

TSXV:BZ, ASX:BNZ 2 August 2021

New high grade gold shoot identified at North West Zone at Eastmain Gold Project

HIGHLIGHTS

- Maiden broad spaced scout drilling into North West (NW) Zone (600m from current resource)
 has highlighted the potential for a new high grade gold shoot
- Assays for the first 17 holes of 2021 received assay results include:
 - o 3.0m at 16.6g/t gold including 1.5m at 32.8g/t gold (EM21-143)
 - o 7.8m at 8.7g/t gold including 1.0m at 32.6g/t gold (EM21-146)
 - o 6.0m at 3.6g/t gold including 1.0m at 10.2g/t gold (EM21-145)
 - o 3.0m at 5.2g/t gold including 1.0m at 15.0g/t gold (EM21-159)
 - 6.6m at 3.1g/t gold (EM21-158)
- Results confirm the extensions of historical drilling results of
 - o 6.0m at 3.3g/t gold including **2m at 9.3g/t gold (EM17-126)**
 - 5.5m at 6.1g/t gold including 1.5m at 19.2g/t gold (83CH029)
- Assays also confirm the parallel Nisto trend extends to NW Zone, is gold bearing and carries high-grade mineralisation with
 - o 8.9m at 1.5g/t gold including 1.5m at 7.3 g/t gold (EM21-157)
- Nisto trend is approximately 100-200m below the Mine Horizon and was discovered by Benz in 2021 via DHEM on historical holes
- NW Zone mineralisation spread over 400m x 500m and open in all directions and is a part of the 6km gold bearing trend identified by Benz using both FLEM and BHEM surveys
- Future drilling into NW Zone will target the high-grade plunging shoots identified by this scout drill program
- 50,000 drilling program well advanced 52 holes for 25,000m done 15,500m assays pending with multiple visible gold intercepts to come from D and E Zones
- 3rd drill rig secured to arrive in second half of August to accelerate exploration

Benz Mining Corp. (TSXV:BZ, ASX:BNZ) (the **Company** or **Benz**) is pleased to announce long awaited assays results for the start of its 2021 drilling campaign. Results come predominantly from NW Zone which is quickly emerging as a new high-grade lodes system and has the potential to become an integral part of the Eastmain deposit.

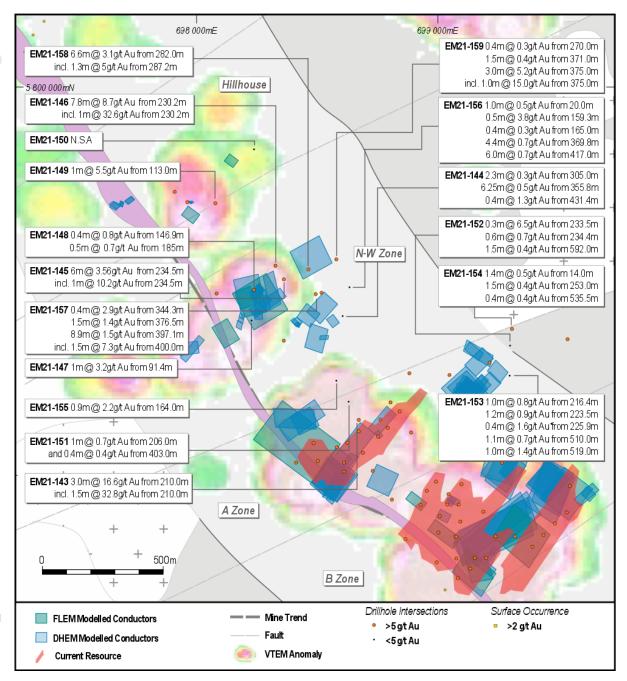


Figure 1: 2021 drilling location with significant assays results, EM conductors and simplified geology

CEO, Xavier Braud, commented: "We are glad to finally be able to release assay results from Eastmain, especially when they are great results. DHEM of historical holes at NW Zone had showed us many undrilled conductors. We drilled them and now we know that NW Zone is mineralised and presents the exact same characteristics as A, B and C Zones and poses as a new high-grade zone of the Eastmain deposit. This first pass scout drilling is wide spaced with drilling centres 100m apart and more. We have identified mineralisation over a large 400x 400m area and, more importantly, we have clearly identified two mineralised parallel horizons, both of which are proving to be gold bearing.

"Eastmain is delivering above expectations and our exploration methodology utilising electromagnetics to guide discoveries continues to be extremely successful. We have identified conductors over a strike length of 6km and, to date, we haven't drilled a single conductor which has not returned the right geology. Every target we drill bring more information and we are gradually unlocking the full potential of the Eastmain deposit.

We now have over 150 DHEM conductors in the system and we are systematically drilling them. The DHEM data from NW Zone shows strong undrilled off-hole conductors near our high-grade intervals. Follow up drilling will start as soon as we increase our drilling capacity with a third rig arriving in the second half of August."

