

Corporate Details

Zenith Minerals Limited (ASX:ZNC)

ABN: 96 119 397 938

Ssued Shares	322.3M
Unlisted options	17.3M
Mkt. Cap. (\$0.215)	A\$69.3M
Cash (5-Aug-21)	A\$7.5M
Debt	Nil
Investments (9-Sep-21)	A\$6.3M

Directors

Peter Bird Exec Chair
Michael Clifford Director-CEO
Stan Macdonald Non-Exec Director
Julian Goldsworthy Non-Exec Director
Graham Riley Non-Exec Director
Nicholas Ong Co Sec
Nick Bishop CFO

Major Shareholders

Directors	6.3%
HSBC Custody. Nom.	9.8%
Citicorp Nom	7.6%
BNP Paribas. Nom.	6.5%
Granich	3.8%

Our Vision

Zenith has a vision to build a gold and base metals business with a team of proven project finders.

Focus is on 100% owned Zenith projects, whilst partners progress multiple additional opportunities using partner funds.

Contact Us

Level 2, 33 Ord Street
WEST PERTH WA 6005
PO Box 1426
WEST PERTH WA 6872
Telephone: (08) 9226 1110
Email:info@zenithminerals.com.au
Web:www.zenithminerals.com.au

NEW HIGH-GRADE GOLD ZONES CONFIRMED AT SPLIT ROCKS

- One metre re-resample results have now been received from the recent round of AC drilling (100-holes). Results confirm and upgrade the initial 4m composite assay results (ASX Release 13-Jul-21) from multiple prospects that form part of Company's Split Rocks gold project in Western Australia.
 - New 1m resample results at Dulcie Far North, include:
 - 4m @ 10.2 g/t Au (eoh), incl 2m @ 19.8 g/t Au (eoh)
 - 9m @ 1.8 g/t Au incl 2m @ 6.2 g/t Au
 - 8m @ 1.1 g/t Au incl 2m @ 3.2 g/t Au, and
 - 8m @ 1.1 g/t Au incl 2m @ 2.0 g/t Au
 - Scott's Grey results provide very strong encouragement for further work, new 1m results include:
 - 12m @ 1.7 g/t Au (eoh) incl. 1m @ 7.1 g/t Au and 5m @ 2.1 g/t Au
 - 2m @ 7.6 g/t Au followed by a 3m mine working and another 2m @ 2.4 g/t Au, total width 7m
 - Results from Dulcie North outline strong near surface gold mineralisation that requires follow-up, new 1m resample results include:
 - 8m @ 1.2 g/t Au and 2m @ 3.7 g/t Au
 - 5m @ 1.0 g/t Au
- A new major infill and extensional aircore (AC) drill program (approx. 100 additional holes) is scheduled to commence very soon at Dulcie Far North, Dulcie North, Scott's Grey & Estrella prospects.
- AC program to be followed by RC drilling on these significant near surface gold results and at the adjoining Dulcie targets: Dulcie Laterite Pit & Water Bore.

Commenting on the new high-grade gold results, Chairman Peter Bird said:

"The objective remains very focussed on trying to aggregate enough gold mineralisation on the Split Rocks leases so as we can move to a maiden resource estimate. As drilling has advanced we are starting to see good continuity and commercial grade intersections along the main structural trend and more specifically in our target areas. The area of interest is over 3 km in length."

New Drill Results

A total of 100 AC holes were recently completed across 5 target areas as a first test for new zones of gold mineralisation and to extend other zones which had been poorly defined by previous wide-spaced or ineffective historic drilling

(refer to ASX Releases 21-Jul-21 & 13-Jul-21). Significant results were returned from 4 target zones including: Dulcie Far North, Dulcie North, Scott Grey and Estrella (Figures 2 - 5).

Significant mineralised zones were resampled at 1m intervals confirming and upgrading several intersections:

Dulcie Far North - The holes along with previous Zenith AC and historic drilling on lines 100m to 200m apart outline a zone of gold mineralisation 1km long x 300m wide. Results from hole ZDAC339 are particularly significant returning **4m @ 10.2 g/t Au** from 43m depth to the end of the drill hole which terminated in a zone of intense quartz veining close to a basalt – banded iron formation contact (as previously reported 24-Jun-21 and 13-Jul-21).

Scott's Grey - results from extensional drilling at Scott's Grey provide very strong encouragement for further work. New results include 2m @ 7.6 g/t Au followed by a 3m mine working and another 2m @ 2.4 g/t Au, total width 7m – an up-dip extension to gold zones previously defined by Zenith surrounding the Scott's Grey workings (Figure 4), 12m @ 1.7 g/t Au (eoh) incl. 1m @ 7.1 g/t Au and 5m @ 2.1 g/t Au – a potential new gold zone southwest of Scott's Grey, and 1m @ 5.6 g/t Au a new zone of gold mineralisation 100m northeast of the historic workings that remains open to the east, north and south.

Dulcie North - results from confirmatory and extensional drilling, in an area where there is some doubt as to the location of historic drill holes, outline strong near surface gold mineralisation that requires follow-up aircore and RC testing, new results include: **8m @ 1.2 g/t Au and 2m @ 3.7 g/t Au as well as 5m @ 1.0 g/t Au** (Figure 5).

Estrella – Three additional drill holes were completed to assess the orientation of gold mineralisation intersected by Zenith in an earlier AC drilling program that returned **2m @ 9.8 g/t Au and 1m @ 7.1g/t Au**. The new hole ZAC356 drilled between these two intersections confirms a shallow dip to mineralisation with **1m @ 1.8 g/t Au** indicating a potential northerly plunge that will be assessed with a further follow-up program.

Note Zenith retains gold rights at Dulcie Far North, Dulcie North, Dulcie Laterite Pit Zone and Scott's Grey below 6m, subject to the Dulcie option agreement (refer to ASX Release 21-Mar-19).

