

OUTSTANDING HIGH-GRADE GOLD RESULTS FROM SPLIT ROCKS PROJECT

New outstanding high-grade gold drill results received from the first 36 aircore (AC) holes of a 100-hole program (totalling 4,732 metres) at the Split Rocks gold project in Western Australia.

Initial composite results from Dulcie Far North combined with those from previous scout drilling by Zenith and historic exploration drill holes on lines 100m to 200m apart, outline an additional 1km long x 300m wide gold mineralised corridor, new results include (refer Table 1):

- 3m @ 70.0 g/t Au (end of hole)
- 8m @ 2.5 g/t Au
- 8m @ 1.9 g/t Au, and
- 12m @ 1.0 g/t Au incl 4m @ 1.9 g/t Au

Results compliment previous drill results (refer Table 3), including:

- 6m @ 11.1 g/t Au
- 4m @ 8.1 g/t Au
- 5m @ 5.6 g/t Au and
- 5m @ 4.7 g/t Au
- Infill and extensional AC drilling is now required at Dulcie Far North to be followed by RC drilling on these significant near surface gold results and at the adjoining 3 Dulcie targets: Dulcie Laterite Pit, Dulcie North & Water Bore.

Commenting on the new high-grade gold results from Split Rocks Chairman Peter Bird said: "The results are great and in addition to the existing 2km long gold zone at Dulcie Laterite Pit, they define another 1km long zone that now requires further follow-up drill testing. We note that these new results from 36 holes are only a portion of the larger 100-hole drill program, they are particularly significant given the relatively coarse spacing of drill lines at Dulcie Far North. High grades to 70 g/t Au at end of hole are more than worthy of follow up. The continuing drill programs at Split Rocks are likely to add significant value to the Company."

New Drill Results

A total of 36 AC holes were completed at Dulcie Far North in this recent program, part of a larger 100-hole AC program. The holes along with previous Zenith AC and historic drilling on lines 100m to 200m apart outline a zone of gold mineralisation 1km long x 300m wide. Results from hole ZDAC339 are particularly significant returning **3m @ 70 g/t Au** from 44m depth to the end of the drill hole which terminated in a zone of intense quartz veining close to a basalt – banded iron formation contact.

Note Zenith retains gold rights at Dulcie Far North below 6m, subject to the Dulcie option agreement (refer to ASX Release 21-Mar-19).

Split Rocks Project - Background on Gold Potential

A major targeting exercise by the Company's geological team initially identified 12 high-quality gold drill targets at Split Rocks, subsequently expanded to 18 targets in the north-eastern sector of the Company's 100% owned tenure (Refer to ZNC ASX Release 2 September 2020).

Drilling to date has tested 12 targets (results awaited for Dulcie West) with outstanding first pass results returned at (ASX Release 5-Aug-20, 2-Sep-20, 19-Oct-20, 28-Oct-20, 15-Ja-21, 11-Mar-21, 21-Apr-21):

- o <u>Dulcie North</u>: 32m @ 9.4 g/t Au, incl 9m @ 31.4 g/t Au
- o Dulcie Laterite Pit:
 - 2m @ 14.5 g/t Au, incl. 1m @ 20.8 g/t Au,
 - 18m @ 2.0 g/t Au (EOH) incl. 1m @ 23.7 g/t Au
 - 14m @ 3.5 g/t Au
 - 3m @ 17.9 g/t Au
- Estrela Prospect: 2m @ 9.8 g/t Au
- o Dulcie Far North: 5m @ 5.6 g/t Au incl. 4m @ 6.8 g/t Au
- Water Bore: 3m @ 6.6 g/t Au

A further 7 of the 18 targets generated by Zenith extending over 18km of strike are yet to have first pass drill testing.

Infill and extensional aircore drilling is now required at Dulcie Far North to be followed by RC drilling on the significant near surface gold results at the 4 Dulcie targets, Dulcie Laterite Pit, Dulcie North, Dulcie Far North & Water Bore. are planned.

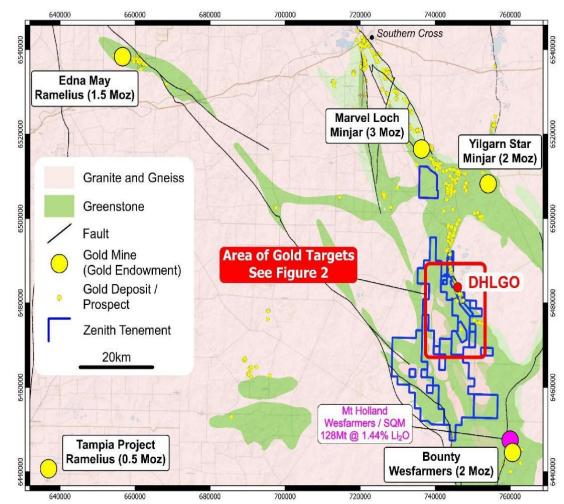


Figure 1- Split Rocks Project Location Map Showing Zenith tenements, Dulcie Heap Leach Gold Operation (DHLGO*) Prospect and Regional Gold Endowment. (*Gold rights below 6m subject to option agreement).

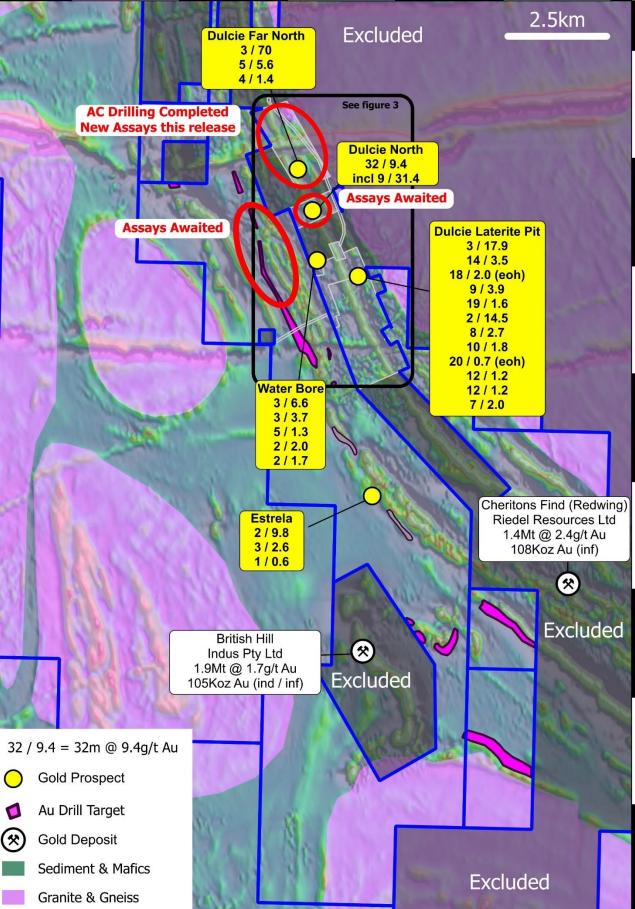


Figure 2: Split Rocks Project Gold Targets and Significant RC - Aircore Drill Results (yellow captions) showing gold drill targets, and areas of Planned Drilling

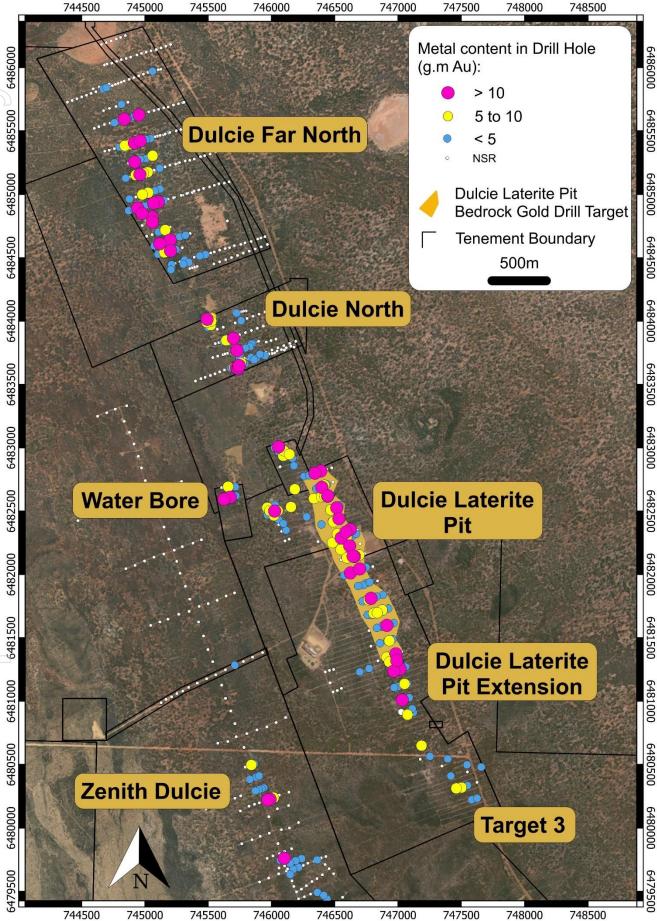


Figure 3: Split Rocks Gold Project Drill Results and Target Areas (Dulcie Laterite Pit Area shallow third party <75m depth and ineffective drill holes are not shown)

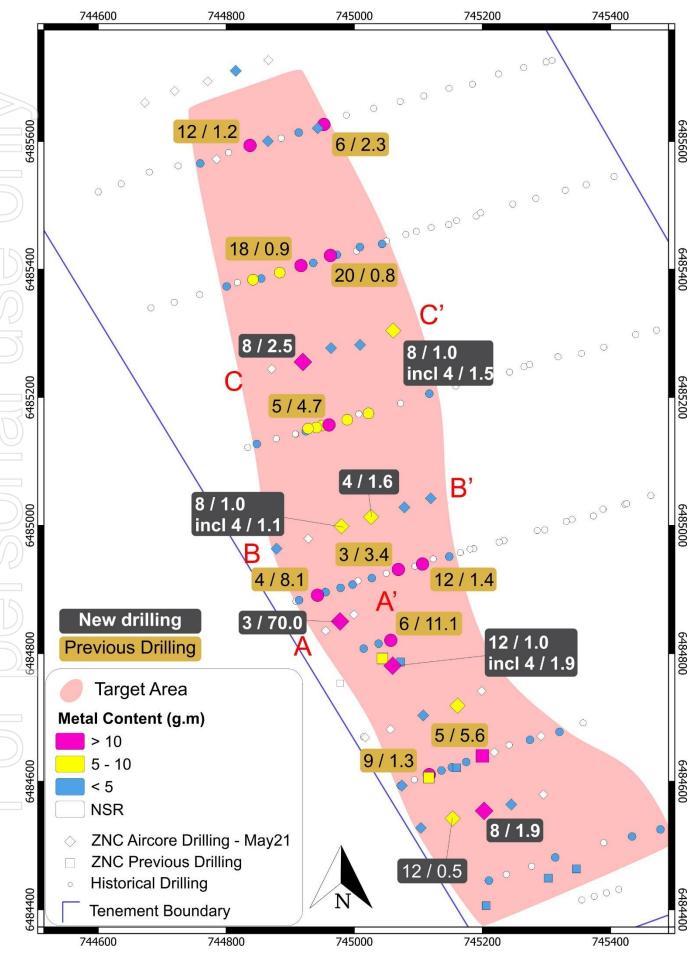
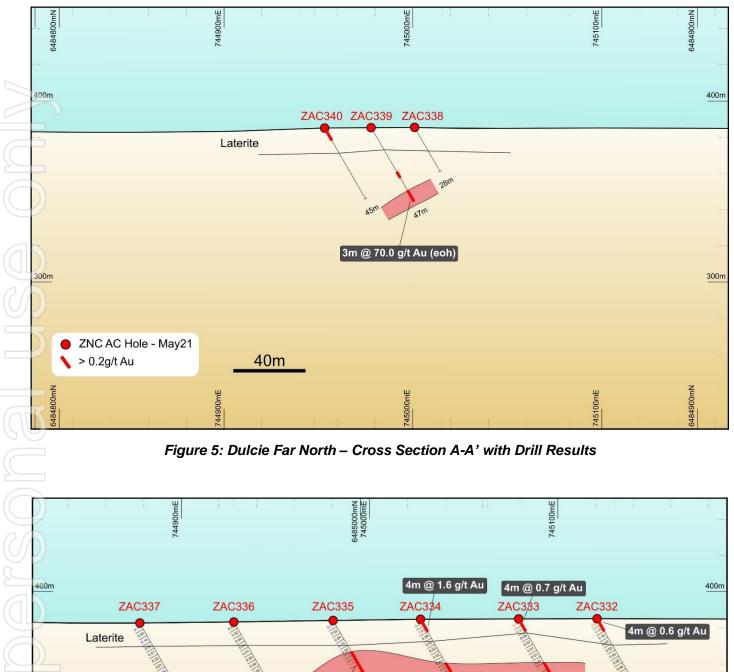



Figure 4: Split Rocks Gold Project Dulcie Far North Drill Results and Target Areas