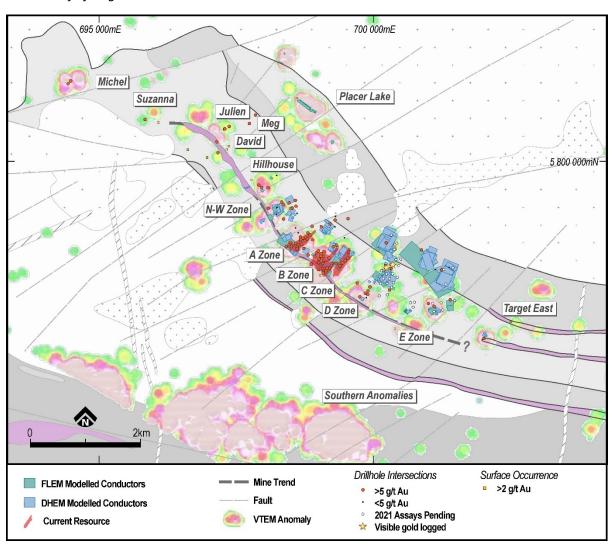


Figure 2: Map view of the Eastmain project with historical and current high grade drill results and 2021 drilling pending assays with EM conductors and simplified geology.

The NW Zone is located about 600m to the NW of the A Zone mineralised lens and camp infrastructure and can be accessed by a trail in summer. The mineralised horizon is associated with a strongly biotite, sericite, silica and carbonate altered mylonite located within deformed and altered ultramafic rocks. Sulphide content varies from 1-2% to up to 20% in sulphide veins, with xenoliths of enclosing rocks, often associated with quartz veins. There are also stringers and patches of sulphides. Garnet porphyroblasts are also observed in association with the more biotite altered rocks.

Main sulphides are pyrrhotite, chalcopyrite, pyrite and sphalerite. Visible gold was observed in holes EM21-143, EM21-146 and EM21-158.

The newly discovered Nisto trend at the NW Zone and A Zone is found between 100 and 200m deeper than the Mine Horizon. Mineralisation is hosted at the contact between strongly deformed and altered sediments (wackes and conglomerate) and ultramafics with stringers and patches of pyrrhotite and chalcopyrite. Garnet porphyroblasts are locally observed in association with the more biotite rich rocks.

The results in this release are a mix of standard 50g charge fire assays and metallic screen fire assays. The choice of method was based on geological observations with samples showing strong visual mineralisation assayed directly by metallic screen fire assays.

All coarse crush rejects from this set of results have been shipped to Australia to be re-assayed by PhotonAssay.

The 16,000 samples re-analysis of 2020 drilling rejects by PhotonAssay is progressing with samples at Minanalytical Perth and Kalgoorlie facilities.

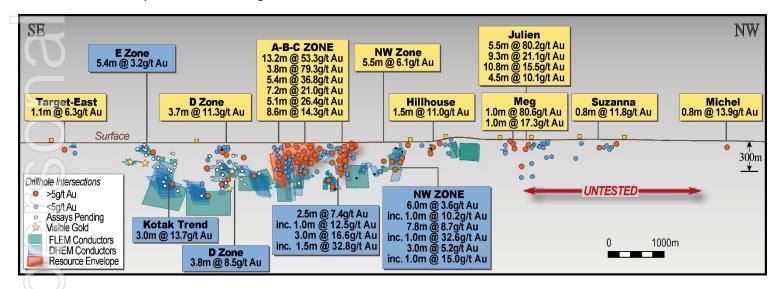


Figure 3: Eastmain Project Long Section with existing resource, FLEM and DHEM conductors and drilling to date with additional high grade NW Zone intercepts.

The Eastmain Gold Project, situated on the Upper Eastmain Greenstone Belt in Quebec, Canada, currently hosts a NI 43-101 and JORC (2012) compliant resource of 376,000oz at 7.9gpt gold (Indicated: 236,500oz at 8.2gtp gold, Inferred: 139,300oz at 7.5gtp gold). The existing gold mineralisation is associated with 15-20% semi-massive to massive pyrrhotite, pyrite and chalcopyrite in highly deformed and altered rocks making it amenable to detection using electromagnetic techniques. Multiple gold occurrences have been identified by previous explorers over a 10km long zone along strike from the Eastmain Mine with very limited but highly encouraging testing outside the existing resource area. Benz has subsequently identified over 150 DHEM conductors over a strike length of 6km which is open in all directions.

This press release was prepared under supervision and approved by Dr. Danielle Giovenazzo, P.Geo, acting as Benz's qualified person under National Instrument 43-101.

About Benz Mining Corp.

Benz Mining Corp. brings together an experienced team of geoscientists and finance professionals with a focused strategy to acquire and develop mineral projects with an emphasis on safe, low risk jurisdictions favourable to mining development. Benz is earning a 100% interest in the former producing high grade Eastmain gold mine, Ruby Hill West and Ruby Hill East projects in Quebec.

The Eastmain Gold Project is situated within the Upper Eastmain Greenstone Belt in Quebec, Canada and currently hosts a NI 43-101 and JORC (2012) compliant resource of 376,000oz at 7.9gpt gold. The existing gold mineralization is associated with 15-20% semi-massive to massive pyrrhotite, pyrite and chalcopyrite making it amenable to detection by electromagnetics. Several gold mineralization occurrences have been identified by previous explorers over a 10km long zone along strike from the Eastmain Mine with very limited testing outside the existing resource area.