Split Rocks Project - Background on Gold Potential

A major targeting exercise by the Company's geological team initially identified 12 high-quality gold drill targets at Split Rocks, subsequently expanded to 18 targets in the north-eastern sector of the Company's 100% owned tenure (Refer to ZNC ASX Release 2 September 2020).

Drilling to date has tested 12 targets (results awaited for Dulcie West) with outstanding first pass results returned at (ASX Release 5-Aug-20, 2-Sep-20, 19-Oct-20, 28-Oct-20, 15-Ja-21, 11-Mar-21, 21-Apr-21, 24-Jun-21, 13-Jul-21)):

- o Dulcie North: 32m @ 9.4 g/t Au, incl 9m @ 31.4 g/t Au
- Dulcie Laterite Pit:
 - 2m @ 14.5 g/t Au, incl. 1m @ 20.8 g/t Au,
 - 18m @ 2.0 g/t Au (EOH) incl. 1m @ 23.7 g/t Au
 - 14m @ 3.5 g/t Au
 - 3m @ 17.9 g/t Au
- Estrela Prospect: 2m @ 9.8 g/t Au
- Dulcie Far North: 5m @ 5.6 g/t Au incl. 4m @ 6.8 g/t Au, 4m @ 10.2 g/t Au
- Water Bore: 3m @ 6.6 g/t Au

A further 7 of the 18 targets generated by Zenith extending over 18km of strike are yet to have first pass drill testing.

Infill and extensional aircore drilling is now underway at Dulcie Far North, Dulcie North and Scott's Grey to be followed by RC drilling on the significant near surface gold results at the 4 Dulcie targets, Dulcie Laterite Pit, Dulcie North, Dulcie Far North & Water Bore are planned.

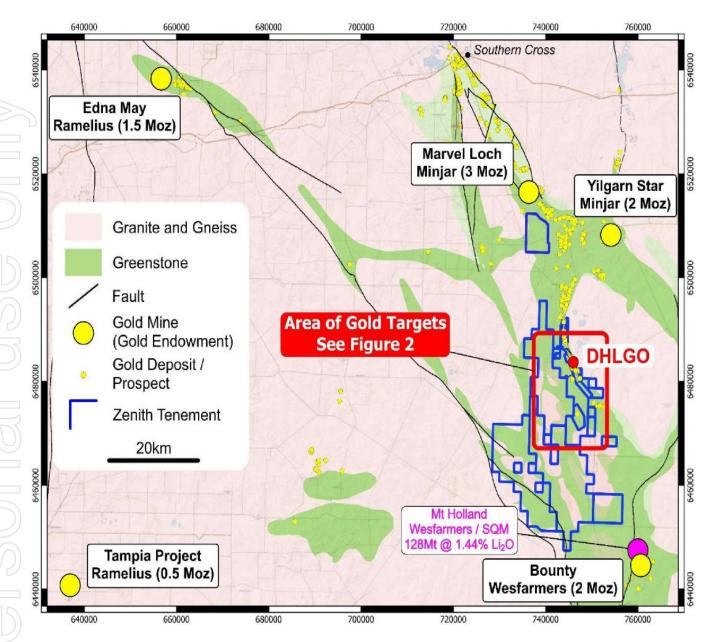


Figure 1- Split Rocks Project Location Map Showing Zenith tenements, Dulcie Heap Leach Gold Operation (DHLGO*) Prospect and Regional Gold Endowment. (*Gold rights below 6m subject to option agreement).

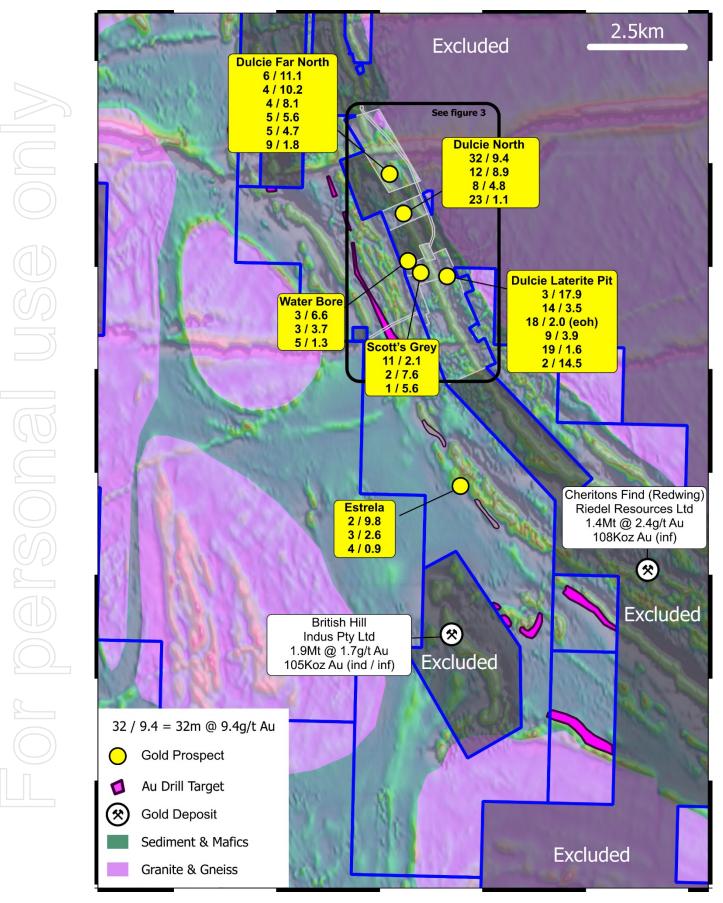


Figure 2: Split Rocks Project Gold Targets and Significant RC - Aircore Drill Results (yellow captions) showing gold drill targets, and areas of Planned Drilling