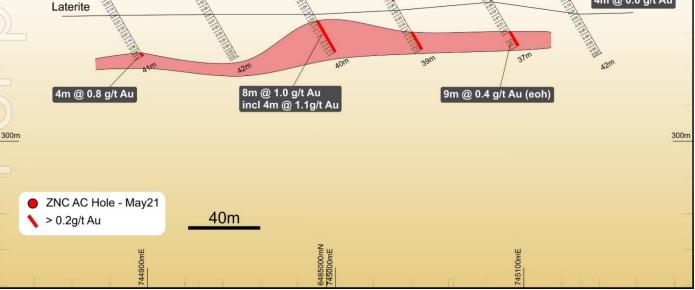


Figure 6: Dulcie Far North – Cross Section B-B' with Drill Results

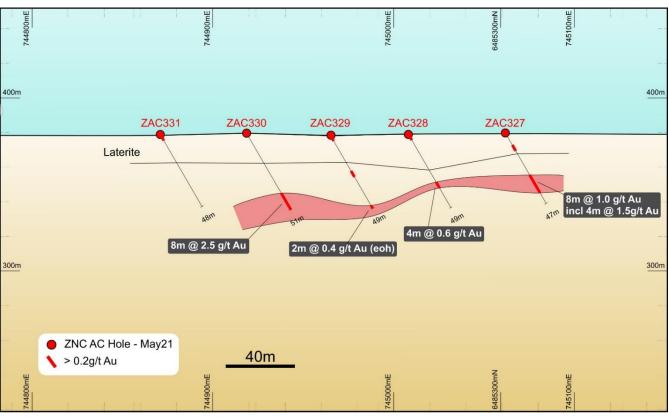


Figure 7: Dulcie Far North – Cross Section C-C' with Drill Results

Table 1: Significant New Gold Intersections from Zenith Aircore Drilling
(4m composites)

Hole ID	From (m)	To (m)	Interval (m)	Au Grade (g/t)
ZAC319				NSR
ZAC320	24	28	4	0.8
ZAC321			NCD	
ZAC322			NSR	
ZAC323				
ZAC324	20	24	4	0.4
ZAC325	40	43 (eoh)	3	0.6
ZAC326			NSR	
ZAC327	28	36	8	1.0
incl	32	36	4	1.5
ZAC328	32	36	4	0.5
ZAC329	47	49 (eoh)	2	0.4
ZAC330	40	48	8	2.5
ZAC331			NSR	
ZAC332	0	4	4	0.5
ZAC333	0	4	4	0.7
and	28	37	9	0.5
ZAC334	4	8	4	1.6
ZAC335	24	32	8	1.0

incl	24	28	4	1.1
ZAC336			NSR	
ZAC337	39	41 (eoh)	2	0.8
ZAC338				NSR
ZAC339	44	47 (eoh)	3	70.0
ZAC340			NSR	
ZAC341	8	12	4	0.4
and	24	36	12	1.0
incl	28	32	4	1.9
ZAC342			NSR	
ZAC343	32	40	8	0.7
ZAC344	0	4	4	0.4
ZAC345				
ZAC346			NSR	
ZAC347				
ZAC348				
ZAC349	0	4	4	0.4
and	36	43 (eoh)	7	0.5
ZAC350			NSR	
ZAC351	0	4	4	0.5
ZAC352	0	8	8	1.9
ZAC353	4	8	4	0.6
and	16	20	4	0.6
and	44	56 (eoh)	12	0.5
ZAC354	4	8	4	0.5

	Hole_ID	Hole_Type	Easting	Northing	RL	Depth (m)	Dip	Azimuth
7	ZAC319	AC	744866	6485727	372	34	-60	73
	ZAC320	AC	744815	6485710	371	45	-60	73
(ZAC321	AC	744771	6485694	371	37	-60	73
	ZAC322	AC	744719	6485679	371	51	-60	73
	ZAC323	AC	744673	6485660	372	30	-60	73
	ZAC324	AC	744943	6485620	372	42	-60	73
	ZAC325	AC	744865	6485600	372	43	-60	73
	ZAC326	AC	744785	6485572	372	21	-60	73
	ZAC327	AC	745061	6485304	380	47	-60	73
	ZAC328	AC	745009	6485282	379	49	-60	73
	ZAC329	AC	744963	6485277	379	49	-60	73
	ZAC330	AC	744920	6485255	380	51	-60	73
	ZAC331	AC	744871	6485244	379	48	-60	73
	ZAC332	AC	745119	6485042	385	42	-60	73

	ZAC333	AC	745078	6485028	385	37	-60	73
	ZAC334	AC	745026	6485013	385	39	-60	73
	ZAC335	AC	744980	6484999	384	40	-60	73
	ZAC336	AC	744928	6484979	383	42	-60	73
	ZAC337	AC	744878	6484963	383	41	-60	73
	ZAC338	AC	744999	6484861	385	28	-60	73
	ZAC339	AC	744978	6484850	385	47	-60	73
	ZAC340	AC	744955	6484835	385	45	-60	73
	ZAC341	AC	745060	6484781	387	45	-60	73
\bigcirc	ZAC342	AC	745199	6484741	390	36	-60	73
	ZAC343	AC	745161	6484718	389	45	-60	73
20	ZAC344	AC	745108	6484703	389	50	-60	73
(D)	ZAC345	AC	745056	6484681	388	43	-60	73
16	ZAC346	AC	745017	6484669	388	45	-60	73
JD	ZAC347	AC	745292	6484670	392	33	-60	73
	ZAC348	AC	745219	6484645	391	45	-60	73
\square	ZAC349	AC	745074	6484593	390	43	-60	73
	ZAC350	AC	745295	6484579	393	42	-60	73
	ZAC351	AC	745245	6484564	393	54	-60	73
33	ZAC352	AC	745203	6484554	392	50	-60	73
90	ZAC353	AC	745154	6484542	391	56	-60	73
	ZAC354	AC	745104	6484527	391	43	-60	73

Table 3: Significant	Historic	Gold	Intersections
-----------------------------	----------	------	---------------

Hole	From (m)	To (m)	Interval (m)	Au Grade (g/t)	Comment
CRB001	37	43	6	1.3	
incl	37	39	2	2.7	
& incl	40	41	1	1.9	
CRB003	17	39	22	0.8	
incl	22	25	3	1.2	
& incl	26	28	2	1.6	
& incl	32	34	2	2.5	
& incl	38	39	1	1.1	
CRB004	34	40	6	0.5	
&	45	46	1	2.4	1m samples
CRB005	15	28	13	0.3	
incl	15	17	2	0.6	
& incl	21	23	2	0.6	
& incl	27	28	1	0.6	
&	35	38	3	0.8	
incl	35	36	1	1.6	
CRB006	20	33	13	0.8	
incl	21	23	2	1.9	
& incl	28	29	1	1.8	

Hole	From (m)	To (m)	Interval (m)	Au Grade (g/t)	Comment
& incl	30	31	1	1.1	
&	41	48	7	1.0	
incl	42	43	1	2.9	
and incl	47	48	1	1.5	
CRB007	27	35	8	0.6	
incl	29	30	1	1.4	
&	40	41	1	0.7	
CRB026	9	12	3	0.9	3m composites
CRB027		ſ	No signi	ficant result	
CRB028	39	43	4	0.9	3m & 1m samples
incl	42	43	1	1.6	
DLRC1006	48	49	1	0.6	
&	75	83	8	0.7	
incl	81	83	2	2.0	1m samples
DLRC1009	28	42	14	1.0	insumples
incl	31	32	1	1.2	
& incl	34	35	1	3.3	
& incl	41	42	1	4.0	
PDC1565			No signi	ficant result	
PDC1566	51	54	3	0.8	
PDC1567	38	48	10	0.7	
&	75	78	3	1.1	
PDR976	39	42	3	0.5	3m composites
PDR1131	15	39	24	0.9	
incl	15	18	3	3.8	
& incl	36	39	3	1.1	
DR38					
DR39	12	16	4	0.6	4m composites
DR40					
DR41					
DR42					
DR43					
CUR116					
CUR117					
CUR118					
CUR119					
CUR120					
CUR121A					
CUR122					
CUR123					
CUR124A					
dac001	25	28	3	0.9	3m composites
dac002					
dac003					
dac004					

Hole	From (m)	To (m)	Interval (m)	Au Grade (g/t)	Comment
dac005					
dac006	20	25	5	0.5	5m composites
		45			Sincomposites
dac007	40	(eoh)	5	4.7	
dac008	35	47	12	0.5	5m & 2m samples
dac009					
dac010					
dac011			No signi [.]	ficant result	
dac012			C		
dac013					
dac014					
dac015	30	35	5	0.7	5m composites
dac016	15	35	20	0.8	5m composites
incl	20	25	5	1.1	5m composites
dac017	40	45	5	1.0	5m composites
dac018	30	35	5	0.4	5m composites
dac019					
dac020					
dac021			No signi	ficant result	
dac022			No Signi		
dac023					
dac045					
dac065			No assa	y available	
DHRC008	56	57	1	1.0	
DHRC009	69	72	3	11.3	1m samples
incl	69	71	2	16.5	1m samples
dl202					
dl236			No signi [.]	ficant result	
dl237			1		
dl238	20	22	2	1.6	1m samples
dl239					
dl240					
dl241					
dl242					
dl243					
dl244			No signi	ficant result	
dl245				incurrer court	
dl246					
dl247					
dl248					
dl249					
dl250					
dl324	20	24	4	0.5	1m samples
&	31	32	1	0.6	1m samples
dl325			No ciani	ficant result	
dl326			INO SIGILI		

Hole	From (m)	To (m)	Interval (m)	Au Grade (g/t)	Comment
dl327					
dl328					
dl329					
dl330					
dl341					
dl342					
dl343					
dl344					
dl345					
dl346					
dl347					
dl348					
dl349					
dl359			1		
dl360	40	46	6	0.5	1m samples
dl361					
dl362					
dl363			No signi	ficant result	
dl364					
dl365			1		
dl366	35	39	4	0.9	4m composites
dl367	40	45	5	0.4	5m composites
dl368					
dl369					
dl370					
dl371					
dl372					
dl373					
dl374			No signi	ficant result	
dl375					
dl376					
dl377					
dl378					
dl379					
dl380					
dl381		1		r	
dl382	20	25	5	0.8	5m composites
dl383					
dl384			No signi	ficant result	
dl385					
DLP001				l	
DLP002	32	40	8	0.4	1m samples
DLP003	63	64	1	2.1	1m samples
DLP004	50	55	5	1.2	5m composites
&	70	75	5	0.7	5m composites

Hole	From (m)	To (m)	Interval (m)	Au Grade (g/t)	Comment
DLP005			No signi	ficant result	
DLP006	20	25	5	0.4	5m composites
&	35	40	5	0.6	5m composites
DLRC001	46	48	2	0.5	1m samples
&	83	86	3	0.8	1m samples
&	106	107	1	0.4	1m samples
DLRC002	73	75	2	4.7	1m samples
DLRC1004	81	82	1	1.3	1m samples
&	104	105	1	0.5	1m samples
	122	123	1	0.8	1m samples
DLRC1005		T	No signi	ficant result	
DLRC1012	46	54	8	1.2	1m samples
incl	46	47	1	2.2	1m samples
& incl	50	53	3	2.2	1m samples
DLRC1013	30	32	2	0.6	1m samples
&	72	73	1	1.7	1m samples
DLRC1014	73	75	2	4.1	1m samples
DLRC1016	45	48	3	1.2	1m samples
&	70	77	7	1.1	1m samples
incl	70	72	2	2.6	1m samples
&	87	88	1	1.3	1m samples
DRC005	82	84	2	0.6	1m samples
&	96	97	1	0.4	1m samples
&	105	106	1	1.9	1m samples
&	116	117	1	0.5	1m samples
FDUP001	23	26	3	0.5	1m samples
&	34	38	4	0.4	1m samples
&	46	55	9	0.3	1m samples
&	92	93	1	2.6	1m samples
FDUP002	21	22	1	2.4	1m samples
&	37	39	2	0.5	1m samples
&	82	83	1	8.6	1m samples
FDUP003	37	44	7	1.6	1m samples
incl	37	40	3	2.4	1m samples
& incl	41	42	1	1.6	1m samples
&	68	69	1	0.8	1m samples
&	95	96	1	0.7	1m samples
FDUP004	49	50	1	0.5	1m samples
&	67	68	1	0.4	1m samples
FDUP005	35	44	9	0.3	1m samples
FDUP006	49	50	1	0.5	1m samples
FDUP007	63	64	1	0.4	1m samples
FDUP008	36	37	1	0.8	1m samples
&	69	71	2	0.6	1m samples
FDUP009	35	36	1	2.1	1m samples