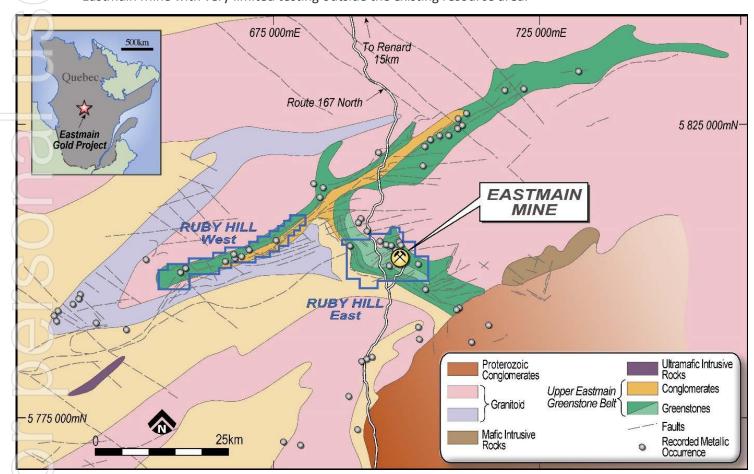


Figure 4: Benz tenure over Upper Eastmain Greenstone Belt simplified geology.

On behalf of the Board of Directors of Benz Mining Corp.

Xavier Braud, CEO

For more information please contact:

Paul Fowler Head of Corporate Development (Canada) Benz Mining Corp. Telephone: +1 416 356 8165

Email: info@benzmining.com

Xavier Braud CEO, Head of Corporate Development (Aus) Benz Mining Corp. Telephone +61 423 237 659

Email: info@benzmining.com

Forward-Looking Information: Certain statements contained in this news release may constitute "forward-looking information" as such term is used in applicable Canadian securities laws. Forward-looking information is based on plans, expectations and estimates of management at the date the information is provided and is subject to certain factors and assumptions, including, that the Company's financial condition and development plans do not change as a result of unforeseen events and that the Company obtains regulatory approval. Forward-looking information is subject to a variety of risks and uncertainties and other factors that could cause plans, estimates and actual results to vary materially from those projected in such forward-looking information. Factors that could cause the forward-looking information in this news release to change or to be inaccurate include, but are not limited to, the risk that any of the assumptions referred to prove not to be valid or reliable, that occurrences such as those referred to above are realized and result in delays, or cessation in planned work, that the Company's financial condition and development plans change, and delays in regulatory approval, as well as the other risks and uncertainties applicable to the Company as set forth in the Company's continuous disclosure filings filed under the Company's profile at www.sedar.com. The Company undertakes no obligation to update these forward-looking statements, other than as required by applicable law.

NEITHER THE TSX VENTURE EXCHANGE NOR ITS REGULATION SERVICES PROVIDER (AS THAT TERM IS DEFINED IN THE POLICIES OF THE TSX VENTURE EXCHANGE) ACCEPTS RESPONSIBILITY FOR THE ACCURACY OR ADEQUACY OF THIS RELEASE.

Competent Person's Statements: The information in this report that relates to Exploration Results is based on and fairly represents information and supporting information compiled by Mr Xavier Braud, who is a member of the Australian Institute of Geoscientists (AIG membership ID:6963). Mr Braud is a consultant to the Company and has sufficient experience in the style of mineralization and type of deposits under consideration and qualifies as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Braud holds securities in Benz Mining Corp and consents to the inclusion of all technical statements based on his information in the form and context in which they appear.

The information in this announcement that relates to the Inferred Mineral Resource was first reported under the JORC Code by the Company in its prospectus released to the ASX on 21 December 2020. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and confirms that all material assumptions and technical parameters underpinning the estimate continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement

Appendix 1: Drilling and assays data

Table 1: Drillholes collar information

Hole ID	X_NAD83_Z18N	Y_NAD83_Z18N	Elevation	Azimuth	Dip	Total Depth
EM21-143	698713	5798618	485	215	-57	567
EM21-144	698568	5799058	485	215	-75	477
EM21-145	698315	5799210	487	215	-60	333
EM21-146	698280	5799265	495	215	-60	297
EM21-147	698184	5799041	490	220	-55	225
EM21-148	698192	5799167	491	220	-55	240
EM21-149	698014	5799532	487	217	-55	223
EM21-150	698182	5799743	510	217	-55	201
EM21-151	698569	5798713	483	216	-60	657
EM21-152	699236	5798936	508	225	-75	637
EM21-153	699248	5798810	480	225	-80	618
EM21-154	699247	5799006	484	225	-75	675
EM21-155	698518	5798790	486	220	-60	585
EM21-156	698582	5799177	485	215	-75	507
EM21-157	698434	5799154	485	240	-58	471
EM21-158	698405	5799250	483	245	-59	648
EM21-159	698520	5799290	484	245	-65	450