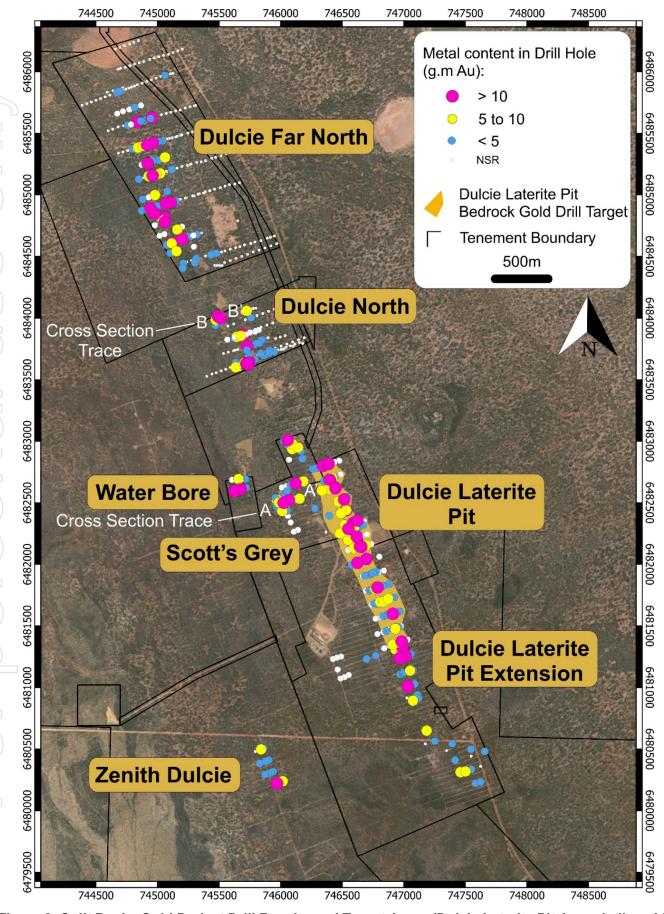


Figure 3: Split Rocks Gold Project Drill Results and Target Areas (Dulcie Laterite Pit Area shallow third party <75m depth and ineffective drill holes are not shown)

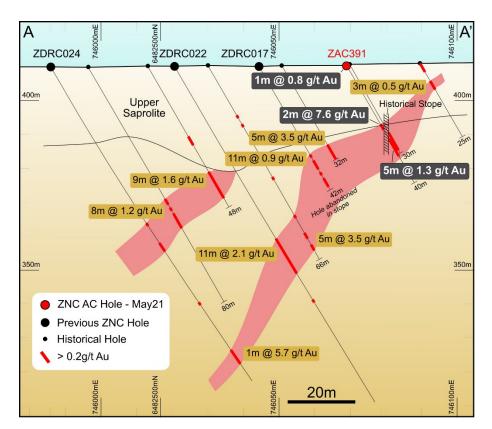


Figure 4: Split Rocks Gold Project Scott's Grey Cross Section A-A' with Drill Results

(for details of historic results refer to ZNC ASX releases dated 28-Oct-19, 14-Feb-20, 24-Jun-21 & 13-Jul21)

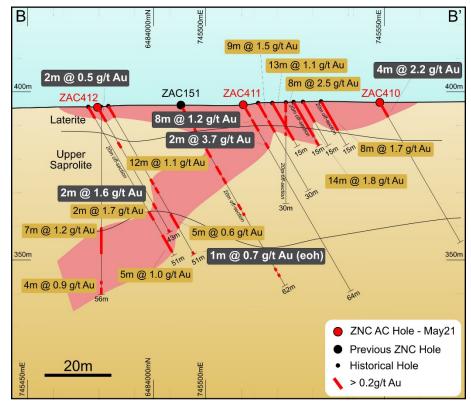


Figure 5: Dulcie North - Cross Section with Drill Results

(for details of historic results refer to previous ZNC ASX release dated 5-Aug-20 and 13-Jul-21)

Table 1: Significant New Gold Intersections from Zenith Aircore Drilling (1m resamples)

				. rooumpic	,					
		Init	ial 4m C	omposite Sa	amples		1m R	Re-sampling		
Prospect	Hole ID	From (m)	To (m)	Interval (m)	Au Grade (g/t)	From (m)	To (m)	Interval (m)	Au Grade (g/t)	
	ZAC319				NSR				NSR	
	ZAC320	24	28	4	0.8	27	28	1	0.4	
						39	40	1	1.8	
	ZAC321				NSR				NSR	
	ZAC322				NSR	45	47	2	0.7	
	ZAC323				NSR				NSR	
	ZAC324	20	24	4	0.4	21	24	3	0.4	
	ZAC325	40	43 (eoh)	3	0.6	40	43 (eoh)	3	0.6	
	ZAC326				NSR				NSR	
	ZAC327					8	9	1	0.6	
		28	36	8	1.0	30	38	8	1.1	
	incl	32	36	4	1.5	33	35	2	3.2	
	and incl					37	38	1	1.1	
	ZAC328	32	36	4	0.5	33	34	1	2.3	
	ZAC329					25	26	1	2.1	
						34	35	1	0.4	
		47	49 (eoh)	2	0.4	43	49	6	0.3	
	ZAC330	40	48	8	2.5	41	50	9	1.8	
Dulcie Far North	incl					41	42	1	1.6	
NOTH						43	45	2	6.2	
	ZAC331				NSR	26	27	1	0.6	
	ZAC332	0	4	4	0.5	0	7	7	0.4	
	ZAC333	0	4	4	0.7	0	5	5	0.7	
	incl					3	4	1	1.0	
		28	37	9	0.5	30	36	6	0.7	
	incl					30	31	1	1.7	
	and incl					35	36	1	1.7	
	ZAC334	0	8	8	1.0	0	8	8	1.1	
	incl	4	8	4	1.6	4	7	3	2.0	
						31	38	7	0.3	
	ZAC335	24	32	8	1.0	20	40	20	0.4	
	incl	24	28	4	1.1	24	26	2	1.2	
	and incl					28	29	1	1.1	
	ZAC336				NSR				NSR	
	ZAC337					29	30	1	1.6	
		39	41 (eoh)	2	0.8	39	40	1	0.9	
	ZAC338				NSR				NSR	
	ZAC339					31	32	1	0.5	