Hole	From (m)	To (m)	Interval (m)	Au Grade (g/t)	Comment
FDUP010	61	62	1	0.6	1m samples
FDUP011	29	30	1	0.4	1m samples
&	37	42	5	1.8	1m samples
incl	37	38	1	1.3	1m samples
& incl	40	41	1	6.3	1m samples
FDUP012					
FDUP013					
LDRC006	58	61	3	2.0	1m samples
LDRC007	42	45	3	2.0	1m samples
LDRC008	42	44	2	1.6	1m samples
LDRC009	33	34	1	2.3	1m samples
LDRC010	18	19	1	1.7	1m samples
LDRC011	56	57	1	6.0	1m samples
P7A090					
P7A091					
P7A092					
P7A093					
P7A094					
P7A095					
P7A096			No cigni	ficant result	
P7A097			NO SIGILI		
P7A098					
P7A099					
P7A100					
P7A101					
P7A102					
P7A103					
P7SRC1	34	56	22	1.2	2m composites
incl	34	36	2	2.0	2m composites
& incl	40	44	4	2.1	2m composites
& incl	46	52	6	1.7	2m composites
&	74	80	6	2.0	2m composites
incl	76	80	4	2.7	2m composites
&	86	90	4	8.1	2m composites
incl	86	88	2	15.4	2m composites
&	100	102	2	0.9	2m composites
P7SRC2	32	34	2	0.5	2m composites
&	62	64	2	0.4	2m composites
&	70	72	2	1.4	2m composites
&	84	86	2	0.9	2m composites
&	94	96	2	1.2	2m composites
P7SRC3	22	24	2	0.8	2m composites
P7SRC4	18	36	18	0.9	2m composites
incl	24	26	2	2.8	2m composites
& incl	34	36	2	1.0	2m composites

Hole	From (m)	To (m)	Interval (m)	Au Grade (g/t)	Comment
&	42	44	2	0.6	2m composites
P7SRC5	54	58	4	1.7	2m composites
P7SRC6	28	40	12	0.6	2m composites
&	50	52	2	0.8	2m composites
P7SRC7	44	52	8	0.6	2m composites
incl	46	48	2	1.4	2m composites
&	62	64	2	0.8	2m composites
&	86	88	2	0.4	2m composites
&	94	96 (eoh)	2	0.5	2m composites
P7SRC8					
PDA1045					
PDA1046			.	с I.	
PDA1047			No signi	ficant result	
PDA1048					
PDA1049					
PDA1050	18	21	3	0.6	3m composites
PDA1051	27	39	12	1.2	3m composites
incl	36	39	3	3.4	3m composites
PDA1052	33	36	3	0.5	3m composites
PDA1053					
PDA1054			No signi	ficant result	
PDA1055	18	27	9	0.9	3m composites
incl	21	24	3	1.1	3m composites
PDA1056	39	42	3	0.6	3m composites
PDA1058		•			
PDA1059					
PDA1060					
PDA1061				Constant and the	
PDA1258			NO SIGNI	ficant result	
PDA1259					
PDA1260					
PDA1261					
PDA1262	24	30	6	2.3	3m composites
incl	27	30	3	4.1	3m composites
PDA1263					
PDA1264					
PDA1265					
PDA1266			No signi	ficant result	
PDA1267					
PDA1268					
PDA1269					
PDC1556	81	84	3	1.8	3m composites
PDC1557	42	45	3	0.4	3m composites
PDC1558			No ciani	ficant result	
PDC1559				illant i Esuit	

Hole	From (m)	To (m)	Interval (m)	Au Grade (g/t)	Comment
PDC1560	33	36	3	0.8	3m composites
PDC1561			No signi	ficant result	
PDC1562	36	39	3	0.5	3m composites
PDC1563					
PDC1564	51	57	6	0.9	3m composites
incl	54	57	3	1.3	3m composites
PDR1028					
PDR1029					
PDR1030			No signi	ficant result	
PDR1031					
PDR1032					
PDR1033	45	48	3	0.7	3m composites
		48			3m composites
PDR1034	45	(eoh)	3	0.5	.
PDR1035	51	69 (eoh)	18	0.5	3m composites
PDR1035	51	(eon)	10	0.5	
PDR1030					
PDR1037					
PDR1038 PDR1039			No signi	ficant result	
PDR1039 PDR1040					
PDR1041		31			1m samples
PDR1042	30	(eoh)	1	1.7	inisampies
PDR1043			I		
PDR1044			No signi	ficant result	
PDR1100					
PDR1101	6	18	12	8.9	3m composites
incl	6	12	6	16.9	3m composites
& incl	15	18	3	1.4	3m composites
PDR1102		•			
PDR1103			.	с I.	
PDR1104			No signi	ficant result	
PDR1105					
PDR1146	33	35	2	0.5	2m composites
PDR1147					
PDR1321]				
PDR1350	1		No signi	ficant result	
PDR1351	1		-		
PDR1352	1				
PDR1353	39	42	3	0.9	3m composites
PDR1354		u.		ficant result	
		47			2m composites
PDR1355	45	(eoh)	2	0.5	
PDR1356			No signi	ficant result	
PDRISSO					3m composites

Hole	From (m)	To (m)	Interval (m)	Au Grade (g/t)	Comment		
PDR1358							
PDR1359							
PDR1360			No signi ⁻	significant result			
PDR1361	15	18	3	4.9	3m composites		
PDR1362	51	54	3	0.5	3m composites		
PDR1363	39	42	3	1.7	3m composites		
PDR1364	51	53 (eoh)	2	1.4	2m composites		
PDR1365			I	I			
PDR1366							
PDR1367				6			
PDR1368			No signi	ficant result			
PDR1369							
PDR1370							
PDR740	30	36 (eoh)	6	0.7	3m composites		
PDR741	15	18	3	0.9	3m composites		
&	36	39	3	0.5	3m composites		
PDR742							
PDR743							
PDR744				6			
PDR907			No signi	ficant result			
PDR908							
PR-01							
PR-02	8	13	5	1.8	1m samples		
incl	8	11	3	2.6	1m samples		
PR-07							
PR-08			No signi	ficant result			
PR-09			NO SIGILI	ilcant result			
PR-10							
PR-23	6	9	3	3.1	1m samples		
PR-24	8	11	3	2.6	1m samples		
incl	9	10	1	6.1	1m samples		
PR-25	6	13	7	1.2	1m samples		
incl	11	13	2	3.2	1m samples		
&	27	31	4	1.0	1m samples		
incl	30	31	1	1.8	1m samples		
PR-26							
PR-27			No signi	ficant result			
PR-28		1	I	1			
PR-29	6	9	3	0.4	3m composites		
PR-30	10	13	3	3.0	1m samples		
incl	10	12	2	4.1	1m samples		
PR-31		1	No signi	ficant result			
PR-32	33	38	5	0.9	1m samples		
incl	34	35	1	1.0	1m samples		

