WA Apollo M52/269 and Parrot M52/258 granted tenement in good standing. The tenements predate Native title interests, but are covered by the Gingirana Native Title claim The tenements are 100% owned by Vango Mining Limited and subsidiary Dampier Plutonic Pty Ltd. Gold production will be subject to a 1-4% royalty dependent on gold price (Currently 2%) capped at \$2M across the entire project area. Contingent production payments of up to \$4M across the entire project area. 			
Exploration done by other parties.	Acknowledgment and appraisal of exploration by other parties.	Extensive previous work by Resolute Mining, Barrick Gold			
Geology	Deposit type, geological setting and style of mineralisation.				
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	 Location of new drillholes based on surveyed sites, and DGPS, summarised in Table 3 and shown on Figures 1 and 2. Location of previous Drillholes based on historical reports and data, originally located on surveyed sites, and DGPS. Northing and easting data generally within 0.1m accuracy RL data +-0.2m Down hole length =+- 0.1 m 			

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Intercepts have been calculated generally using a 1 g/t cut off or as otherwise stated (see Table 1) and internal waste of up to 3m thickness with total intercepts greater than 1g/t. Al Duplicates and repeats are included No upper cut off has been applied to intersections.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Orientation of mineralised zones are still to be ascertained by follow up drilling.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Appropriate cross-sectional and plan view of the drilling are included. See Table 1 &4, summary of drilling intersections and Table 3 & 5, drillhole locations and Appendix 1, all significant assays, with repeats and duplicates.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 See Table 1 &4, summary of drilling intersections and Table 3 & 5, drillhole locations and Appendix 1, all significant assays, with repeats and duplicates.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Geological interpretations are included on plan views (Figures 1, 4), sectional view (Figures 2, 3, 5) No new exploration data has been generated apart from the drilling information included in this report.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	Extensive further drilling is planned for the project
	Diagrams clearly highlighting the areas of possible	

	Criteria	JORC Code explanation	Commentary
		extensions, including the main geological interpretations and future drilling areas, provided	
\geq		this information is not commercially sensitive.	

Table 5 Selected Assays Historical Drilling Apollo and Parrot

Hole ID	Sample	From	То	Sample Type	Au	Au1	Au2
ARC0067	MA_304655	44	45	INT	0.02		APOLLO
ARC0067	MA_304656	45	46	INT	0.02		APOLLO
ARC0067	MA_304657	46	47	INT	0.04		APOLLO
ARC0067	MA_304658	47	48	INT	0.09		APOLLO
ARC0067	MA_304659	48	49	INT	0.09		APOLLO
ARC0067	MA_304660	49	50	INT	0.16		APOLLO
ARC0067	MA_304661	50	51	INT	21.3		APOLLO
ARC0067	MA_304662	51	52	INT	1.06		APOLLO
ARC0067	MA_304663	52	53	INT	3.92		APOLLO
ARC0067	MA_304664	53	54	INT	84.2		APOLLO
ARC0067	MA_304665	54	55	INT	6.22		APOLLO
ARC0067	MA_304666	55	56	INT	1.47		APOLLO
ARC0067	MA_304667	56	57	INT	0.15		APOLLO
ARC0067	MA_304668	57	58	INT	0.13		APOLLO
ARC0067	MA_304669	58	59	INT	0.22		APOLLO
ARC0067	MA_304670	59	60	INT	0.18		APOLLO
ARC0067	MA_304671	60	61	INT	0.01		APOLLO
ARC0067	MA_304672	61	62	INT	0.25		APOLLO
ARC0067	MA_304673	62	63	INT	0.005		APOLLO
ARC0067	MA_304674	63	64	INT	0.005		APOLLO
ARC0074	MA_367571	20	21	INT	0.07		APOLLO
ARC0074	MA_367572	21	22	INT	0.07		APOLLO
ARC0074	MA_367573	22	23	INT	0.75		APOLLO
ARC0074	MA_367574	23	24	INT	0.53		APOLLO
ARC0074	MA_367575	24	25	INT	0.51		APOLLO
ARC0074	MA_367576	25	26	INT	0.46		APOLLO
ARC0074	MA_367577	26	27	INT	0.17		APOLLO
ARC0074	MA_367578	27	28	INT	2.4		APOLLO
ARC0074	MA_367579	28	29	INT	1.12		APOLLO
ARC0074	MA_367580	29	30	INT	0.66		APOLLO
ARC0074	MA_367581	30	31	INT	0.59		APOLLO
ARC0074	MA_367582	31	32	INT	0.7		APOLLO
ARC0074	MA_367583	32	33	INT	0.35		APOLLO
ARC0074	MA_367584	33	34	INT	0.57		APOLLO
ARC0074	MA_367585	34	35	INT	9.87		APOLLO
ARC0074	MA_367586	35	36	INT	0.52		APOLLO
ARC0074	MA_367587	36	37	INT	0.14		APOLLO
ARC0074	MA_367588	37	38	INT	0.24		APOLLO
ARC0074	MA_367589	38	39	INT	0.1		APOLLO
ARC0074	MA_367590	39	40	INT	0.68		APOLLO
ARC0074	MA_367591	40	41	INT	1.24		APOLLO
ARC0074	MA_367592	41	42	INT	0.22		APOLLO
ARC0074	MA_367593	42	43	INT	0.57		APOLLO
ARC0074	MA_367594	43	44	INT	0.3		APOLLO