	ZAC339	44	47 (eoh)	3	70.0	43	47	4	10.2
	incl					45	47 (eoh)	2	19.8
	ZAC340				NSR	1	2	1	0.8
)	ZAC341	8	12	4	0.4	9	12	3	0.8
	incl					10	11	1	1.1
		24	36	12	1.0	24	41	17	0.8
	incl	28	32	4	1.9	24	26	2	1.6
	and incl					29	31	2	2.6
	and incl					33	35	2	1.3
	ZAC342				NSR				NSR
	ZAC343	32	40	8	0.7	33	37	4	2.1
	incl					33	35	2	2.4
	and incl					36	37	1	3.5
	ZAC343					44	45 (eoh)	1	1.9
	ZAC344	0	4	4	0.4	0	2	2	0.6
						39	40	1	0.4
	ZAC345				NSR	0	1	1	0.5
	ZAC346				NSR	43	44	1	0.7
	ZAC347				NSR				NSR
	ZAC348				NSR	18	19	1	0.4
	ZAC349	0	4	4	0.4	1	3	2	0.7
		36	43 (eoh)	7	0.5	38	42	4	0.6
	incl					41	42	1	0.8
	ZAC350				NSR	0	2	2	0.7
	ZAC351	0	4	4	0.5	0	2	2	0.6
						31	32	1	2.6
	ZAC352	0	8	8	1.9	0	7	7	2.0
						46	47	1	0.4
	ZAC353	4	8	4	0.6	0	7	7	0.5
		16	20	4	0.6	15	23	8	0.3
						29	31	2	0.7
		44	56 (eoh)	12	0.5				
	ZAC354	4	8	4	0.5	4	5	1	0.5
						37	39	2	1.3
	incl					37	38	1	2.0
	ZAC355				NSR				NSR
Estrela	ZAC356	20	24	4	0.9	23	24	1	1.8
	ZAC357				NSR				NSR
	ZAC358				NSR				NSR
Dulcie West	ZAC359				NSR				NSR
Daiolo West	ZAC360				NSR				NSR
	ZAC361				NSR				NSR