& incl 37 38 1 1.6 Im samples PR-33 41 45 4 1.0 Im samples incl 41 43 2 1.3 Im samples & incl 44 45 1 1.2 Im samples & incl 44 45 1 1.2 Im samples & 29 30 1 0.6 Im samples & 37 42 5 0.6 Im samples & 50 (eoh) 1 1.2 Im samples & 50 (eoh) 1 1.2 Im samples & incl 38 40 2 2.0 Im samples & incl 41 42 1 1.1 Im samples & incl 44 41 1.2 Im samples & incl 54 (eoh) 2 1.5 Im samples incl 44 45 1 1.1 Im samples incl	Hole	From (m)	To (m)	Interval (m)	Au Grade (g/t)	Comment
incl 41 43 2 1.3 1m samples & incl 44 45 1 1.2 1m samples PR-34 26 27 1 0.4 1m samples & 29 30 1 0.6 1m samples & 37 42 5 0.6 1m samples & 50 (eoh) 1 1.2 1m samples % 50 (eoh) 1 1.2 1m samples % 141 42 1 1.1 1m samples & incl 38 40 2 2.0 1m samples & incl 43 44 1 1.2 1m samples & incl 44 45 1 1.1 1m samples & incl 44 45 1 1.1 1m samples incl 44 45 1 1.0 1m samples PSA008 No significant result 1m samples	& incl	37	38	1	1.6	1m samples
& incl 44 45 1 1.2 1m samples PR-34 26 27 1 0.4 1m samples & 29 30 1 0.6 1m samples & 37 42 5 0.6 1m samples & 37 42 5 0.6 1m samples & 50 (eoh) 1 1.2 1m samples & 56 19 0.9 1m samples & incl 38 40 2 2.0 1m samples & incl 41 42 1 1.1 1m samples & incl 43 44 1 1.2 1m samples & incl 43 44 1 1.1 1m samples & incl 44 45 1 1.1 1m samples incl 44 45 1 1.0 1m samples PSA009 41 42 1 1.0	PR-33	41	45	4	1.0	1m samples
PR-34 26 27 1 0.4 1m samples & 29 30 1 0.6 1m samples & 37 42 5 0.6 1m samples & 51 1m samples 1m samples & 56 1m samples PR-35 37 (eoh) 19 0.9 incl 38 40 2 2.0 1m samples & incl 41 42 1 1.1 1m samples & incl 43 44 1 1.2 1m samples & incl 43 44 1 1.2 1m samples & incl 44 49 5 1.0 1m samples incl 44 45 1 1.1 1m samples PSA008 No significant result 1m samples 1m samples PSA012 29 37 8 0.7 1m samples	incl	41	43	2	1.3	1m samples
No.1 D D D D D D D Im samples & 37 42 5 0.6 1m samples & 51 1 1m samples 1m samples & 50 (eoh) 19 0.9 1m samples PR-35 37 (eoh) 19 0.9 1m samples & incl 41 42 1 1.1 1m samples & incl 43 44 1 1.2 1m samples & incl 56 1m samples 1m samples 1m samples & incl 44 49 5 1.0 1m samples incl 44 45 1 1.1 1m samples PSA008 No significant result 1m samples 1m samples PSA010 30 0.7 1m samples PSA012 29 37 8 0.7 1m samples incl 29 31 2 1.8 <td>& incl</td> <td>44</td> <td>45</td> <td>1</td> <td>1.2</td> <td>1m samples</td>	& incl	44	45	1	1.2	1m samples
8 37 42 5 0.6 1m samples 8 50 (eoh) 1 1.2 1m samples 9 51 1m samples 1m samples 1m samples 9 101 1.2 1m samples 1m samples 9 1ncl 38 40 2 2.0 1m samples 8 incl 41 42 1 1.1 1m samples 8 incl 43 44 1 1.2 1m samples 8 incl 54 (eoh) 2 1.5 1m samples 8 incl 44 49 5 1.0 1m samples 8 incl 45 48 3 1.1 1m samples PSA008 No significant result 1m samples 1m samples 1m samples PSA010 No significant result 1m samples 1m samples 1m samples PSA012 29 37 8 0.7 1m	PR-34	26	27	1	0.4	1m samples
A S1 Im samples & 50 (eoh) 1 1.2 S6 0 1 1.2 1m samples incl 38 40 2 2.0 1m samples & incl 41 42 1 1.1 1m samples & incl 43 44 1 1.2 1m samples & incl 43 44 1 1.2 1m samples & incl 56 1m samples 1m samples 1m samples & incl 54 66 1.5 1m samples PR-40 36 38 2 1.7 1m samples & incl 44 45 1 1.1 1m samples PSA008 No significant result 1m samples 1m samples PSA010 3 0.7 1m samples PSA011 44 1.0 1m samples PSA012 29 37 8 0.7 1m samples	&	29	30	1	0.6	1m samples
& 50 (eoh) 1 1.2 PR-35 37 (eoh) 19 0.9 Im samples incl 38 40 2 2.0 Im samples & incl 41 42 1 1.1 Im samples & incl 43 44 1 1.2 Im samples & incl 43 44 1 1.2 Im samples & incl 56 1m samples 1m samples 1m samples & incl 54 (eoh) 2 1.7 Im samples & incl 44 45 1 1.1 Im samples PSA008 No significant result Im samples 1m samples PSA010 No significant result Im samples 1m samples PSA011 No significant result Im samples 1m samples incl 29 37 8 0.7 1m samples incl 29 31 2 1.8 1m samples	&	37	42	5	0.6	1m samples
PR-35 37 (eoh) 19 0.9 incl 38 40 2 2.0 1m samples & incl 41 42 1 1.1 1m samples & incl 43 44 1 1.2 1m samples & incl 54 (eoh) 2 1.5 1m samples PR-40 36 38 2 1.7 1m samples & 44 49 5 1.0 1m samples & 44 45 1 1.1 1m samples & 44 45 1 1.1 1m samples PSA008 No significant result 1m samples No significant result PSA010 No significant result 1m samples 1m samples PSA012 29 37 8 0.7 1m samples incl 31 32 1 1.1 1m samples incl 31 32 1 1.1 1m samples	&	50	(eoh)	1	1.2	1m samples
Aince Jos L </td <td>PR-35</td> <td>37</td> <td></td> <td>19</td> <td>0.9</td> <td>1m samples</td>	PR-35	37		19	0.9	1m samples
& incl 12 1 12 1 m samples & incl 54 (eoh) 2 1.5 1 m samples & incl 54 (eoh) 2 1.5 1 m samples & 44 49 5 1.0 1 m samples incl 44 45 1 1.1 1 m samples incl 44 45 1 1.1 1 m samples PSA008 No significant result 1 m samples 1 m samples PSA010 41 42 1 1.0 1 m samples PSA012 29 37 8 0.7 1 m samples incl 29 31 2 1.8 1 m samples PSA013 31 32 1 1.1 1 m samples incl 31 32 1 1.1 1 m samples incl 31	incl	38	40	2	2.0	1m samples
Solution Solution	& incl	41	42	1	1.1	1m samples
& incl 54 (eoh) 2 1.5 PR-40 36 38 2 1.7 1m samples & 44 49 5 1.0 1m samples incl 44 45 1 1.1 1m samples & incl 45 48 3 1.1 1m samples PSA008 No significant result 1m samples 1m samples PSA009 41 (eoh) 3 0.7 incl 41 42 1 1.0 1m samples PSA010 No significant result No significant result 1m samples 1m samples incl 29 37 8 0.7 1m samples incl 29 31 2 1.8 1m samples incl 31 32 1 1.1 1m samples incl 31 32 1 1.1 1m samples & incl 39 (eoh) 2 32.7 1m samp	& incl	43	44	1	1.2	1m samples
PR-40 36 38 2 1.7 1m samples & 44 49 5 1.0 1m samples incl 44 45 1 1.1 1m samples & incl 45 48 3 1.1 1m samples PSA008 No significant result 1m samples 1m samples PSA010 41 42 1 1.0 1m samples PSA010 Yes 31 2 1m samples 1m samples PSA010 No significant result No significant result 1m samples 1m samples PSA012 29 37 8 0.7 1m samples incl 29 31 2 1.8 1m samples incl 31 32 1 1.1 1m samples incl 31 32 1 1.1 1m samples & incl 39 (eoh) 2 32.7 1m samples & incl 39 (eoh)	& incl	54		2	1.5	1m samples
& 44 49 5 1.0 1m samples incl 44 45 1 1.1 1m samples & incl 45 48 3 1.1 1m samples PSA008 No significant result 1m samples 1m samples PSA009 41 (eoh) 3 0.7 incl 41 42 1 1.0 1m samples PSA010 Yes No significant result 1m samples 1m samples PSA011 PSA012 29 37 8 0.7 1m samples incl 29 31 2 1.8 1m samples incl 31 32 1 1.1 1m samples incl 31 32 1 1.1 1m samples & incl 39 (eoh) 2 32.7 1m samples & incl 39 (eoh) 2 32.7 1m samples & incl 39 (eoh) 2		-				1m samples
incl 44 45 1 1.1 1 m samples & incl 45 48 3 1.1 1m samples PSA008 No significant result 1m samples 1m samples PSA009 41 (eoh) 3 0.7 incl 41 42 1 1.0 1m samples PSA010 No significant result 1m samples 1m samples PSA011 PSA012 29 37 8 0.7 1m samples PSA012 29 31 2 1.8 1m samples incl 29 31 2 1.8 1m samples incl 31 32 1 1.1 1m samples incl 31 32 1 1.1 1m samples & incl 39 (eoh) 2 32.7 1m samples & incl 39 (eoh) 2 32.7 1m samples & incl 39 (eoh) 2 32		1				•
& incl 45 48 3 1.1 1m samples PSA008 No significant result 1m samples 1m samples PSA009 41 (eoh) 3 0.7 1m samples incl 41 42 1 1.0 1m samples PSA010 No significant result No significant result 1m samples PSA012 29 37 8 0.7 1m samples incl 29 31 2 1.8 1m samples incl 29 31 2 1.8 1m samples incl 31 32 1 1.1 1m samples incl 31 32 1 1.1 1m samples & incl 39 (eoh) 2 32.7 1m samples & incl 39 (eoh) 2 32.7 1m samples & incl 31 32 1 0.7 1m samples & incl 37 38 1						•
PSA008 No significant result PSA009 41 (eoh) 3 0.7 incl 41 42 1 1.0 1m samples PSA009 41 (eoh) 3 0.7 1m samples PSA010 No significant result 1m samples 1m samples PSA012 29 37 8 0.7 1m samples incl 29 31 2 1.8 1m samples incl 29 31 2 1.8 1m samples incl 31 32 1 1.1 1m samples exincl 39 (eoh) 10 6.8 1m samples & incl 31 32 1 1.1 1m samples & incl 39 (eoh) 2 32.7 1m samples & incl 39 (eoh) 2 32.7 1m samples & incl 39 (eoh) 2 32.7 1m samples & inc			-			•
PSA009 41 44 (eoh) 3 0.7 1m samples incl 41 42 1 1.0 1m samples PSA010 No significant result No significant result 1m samples PSA011 29 37 8 0.7 1m samples incl 29 37 8 0.7 1m samples incl 29 31 2 1.8 1m samples incl 31 (eoh) 10 6.8 1m samples incl 31 32 1 1.1 1m samples & incl 31 32 1 1.1 1m samples & incl 31 32 1 1.1 1m samples & incl 39 (eoh) 2 32.7 1m samples & incl 39 (eoh) 2 32.7 1m samples & incl 37 38 1 0.5 1m samples & incl 37 38						•
PSA009 41 (eoh) 3 0.7 incl 41 42 1 1.0 1m samples PSA010 No significant result No significant result PSA011 PSA012 29 37 8 0.7 1m samples incl 29 31 2 1.8 1m samples incl 29 31 2 1.8 1m samples PSA013 31 (eoh) 10 6.8 1m samples incl 31 32 1 1.1 1m samples & 41 10 6.8 1m samples 1m samples & incl 31 32 1 1.1 1m samples & incl 39 (eoh) 2 32.7 1m samples & incl 39 (eoh) 2 32.7 1m samples & incl 37 38 1 0.5 1m samples & incl 37 38 1 0.5	1 3/ 1000		44			1m samples
PSA010 No significant result PSA011 No significant result PSA012 29 37 8 0.7 1m samples incl 29 31 2 1.8 1m samples incl 29 31 2 1.8 1m samples PSA013 31 (eoh) 10 6.8 1m samples incl 31 32 1 1.1 1m samples & incl 31 32 1 1.1 1m samples & incl 39 (eoh) 2 32.7 1m samples & incl 37 38 1 0.5 1m samples & incl 37 <td>PSA009</td> <td>41</td> <td>(eoh)</td> <td>3</td> <td>0.7</td> <td>•</td>	PSA009	41	(eoh)	3	0.7	•
PSA011 No significant result PSA012 29 37 8 0.7 1m samples incl 29 31 2 1.8 1m samples PSA013 31 (eoh) 10 6.8 1m samples incl 31 32 1 1.1 1m samples incl 31 32 1 1.1 1m samples & incl 31 32 1 1.1 1m samples & incl 39 (eoh) 2 32.7 1m samples & incl 37 38 1 0.5 1m samples & incl 7 1 0.5 1m samples	incl	41	42	1	1.0	1m samples
PSA011 PSA012 29 37 8 0.7 1m samples incl 29 31 2 1.8 1m samples incl 29 31 2 1.8 1m samples PSA013 31 (eoh) 10 6.8 1m samples incl 31 32 1 1.1 1m samples & incl 31 32 1 1.1 1m samples & incl 39 (eoh) 2 32.7 1m samples PSA014 11 12 1 0.7 1m samples & incl 39 (eoh) 2 32.7 1m samples PSA014 11 12 1 0.7 1m samples & 37 38 1 0.5 1m samples & 31 33 2 0.7 1m samples & 31 33 2 0.7 1m samples & 31 33 2 0.7 1m samples <td>PSA010</td> <td></td> <td></td> <td>No signi</td> <td>ficant result</td> <td></td>	PSA010			No signi	ficant result	
incl 29 31 2 1.8 1m samples incl 29 31 2 1.8 1m samples PSA013 31 (eoh) 10 6.8 1m samples incl 31 32 1 1.1 1m samples & incl 31 32 1 1.1 1m samples & incl 39 (eoh) 2 32.7 1m samples Sance 41 1m samples 1m samples 1m samples & incl 39 (eoh) 2 32.7 1m samples Sance 17 18 1 0.5 1m samples & 37 38 1 0.8 1m samples PSA015 6 7 1 0.5 1m samples & 31 33 2 0.7 1m samples & 31 33 2 0.7 1m samples & 31 33 2 0.7 1m samples <td< td=""><td>PSA011</td><td></td><td></td><td>NO SIGIL</td><td></td><td></td></td<>	PSA011			NO SIGIL		
Alt Alt Im samples PSA013 31 (eoh) 10 6.8 1m samples incl 31 32 1 1.1 1m samples & incl 31 32 1 1.1 1m samples & incl 39 (eoh) 2 32.7 1m samples Seincl 11 12 1 0.7 1m samples Seincl 37 38 1 0.5 1m samples Seincl 6 7 1 0.5 1m samples Seincl 6 7 1 0.5 1m samples Seincl 6 7 1 1.3 1m samples Seincl 6 7 1 1.3 1m sampl	PSA012	29	37	8	0.7	1m samples
PSA013 31 (eoh) 10 6.8 incl 31 32 1 1.1 1m samples & incl 39 (eoh) 2 32.7 PSA014 11 12 1 0.7 1m samples & incl 39 (eoh) 2 32.7 PSA014 11 12 1 0.7 1m samples & 17 18 1 0.5 1m samples & 37 38 1 0.8 1m samples PSA015 6 7 1 0.5 1m samples & 31 33 2 0.7 1m samples & 32 36 4 0.7 4m composites PSA017 15 17 2 2.1 1m samples <t< td=""><td>incl</td><td>29</td><td>31</td><td>2</td><td>1.8</td><td>1m samples</td></t<>	incl	29	31	2	1.8	1m samples
Ann Ann Ann Ann Im samples & incl 39 (eoh) 2 32.7 Im samples PSA014 11 12 1 0.7 Im samples & 17 18 1 0.5 1m samples & 37 38 1 0.8 1m samples & 37 38 1 0.5 1m samples & 37 38 1 0.8 1m samples & 31 33 2 0.7 1m samples & 31 33 2 0.7 1m samples & 31 33 2 0.7 1m samples & 31 14 1 0.9 1m samples & 32 36 4 0.7 4m composites PSA017 15 17 2 2.1 1m samples & 25 32 7 0.7 1m samples	PSA013	31		10	6.8	1m samples
& incl 39 (eoh) 2 32.7 PSA014 11 12 1 0.7 1m samples & 17 18 1 0.5 1m samples & 37 38 1 0.8 1m samples & 37 38 1 0.8 1m samples PSA015 6 7 1 0.5 1m samples & 31 33 2 0.7 1m samples & 32 36 4 0.7 4m composites PSA017 15 17 2 2.1 1m samples & 25 32 7 0.7 1m samples incl 27 29 2 1.2 1m samples	incl	31	32	1	1.1	1m samples
PSA014 11 12 1 0.7 1m samples & 17 18 1 0.5 1m samples & 37 38 1 0.8 1m samples PSA015 6 7 1 0.5 1m samples & 31 33 2 0.7 1m samples & 31 33 2 0.7 1m samples & 31 33 2 0.7 1m samples & 31 13 2 0.7 1m samples & 31 14 1 0.9 1m samples & 32 36 4 0.7 4m composites PSA017 15 17 2 2.1 1m samples & 25 32 7 0.7 1m samples incl 27 29 2 1.2 1m samples & 37 38 1 0.9 1m samp	& incl		41	2		1m samples
& 17 18 1 0.5 1m samples & 37 38 1 0.8 1m samples PSA015 6 7 1 0.5 1m samples & 31 33 2 0.7 1m samples PSA016 6 7 1 1.3 1m samples PSA016 6 7 1 1.3 1m samples & 13 14 1 0.9 1m samples & 32 36 4 0.7 4m composites PSA017 15 17 2 2.1 1m samples & 25 32 7 0.7 1m samples incl 27 29 2 1.2 1m samples & 37 38 1 0.9 1m samples PSA018 46 47 1 0.6 1m samples				1		1m samples
& 37 38 1 0.8 1m samples PSA015 6 7 1 0.5 1m samples & 31 33 2 0.7 1m samples PSA016 6 7 1 1.3 1m samples PSA016 6 7 1 1.3 1m samples & 13 14 1 0.9 1m samples & 32 36 4 0.7 4m composites PSA017 15 17 2 2.1 1m samples & 25 32 7 0.7 1m samples incl 27 29 2 1.2 1m samples & 37 38 1 0.9 1m samples PSA018 46 47 1 0.6 1m samples	&	1		1		1m samples
PSA015 6 7 1 0.5 1m samples & 31 33 2 0.7 1m samples PSA016 6 7 1 1.3 1m samples & 13 14 1 0.9 1m samples & 32 36 4 0.7 4m composites PSA017 15 17 2 2.1 1m samples & 25 32 7 0.7 1m samples incl 27 29 2 1.2 1m samples & 37 38 1 0.9 1m samples PSA018 46 47 1 0.6 1m samples	&	37	38	1		1m samples
& 31 33 2 0.7 1m samples PSA016 6 7 1 1.3 1m samples & 13 14 1 0.9 1m samples & 32 36 4 0.7 4m composites PSA017 15 17 2 2.1 1m samples & 25 32 7 0.7 1m samples incl 27 29 2 1.2 1m samples & 37 38 1 0.9 1m samples PSA018 46 47 1 0.6 1m samples	PSA015			1		1m samples
PSA016 6 7 1 1.3 1m samples & 13 14 1 0.9 1m samples & 32 36 4 0.7 4m composites PSA017 15 17 2 2.1 1m samples & 25 32 7 0.7 1m samples incl 27 29 2 1.2 1m samples & 37 38 1 0.9 1m samples PSA018 46 47 1 0.6 1m samples						1m samples
& 13 14 1 0.9 1m samples & 32 36 4 0.7 4m composites PSA017 15 17 2 2.1 1m samples & 25 32 7 0.7 1m samples incl 27 29 2 1.2 1m samples & 37 38 1 0.9 1m samples PSA018 46 47 1 0.6 1m samples						1m samples
& 32 36 4 0.7 4m composites PSA017 15 17 2 2.1 1m samples & 25 32 7 0.7 1m samples incl 27 29 2 1.2 1m samples & 37 38 1 0.9 1m samples PSA018 46 47 1 0.6 1m samples		1				1m samples
PSA017 15 17 2 2.1 1m samples & 25 32 7 0.7 1m samples incl 27 29 2 1.2 1m samples & 37 38 1 0.9 1m samples PSA018 46 47 1 0.6 1m samples		1				4m composites
& 25 32 7 0.7 1m samples incl 27 29 2 1.2 1m samples & 37 38 1 0.9 1m samples PSA018 46 47 1 0.6 1m samples		1				1m samples
incl 27 29 2 1.2 1m samples & 37 38 1 0.9 1m samples PSA018 46 47 1 0.6 1m samples						1m samples
& 37 38 1 0.9 1m samples PSA018 46 47 1 0.6 1m samples						1m samples
PSA018 46 47 1 0.6 1m samples						•
		1				1m samples
		1				1m samples