Table 2: Significant assays

Hole ID	From	То	Total Length	Au g/t	Zone	
EM21-143	208.5	211.5	3.00	16.58	Zone A	Mine Horizon
Including	210	211.5	1.50	32.8		VG*
EM21-144	304.95	307.25	2.30	0.30		
Including	305.45	306	0.55	0.568		
	357	362	5	0.62	NW Zone	Mine Horizor
including	361.4	362	0.60	1.283		
	431.44	431.84	0.40	1.284		
EM21-145	234.5	240.5	6.00	3.56	NW Zone	Mine Horizon
Including	237	238	1.00	10.17		
EM21-146	230.2	238	7.80	8.73	NW Zone	Mine Horizon
Including	233	235	2.00	16.33		VG*
Including	236	237	1.00	32.56		
EM21-147	91.4	92.4	1.0	3.22	NW Zone	Mine Horizon
EM21-148	146.9	147.3	0.4	0.764	NW Zone	Mine Horizor
	185	185.5	0.5	0.734		
EM21-149	69.6	70.6	1.0	0.574	Hillhouse	
	113.0	114.0	1.0	5.495		Mine Horizor
EM21-150			No significant	results		
EM21-151	206.0	207.0	1.0	0.696	Zone A west	Mine horizon
	403.0	403.4	0.4	0.356		Nisto trend
EM21-152	233.45	234.9	1.45	1.64		
including	233.45	233.75	0.3	6.54		
	592.0	593.5	1.5	0.42	Zone A ext	Mine Horizor
EM21-153	216.4	217.4	1.0	0.82	Zone A	
	223.5	224.7	1.2	0.869		
	225.9	226.3	0.4	1.579		
	510.0	511.12	1.12	0.732		Mine Horizor
	519.0	520.0	1.0	1.415		Mine Horizor
EM21-154	14.0	15.4	1.4	0.454	Zone A ext	

Hole ID	From	То	Total Length	Au g/t	Zone	
	253.0	254.5	1.5	0.358		
	535.5	535.9	0.4	0.376		Mine Horizon
EM21-155	164.0	164.9	0.9	2.176	Zone A west	Mine Horizon
	501.5	502	0.5	1.123		Nisto trend
	511.1	511.5	0.4	0.907		Nisto trend
EM21-156	20.0	21.0	1.0	0.468	NW zone	
	159.3	159.8	0.5	3.795		
	165.0	165.4	0.4	0.317		
	369.8	374.2	4.4	0.713		Mine Horizon
	417.0	423.0	6.0	0.735		
including	417.0	419.4	1.4	1.43		
EM21-157	344.32	344.7	0.38	2.852	NW zone :	
	376.5	378.0	1.5	1.39		Mine Horizon
	397.08	406.0	8.9	1.50		Nisto trend
Including	400.0	401.5	1.5	7.254		Nisto trend
EM21-158	284.8	291.35	6.55	3.11	NW Zone:	Mine Horizon *VG
including	288.7	290	1.3	5.038		
	293.3	294.5	1.2	0.435	NW Zone:	Mine Horizon
	542.3	543.07	0.77	0.705		Nisto trend
EM21-159	269.9	270.3	0.4	0.33	NW Zone:	
	371	372.5	1.5	0.43		Mine Horizon
	375	378	3	5.161		Mine Horizon
including	375	376	1	14.97		Mine Horizon
	426.1	426.55	0.45	0.633		

Significant assays reported are assays >0.2g/t Au. Composites are calculated by weighted average allowing for up to 1m internal dilution

Table 3: Assays data

Hole	From	То	Length	Sample Type	Weight	Gold g/t (Au)
number						
EM21-143	67.5	69	1.5	Fire Assay	3.3	0.13
EM21-143	201	202.5	1.5	Fire Assay	3.24	0.195
EM21-143	208.5	210	1.5	Fire Assay	3.34	0.35
EM21-143	210	211.5	1.5	Fire Assay	3.57	32.8
EM21-143	410	411.5	1.5	Fire Assay	3.43	0.169
EM21-143	436	437	1	Fire Assay	2.38	0.221
EM21-143	452	453	1	Metallic sieve	2.44	0.111
EM21-144	63.39	63.9	0.51	Fire Assay	1.1	0.244
EM21-144	184.6	185.3	0.7	Fire Assay	1.52	0.245
EM21-144	290.15	290.83	0.68	Fire Assay	1.68	0.411
EM21-144	304.95	305.45	0.5	Fire Assay	1.16	0.207
EM21-144	305.45	306	0.55	Fire Assay	1.44	0.568
EM21-144	306	306.75	0.75	Fire Assay	1.83	0.201
EM21-144	306.75	307.25	0.5	Fire Assay	1.19	0.265
EM21-144	339	339.5	0.5	Fire Assay	1.17	0.118
EM21-144	355.75	356.3	0.55	Metallic sieve	1.42	0.162
EM21-144	357	358	1	Metallic sieve	2.4	1.031
EM21-144	358	359	1	Metallic sieve	2.02	0.623
EM21-144	359	360.4	1.4	Metallic sieve	4.17	0.466
EM21-144	361.4	362	0.6	Fire Assay	1.49	1.283
EM21-144	431.44	431.84	0.4	Fire Assay	0.86	1.284
EM21-145	47.3	48.7	1.4	Fire Assay	2.82	0.11
EM21-145	55	56.5	1.5	Fire Assay	3.08	0.174
EM21-145	60	60.5	0.5	Fire Assay	1.12	0.204
EM21-145	195	196.06	1.06	Fire Assay	2.2	0.156
EM21-145	225	226	1	Fire Assay	1.93	0.246
EM21-145	227	228	1	Fire Assay	2.08	0.533
EM21-145	231.2	232	0.8	Fire Assay	1.72	0.384
EM21-145	233	234.5	1.5	Metallic sieve	3.04	0.157
EM21-145	234.5	236	1.5	Metallic sieve	2.93	1.044
EM21-145	236	237	1	Metallic sieve	2.42	3.630
EM21-145	237	238	1	Metallic sieve	2.05	10.169
EM21-145	238	239	1	Metallic sieve	1.96	0.281
EM21-145	239	240.5	1.5	Metallic sieve	2.62	3.820
EM21-145	267.2	268.7	1.5	Fire Assay	3.05	0.113
EM21-145	268.7	269.6	0.9	Fire Assay	1.85	0.264
EM21-146	203	204	1	Fire Assay	2.24	0.117
EM21-146	228	229	1	Fire Assay	2.7	0.17