	Hole ID	Sample	From	То	Sample Type	Au	Au1	Au2
_	ARC0074	MA_367595	44	45	INT	0.75		APOLLO
	ARC0074	MA_367596	45	46	INT	0.82		APOLLO
	ARC0074	MA_367597	46	47	INT	0.67		APOLLO
	ARC0074	MA_367598	47	48	INT	0.16		APOLLO
	ARC0074	MA_367599	48	49	INT	0.26		APOLLO
	ARC0074	MA_367600	49	50	INT	0.27		APOLLO
	ARC0074	MA_367601	50	51	INT	0.05		APOLLO
	ARC0074	MA_367602	51	52	INT	0.03		APOLLO
	ARC0074	MA_367603	52	53	INT	0.3		APOLLO
	ARC0074	MA_367604	53	54	INT	0.18		APOLLO
QL.	ARC0074	MA_367605	54	55	INT	0.04		APOLLO
ar	ARC0074	MA_367606	55	56	INT	0.36		APOLLO
	ARC0074	MA_367607	56	57	INT	4.57		APOLLO
	ARC0074	MA_367608	57	58	INT	5.06		APOLLO
	ARC0074	MA_367609	58	59	INT	1.71		APOLLO
	ARC0074	MA_367610	59	60	INT	3.6		APOLLO
	ARC0074	MA_367611	60	61	INT	0.53		APOLLO
	ARC0074	MA_367612	61	62	INT	0.07		APOLLO
00	ARC0074	MA_367613	62	63	INT	0.02		APOLLO
	ARC0074	MA_367614	63	64	INT	0.05		APOLLO
	ARC0074	MA_367615	64	65	INT	0.07		APOLLO
	ARC0105	MA_381225	44	45	INT	0.16		APOLLO
	ARC0105 ARC0105	MA_381226 MA_381227	45 46	46 47	INT	0.04		APOLLO APOLLO
CIT	ARC0105	MA 381228	47	47	INT	0.04		APOLLO
	ARC0105	MA_381229	48	49	INT	0.03		APOLLO
	ARC0105	MA_381230	49	50	INT	0.02		APOLLO
	ARC0105	MA_381231	50		INT	0.08		APOLLO
(UL	ARC0105	MA 381232	51	52	INT	0.06		APOLLO
	ARC0105	MA 381233	52	53	INT	0.06		APOLLO
	ARC0105	MA 381234	53	54	INT	0.29		APOLLO
	ARC0105	MA_381235	54	55	INT	11.3		APOLLO
	ARC0105	MA_381236	55	56	INT	22.7		APOLLO
	ARC0105	MA 381237	56	57	INT	1.96		APOLLO
	ARC0105	MA_381238	57	58	INT	8.13		APOLLO
ПГ	ARC0105	MA_381239	58	59	INT	0.2		APOLLO
	ARC0105	MA_381240	59	60	INT	0.04		APOLLO
	ARC0105	MA_381241	60	61	INT	0.04		APOLLO
	ARC0105	MA_381242	61	62	INT	0.02		APOLLO
	ARC0105	MA_381243	62	63	INT	0.06		APOLLO
	ARC0105	MA_381244	63	64	INT	0.13		APOLLO
	ARC0105	MA_381245	64	65	INT	0.94		APOLLO
	ARC0105	MA_381246	65	66	INT	0.82		APOLLO
	ARC0105	MA_381247	66	67	INT	0.89		APOLLO
	ARC0105	MA_381248	67	68	INT	0.08		APOLLO