Hole	From (m)	To (m)	Interval (m)	Au Grade (g/t)	Comment			
PSA020		•	No signi	No significant result				
PSA021								
PSA022		No significant result						
PSA023								
PSA024								
PSA025			1	1				
PSA026	7	10 (eoh)	3	0.4	1m samples			
PSA020	/	(con)		ficant result				
10/102/		54			1m samples			
PSA028	45	(eoh)	9	1.3	•			
incl	46	50	4	2.2	1m samples			
PSA029								
PSA030								
PSA031			No signi	ficant result				
PSA032								
PSA033								
PSA034		T	1	[]				
PSA035	54	57	3	0.5	3m composites			
PSA036								
PSA037								
PSA038								
PSA039								
PSA040								
PSA041								
PSA042								
PSA043								
PSA044 PSA045								
PSA045 PSA046								
PSA040 PSA047			No signi [.]	ficant result				
PSA047								
PSA040	1							
PSA050	1							
PSA051	1							
PSA052	1							
PSA053	1							
PSA054	1							
PSA055]							
PSA056								
PSA057			<u> </u>					
PSA058	39	42	3	0.8	3m composites			
PSA059		1	No signi ⁻	ficant result				
PSA060	21	24	3	1.3	3m composites			
&	48	41	3	1.4	3m composites			
PSA061	18	21	3	0.7	3m composites			

osites osites osites osites
osites
osites
osites
oles

Hole	From (m)	To (m)	Interval (m)	Au Grade (g/t)	Comment				
PSR107									
PSR108									
PSR109									
PSR110									
PSR111		No significant result							
PSR112									
PSR113									
PSR114									
PSR115	36	39	3	1.0	3m composites				
PSR116	33	36	3	3 0.9 3m composites					
PSR117			No signi	ficant result					
PSR118			INO SIBILI						

Table 4: Drill Hole Collar Locations - Historic Drilling

Hole_ID	Hole_Type	Easting	Northing	RL	Depth (m)	Azimuth	Dip
CRB001	RAB	746421	6482615	404	52	74	-60
CRB002	RAB	746477	6482422	407	50	74	-60
CRB003	RAB	746445	6482622	404	52	74	-60
CRB004	RAB	746497	6482426	406	50	74	-60
CRB005	RAB	746468	6482625	403	51	74	-60
CRB006	RAB	746533	6482440	404	50	74	-60
CRB007	RAB	746552	6482444	403	50	74	-60
CRB026	RAB	747075	6481138	397	42	73	-60
CRB027	RAB	747037	6481126	399	46	73	-60
CRB028	RAB	746998	6481115	400	43	73	-60
DLRC1006	RC	746521	6482320	408	114	73	-60
DLRC1009	RC	746588	6482334	406	50	73	-60
PDC1565	RC	747025	6480915	397	162	74	-60
PDC1566	RC	746969	6481107	402	150	74	-60
PDC1567	RC	746931	6481310	405	144	74	-60
PDR976	RAB	747112	6480940	396	49	74	-60
PDR1131	RAB	746990	6481321	403	49	74	-60
DR38	RAB	745800	6484080	397	30	74	-60
DR39	RAB	745779	6484078	397	30	74	-60
DR40	RAB	745764	6484074	397	17	74	-60
DR41	RAB	745750	6484070	397	30	74	-60
DR42	RAB	745737	6484067	397	30	74	-60
DR43	RAB	745724	6484063	397	30	74	-60
CUR116	RAB	745780.8	6483636	403	30	73	-60
CUR117	RAB	745762	6483629	403	33	73	-60
CUR118	RAB	745742.9	6483623	404	30	73	-60
CUR119	RAB	745723.5	6483616	403	33	73	-60
CUR120	RAB	745766.5	6483674	402	30	73	-60
CUR121A	RAB	745744.9	6483666	402	30	73	-60
CUR122	RAB	745726.3	6483660	402	28	73	-60

		1	1	1			
CUR123	RAB	745708.9	6483654	402	30	73	-60
CUR124A	RAB	745688.2	6483647	402	30	73	-60
dac001	Aircore	744978.5	6484902	385	28	74	-60
dac002	Aircore	745005.8	6484913	385	50	74	-60
dac003	Aircore	745072.4	6484930	386	50	74	-60
dac004	Aircore	744833.5	6485122	380	35	74	-60
dac005	Aircore	744878	6485135	381	50	74	-60
dac006	Aircore	744924.1	6485147	381	46	74	-60
dac007	Aircore	744960.5	6485157	381	45	74	-60
dac008	Aircore	745022	6485175	381	47	74	-60
dac009	Aircore	745072.2	6485191	382	38	74	-60
dac010	Aircore	745265.2	6485248				-60
dac011	Aircore	745190.4					-60
							-60
							-60
							-60
							-60
							-60
							-60
							-60
							-60
							-60
							-60
							-60
							-60
					75.5	-	-90
					0.1		-60
				411	113	73.5	-60
				403	125	73.5	-60
				388	34	70	-60
				384	30	71	-60
dl237	RAB	744954.3	6484897	384	34	71	-60
dl238	RAB	744997.3	6484907	385	24	71	-60
dl239	RAB	745050	6484925	386	44	71	-60
dl240	RAB	745070.4	6484928	386	36	71	-60
dl241	RAB	745094.7	6484936	387	41	71	-60
dl242	RAB	745109	6484943	387	40	71	-60
dl243	RAB	745123.1	6484947	387	40	71	-60
dl244	RAB	745147.8	6484950	386	36	71	-60
dl245	RAB	745165.5	6484957	386	38	71	-60
dl246	RAB	745186.6	6484963	388	27	71	-60
dl247	RAB	745233.9	6484976	388	24	71	-60
dl248	RAB	745297.3	6484993	387	33	71	-60
dl249	RAB	745340.2	6485009				-60
dl250	RAB	745422.7	6485033	385			-60
dl324	RAB	745909.4	6483738	400	33	70.1	-60
dl325	RAB	745956.5	6483755	398	22	70.1	-60
			6483772	398	20	70.1	-60
	RAR	740005 5		557	20	, , , , , ,	55
dl326	RAB RAB	746003.5		296	16	70 1	-60
dl326 dl327	RAB	746050.5	6483789	396 395	16 22	70.1	-60 -60
dl326				396 395 394	16 22 24	70.1 70.1 70.1	-60 -60 -60
	dac001 dac002 dac003 dac004 dac005 dac006 dac007 dac008 dac010 dac011 dac012 dac013 dac014 dac015 dac016 dac017 dac018 dac019 dac021 dac022 dac023 DAC045 dac065 DHRC008 DHRC09 dl236 dl237 dl238 dl239 dl240 dl241 dl242 dl243 dl244 dl245 dl244 dl245 dl248 dl248	dac001Aircoredac002Aircoredac003Aircoredac004Aircoredac005Aircoredac006Aircoredac007Aircoredac008Aircoredac010Aircoredac011Aircoredac012Aircoredac013Aircoredac014Aircoredac015Aircoredac016Aircoredac017Aircoredac018Aircoredac019Aircoredac018Aircoredac021Aircoredac021Aircoredac022Aircoredac023Aircoredac023Aircoredac024Aircoredac025Aircoredac023Aircoredac024Aircoredac025Aircoredac026Aircoredac027Aircoredac028RCDHRC099RCdl202RABdl238RABdl239RABdl240RABdl241RABdl244RABdl245RABdl246RABdl248RABdl249RAB	dac001 Aircore 744978.5 dac002 Aircore 745005.8 dac003 Aircore 745072.4 dac004 Aircore 744873.5 dac005 Aircore 744878 dac006 Aircore 744924.1 dac007 Aircore 744924.1 dac008 Aircore 745072.2 dac009 Aircore 745072.2 dac010 Aircore 745072.2 dac010 Aircore 745072.2 dac011 Aircore 745072.2 dac010 Aircore 745072.2 dac011 Aircore 745072.2 dac012 Aircore 745072.2 dac013 Aircore 745096.7 dac014 Aircore 745096.7 dac015 Aircore 744962.7 dac016 Aircore 744913.9 dac017 Aircore 744854.6 dac020 Aircore 744854.6 dac021 Aircore 74	dac001 Aircore 744978.5 6484902 dac002 Aircore 745005.8 6484913 dac003 Aircore 745072.4 6484930 dac004 Aircore 744878 6485122 dac005 Aircore 744878 6485135 dac006 Aircore 744960.5 6485147 dac007 Aircore 745072.2 6485191 dac008 Aircore 745072.2 6485191 dac010 Aircore 745072.2 6485483 dac011 Aircore 745096.7 6485483 dac012 Aircore 745096.7 6485483 dac013 Aircore 745096.7 6485435 dac014 Aircore 745080.7 6485435 dac013 Aircore 744962.7 6485435 dac014 Aircore 744962.7 6485435 dac015 Aircore 744962.7 6485435 dac014 Aircore 744913.9 6485406 dac0	dac001 Aircore 744978.5 6484902 385 dac002 Aircore 745005.8 6484913 385 dac003 Aircore 745072.4 6484930 386 dac004 Aircore 744833.5 6485132 380 dac005 Aircore 744878 6485147 381 dac006 Aircore 744924.1 6485147 381 dac007 Aircore 744960.5 6485147 381 dac008 Aircore 745022 6485147 381 dac010 Aircore 74502.2 6485483 378 dac011 Aircore 745190.4 6485470 377 dac013 Aircore 74506.7 6485470 377 dac014 Aircore 74506.7 6485470 376 dac015 Aircore 744962.7 6485470 376 dac016 Aircore 744913.9 6485406 376 dac017 Aircore 744851.6	dac001 Aircore 744978.5 6484902 385 28 dac002 Aircore 745005.8 6484913 385 50 dac003 Aircore 745072.4 6484930 386 50 dac004 Aircore 744878 6485135 381 50 dac005 Aircore 744974.1 6485137 381 46 dac007 Aircore 744922.2 6485137 381 47 dac008 Aircore 745022 6485147 381 47 dac009 Aircore 74502.2 6485143 378 47 dac010 Aircore 74506.7 6485483 378 47 dac011 Aircore 745096.7 6485443 376 37 dac013 Aircore 745096.7 6485443 376 41 dac014 Aircore 744905.7 6485445 376 49 dac015 Aircore 7449062.7 6485435 376	dac001 Aircore 744978.5 6484902 385 28 74 dac002 Aircore 745005.8 6484930 385 50 74 dac003 Aircore 745072.4 6484930 386 50 74 dac004 Aircore 744878 6485122 380 35 74 dac006 Aircore 744924.1 6485147 381 46 74 dac007 Aircore 744924.1 6485157 381 47 74 dac008 Aircore 745022 6485157 381 47 74 dac010 Aircore 745022 6485483 382 20 74 dac011 Aircore 74506.7 6485483 376 37 74 dac012 Aircore 74506.7 6485493 376 37 74 dac013 Aircore 74508.7 6485422 376 41 74 dac014 Aircore 744