Hole number	From	То	Length	Sample Type	Weight	Gold g/t (Au)
EM21-146	229	229.5	0.5	Fire Assay	1.32	0.12
EM21-146	230.2	231	0.8	Metallic sieve	1.94	0.63
EM21-146	231	232	1	Metallic sieve	2.13	1.76
EM21-146	232	233	1	Metallic sieve	2.24	0.21
EM21-146	233	234	1	Metallic sieve	2.69	15.78
EM21-146	234	235	1	Metallic sieve	2.64	16.88
EM21-146	235	236	1	Metallic sieve	2.06	0.17
EM21-146	236	237	1	Metallic sieve	2.5	32.56
EM21-146	237	238	1	Metallic sieve	2.18	0.21
EM21-146	241	241.5	0.5	Fire Assay	0.83	0.854
EM21-146	257.4	258	0.6	Fire Assay	1.52	0.293
EM21-147	91.4	92.4	1	Fire Assay	2.06	3.22
EM21-147	113	114	1	Fire Assay	2.21	0.211
EM21-147	134	135.2	1.2	Fire Assay	2.63	0.171
EM21-148	47.6	48.3	0.7	Fire Assay	1.73	0.202
EM21-148	146.9	147.3	0.4	Fire Assay	0.91	0.764
EM21-148	185	185.5	0.5	Fire Assay	1.04	0.734
EM21-149	65.3	66	0.7	Fire Assay	1.64	0.123
EM21-149	69	69.6	0.6	Fire Assay	1.43	0.132
EM21-149	69.6	70.6	1	Fire Assay	1.51	0.574
EM21-149	76	76.7	0.7	Fire Assay	1.63	0.123
EM21-149	113	114	1	Fire Assay	2.19	5.495
EM21-149	169	169.7	0.7	Fire Assay	1.28	0.367
EM21-149	187	187.5	0.5	Fire Assay	1.15	0.264
EM21-150	173	173.6	0.6	Fire Assay	1.52	0.207
EM21-150	175	176	1	Fire Assay	2.66	0.117
EM21-151	25.5	27	1.5	Fire Assay	2.75	0.128
EM21-151	205	206	1	Fire Assay	1.98	0.119
EM21-151	206	207	1	Fire Assay	1.82	0.696
EM21-151	207	208.5	1.5	Fire Assay	3.01	0.119
EM21-151	403	403.4	0.4	Fire Assay	0.82	0.356
EM21-151	403.4	403.9	0.5	Fire Assay	0.91	0.173
EM21-151	516	517	1	Fire Assay	2.36	0.118
EM21-151	522	522.5	0.5	Fire Assay	1.12	0.113
EM21-151	523.8	525	1.2	Fire Assay	2.81	0.169
EM21-152	233.45	233.75	0.3	Fire Assay	0.67	6.541
EM21-152	234.35	234.9	0.55	Fire Assay	0.94	0.708
EM21-152	427.5	428	0.5	Fire Assay	1.15	0.195
EM21-152	461.9	463	1.1	Fire Assay	2.87	0.121
EM21-152	555.3	557	1.7	Fire Assay	4.5	0.23
EM21-152	573	573.5	0.5	Fire Assay	1.15	0.129