For bersonal use only

ZAC363 NSR NSR ZAC364 NSR NSR ZAC365 NSR NSR ZAC366 NSR NSR ZAC367 NSR NSR ZAC368 NSR NSR ZAC369 NSR NSR ZAC370 NSR NSR ZAC371 NSR NSR ZAC372 NSR NSR ZAC373 NSR NSR ZAC374 NSR NSR ZAC375 NSR NSR ZAC376 NSR NSR ZAC377 NSR NSR ZAC378 NSR NSR ZAC379 NSR NSR ZAC380 NSR NSR ZAC381 NSR NSR ZAC384 NSR NSR ZAC385 NSR NSR ZAC386 NSR NSR ZAC388 NSR NSR ZAC388 NSR NSR <th></th> <th></th> <th>ZAC362</th> <th></th> <th></th> <th></th> <th>NSR</th> <th></th> <th></th> <th></th> <th>NSR</th>			ZAC362				NSR				NSR
ZAC365			ZAC363				NSR				NSR
ZAC366 NSR NSR ZAC367 NSR NSR ZAC368 NSR NSR ZAC369 NSR NSR ZAC370 NSR NSR ZAC371 NSR NSR ZAC372 NSR NSR ZAC373 NSR NSR ZAC374 NSR NSR ZAC375 NSR NSR ZAC376 NSR NSR ZAC377 NSR NSR ZAC378 NSR NSR ZAC379 NSR NSR ZAC380 NSR NSR ZAC381 NSR NSR ZAC382 NSR NSR ZAC383 NSR NSR ZAC384 NSR NSR ZAC385 NSR NSR ZAC386 NSR NSR ZAC387 NSR NSR ZAC388 NSR NSR			ZAC364				NSR				NSR
ZAC372 NSR NSR ZAC373 NSR NSR ZAC374 NSR NSR ZAC375 NSR NSR ZAC376 NSR NSR ZAC377 NSR NSR ZAC378 NSR NSR ZAC379 NSR NSR ZAC380 NSR NSR ZAC381 NSR NSR ZAC382 NSR NSR ZAC383 NSR NSR ZAC384 NSR NSR ZAC385 NSR NSR ZAC386 NSR NSR ZAC387 NSR NSR ZAC388 NSR NSR			ZAC365				NSR				NSR
ZAC372 NSR NSR ZAC373 NSR NSR ZAC374 NSR NSR ZAC375 NSR NSR ZAC376 NSR NSR ZAC377 NSR NSR ZAC378 NSR NSR ZAC379 NSR NSR ZAC380 NSR NSR ZAC381 NSR NSR ZAC382 NSR NSR ZAC383 NSR NSR ZAC384 NSR NSR ZAC385 NSR NSR ZAC386 NSR NSR ZAC387 NSR NSR ZAC388 NSR NSR			ZAC366				NSR				NSR
ZAC372 NSR NSR ZAC373 NSR NSR ZAC374 NSR NSR ZAC375 NSR NSR ZAC376 NSR NSR ZAC377 NSR NSR ZAC378 NSR NSR ZAC379 NSR NSR ZAC380 NSR NSR ZAC381 NSR NSR ZAC382 NSR NSR ZAC383 NSR NSR ZAC384 NSR NSR ZAC385 NSR NSR ZAC386 NSR NSR ZAC387 NSR NSR ZAC388 NSR NSR			ZAC367				NSR				NSR
ZAC372 NSR NSR ZAC373 NSR NSR ZAC374 NSR NSR ZAC375 NSR NSR ZAC376 NSR NSR ZAC377 NSR NSR ZAC378 NSR NSR ZAC379 NSR NSR ZAC380 NSR NSR ZAC381 NSR NSR ZAC382 NSR NSR ZAC383 NSR NSR ZAC384 NSR NSR ZAC385 NSR NSR ZAC386 NSR NSR ZAC387 NSR NSR ZAC388 NSR NSR			ZAC368				NSR				NSR
ZAC372 NSR NSR ZAC373 NSR NSR ZAC374 NSR NSR ZAC375 NSR NSR ZAC376 NSR NSR ZAC377 NSR NSR ZAC378 NSR NSR ZAC379 NSR NSR ZAC380 NSR NSR ZAC381 NSR NSR ZAC382 NSR NSR ZAC383 NSR NSR ZAC384 NSR NSR ZAC385 NSR NSR ZAC386 NSR NSR ZAC387 NSR NSR ZAC388 NSR NSR			ZAC369				NSR				NSR
ZAC372 NSR NSR ZAC373 NSR NSR ZAC374 NSR NSR ZAC375 NSR NSR ZAC376 NSR NSR ZAC377 NSR NSR ZAC378 NSR NSR ZAC379 NSR NSR ZAC380 NSR NSR ZAC381 NSR NSR ZAC382 NSR NSR ZAC383 NSR NSR ZAC384 NSR NSR ZAC385 NSR NSR ZAC386 NSR NSR ZAC387 NSR NSR ZAC388 NSR NSR			ZAC370				NSR				NSR
ZAC373 NSR NSR ZAC374 NSR NSR ZAC375 NSR NSR ZAC376 NSR NSR ZAC377 NSR NSR ZAC378 NSR NSR ZAC379 NSR NSR ZAC380 NSR NSR ZAC381 NSR NSR ZAC382 NSR NSR ZAC383 NSR NSR ZAC384 NSR NSR ZAC385 NSR NSR ZAC386 NSR NSR ZAC387 NSR NSR ZAC388 NSR NSR			ZAC371				NSR				NSR
ZAC374 NSR NSR ZAC375 NSR NSR ZAC376 NSR NSR ZAC377 NSR NSR ZAC378 NSR NSR ZAC379 NSR NSR ZAC380 NSR NSR ZAC381 NSR NSR ZAC382 NSR NSR ZAC383 NSR NSR ZAC384 NSR NSR ZAC385 NSR NSR ZAC386 NSR NSR ZAC387 NSR NSR ZAC388 NSR NSR			ZAC372				NSR				NSR
ZAC375 NSR NSR ZAC376 NSR NSR ZAC377 NSR NSR ZAC378 NSR NSR ZAC379 NSR NSR ZAC380 NSR NSR ZAC381 NSR NSR ZAC382 NSR NSR ZAC383 NSR NSR ZAC384 NSR NSR ZAC385 NSR NSR ZAC386 NSR NSR ZAC387 NSR NSR ZAC388 NSR NSR	<i>a</i>		ZAC373				NSR				NSR
ZAC376 NSR NSR ZAC377 NSR NSR ZAC378 NSR NSR ZAC379 NSR NSR ZAC380 NSR NSR ZAC381 NSR NSR ZAC382 NSR NSR ZAC383 NSR NSR ZAC384 NSR NSR ZAC385 NSR NSR ZAC386 NSR NSR ZAC387 NSR NSR ZAC388 NSR NSR			ZAC374				NSR				NSR
ZAC377 NSR NSR ZAC378 NSR NSR ZAC379 NSR NSR ZAC380 NSR NSR ZAC381 NSR NSR ZAC382 NSR NSR ZAC383 NSR NSR ZAC384 NSR NSR ZAC385 NSR NSR ZAC386 NSR NSR ZAC387 NSR NSR ZAC388 NSR NSR	20		ZAC375				NSR				NSR
ZAC378 NSR NSR ZAC379 NSR NSR ZAC380 NSR NSR ZAC381 NSR NSR ZAC382 NSR NSR ZAC383 NSR NSR ZAC384 NSR NSR ZAC385 NSR NSR ZAC386 NSR NSR ZAC387 NSR NSR ZAC388 NSR NSR			ZAC376				NSR				NSR
ZAC379 NSR NSR ZAC380 NSR NSR ZAC381 NSR NSR ZAC382 NSR NSR ZAC383 NSR NSR ZAC384 NSR NSR ZAC385 NSR NSR ZAC386 NSR NSR ZAC387 NSR NSR ZAC388 NSR NSR			ZAC377				NSR				NSR
ZAC380 NSR NSR ZAC381 NSR NSR ZAC382 NSR NSR ZAC383 NSR NSR ZAC384 NSR NSR ZAC385 NSR NSR ZAC386 NSR NSR ZAC387 NSR NSR ZAC388 NSR NSR			ZAC378				NSR				NSR
ZAC381 NSR NSR ZAC382 NSR NSR ZAC383 NSR NSR ZAC384 NSR NSR ZAC385 NSR NSR ZAC386 NSR NSR ZAC387 NSR NSR ZAC388 NSR NSR			ZAC379				NSR				NSR
ZAC385 NSR NSR NSR ZAC386 NSR NSR NSR ZAC387 NSR NSR NSR ZAC388 NSR NSR			ZAC380				NSR				NSR
ZAC385 NSR NSR NSR ZAC386 NSR NSR NSR ZAC387 NSR NSR NSR ZAC388 NSR NSR	(AR		ZAC381				NSR				NSR
ZAC385 NSR NSR NSR ZAC386 NSR NSR NSR ZAC387 NSR NSR NSR ZAC388 NSR NSR	60		ZAC382				NSR				NSR
ZAC385 NSR NSR NSR ZAC386 NSR NSR NSR ZAC387 NSR NSR NSR ZAC388 NSR NSR			ZAC383				NSR				NSR
ZAC385 NSR NSR NSR ZAC386 NSR NSR ZAC387 NSR NSR ZAC388 NSR NSR NSR							NSR				NSR
ZAC387 NSR NSR ZAC388 NSR NSR							-				
ZAC388 NSR NSR											
	\mathcal{C}						+				
7AC389											
			ZAC389				NSR				NSR
ZAC390 NSR NSR NSR NSR NSR ZAC391 0 4 4 0.4 0 1 1 0.8	as						+				
			ZAC391				+		+		
20 22 2 6.5 20 22 2 7.6 incl 21 22 1 14.6			inal	20	22		6.5				
incl 21 22 1 14.6 Historical Stope between 22 and 25m			IIICI			lictorical C	tono hotuvoon		<u> </u>	1	14.0
25 28 3 1.8 25 30 5 1.3				25	1				1 1	5	1 2
incl 25 27 2 2.4			incl		20		1.0		+		
74C392 40 50 10 09 38 50 12 17				40		10	0.9		50		
Dulcie Scott's incl (eoh) 10 0.9 38 (eoh) 12 1.7	Пп		incl		(eon)			20		1	7.4
Grey Incl 38 39 1 7.4 and incl 40 44 4 1.6 40 45 5 2.1		Grey		40	44	4	1.6		+		
26 26											
ZAC393 20 (eoh) 6 0.6 22 (eoh) 4 2.3			ZAC393	20		6	0.6	22	(eoh)	4	2.3
incl 24 26 (eoh) 2 4.1								24		2	
ZAC394 0 4 4 0.5 NSR					+		+				
ZAC395 12 16 4 4.8 14 15 1 5.6					+		+		+		
ZAC396 0 4 4 0.5 0 2 2 0.6		I	ZAC396	0	4	4	0.5	0	2	2	0.6
36 40 4 0.9 37 45 8 0.8			2,10000		+				+ +		