Hole ID	Sample	From	То	Sample Type	Au	Au1	Au2
ARC0105	MA_381249	68	69	INT	0.03		APOLLO
ARC0105	MA_381250	69	70	INT	0.03		APOLLO
ARC0115	MA_381924	33	34	INT	0.05		APOLLO
ARC0115	MA_381925	34	35	INT	0.16		APOLLO
ARC0115	MA_381926	35	36	INT	0.39		APOLLO
ARC0115	MA_381927	36	37	INT	0.97		APOLLO
ARC0115	MA_381928	37	38	INT	0.33		APOLLO
ARC0115	MA_381929	38	39	INT	0.57		APOLLO
ARC0115	MA_381930	39	40	INT	0.62		APOLLO
ARC0115	MA_381931	40	41	INT	0.37		APOLLO
ARC0115	MA_381932	41	42	INT	0.2		APOLLO
ARC0115	MA_381933	42	43	INT	0.16		APOLLO
ARC0115	MA_381934	43	44	INT	0.52		APOLLO
ARC0115	MA_381935	44	45	INT	0.23		APOLLO
ARC0115	MA_381936	45	46	INT	0.25		APOLLO
ARC0115	MA_381937	46	47	INT	0.21		APOLLO
ARC0115	MA_381938	47	48	INT	4.8		APOLLO
ARC0115	MA_381939	48	49	INT	0.64		APOLLO
ARC0115	MA_381940	49	50	INT	0.09		APOLLO
ARC0115	MA_381941	50	51	INT	0.03		APOLLO
ARC0115	MA_381942	51	52	INT	0.03		APOLLO
ARC0115	MA_381943	52	53	INT	5.7		APOLLO
ARC0115	MA_381944	53	54	INT	3.53		APOLLO
ARC0115	MA_381945	54	55	INT	1.58		APOLLO
ARC0115	MA_381946	55	56	INT	0.05		APOLLO
ARC0115	MA_381947	56	57	INT	0.04		APOLLO
ARC0115	MA_381948	57 58	58	INT	0.29		APOLLO
ARC0115	MA_381949		59	INT	8.37		APOLLO
ARC0115 ARC0115	MA_381950 MA_381951	59 60	60 61	INT	1.06 0.37		APOLLO APOLLO
ARC0115 ARC0115	MA 381952	61	62	INT	0.37		APOLLO
ARC0115	MA 381953	62	63	INT	0.07		APOLLO
ARC0115	MA_381954	63	64	INT	0.23		APOLLO
ARC0115	MA 381955	64	65	INT	0.15		APOLLO
ARC0115	MA_381956	65	66	INT	0.04		APOLLO
ARC0115	MA 381957	66	67	INT	0.14		APOLLO
ARC0129	MA_370076	35	36	INT	0.04		APOLLO
ARC0129	MA 370077	36	37	INT	0.01		APOLLO
ARC0129	MA_370078	37	38	INT	0.03		APOLLO
ARC0129	MA 370079	38	39	INT	0.06		APOLLO
ARC0129	MA 370080	39	40	INT	0.29		APOLLO
ARC0129	MA 370081	40	41	INT	30.6		APOLLO
ARC0129	MA 370082	41	42	INT	13.6		APOLLO
ARC0129	MA_370083	42	43	INT	1.61		APOLLO
ARC0129	MA_370084	43	44	INT	0.62		APOLLO