-								
	dl341	RAB	745919.6	6484586	392	0.1	70	-60
	dl342	RAB	745871.6	6484569	394	0.1	70	-60
_	dl343	RAB	745824.6	6484552	396	0.1	70	-60
	dl344	RAB	745776.6	6484536	397	0.1	70	-60
	dl345	RAB	745731.6	6484518	397	0.1	70	-60
	dl346	RAB	745684.6	6484501	397	0.1	70	-60
	dl347	RAB	745637.6	6484484	397	0.1	70	-60
Æ	dl348	RAB	745590.6	6484467	397	0.1	70	-60
2	dl349	RAB	745544.6	6484451	397	0.1	70	-60
A	dl359	RAB	745815.3	6483704	401	51	70.1	-60
	dl360	RAB	745838.8	6483712	402	46	70.1	-60
	dl361	RAB	745862.4	6483721	401	30	70.1	-60
	dl362	RAB	745885.9	6483729	401	31	70.1	-60
$\left(\prod \right)$	dl363	RAB	745932.9	6483746	399	32	70.1	-60
9	dl364	RAB	745898.9	6483840	400	21	70.1	-60
A.	dl365	RAB	745875.4	6483832	400	35	70.1	-60
\cup	dl366	RAB	745851.8	6483823	400	39	70.1	-60
	dl367	RAB	745842.4	6483820	400	56	70.1	-60
	dl368	RAB	746029.5	6483994	396	26	70.1	-60
	dl369	RAB	745982.4	6483977	397	33	70.1	-60
	dl370	RAB	745935.4	6483960	398	32	70.1	-60
	dl371	RAB	745888.3	6483943	398	26	70.1	-60
	dl372	RAB	745841.3	6483926	398	42	70.1	-60
90	dl373	RAB	745794.3	6483909	398	31	70.1	-60
$(\square$	dl374	RAB	745747.2	6483892	398	26	70.1	-60
	dl375	RAB	745700.2	6483875	398	41	70.1	-60
A	dl376	RAB	745653.1	6483858	397	41	70.1	-60
9	dl377	RAB	745995.4	6484088	396	5	70.1	-60
A 1	dl378	RAB	745948.4	6484071	397	7	70.1	-60
\cup	dl379	RAB	745901.3	6484054	397	26	70.1	-60
\square	dl380	RAB	745854.3	6484037	397	29	70.1	-60
	dl381	RAB	745807.2	6484020	397	46	70.1	-60
$(\square$	dl382	RAB	745760.2	6484003	397	40	70.1	-60
	dl383	RAB	745713.1	6483986	397	41	70.1	-60
(dl384	RAB	745619.1	6483952	397	36	70.1	-60
	dl385	RAB	745572	6483935	396	44	70.1	-60
Ī	DLP001	RC	745856	6480392	407	80	70	-60
	DLP002	RC	745978	6480224	409	100	70	-60
	DLP003	RC	745879	6480400	407	99.2	70	-60
$(\square$	DLP004	RC	744949.3	6485156	381	79	71	-60
9	DLP005	RC	745007	6485174	381	77	71	-60
Π	DLP006	RC	744935.8	6485410	375	70	71	-60
	DLRC001	RC	746024	6483000	403	113	73.5	-60
	DLRC002	RC	746093.2	6482936	406	104	73.5	-60
ľ	DLRC1004	RC	746057.1	6482966	404	132	0	-90
ľ	DLRC1005	RC	746367.7	6482260	412	120	0	-90
F	DLRC1012	RC	745993.4	6482503	410	80	0	-90
ŀ	DLRC1013	RC	746030.3	6482548	409	90	0	-90
ŀ	DLRC1014	RC	745966.9	6482527	409	96	0	-90
-	DLRC1016	RC	746019.6	6482466	411	108	0	-90
	-						-	
ŀ	DRC005	RC	745679	6483629	402	140	72	-60

г			1				Γ	
_	FDUP002	RC	746017	6480239	408	99	70	-60
	FDUP003	RC	745970	6480221	409	98	70	-60
	FDUP004	RC	745939.4	6480316	407	80	70	-60
	FDUP005	RC	745920.4	6480308	407	80	70	-60
	FDUP006	RC	745898.4	6480301	407	97	70	-60
	FDUP007	RC	745873.4	6480292	408	100	70	-60
	FDUP008	RC	745902.4	6480410	407	105	70	-60
E	FDUP009	RC	745829.4	6480383	407	99	70	-60
1	FDUP010	RC	745863.2	6480505	407	80	70	-60
A	FDUP011	RC	745841	6480497	407	80	70	-60
	FDUP012	RC	745816.2	6480489	407	80	70	-60
	FDUP013	RC	745793.2	6480480	407	80	70	-60
	LDRC006	RC	746096.4	6482976	405	79	73	-60
6	LDRC007	RC	746141.4	6482948	406	90	73	-60
U	LDRC008	RC	746165.4	6482916	406	90	73	-60
al	LDRC009	RC	746177.4	6482858	408	100	73	-60
\bigcup	LDRC010	RC	746257.9	6482776	409	100	73	-60
	LDRC011	RC	746184.2	6482673	410	145	73	-60
	P7A090	Aircore	745202.1	6486183	371	49	70	-60
	P7A091	Aircore	745164.6	6486169	371	68	70	-60
-	P7A092	Aircore	745127	6486156	371	47	70	-60
	P7A092	Aircore	745089.5	6486142	370	72	70	-60
$(\cap $	P7A093	Aircore	745048.7	6486133	370	67	70	-60
G	P7A094	Aircore	745010	6486122		63	85	-60
P	P7A095	Aircore	743010	6486113	370		80	-60
12	P7A090	Aircore	744972.3	6486101	370	56	70	-60
a	P7A097				370	53	70	
((-		Aircore	744887.5	6486083	370	65		-60
	P7A099	Aircore	744852.1	6486073 6486063	369	55	70	-60
(C)	P7A100	Aircore	744813.2		369	58	70	-60
	P7A101	Aircore	744775.6	6486050	370	60	70	-60
2	P7A102	Aircore	744738.1	6486036	370	49	70	-60
a	P7A103	Aircore	744699.3	6486028	370	65	70	-60
U	P7SRC1	RC	744942.5	6484891	384	108	70	-60
A	P7SRC2	RC	744913.7	6484883	384	102	70	-60
(P7SRC3	RC	744972.8	6485423	375	66	70	-60
	P7SRC4	RC	744916.6	6485406	376	100	70	-60
~	P7SRC5	RC	744883.4	6485395	377	90	70	-60
2	P7SRC6	RC	744988.9	6485165	381	90	70	-60
A	P7SRC7	RC	744940.8	6485153	381	96	70	-60
	P7SRC8	RC	744908.6	6485143	381	64	70	-60
	PDA1045	RAB	745299.5	6485724	376	34	70	-60
	PDA1046	RAB	745225.3	6485705	375	38	70	-60
	PDA1047	RAB	745148	6485683	374	60	70	-60
ļ	PDA1048	RAB	745071.6	6485662	374	54	70	-60
Ļ	PDA1049	RAB	744987.5	6485641	373	35	70	-60
Ļ	PDA1050	RAB	744913.2	6485614	372	50	70	-60
Ļ	PDA1051	RAB	744837.1	6485594	372	44	70	-60
Ļ	PDA1052	RAB	744759.3	6485565	372	37	70	-60
	PDA1053	RAB	744679.8	6485552	372	44	70	-60
	PDA1054	RAB	744600.2	6485521	372	20	70	-60
	PDA1055	RAB	744927.7	6485151	381	43	70	-60
	PDA1056	RAB	744847.7	6485127	380	47	70	-60

	PDA1058	RAB	744680.2	6486021	370	65	70	-60
	PDA1059	RAB	744845	6486253	368	49	70	-60
	PDA1060	RAB	744774	6486226	369	51	70	-60
	PDA1061	RAB	744695	6486197	369	62	70	-60
	PDA1258	RAB	745264.5	6485715	376	34	70	-60
	PDA1259	RAB	745184.5	6485689	374	43	70	-60
	PDA1260	RAB	745108.4	6485671	374	67	70	-60
Ē	PDA1261	RAB	745030.1	6485652	373	35	70	-60
1	PDA1262	RAB	744952.5	6485626	372	49	70	-60
G	PDA1263	RAB	744885.9	6485605	372	45	70	-60
	PDA1264	RAB	744803.5	6485582	372	36	70	-60
	PDA1265	RAB	744724.8	6485562	372	33	70	-60
	PDA1266	RAB	744635.8	6485534	372	17	70	-60
6	PDA1267	RAB	744807	6486239	369	49	70	-60
U	PDA1268	RAB	744732	6486211	369	50	70	-60
A	PDA1269	RAB	744657	6486183	369	61	70	-60
\cup	PDC1556	RC	747185.6	6480649	399	141	73.5	-60
	PDC1557	RC	747251.9	6480564	401	156	73.5	-60
	PDC1558	RC	747175	6480542	401	150	73.5	-60
	PDC1559	RC	747347	6480487	402	150	73.5	-60
	PDC1560	RC	747657.1	6480480	396	150	73.5	-60
	PDC1561	RC	747547.8	6480441	397	138	73.5	-60
(\cap)	PDC1562	RC	747417.2	6480410	400	150	73.5	-60
9	PDC1563	RC	747623.8	6480359	395	120	73.5	-60
C	PDC1564	RC	747460.4	6480312	398	150	73.5	-60
2	PDR1028	RAB	746153	6483801	395	37	73.5	-60
P	PDR1029	RAB	746078	6483774	396	22	73.5	-60
C	PDR1030	RAB	746044	6483763	397	22	73.5	-60
a	PDR1031	RAB	746004	6483747	397	38	73.5	-60
(U)	PDR1032	RAB	745931	6483722	400	31	73.5	-60
Č	PDR1033	RAB	745862.4	6483695	401	50	73.5	-60
	PDR1034	RAB	745789.4	6483663	402	48	73.5	-60
$(\square$	PDR1035	RAB	745706	6483634	403	69	73.5	-60
9	PDR1036	RAB	745628.3	6483614	401	53	73.5	-60
F	PDR1037	RAB	745553.7	6483584	399	57	73.5	-60
5	PDR1038	RAB	745476.4	6483556	398	50	73.5	-60
	PDR1039	RAB	745399.4	6483527	398	33	73.5	-60
0	PDR1040	RAB	745651	6484790	392	5	73.5	-60
	PDR1041	RAB	745357.3	6484691	392	44	73.5	-60
$(\subset$	PDR1042	RAB	745274.2	6484665	392	31	73.5	-60
6	PDR1043	RAB	745196.6	6484638	391	37	73.5	-60
	PDR1044	RAB	745308.7	6485726	376	19	73.5	-60
	PDR1100	RAB	746116	6483789	395	26	73.5	-60
	PDR1101	RAB	745745	6483649	403	56	73.5	-60
	PDR1102	RAB	745665.3	6483625	402	62	73.5	-60
	PDR1103	RAB	745591.1	6483599	400	58	73.5	-60
	PDR1104	RAB	745517.4	6483571	398	46	73.5	-60
	PDR1105	RAB	745442.7	6483546	399	44	73.5	-60
	PDR1146	RAB	745320.3	6484677	393	35	73.5	-60
	PDR1147	RAB	745241.7	6484657	391	29	73.5	-60
	PDR1321	RAB	745652	6483745	398	48	73.5	-60
	PDR1350	RAB	746036	6483857	397	16	73.5	-60
	. 5111550	10.0	, 10000	0100007	557	10	, , , , , , , , , , , , , , , , , , , ,	

_								
	PDR1351	RAB	745997	6483846	398	33	73.5	-60
	PDR1352	RAB	745959	6483834	399	39	73.5	-60
	PDR1353	RAB	745830.2	6483798	400	47	73.5	-60
	PDR1354	RAB	745805	6483790	400	41	73.5	-60
	PDR1355	RAB	745793.9	6483786	400	47	73.5	-60
	PDR1356	RAB	745748	6483773	399	59	73.5	-60
	PDR1357	RAB	745728	6483768	399	54	73.5	-60
Ē	PDR1358	RAB	745690	6483756	399	50	73.5	-60
10	PDR1359	RAB	745719.5	6483866	399	38	73.5	-60
	PDR1360	RAB	745739	6483875	399	47	73.5	-60
	PDR1361	RAB	745700	6483864	397	57	73.5	-60
	PDR1362	RAB	745662	6483852	397	56	73.5	-60
	PDR1363	RAB	745643	6483847	397	48	73.5	-60
6	PDR1364	RAB	745622.2	6483837	396	53	73.5	-60
U	PDR1365	RAB	745585	6483830	396	24	73.5	-60
al	PDR1366	RAB	745556	6483822	396	37	73.5	-60
\bigcirc	PDR1367	RAB	745536	6483712	397	26	73.5	-60
	PDR1368	RAB	745575	6483723	397	33	73.5	-60
	PDR1369	RAB	745618	6483735	398	29	73.5	-60
	PDR1370	RAB	745632	6483740	398	33	73.5	-60
	PDR740	RAB	745879.8	6483706	401	36	73.5	-60
	PDR741	RAB	745948.4	6483727	399	40	73.5	-60
$(\cap $	PDR742	RAB	746025.3	6483749	395	27	73.5	-60
G	PDR742	RAB	746102.1	6483772	396	27	73.5	-60
F	PDR743	RAB	746102.1	6483794			73.5	-60
1	PDR907	RAB	745979	6483740	394	33	73.5	-60
C		RAB			398	18	73.5	
	PDR908		746006 745538.9	6483744 6484031	397	33		-60
	PR-01 PR-02	RAB RAB	745526.8	6484027	397	15	90	-60
(C)	(397	15	90	-60
	PR-07	RAB	745355.3 745374.5	6484415	396	30	90	-60
	PR-08	RAB		6484420	397	26	90	-60
A	PR-09	RAB	745393.7	6484426	397	30	90	-60
\bigcup	PR-10	RAB	745413	6484431	397	30	90	-60
A	PR-23	RAB	745523.4	6484021	397	30	90	-60
	PR-24	RAB	745524.1	6484000	396	30	90	-60
	PR-25	RAB	745524.1	6484000	396	50	0	-90
~	PR-26	RAB	745766.2	6483700	401	30	90	-60
2	PR-27	RAB	745785.4	6483706	401	30	90	-60
P	PR-28	RAB	745733.2	6483707	401	30	90	-60
	PR-29	RAB	745749	6483706	401	30	90	-60
	PR-30	RAB	745760	6483668	402	25	104	-60
	PR-31	RAB	745799.2	6483658	402	25	270	-60
	PR-32	RAB	745499.2	6483950	395	45	70	-60
	PR-33	RAB	745497.2	6483949	395	57	0	-90
·	PR-34	RAB	745490.5	6483991	396	51	71	-60
	PR-35	RAB	745488.5	6483990	396	56	0	-90
	PR-40	RAB	745471.5	6484006	396	51	70	-60
	PSA008	Aircore	744908.1	6485143	381	29	70	-60
	PSA009	Aircore	745313.9	6484481	395	44	70	-60
	PSA010	Aircore	745276.9	6484467	394	40	70	-60
	PSA011	Aircore	745237.5	6484455	393	45	70	-60
	PSA012	Aircore	745210.1	6484445	393	47	70	-60