		incl					37	38	1	1.8
		and incl					42	43	1	2.4
		and incl					44	45	1	2.2
		ZAC397				NSR	0	1	1	0.6
		ZAC398				NSR				NSR
		ZAC399					18	19	1	0.6
			36	39 (eoh)	3	0.4	25	37	12	0.4
		incl					36	37	1	1.4
		ZAC400	40	44 (eoh)	4	0.5				NSR
		ZAC401	0	4	4	3.5	0	4	4	0.9
as		incl					2	3	1	1.2
							20	21	1	0.8
		ZAC402	0	4	4	0.4	1	5	4	0.5
							12	13	1	0.5
		ZAC403	0	4	4	0.6	1	3	2	0.6
			36	40	4	0.5	37	41	4	0.9
		incl					39	40	1	2.1
		ZAC404	0	4	4	0.7	0	3	3	1.0
		incl					0	1	1	1.1
90							18	19	1	4.8
			52	56	4	0.5	50	59 (eoh)	9	0.4
		incl					55	56	1	1.2
		ZAC405					0	1	1	0.5
20	Dulcie North		44	52	8	0.7	45	50	5	1.0
		incl					49	50	1	2.8
		ZAC406				NSR	0	2	2	0.7
							15	21	6	0.4
							45	46	1	0.8
		ZAC407	0	4	4	0.6	0	4	4	0.7
		ZAC408	0	4	4	0.5	1	4	3	0.6
		ZAC409	0	4	4	0.5	0	2	2	0.5
		ZAC410	0	4	4	2.5	0	4	4	2.2
		incl					2	4	2	3.7
		ZAC411	0	16	16	1.3	0	8	8	1.2
		incl	0	4	4	1.5	0	2	2	2.0
		and incl					6	8	2	1.9
			12	16	4	2.9	13	15	2	3.7
		incl					13	14	1	6.5
		ZAC412					1	3	2	0.5
			32	36	4	1.6	33	35	2	1.6
							42	43 (eoh)	1	0.7
		ZAC413				NSR				NSR
		ZAC414				NSR	0	1	1	0.4

ZAC415				NSR				NSR
ZAC416				NSR	1	2	1	0.5
					36	40	4	0.7
incl					36	37	1	1.6
ZAC417	36	40	4	1.7	37	39	2	2.6
incl					37	38	1	4.4
ZAC418				NSR				NSR
ZAC419				NSR				NSR

Note: Zenith has gold rights below 6m from surface only. High-grade intersections are length weighted average grades with minimum cut -off grade of 1.0g/t Au and no internal dilution, whilst lower grade intersections are length weighted average grades with minimum cut-off grade of 0.4g/t Au and maximum internal dilution of 4m. NSR = No significant result.

Table 2: Drill Hole Collar Locations - Zenith Aircore

Prospect	Hole ID	Hole_Type	Easting	Northing	Depth (m)	Dip	Azimuth
	ZAC355	AC	746994	6477177	31	-60	50
Estrela	ZAC356	AC	746957	6477147	41	-60	50
	ZAC357	AC	746923	6477117	53	-60	50
	ZAC358	AC	745488	6481177	30	-90	0
	ZAC359	AC	744999	6481582	43	-60	73
	ZAC360	AC	744954	6481561	73	-60	73
	ZAC361	AC	744902	6481550	78	-60	73
	ZAC362	AC	744857	6481533	79	-60	73
	ZAC363	AC	744806	6482029	28	-60	73
	ZAC364	AC	744756	6482009	46	-60	73
	ZAC365	AC	744710	6481995	78	-60	73
	ZAC366	AC	744783	6482021	53	-60	73
	ZAC367	AC	744604	6482849	37	-60	73
	ZAC368	AC	744555	6482837	28	-60	73
	ZAC369	AC	744516	6482809	40	-60	73
	ZAC370	AC	744467	6482795	51	-60	73
Dulaia	ZAC371	AC	744421	6482776	77	-60	73
Dulcie West	ZAC372	AC	744376	6482760	78	-60	73
VVCSt	ZAC373	AC	744446	6482786	45	-60	73
	ZAC374	AC	744444	6483392	45	-60	73
	ZAC375	AC	744406	6483376	41	-60	73
	ZAC376	AC	744360	6483359	45	-60	73
	ZAC377	AC	744307	6483342	46	-60	73
	ZAC378	AC	744262	6483324	61	-60	73
	ZAC379	AC	744212	6483308	67	-60	73
	ZAC380	AC	744176	6483279	78	-60	73
	ZAC381	AC	743943	6484063	78	-60	73
	ZAC382	AC	743895	6484048	66	-60	73
	ZAC383	AC	743800	6484019	60	-60	73
	ZAC384	AC	744249	6483740	48	-60	73
	ZAC385	AC	744195	6483726	57	-60	73
	ZAC386	AC	744148	6483710	71	-60	73