Hole number	From	То	Length	Sample Type	Weight	Gold g/t (Au)
EM21-152	592	593.5	1.5	Fire Assay	3.59	0.42
EM21-153	89.6	90.3	0.7	Fire Assay	1.29	0.293
EM21-153	90.3	90.9	0.7	Fire Assay	1.42	0.134
EM21-153	216.4	217.4	0.0	Fire Assay	2.4	0.134
EM21-153	210.4	217.4	0.35	Fire Assay	0.95	0.158
EM21-153	217.4	217.75	0.33	Fire Assay	1.22	0.138
EM21-153	217.73	219.85		,		
			0.55	Fire Assay	2.46	0.118
EM21-153	223.5	224.7		Fire Assay	2.46	0.869
EM21-153	225.9	226.3	0.4	Fire Assay	0.86	1.579
EM21-153	228	229	1	Fire Assay	2.28	0.311
EM21-153	308.52	309.34	0.82	Fire Assay	2.17	0.156
EM21-153	313.61	314	0.39	Fire Assay	1.08	0.101
EM21-153	322	322.35	0.35	Fire Assay	0.81	0.215
EM21-153	325.09	325.4	0.31	Fire Assay	0.83	0.144
EM21-153	326.2	326.73	0.53	Fire Assay	1.47	0.179
EM21-153	395.5	396	0.5	Fire Assay	1.09	0.17
EM21-153	510	511.12	1.12	Fire Assay	2.29	0.732
EM21-153	519	520	1	Fire Assay	2.07	1.415
EM21-153	520	520.45	0.45	Fire Assay	1.41	0.284
EM21-154	14	15.4	1.4	Fire Assay	3.13	0.454
EM21-154	253	254.5	1.5	Fire Assay	3.8	0.358
EM21-154	254.5	256	1.5	Fire Assay	3.61	0.134
EM21-154	516.6	516.9	0.3	Fire Assay	0.62	0.302
EM21-154	535.5	535.9	0.4	Fire Assay	1.11	0.376
EM21-154	551.5	551.8	0.3	Fire Assay	0.66	0.115
EM21-154	598.6	600	1.4	Fire Assay	3.6	0.103
EM21-154	600	600.9	0.9	Fire Assay	2.1	0.188
EM21-154	600.9	601.7	0.8	Fire Assay	1.79	0.23
EM21-154	601.7	602.5	0.8	Fire Assay	2.02	0.125
EM21-154	604.3	605	0.7	Fire Assay	1.51	0.107
EM21-155	63.55	64.5	0.95	Fire Assay	2.27	0.118
EM21-155	93.5	94.1	0.6	Fire Assay	1.4	0.128
EM21-155	135	135.55	0.55	Fire Assay	1.38	0.187
EM21-155	136.55	138	1.45	Fire Assay	2.95	0.165
EM21-155	148.7	149.1	0.4	Fire Assay	1.17	0.22
EM21-155	164	164.9	0.9	Fire Assay	2.64	2.176
EM21-155	378.8	379.2	0.4	Fire Assay	1.06	0.227
EM21-155	379.9	380.4	0.5	Fire Assay	2.16	0.159
EM21-155	501.5	502	0.5	Fire Assay	1.25	1.123
EM21-155	502	503	1	Fire Assay	2.46	0.195
EM21-155	504	505	1	Fire Assay	2.54	0.123

Hole number	From	То	Length	Sample Type	Weight	Gold g/t (Au)
EM21-155	511.1	511.5	0.4	Fire Assay	0.9	0.907
EM21-155	531	532	1	Fire Assay	2.3	0.134
EM21-155	543	544.5	1.5	Fire Assay	3.77	0.21
EM21-155	546	547	1	Fire Assay	3.73	0.193
EM21-155	547	549	2	Fire Assay	3.43	0.22
EM21-155	550.5	552	1.5	Fire Assay	3.89	0.176
EM21-156	20	21	1	Fire Assay	2.56	0.468
EM21-156	21	22.5	1.5	Fire Assay	3.78	0.102
EM21-156	25.5	26.1	0.6	Fire Assay	1.38	0.102
EM21-156	26.5	27	0.5	Fire Assay	1.11	0.239
EM21-156	27	28.5	1.5	Fire Assay	3.6	0.152
EM21-156	37	38	1	Fire Assay	2.34	0.132
EM21-156	159.3	159.8	0.5	Fire Assay	1.17	3.795
EM21-156	165	165.4	0.4	Fire Assay	0.86	0.317
EM21-156	248.5	249	0.5	Fire Assay	1.14	0.258
EM21-156	369.8	370.8	1	Metallic sieve	2.25	0.612
EM21-156	370.8	372.2	1.4	Metallic sieve	3.33	1.409
EM21-156	372.2	373.2	1	Metallic sieve	2.26	0.342
EM21-156	373.2	374.2	1	Metallic sieve	2.15	0.212
EM21-156	416.07	417	0.93	Metallic sieve	2.02	0.179
EM21-156	417	418	1	Metallic sieve	2.26	1.922
EM21-156	418	419.4	1.4	Metallic sieve	3.55	1.084
EM21-156	419.4	420.3	0.9	Metallic sieve	1.76	0.128
EM21-156	420.3	421.5	1.2	Metallic sieve	2.55	0.167
EM21-156	421.5	423	1.5	Metallic sieve	3.09	0.438
EM21-157	50.93	52.3	1.37	Fire Assay	3.22	0.25
EM21-157	182.94	184.77	1.83	Fire Assay	4.02	0.157
EM21-157	209	210	1	Fire Assay	2.36	0.139
EM21-157	283.43	284.53	1.1	Fire Assay	1.91	0.105
EM21-157	293	293.68	0.68	Metallic sieve	1.31	0.244
EM21-157	301.64	302.64	1	Fire Assay	2.49	0.13
EM21-157	344.32	344.7	0.38	Fire Assay	0.94	2.852
EM21-157	347.16	348	0.84	Fire Assay	1.95	0.207
EM21-157	351	352.5	1.5	Fire Assay	3.31	0.168
EM21-157	376.5	378	1.5	Fire Assay	3.06	1.39
EM21-157	397.08	398.5	1.42	Metallic sieve	2.95	0.215
EM21-157	398.5	400	1.5	Metallic sieve	3.36	0.292
EM21-157	400	401.5	1.5	Fire Assay	3.13	7.254
EM21-157	401.5	403	1.5	Metallic sieve	3.31	0.646
EM21-157	404.5	406	1.5	Fire Assay	1.22	0.232
EM21-157	404.5	406	1.5	Duplicate	1.8	0.455