								1
	PSA013	Aircore	745056.9	6484820	387	41	70	-60
	PSA014	Aircore	745037.9	6484815	386	46	70	-60
	PSA015	Aircore	745014.5	6484807	386	46	70	-60
	PSA016	Aircore	744870.9	6484871	384	48	70	-60
	PSA017	Aircore	744955.3	6484895	384	43	70	-60
	PSA018	Aircore	744671.7	6485832	371	52	70	-60
	PSA019	Aircore	744695.7	6485841	371	55	70	-60
	PSA020	Aircore	744719.7	6485850	371	40	70	-60
	PSA021	Aircore	744742.7	6485858	371	50	70	-60
	PSA022	Aircore	744766.7	6485867	370	48	70	-60
\bigcirc	PSA023	Aircore	744788.7	6485875	370	41	70	-60
	PSA024	Aircore	744812.7	6485884	370	39	70	-60
	PSA025	Aircore	744835.7	6485894	370	40	70	-60
15	PSA026	Aircore	745073.3	6484593	390	10	70	-60
J	PSA027	Aircore	745093.9	6484603	390	7	70	-60
10	PSA028	Aircore	745116.9	6484611	390	54	70	-60
JJJ	PSA029	Aircore	745136.1	6484617	390	30	70	-60
	PSA030	Aircore	745152.2	6484622	390	11	70	-60
\rightarrow	PSA030	Aircore	745174.7	6484630	390	41	70	-60
	PSA032	Aircore	745196.3	6484637	391	39	70	-60
	PSA032 PSA033	Aircore	745125.3	6485987	372		70	-60
	PSA033 PSA034		745125.3		-	60	70	
TR-		Aircore		6485984	372	67	1	-60
3 19 -	PSA035	Aircore	745060.5	6485971	371	67	70	-60
	PSA036	Aircore	745025.7	6485963	371	61	70	-60
	PSA037	Aircore	744988.1	6485949	371	56	70	-60
	PSA038	Aircore	744950.6	6485935	371	55	70	-60
\square	PSA039	Aircore	744913	6485921	371	49	70	-60
	PSA040	Aircore	744875.5	6485907	371	45	70	-60
$^{2}\square$	PSA041	Aircore	744612.6	6485810	371	44	70	-60
90	PSA042	Aircore	744575.1	6485797	372	55	70	-60
	PSA043	Aircore	744537.5	6485783	372	58	70	-60
70	PSA044	Aircore	744500	6485769	372	56	70	-60
	PSA045	Aircore	744462.4	6485755	372	50	70	-60
\times	PSA046	Aircore	744424.9	6485741	371	58	70	-60
	PSA047	Aircore	744387.3	6485727	371	56	70	-60
	PSA048	Aircore	745444.6	6485560	376	27	70	-60
	PSA049	Aircore	745405.7	6485545	377	34	70	-60
	PSA050	Aircore	745362.2	6485532	377	32	70	-60
T	PSA051	Aircore	745329.5	6485524	378	28	70	-60
(D)	PSA052	Aircore	745283.6	6485511	378	30	70	-60
Y	PSA053	Aircore	745247.4	6485502	378	40	70	-60
Π	PSA054	Aircore	745197.2	6485488	378	44	70	-60
	PSA055	Aircore	745159.6	6485476	377	40	70	-60
	PSA056	Aircore	745120	6485465	377	41	70	-60
	PSA057	Aircore	745080.5	6485455	376	49	70	-60
	PSA058	Aircore	745043.3	6485440	376	48	70	-60
	PSA059	Aircore	745003.3	6485429	376	49	70	-60
	PSA060	Aircore	744959	6485421	376	52	70	-60
	PSA061	Aircore	744919.6	6485405	376	52	70	-60
							-	
		Aircore	744880.9	6485394	377	46	70	-60
	PSA062 PSA063	Aircore Aircore	744880.9 744841.7	6485394 6485384	377 377	46 50	70 70	-60 -60

_								
	PSA065	Aircore	744758.5	6485360	375	44	70	-60
	PSA066	Aircore	744718.8	6485349	374	49	70	-60
	PSA067	Aircore	744682.4	6485340	373	38	70	-60
	PSA069	Aircore	745665.2	6485099	384	23	70	-60
	PSA077	Aircore	745373.4	6485015	385	43	70	-60
\rightarrow	PSA078	Aircore	745331	6485006	386	49	70	-60
	PSA079	Aircore	745285.7	6484992	387	49	70	-60
Æ	PSA080	Aircore	745226.1	6484974	388	40	70	-60
4	PSA081	Aircore	745180.8	6484963	387	46	70	-60
A	PSA082	Aircore	745148.3	6484951	386	46	70	-60
	PSA083	Aircore	745106.4	6484940	387	57	70	-60
	PSA084	Aircore	745068.8	6484931	386	53	70	-60
	PSA085	Aircore	745027.4	6484917	386	58	70	-60
1	PSA087	Aircore	745592.9	6485343	380	48	70	-60
브	PSA088	Aircore	745557.7	6485334	381	37	70	-60
1/7	PSA089	Aircore	745515.5	6485318	381	28	70	-60
J.	PSA095	Aircore	745273.9	6485251	382	36	70	-60
	PSA096	Aircore	745242.5	6485239	382	42	70	-60
_	PSA097	Aircore	745197.8	6485231	383	41	70	-60
	PSA098	Aircore	745158.6	6485218	382	38	70	-60
-	PSA099	Aircore	745117.1	6485206	383	32	70	-60
	PSR070	RAB	745627.2	6485088	385	65	70	-60
٦٢	PSR071	RAB	745584.2	6485083	384	50	70	-60
16	PSR072	RAB	745548.1	6485071	384	45	70	-60
	PSR073	RAB	745510.4	6485059	385	53	70	-60
	PSR074	RAB	745463.1	6485047	385	50	70	-60
-	PSR075	RAB	745425.3	6485034	385	44	70	-60
-	PSR076	RAB	745388.4	6485025	385	43	70	-60
16	PSR090	RAB	745471.9	6485305	382	35	70	-60
Jŕ,	PSR091	RAB	745439.3	6485298	382	30	70	-60
	PSR092	RAB	745389.6	6485278	382	29	70	-60
	PSR093	RAB	745354.8	6485269	382	34	70	-60
1Ľ	PSR094	RAB	745318.1	6485263	381	40	70	-60
뱐	PSR104	RAB	745916.6	6484656	391	39	70	-60
7	PSR105	RAB	745891.5	6484648	391	45	70	-60
-	PSR106	RAB	745839.5	6484628	393	45	70	-60
	PSR107	RAB	745790.8	6484617	395	39	70	-60
	PSR108	RAB	745757.4	6484605	395	31	70	-60
	PSR100	RAB	745706.3	6484595	394	40	70	-60
-	PSR105	RAB	745668.5	6484580	395	39	70	-60
+	PSR111	RAB	745634	6484572	395	48	70	-60
nF	PSR112	RAB	745590.5	6484560	396	45	70	-60
	PSR112	RAB	745548	6484546	396	43	70	-60
	PSR114	RAB	745520.1	6484537	390	48	70	-60
⊢	PSR115	RAB	745478.2	6484525	397	40	70	-60
┢	PSR116	RAB	745433.8	6484514	396	41	70	-60
┢	PSR110 PSR117	RAB	745389.6	6484504	396	24	70	-60
┢	PSR117 PSR118	RAB	745948.5	6484666			70	-60
L	6117C1	ГАЙ	/43948.3	0404000	390	39	70	-00

For further information please refer to the Company's website or contact the Company directly.

Authorised for release by the Zenith Minerals Limited Board of Directors – 24th June 2021

For further information contact Zenith Minerals Limited:

Directors Michael Clifford or Peter Bird E: mick@zenithminerals.com.au / peter@zenithminerals.com.au Phone +61 8 9226 1110

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled by Mr Michael Clifford, who is a Member of the Australian Institute of Geoscientists and an employee of Zenith Minerals Limited. Mr Clifford has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Clifford consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Material ASX Releases Previously Released

The Company has released all material information that relates to Exploration Results, Mineral Resources and Reserves, Economic Studies and Production for the Company's Projects on a continuous basis to the ASX and in compliance with JORC 2012. The Company confirms that it is not aware of any new information that materially affects the content of this ASX release and that the material assumptions and technical parameters remain unchanged.

About Zenith

Zenith has a vision to build a gold and base metals business with a team of proven project finders. Focus is on 100% owned Zenith projects, whilst partners progress multiple additional opportunities using third party funds.

Zenith is continuing to focus on its core Australian gold and copper projects including:

Red Mountain Gold Project in Queensland (100% owned) where ongoing drilling is following-up the highgrade near surface gold and silver intersected in the maiden & subsequent drill programs (ASX Releases 3-Aug-20 & 13-Oct-20, 9-Nov-20, 21-Jan-21), including:

- 13m @ 8.0 g/t Au & 3.2 g/t Ag from surface
- 15m @ 3.5 g/t Au, incl. 2m @ 22.4 g/t Au
- 5m @ 10.4 g/t Au, and
- o 12m @ 4.9 g/t Au

Split Rocks Gold Project in Western Australia (100% owned), where recent drilling returned, high-grade near surface gold mineralisation at multiple targets (ASX Release 5-Aug-20, 2-Sep-20, 19-Oct-20, 28-Oct-20, 15-Ja-21, 11-Mar-21, 21-Apr-21), including:

- o <u>Dulcie North</u>: 32m @ 9.4 g/t Au, incl 9m @ 31.4 g/t Au.
- o Dulcie Laterite Pit:
 - 2m @ 14.5 g/t Au, incl. 1m @ 20.8 g/t Au,
 - 18m @ 2.0 g/t Au (EOH) incl. 1m @ 23.7 g/t Au &
 - 14m @ 3.5 g/t Au
- Estrela Prospect: 2m @ 9.8 g/t Au (open to north & south)
- Dulcie Far North: 5m @ 5.6 g/t Au incl. 4m @ 6.8 g/t Au
- <u>Water Bore</u>: 3m @ 6.6 g/t Au
- Develin Creek Copper-Zinc Project in Queensland (100% owned) maiden drill test of the new Snook copper target located 30km south of Zenith's JORC resources discovers massive copper-zinc sulphides (ASX Release 17-Dec-20).

- Jackadgery Gold Project in New South Wales (option to earn initial 90%), historic trenching returned 160m @ 1.2 g/t Au. No drilling to date. Zenith planning maiden drill test (ASX Release 10-Sep-20).
- Earaheedy Zinc Project in Western Australia (25% free carry to end BFS). New major zinc discovery to be fast tracked with extensive accelerated exploration program underpinned by a recent \$40M capital raising by partner Rumble Resources Limited (ASX:RTR) (ASX Releases 28-Apr-21 & 2-Jun-21).

JORC Tables Section 1 Sampling Techniques and Data for Zenith Aircore Drilling

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	4m composite aircore drill samples were collected at depths ranging from 0 to 56m depth. Samples were collected via a cyclone.
Sampling	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Samples are representative of the intervals sampled.
techniques	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Aircore drilling was used to obtain 4 m composite from which 2 kg was pulverised with analysis for gold by 50g fire assay with AAS finish
Drilling techniques	Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Aircore
	Method of recording and assessing core and chip sample recoveries and results assessed.	Samples were visually assessed in the field and using an estimated bulk density compared against theoretical mass to estimate recovery.
Drill sample recovery		Aircore ensured good recoveries through-out the drill program, holes that ended in high-water ingress were terminated to ensure adequate sample recovery.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Acceptable overall sample recoveries through-out drill program no bias likely.