	ZAC387	AC	744098	6483688	58	-60	73
	ZAC388	AC	744048	6483677	60	-60	73
	ZAC389	AC	744005	6483659	75	-60	73
	ZAC390	AC	746104	6482532	30	-60	73
	ZAC391	AC	746068	6482521	40	-60	73
	ZAC392	AC	746012	6482432	50	-60	73
6 44/ -	ZAC393	AC	746051	6482594	27	-60	73
Scott's Grey	ZAC394	AC	746094	6482599	43	-60	73
diey	ZAC395	AC	746121	6482656	45	-60	73
	ZAC396	AC	746081	6482645	54	-60	73
	ZAC397	AC	746048	6482636	26	-60	73
	ZAC398	AC	746011	6482624	35	-60	73
	ZAC399	AC	745908	6483717	39	-60	73
	ZAC400	AC	745811	6483796	44	-60	73
	ZAC401	AC	745690	6483731	51	-60	160
	ZAC402	AC	745708	6483679	24	-60	160
	ZAC403	AC	745740	6483694	50	-60	160
	ZAC404	AC	745726	6483739	59	-60	160
	ZAC405	AC	745724	6484058	61	-60	73
	ZAC406	AC	745699	6484050	49	-60	73
	ZAC407	AC	745661	6484048	50	-60	73
Dodata	ZAC408	AC	745624	6484042	28	-60	73
Dulcie North	ZAC409	AC	745587	6484039	21	-60	73
North	ZAC410	AC	745553	6484011	48	-60	73
	ZAC411	AC	745515	6483997	64	-60	73
	ZAC412	AC	745473	6483986	43	-60	73
	ZAC413	AC	745822	6483903	22	-60	73
	ZAC414	AC	745792	6483888	33	-60	73
	ZAC415	AC	745751	6483882	39	-60	73
	ZAC416	AC	745719	6483867	48	-60	73
	ZAC417	AC	745677	6483855	53	-60	73
	ZAC418	AC	745628	6483840	47	-60	73
	ZAC419	AC	745567	6483825	26	-60	73

For further information please refer to the Company's website or contact the Company directly.

Authorised for release by the Zenith Minerals Limited Board of Directors – 30th September 2021 For further information contact Zenith Minerals Limited:

Directors Michael Clifford or Peter Bird

E: mick@zenithminerals.com.au / peter@zenithminerals.com.au (Phone +61 8 9226 1110)

Competent Persons Statement

The information in this report that relates to Exploration Results and Mineral Resources is based on information compiled by Mr Michael Clifford, who is a Member of the Australian Institute of Geoscientists and an employee of Zenith Minerals Limited. Mr Clifford has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person

as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Clifford consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Material ASX Releases Previously Released

The Company has released all material information that relates to Exploration Results, Mineral Resources and Reserves, Economic Studies and Production for the Company's Projects on a continuous basis to the ASX and in compliance with JORC 2012. The Company confirms that it is not aware of any new information that materially affects the content of this ASX release and that the material assumptions and technical parameters remain unchanged.

Zenith Minerals Limited (ASX:ZNC)

Zenith has a vision to build a gold and base metals business with a team of proven project finders. Focus is on 100% owned Zenith projects, whilst partners progress multiple additional opportunities using third party funds.

Zenith is continuing to focus on its core Australian gold and copper projects including:

Earaheedy

Zinc

Western Australia

25% free carry to BFS

New major zinc discovery to be fast tracked with extensive accelerated exploration program underpinned by a recent \$40M capital raising by partner Rumble Resources Limited (ASX:RTR) (ASX Releases 28-Apr-21, 2-Jun-21, 8-Jun-21).

Develin Creek

Copper - Zinc

Queensland

100% Owned

Inferred Mineral Resource 2.57Mt @ 1.76% Cu, 2.01% Zn, 0.24% Au & 9.6g/t Ag (ASX Release 15-Feb-15). Testing 8 targets with multi-rig drill campaign.

Sulphide City (ASX Release 5-Jul-21).

34m @ 3.5% Cu+Zn

29m @ 3.5% Cu+Zn

incl 10m @ 6.0% Cu+Zn

incl 12.3m @ 6.7% Cu+Zn

Red Mountain Gold Queensland **100% Owned**

Drilling is following-up the high-grade near surface gold and silver intersected in the maiden & subsequent drill programs (ASX Releases 3-Aug-20 & 13-Oct-20, 9-Nov-20, 21-Jan-21).

Results incl:

13m @ 8.0 g/t Au

15m @ 3.5 g/t Au

5m @ 10.4 g/t Au

12m @ 4.9 g/t Au

Split Rocks

Gold

Western Australia

100% Owned

Zenith drilling returned - high-grade near surface gold mineralisation at multiple targets (ASX Release 5-Aug-20, 2-Sep-20, 19-Oct-20, 28-Oct-20, 15-Jan-21, 11-Mar-21, 21-Apr-21, 24-Jun-21). Results include:

Dulcie North

32m @ 9.4 g/t Au, incl 9m @ 31.4 g/t Au

16m @ 1.3 g/t Au

Dulcie Laterite Pit

2m @ 14.5 g/t Au

18m @ 2.0 g/t Au

14m @ 3.5 g/t Au

Estrella

2m @ 9.8 g/t Au

Dulcie Far North

5m @ 5.6 g/t Au

3m @ 70 g/t Au

Water Bore Scotts Grey 3m @ 6.6 g/t Au 8m @ 4.1 g/t Au

4m @ 4.8 g/t Au

Jackadgery

Gold

New South Wales

Option to 90%

Historic trenching returned 160m @ 1.2 g/t Au. No drilling to date. Zenith planning maiden drill test (ASX Release 10-Sep-20).