Hole	From	То	Length	Sample Type	Weight	Gold g/t (Au)
number						
EM21-158	282	283.5	1.5	Fire Assay	3.2	0.13
EM21-158	283.5	284.8	1.3	Metallic sieve	2.75	0.181
EM21-158	284.8	286.1	1.3	Metallic sieve	2.74	3.78
EM21-158	286.1	287.2	1.1	Metallic sieve	3.03	3.991
EM21-158	287.2	288.7	1.5	Metallic sieve	4	2.39
EM21-158	288.7	290	1.3	Metallic sieve	3.08	5.028
EM21-158	290	291.35	1.35	Metallic sieve	2.98	0.687
EM21-158	291.35	292.35	1	Metallic sieve	2.46	0.217
EM21-158	293.3	294.5	1.2	Fire Assay	2.1	0.435
EM21-158	423	424.5	1.5	Fire Assay	3.52	0.174
EM21-158	516.7	518	1.3	Fire Assay	2.98	0.124
EM21-158	542.3	543.07	0.77	Fire Assay	1.69	0.705
EM21-158	603	604.5	1.5	Fire Assay	3.08	0.203
EM21-158	646	646.8	0.8	Fire Assay	1.94	0.145
EM21-159	138	139	1		2.06	0.24
EM21-159	264	265	1		1.97	0.2
EM21-159	269.9	270.3	0.4		1.08	0.33
EM21-159	342.9	343.5	0.6		1.65	0.123
EM21-159	364	365	1		2.37	0.12
EM21-159	365	366	1		2.71	0.12
EM21-159	371	372.5	1.5		3.57	0.43
EM21-159	375	376	1		4.23	14.97
EM21-159	376	377	1		4.40	0.29
EM21-159	377	378	1		2.55	0.22
EM21-159	381	382	1		2.62	0.11
EM21-159	413	413.4	0.4		1.09	0.12
EM21-159	419	420.5	1.5		4.02	0.27
EM21-159	426.1	426.55	0.45		1.07	0.633

All assays reported are Au>0.1g/t. When multiple duplicates of the same samples by different methods, best intercept is reported. N.B: All drillholes reported anomalous gold >0.1g/t.

Appendix 2: JORC Tables

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 NQ size core drilling Core cut in two equal halves with one half submitted for assays Core length for individual samples was based on geological observations No samples were less than 30cm (0.3m) in length 3,600 samples submitted from 7,811m of drilling
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Triple tube NQ core drilling. Hole depths vary between 201m and 675m Core was oriented using downhole orientation tool
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade 	 Core recoveries were measured by comparing the length of core recovered against the length of drill rods used and recorded by the drilling contractor. For the sampled intervals the core was cut in half and half of the core was sent for assays

Criteria	JORC Code explanation	Commentary
	and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Length of core sampled for individual assays was determined by the logging geologist following geological/mineralisation boundaries. To ensure representativity, no intervals shorter than 30cm were sampled.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	All core was logged for Lithology Alteration Mineralisation Mineral species abundance Veining Structures Both qualitative and quantitative logging was conducted 100% of the core drilled has been logged
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	Half core sampled
Quality of assay data and	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, 	 Most samples were submitted for Gold assay by Fire assay and Av (Atomic Absorption) of a 50g pulverized sample with gravimetic determination if >10 g/t. Samples where visual observations suggested potential high grade

	Criteria	JORC Code explanation	Commentary
	laboratory tests	 etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 gold and samples with visible gold were submitted for metallic screen fire assays. At this stage, no studies have been finalized on the repartition and size of the gold grains in the system, however visual observations of gold grains larger than 0.5mm suggest that fire assays should be considered a partial method at this stage Coarse rejects samples will be analysed as duplicates using PhotonAssay
5	Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No twinning of holes at this stage All sampling protocols have been peer reviewed and all data is stored appropriately No adjustments to assay data have taken place.
	Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All drillhole locations have been surveyed by handheld GPS with a typical accuracy of +/-4m Downhole surveys were conducted using a Reflex Multishot Gyro or the Axis north seeking Gyro. Grid: UTM NAD83 Zone 18N Topographic control is cross-checked with a 2013 LIDAR survey
	Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Not applicable. Data is not yet to be used in a resource estimation.
\(\) = \(\)	Orientation of data in relation to	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. 	Drilling targeted newly identified areas in the geological system. All drilling was oriented towards the SW. As some mineralisation at the project is seemingly dipping toward the NE the orientation of

C	Criteria	JORC Code explanation	Commentary
	geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	sampling should not introduce a bias in the samples.
	Sample security	The measures taken to ensure sample security.	All samples were cut and prepared on site by company employees and contractors. Samples bags were sealed and transported to the laboratory directly from the sampling site by contractors.
/	Audits or eviews	The results of any audits or reviews of sampling techniques and data.	The Company is constantly reviewing its sampling and assaying policies. No external audit has been conducted at this stage.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Eastmain Mine Project comprises 152 contiguous mining claims each with an area of approximately 52.7 ha covering a total of 8,014.36 ha plus one industrial lease permit that are owned by Eastmain Mines Inc., a wholly owned subsidiary of Fury Gold Mines The claims are numbered 1133433 to 1133583 consecutively plus claim 104458 (Figure 4.2). All of the claims are located within NTS sheet 33A 08. The former Mine Lease BM 817 was issued on January 10, 1995 an expired in 2015 after a 20-year term. This former Mine Lease was converted to Industrial Lease 00184710000 on September 1, 2015 and contains all normal surface rights. The former mineral rights for BM 817 are now included in the expanded Claims 1133523, 1133524, 1133525, 1133505, 1133506 and 1133507. The claims are 100% held by Fury Gold Mines subject to certain net smelter royalties ("NSR"). On August 9, 2019, Benz Mining Corp. announced that it has entere into an option agreement with Eastmain Resources Inc. (now Fury Gold Mines) to acquire a 100% interest in the former producing