	Hole ID	Sample	From	То	Sample Type	Au	Au1	Au2
	ARC0129	MA_370085	44	45	INT	0.21		APOLLO
	ARC0129	MA_370086	45	46	INT	0.19		APOLLO
	ARC0129	MA_370087	46	47	INT	0.23		APOLLO
	ARC0129	MA_370088	47	48	INT	0.08		APOLLO
	ARC0129	MA_370089	48	49	INT	0.11		APOLLO
	ARC0129	MA_370090	49	50	INT	0.03		APOLLO
	ARC0129	MA_370091	50	51	INT	0.12		APOLLO
	PARC0073	L17013	112	113	INT	-0.01		PARROT
	PARC0073	L17014	113	114	INT	0.74	1.22	PARROT
	PARC0073	L17015	114	115	INT	0.02		PARROT
	PARC0073	L17016	115	116	INT	0.04		PARROT
	PARC0073	L17017	116	117	INT	0.18		PARROT
	PARC0073	L17018	117	118	INT	0.12		PARROT
	PARC0073	L17019	118	119	INT	0.12		PARROT
	PARC0073	L17020	119	120	INT	0.07		PARROT
	PARC0073	L17021	120	121	INT	0.02		PARROT
	PARC0073	L17022	121	122	INT	0.01		PARROT
	PARC0073	L17023	122	123	INT	0.02		PARROT
	PARC0073	L17024	123	124	INT	0.01		PARROT
	PARC0073	L17025	124	125	INT	0.01		PARROT
2	PARC0073	L17026	125	126	INT	0.03		PARROT
	PARC0073	L17027	126	127	INT	0.01		PARROT
	PARC0073	L17028	127	128	INT	0.01		PARROT
	PARC0073	L17029	128	129	INT	0.37	0.3	PARROT
	PARC0073	L17030	129	130	INT	0.22	0.19	PARROT
	PARC0073	L17031	130	131	INT	0.28	0.12	PARROT
	PARC0073	L17032	131	132	INT	3.11	3.04	PARROT
	PARC0073	L17033	132	133	INT	0.96	0.54	PARROT
	PARC0073	L17034	133	134	INT	0.09		PARROT
	PARC0073	L17035	134	135	INT	0.05		PARROT
	PARC0073	L17036	135	136	INT	0.15		PARROT
	PARC0073	L17037	136	137	INT	1.19	0.76	PARROT
	PARC0073	L17038	137	138	INT	0.41	0.11	PARROT
	PARC0073	L17039	138	139	INT	2.11	1.53	PARROT
	PARC0073	L17040	139	140	INT	0.15		PARROT
	PARC0073	L17041	140	141	INT	0.07		PARROT
	PARC0073	L17042	141	142	INT	0.05		PARROT
	PARC0073	L17043	142	143	INT	0.07		PARROT
	PARC0073	L17044	143	144	INT	1.26	1.03	PARROT
	PARC0073	L17045	144	145	INT	2.29	1.99	PARROT
	PARC0073	L17046	145	146	INT	2.27	1.63	PARROT
	PARC0073	L17047	146	147	INT	0.47	0.39	PARROT
	PARC0073	L17048	147	148	INT	3.27	2.42	PARROT
	PARC0073	L17049	148	149	INT	4.35	3.58	PARROT
	PARC0073	L17050	149	150	INT	2.64	1.94	PARROT