Investments

43.9M shares in Bradda Head Holdings Limited (AIM)

3M shares in Rumble Resources Limited (ASX:RTR)

2.5M shares in American Rare Earths (ASX:ARR)

NICKEL X 0.5M shares in Nickel-X Limited (ASX:NKL)

JORC Tables

Section 1 Sampling Techniques and Data for Zenith Aircore Drilling

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
	channels, random chips, or specific specialised	4m composite and associated 1m resamples of aircore drill samples were collected at depths ranging from 0 to 56m depth. Samples were collected via a cyclone.
Sampling	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Samples are representative of the intervals sampled.
techniques	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Aircore drilling was used to obtain 4 m composite and 1 m samples from which 2 kg was pulverised with analysis for gold by 50g fire assay with AAS finish
Drilling techniques	Drill type (e.g. core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc.).	Aircore
	Method of recording and assessing core and chip sample recoveries and results assessed.	Samples were visually assessed in the field and using an estimated bulk density compared against theoretical mass to estimate recovery.
Drill sample recovery	· · · · · · · · · · · · · · · · · · ·	Aircore ensured good recoveries through-out the drill program, holes that ended in high-water ingress were terminated to ensure adequate sample recovery.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Acceptable overall sample recoveries through-out drill program no bias likely.

	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All drill samples were logged by a qualified geologist and descriptions recorded in a digital data base.				
Logging	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	Qualitative logging, representative sample retained for each drill metre.				
	The total length and percentage of the relevant intersections logged.	100%				
	If core, whether cut or sawn and whether quarter, half or all core taken.	No core				
Sub-sampling	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	Cone splitter for each 4m composite sample.				
techniques and sample preparation	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Samples were analysed at Nagrom Laboratories in Perth, 2 kg was pulverised and a representative subsample was analysed for gold by 50g fire assay with AAS finish.				
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	~200g of sample was pulverised and a sub-sample was taken in the laboratory and analysed.				
Sub-sampling techniques and sample	1 .	Duplicate samples were taken in the field and analysed as part of the QA/QC process				
preparation - continued	Whether sample sizes are appropriate to the grain size of the material being sampled.	Each sample was approximately 2kg in weight which is appropriate to test for the grain size of material sampled.				
	assaying and laboratory procedures used and	Samples were analysed at Nagrom Laboratories in Perth, 2 kg was pulverised and a representative subsample was analysed for gold by 50g fire assay with AAS finish.				
Quality of assay data and laboratory tests	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools used in this program.				
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Blanks, certified reference material for gold, and duplicate samples were included in the analytical batches and indicate acceptable levels of accuracy and precision.				
Verification of sampling and assaying		At least 2 Zenith company personnel have been to the prospect area and observed samples and representative drill chip samples				

		The use of twinned holes.	Nil			
		Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Field data were all recorded on paper logs and sample record books and then entered into a database			
C		Discuss any adjustment to assay data.	No adjustments were made.			
	Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Sample location is based on GPS coordinates +/-5m accuracy.			
	<u> </u>	Specification of the grid system used.	The grid system used to compile data was MGA94 Zone 50			
	ocation of data ooints – Quality and adequacy of topographic control.		Topography control is +/- 10m.			
		Data spacing for reporting of Exploration Results.	Refer to Figures 2 - 7			
- / 1	Data spacing and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	There is insufficient information to calculate a mineral resource			
		Whether sample compositing has been applied.	Simple weight average mathematical compositing applied			
7 000	Orientation of data in relation to	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	All Zenith drilling is -60 degrees east and is close to representing true width thickness of the west dipping gold mineralisation, based on the current geological interpretation. Further drilling is required to confirm this interpretation.			
- \	geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No bias based on current interpretation.			
7	Sample security	The measures taken to ensure sample security.	All samples were taken by Zenith personnel on site and retained in a secure location until delivered directly to the laboratory by Zenith personnel.			
	Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The sampling techniques and data have been reviewed by two company personnel who are qualified as Competent Persons			

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary			
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	covering the operating Dulcie Heap Leach Gold Project (DHLGO) in exchange for surface laterite gold rights on Zenith's adjoining exploration licence E77/2388. Zenith may at its sole election exercise the option through the payment of a 2% NSR royalty payable on any future bedrock gold production from the DHLGC project area. The project is located predominantly in vacant crown land.			
	•	Tenements are mining leases and prospecting leases, current heap leach operation is active, no known impediments to obtain a licence to operate.			
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Refer to ASX release 21 st March 2019.			
Geology	Deposit type, geological setting and style of mineralisation.	Archean mesothermal lode gold mineralisation hosted within banded iron formation (BIF) and mafic rock types.			
9	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:				
	o easting and northing of the drill hole collar				
Drill hole	o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	Refer to Figures and Tables in body of text of this ASX			
Information	o dip and azimuth of the hole	release.			
	o down hole length and interception depth				
	o hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.				
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	High-grade intersections are length weighted average grades with minimum cut -off grade of 1.0g/t Au and no internal dilution, whilst lower grade intersections are length weighted average grades with minimum cut-off grade of 0.4g/t Au and maximum internal dilution of 4m.			

		Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	As above and included in Tables
	Data aggregation methods - continued	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents used.
	Relationship between	These relationships are particularly important in the reporting of Exploration Results.	Drilling is angled -60 degrees east or vertical and based on current interpretation is thought to be representing true width thickness of the flat lying supergene or gentle west dipping gold mineralised zones however further drilling is required to confirm this interpretation.
	mineralisation widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	As above
			Mineralised intervals reported are down-hole lengths but are believed to be close to true thickness
	Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures and Tables in body of text of this ASX release.
	Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Refer to Figures and Tables in body of text of this ASX release.
	Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples — size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other meaningful or material exploration data to be reported at this stage.
	Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Follow-up drilling planned.

Diagrams clearly highlighting the	areas of			
possible extensions, including to	he main			
geological interpretations and future drilling				
areas, provided this information	ı is not			
commercially sensitive.				

Refer to figures in body of this report.