Criteria	JORC Code explanation	Commentary
		 Eastmain Gold Project located in James Bay District, Quebec, for CAD \$5,000,000. Eastmain Resources would retain a 2% Net Smelter Return royalty in respect of the Project. Benz may, at any time, purchase one half of the NSR Royalty, thereby reducing the NSR Royalty to a 1% net smelter returns royalty, for \$1,500,000. The Eastmain Mine, as defined by the perimeter of a historic mining lease, is subject to a production royalty net smelter return ("NSR") of 2.3% through production of the next 250,000 oz produced and 2% thereafter. A package of claims surrounding the mine precinct is subject to a production royalty (NSR) of 2% in favor of Goldcorp as a result of their succession to Placer Dome in an agreement dated December 30, 1988 between Placer Dome, MSV Resources Inc. and Northgate Exploration Limited. The 152 claims that form the Eastmain Mine Property are all in good standing with an active status.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 1930s & 1940s – Prospecting of gossans 1950s & 1960s – Riocanex – Exploration of the Upper Eastmain Greenstone Belt Mid 1960s – Fort George – Diamond drilling of a gossan zone 1696 – Canex Aerial Exploration Ltd & Placer Development Ltd – Airborne magnetic and EM surveys with ground geophysics follow up. 1970 – Placer Development Ltd – Seven holes testing an EM anomaly. Discovery of A Zone with 1.5m @ 13.71g/t Au 1974 – Nordore – Aerodat airborne AEM survey and Ground geophysics. 3 holes returned anomalous gold values adjacent to B

Criteria	JORC Code explanation	Co	ommentary
5			Zone
		•	1974 – Inco Uranerz – Airborne geophysical survey over the whole greenstone belt.
		•	1981 & 1982 – Placer – Airborne and ground EM, ground magnetics. Drilling of EM anomalies discovered B zone and C zone.
		•	1983 to 1985 – Placer – Airborne and ground EM, downhole PEM, 91 holes over A B and C zones.
		•	1986 - Placer - 25 holes into A B and C zones
		•	1987 &1988 – Placer Dome / MSV JV – Drilling of A, B and C zones
		•	1988 to 1994 – MSV Resources – Drilling, surface sampling, trenching, regional exploration, Seismic refraction over ABC Zones,
		•	1994 & 1995 – MSV Resources – Mining of 118,356t at 10.58g/t Au and 0.3%Cu, processed at Copper Rand plant in Chibougamau, 40,000oz recovered
		•	1997 – MSV Resources- Exploration, mapping, prospecting, trenching.
		•	2004 - Campbell Resources – M&I resource calculation for Eastmain Mine.
		•	2005-2007 - Eastmain Resources – Purchase of the project from Campbell Resources, VTEM, Prospecting, regional exploration.
		•	2007-2019 – Eastmain Resources – Sporadic drilling, regional exploration, mapping, sampling, trenching. Surface geochemistry

Criteria	JORC Code explanation	Commentary
		(soils)
Geology	Deposit type, geological setting and style of mineralisation.	 In the Eastmain Gold Deposit, gold mineralization occurs in quartz veins with associated massive to semi-massive sulphide lenses/ veins and silicified zones associated with a deformation corridor. The mineralized zones are 3 m to 10 m thick and contained in a strongly deformed and altered assemblage (Mine series) consisting of felsic, mafic and ultramafic rocks. Mineralized quartz veins and lenses show a variable thickness between 10 cm and 13 m, and sulphide contents average 15% to 20% in the mineralized quartz veins and sulphide lenses. In order of decreasing abundance, sulphides consist of pyrrhotite, pyrite, and chalcopyrite, with minor sphalerite, magnetite and molybdenite. Visible gold occurs in the mineralized quartz veins as small (<1 mm) grains associated with quartz and (or) sulphides in the A, B and C Zones.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	See tables in Annexure 1
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade 	 Length weighting averages were produced using a 0.2g/t cut off and allowing for 1m internal dilution. No top cuts applied.

Criteria	JORC Code explanation	Commentary
	 results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisatio widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The exact geometry of the system is still not completely known. Drillhole orientation and known structural setting suggest that drillholes intersected mineralisation close to perpendicularly meaning that downhole intervals are believed to be close to true width/thickness
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See figures in the body of text
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All half core assays results available to the company have been released.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Benz conducted systematic BHEM of each hole drilled as well as BHEM surveying of historical holes. BHEM identified over 150 in-hole and off-hole conductors coincident or not with drilled mineralization.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Benz Mining is currently conducting a 50,000m drilling campaign which started in January 2021 This drilling is conducted alongside regional FLEM surveys (TMC Geophysics) All new holes will be surveyed by BHEM as well as a selection of historical holes.