Hole ID	Sample	From	То	Sample Type	Au	Au1	Au2
PARC0073	L17051	150	151	INT	1.98	1.64	PARROT
PARC0073	L17052	151	152	INT	1.45	1.07	PARROT
PARC0073	L17053	152	153	INT	2.99	1.98	PARROT
PARC0073	L17054	153	154	INT	6.81	4.13	PARROT
PARC0073	L17055	154	155	INT	1.45	0.96	PARROT
PARC0073	L17056	155	156	INT	0.93	0.67	PARROT
PARC0073	L17057	156	157	INT	0.49	0.38	PARROT
PARC0073	L17058	157	158	INT	0.08		PARROT
PARC0073	L17059	158	159	INT	0.04		PARROT
PARC0073	L17060	159	160	INT	0.03		PARROT
PBR7977	MA_PBR7977	80	82	INT	0.01		PARROT
PBR7977	MA_PBR7977	82	84	INT	0.1		PARROT
PBR7977	MA_PBR7977	84	86	INT	0.005		PARROT
PBR7977	MA_PBR7977	86	87	INT	1.15		PARROT
PBR7977	MA_PBR7977	87	88	INT	0.13		PARROT
PBR7977	MA_PBR7977	88	89	INT	0.53		PARROT
PBR7977	MA_PBR7977	89	90	INT	0.21		PARROT
PBR7977	MA_PBR7977	90	91	INT	0.23		PARROT
PBR7977	MA_PBR7977	91	92	INT	0.09		PARROT
PBR7977	MA_PBR7977	92	93	INT	0.85		PARROT
PBR7977	MA_PBR7977	93	94	INT	1.13		PARROT
PBR7977	MA_PBR7977	94	95	INT	0.32		PARROT
PBR7977	MA_PBR7977	95	96	INT	0.11		PARROT
PBR7977	MA_PBR7977	96	97	INT	0.05		PARROT
PBR7977	MA_PBR7977	97	98	INT	0.51		PARROT
PBR7977	MA_PBR7977	98	99	INT	0.64		PARROT
PBR7977	MA_PBR7977	99	100	INT	14.1		PARROT
PBR7977	MA_PBR7977	100	101	INT	8		PARROT
PBR7977	MA_PBR7977	101	102	INT	0.57		PARROT
PBR7977	MA_PBR7977	102	103	INT	0.25		PARROT
PBR7977	MA_PBR7977	103	104	INT	0.19		PARROT
PBR7977	MA_PBR7977	104	106	INT	0.12		PARROT
PBR7977	MA_PBR7977	106	108	INT	0.06		PARROT
PBR7977	MA_PBR7977	108	109	INT	0.1		PARROT
PBR7977	MA_PBR7977	109	110	INT	1.16		PARROT
PBR7977	MA_PBR7977	110	112	INT	0.02		PARROT
PBRD1753	MA_1753065	65	66	INT	0.005		PARROT
PBRD1753	MA_1753066	66	67	INT	0.23		PARROT
PBRD1753	MA_1753067	67	68	INT	2.37		PARROT
PBRD1753	MA_1753068	68	69	INT	1.07		PARROT
PBRD1753	MA_1753069	69	70	INT	1.02		PARROT
PBRD1753	MA_1753070	70	71	INT	0.65		PARROT
PBRD1753	MA_1753071	71	72	INT	3.14		PARROT
PBRD1753	MA_1753072	72	73	INT	0.85		PARROT
PBRD1753	MA_1753073	73	74	INT	2.09		PARROT

Hole ID	Sample	From	То	Sample	Au	Au1	Au2
	-			Туре			
PBRD1753	MA_1753074	74	75	INT	1.37		PARROT
PBRD1753	MA_1753075	75	76	INT	0.37		PARROT
PBRD1753	MA_1753076	76	77	INT	0.07		PARROT
PBRD1753	MA_1753077	77	78	INT	0.1		PARROT
PBRD1753	MA_1753078	78	79	INT	0.13		PARROT
PBRD1753	MA_1753079	79	80	INT	0.04		PARROT
PBRD1753	MA_1753080	80	81	INT	0.08		PARROT
PBRD1753	MA_1753081	81	82	INT	0.08		PARROT
PBRD1753	MA_1753082	82	83	INT	0.005		PARROT
PBRD1753	MA_1753083	83	84	INT	0.16		PARROT
PBRD1753	MA_1753084	84	85	INT	0.14		PARROT
PBRD1753	MA_1753085	85	86	INT	0.11		PARROT
PBRD1753	MA_1753086	86	88	INT	0.11		PARROT
PBRD1753	MA_1753088	88	90	INT	0.06		PARROT
PBRD1753	MA_1753090	90	92	INT	0.02		PARROT
PBRD1753	MA_1753092	92	94	INT	0.02		PARROT
PBRD1753	MA_1753094	94	96	INT	0.23		PARROT