	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All drill samples were logged by a qualified geologist
Logging	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	
	The total length and percentage of the relevant intersections logged.	100%
	If core, whether cut or sawn and whether quarter, half or all core taken.	No core
Sub-sampling	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	Cone splitter for each 4m composite sample.
techniques and sample preparation	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Samples were analysed at Nagrom Laboratories in Perth, 2 kg was pulverised and a representative subsample was analysed for gold by 50g fire assay with AAS finish.
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	~200g of sample was pulverised and a sub-sample was taken in the laboratory and analysed.
Sub-sampling techniques and sample	•	Duplicate samples were taken in the field and analysed as part of the QA/QC process
preparation - continued	Whether sample sizes are appropriate to the grain size of the material being sampled.	Each sample was approximately 2kg in weight which is appropriate to test for the grain size of material sampled.
	assaying and laboratory procedures used and	Samples were analysed at Nagrom Laboratories in Perth, 2 kg was pulverised and a representative subsample was analysed for gold by 50g fire assay with AAS finish.
Quality of assay data and laboratory tests	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools used in this program.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Blanks, certified reference material for gold, and duplicate samples were included in the analytical batches and indicate acceptable levels of accuracy and precision.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	At least 2 Zenith company personnel have been to the prospect area and observed samples and representative drill chip samples
loodynig	The use of twinned holes.	Nil

		Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Field data were all recorded on paper logs and sample record books and then entered into a database
Ľ		Discuss any adjustment to assay data.	No adjustments were made.
2	Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Sample location is based on GPS coordinates +/-5m accuracy.
	\bigcirc	Specification of the grid system used.	The grid system used to compile data was MGA94 Zone 50
(Location of data points – continued	Quality and adequacy of topographic control.	Topography control is +/- 10m.
		Data spacing for reporting of Exploration Results.	Refer to Figures 2 - 7
	Data spacing and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	There is insufficient information to calculate a mineral resource
		Whether sample compositing has been applied.	Simple weight average mathematical compositing applied
	Orientation of data in relation to	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	All Zenith drilling is -60 degrees east and is close to representing true width thickness of the west dipping gold mineralisation, based on the current geological interpretation. Further drilling is required to confirm this interpretation.
ge	geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	
2	Sample security	The measures taken to ensure sample security.	All samples were taken by Zenith personnel on site and retained in a secure location until delivered directly to the laboratory by Zenith personnel.
	Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The sampling techniques and data have been reviewed by two company personnel who are qualified as Competent Persons

Section 1 Sampling Techniques and Data – Historic Drill Holes

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
		Historical drill holes:
		CUR* RAB holes were drilled by Thames Mining NL in 1985 & 1986. Samples were collected as 3m composites (WAMEX Open file reports a18004 & 19521).
CD		CURC* RC holes were drilled by Thames Mining NL in 1986. Samples were collected as 2m composites (WAMEX Open file report a19554). PR-* RAB holes were drilled by Gwalia Minerals NL in 1988. Samples were collected as 3m composites with some later re- sampling at 1m (WAMEX Open file report a37134).
		dac* aircore holes were drilled by Aztec Mining Ltd in 1992. Samples were collected as 5m composites (WAMEX Open file report a37803).
		P7SRC* RC holes were drilled by Gasgoyne Gold Mines in 1995-96. Samples were collected as 2m composites with some later re-sampling at 1m (WAMEX Open file report a49187).
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples about and her by taken an limiting the broad	DHRC* RC holes were drilled by Sons of Gwalia Ltd in 1996. Samples were collected as 4m composites with some later re-sampling at 1m (WAMEX Open file report a52864). PSA* aircore holes were drilled by Sons of Gwalia Ltd in 1996-97. Samples were collected as 4m composites with some later re-sampling at 1m (WAMEX Open file report a53374).
	should not be taken as limiting the broad meaning of sampling.	PDR* & PSR* RAB and PDA* aircore holes were drilled by Sons of Gwalia Ltd in 1998. Samples were collected as 3m composites with some later re-sampling at 1m (WAMEX Open file reports a58137 & a62999).
		LDRC* RC holes were drilled by Crusader Holdings NL in 2004. Samples were collected as 4m composites with some later re-sampling at 1m (WAMEX Open file report a68752).
		DLRC* RC holes were drilled by Southern Cross Goldfields Ltd in 2009-2010. Samples were collected as 4m composites with some later re-sampling at 1m (WAMEX Open file reports a85232 & a88742).
		DRC* RC holes were drilled by Sons of Gwalia Ltd in 1998 (a62999). Three metre composite samples were collected from each hole and submitted to Ultra Trace Laboratories in Perth for analysis.
		DR* RAB holes were drilled by Kia Ora Gold Corporation NL in 1986. Samples were speared as 4m composites (a20282)

		 dl* RAB holes were drilled by Aztec Mining Company Limited in 1992. Samples were collected as 5m composite with some re-sampling at 1m (a37803). DLP* RC holes were drilled by Aztec Mining Company Limited in 1992 and 1993. Samples were riffle split and collected as 5m composites. FDUP* RC holes were drilled by Forrestania Gold in 1998 (a106454). P7A* aircore holes were drilled by Sons of Gwalia in 1998. Samples were collected as 3m composites (a56455). Zenith drilling is progressively validating previous drill results by follow-up drill programs.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Historical samples are considered to be representative of the intervals sampled. Industry standard practice is assumed.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Historical drilling: Historical RAB and RC drilling were used to obtain 1 to 5m composite samples which were analysed for gold following diverse methods (see below).
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Historical drilling: RAB, aircore and RC
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Drill chip recoveries are not documented in historical reports. Appropriate controls will be put in place in future infill drilling programmes. With the exception of some RC drill holes completed by Crusader Resources that had some wet samples that were reported as having poor recoveries (a68752) it is assumed that most samples have been drilled dry and that acceptable recoveries have been achieved.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Not documented in historical drilling.

	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Not documented in historical drilling.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Historical drill samples were logged by qualified geologists.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	Historical logging was qualitative.
\mathbb{Q}	The total length and percentage of the relevant intersections logged.	All historical intersections were logged.
(D)	If core, whether cut or sawn and whether quarter, half or all core taken.	No core
	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	Different methods were used with historical samples. When reported, generally 1m samples from cyclones were riffle split and composited to final sample. Samples were generally dry but some were reported as wet.
Sub-sampling techniques and sample preparation	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 CUR* RAB samples were analysed at Analabs Laboratories at Welshpool (WA) using Fire Assay followed by AAS determination. CURC* assaying methods and laboratory were not reported. PR-* samples were analysed at Kal Assays Southern Cross Pty Ltd in Southern Cross (WA) using aqua regia digestion followed by AAS determination. Re-sampling assayed via Fire assay. dac* samples were analysed at ALS laboratory in Perth (WA) using aqua regia (50g) digestion followed by AAS determination. P7SRC* samples were analysed at Yilgarn Assay Laboratory in Southern Cross (WA) using aqua regia (AR50) digestion followed by an unreported determination method. DHRC* assaying methods and laboratory were not reported. PSA* samples were analysed at ALS laboratory in Perth (WA) using aqua regia digestion followed by an unreported determination method. Re-sampling assayed via Fire assay. PDR*, PSR* & PDA* samples were analysed at Ultra Trace Laboratories in Perth (WA) using an aqua regia digestion followed by ICP-MS/OES determination. Resampling assayed at ALS laboratory in Perth (WA) using an aqua regia digestion followed by ICP-MS/OES determination. LDRC* samples were analysed at Leonora Laverton Assay Laboratory in Southern Cross (WA) using cyanide leaching (PAL1). Re-sampling assayed via 40g

			DLRC* samples were analysed at Ultra Trace Perth (WA) using Fire Assay (FA002) followed by ICPOES determination.
			Hole DRC005 was assayed for Au and Ni using an aqua regia digestion followed by ICP-MS determination. Anomalous samples were re-split to 1m intervals and assayed for Au, Pd and Pt by fire assay/ICP-OES.
C			DR* samples were analysed at Kalgoorlie Assay Laboratories (Kalgoorlie) and were assayed by AAS method.
$(\Box$	5)		dl* samples were analysed at Analabs (Perth) using an aqua regia digestion followed by AAS determination.
Ù	Ð		DLP* samples were analysed at Analabs (Perth) using an aqua regia digestion followed by AAS determination.
	\mathcal{D}		FDUP* samples were analysed by Fire Assay. No other information is available.
			P7A* assay method was not documented.
A	5	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Standard industry laboratory procedures are assumed to have been in place following pulverising of the sample material (80% passing 75um).
	Sub-sampling techniques and sample preparation -	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	Historical drilling: Field duplicate or second half sampling is generally not stated in historical reports; selected repeat samples from the PDR* & PDA* series were sent to ALS Laboratories in Perth and assayed for gold using an aqua regia digestion followed by graphite furnace / AAS determination (a62999).
	continued	Whether sample sizes are appropriate to the grain size of the material being sampled.	Historical Drilling: Sample sizes are assumed to be following industry standards and appropriate.
			CUR* RAB samples were analysed at Analabs Laboratories at Welshpool (WA) using Fire Assay followed by AAS determination.
Ć			CURC* assaying methods and laboratory were not reported.
	Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the	PR-* samples were analysed at Kal Assays Southern Cross Pty Ltd in Southern Cross (WA) using aqua regia digestion followed by AAS determination. Re-sampling assayed via Fire assay.
		technique is considered partial or total.	dac* samples were analysed at ALS laboratory in Perth (WA) using aqua regia (50g) digestion followed by AAS determination.
			P7SRC* samples were analysed at Yilgarn Assay Laboratory in Southern Cross (WA) using aqua regia (AR50) digestion followed by an unreported determination method.

		DHRC* assaying methods and laboratory were not reported.
		PSA* samples were analysed at ALS laboratory in Perth (WA) using aqua regia digestion followed by an unknown determination method. Re-sampling assayed via Fire assay.
		PDR*, PSR* & PDA* samples were analysed at Ultra Trace Laboratories in Perth (WA) using an aqua regia digestion followed by ICP-MS/OES determination. Re- sampling assayed at ALS laboratory in Perth (WA) via aqua regia followed by graphite furnace/AAS determination.
0		LDRC* samples were analysed at Leonora Laverton Assay Laboratory in Southern Cross (WA) using cyanide leaching (PAL1). Re-sampling assayed via 40g Fire assay. DLRC* samples were analysed at Ultra Trace Perth (WA) using Fire assay.
		Hole DRC005 was assayed for Au and Ni using an aqua regia digestion followed by ICP-MS determination. Anomalous samples were re-split to 1m intervals and assayed for Au, Pd and Pt by fire assay/ICP-OES.
		DR* samples were analysed at Kalgoorlie Assay Laboratories (Kalgoorlie) and were assayed by AAS method.
$\overline{\mathbf{D}}$		dl* samples were analysed at Analabs using an aqua regia digestion followed by AAS determination.
Ð		DLP* samples were analysed at Analabs (Perth) using an aqua regia digestion followed by AAS determination.
5		FDUP* samples were analysed by Fire Assay. No other information is available.
		P7A* assay method was not documented.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools used in this drilling program
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of	Historical drilling: The QA/QC controls are not well documented in historical reports. selected repeat samples from the PDR*, PSR* & PSA* series were sent to ALS Laboratories in Perth and assayed for gold using an aqua regia digestion followed by graphite furnace / AAS determination (a62999).
	accuracy (i.e. lack of bias) and precision have been established.	Thirteen successive drilling campaigns by seven different companies analysed by at least six separate laboratories have confirmed the presence of bedrock gold mineralisation and provide comfort that significant bedrock gold mineralisation exists.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Historical drilling: Thirteen successive drilling campaigns by seven different companies analysed by at least six separate

		laboratories have confirmed the presence of bedrock gold mineralisation.
	The use of twinned holes.	No specific twin hole drilled but thirteen successive drilling campaigns by seven different companies analysed by at least six separate laboratories have confirmed the presence of bedrock gold mineralisation.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Historical drilling: Field data were recorded on paper logs.
	Discuss any adjustment to assay data.	No adjustments were made.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Historical drilling: Original drill collar locations based on compass and tape surveys or GPS depending on year of drilling. Selected drill hole collar locations have been verified in the field using GPS with +/- 3m accuracy. Some more recent drilling surveyed using a carrier-phase enhancement GPS (a85232).
	Specification of the grid system used.	The grid system used to compile data was MGA94 Zone 50
Location of data points - continued	Quality and adequacy of topographic control.	Topography control is +/- 5m
	Data spacing for reporting of Exploration Results.	Drill holes shown in Figures 3 & 4 and Tables 3 & 4
Data spacing and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The data alone will not be used to estimate mineral resource or ore reserve.
	Whether sample compositing has been applied.	Different methods were used with historical samples. When reported, generally 1m samples from cyclones were riffle split and composited to final sample. Samples were generally dry but some were reported as wet.
Orientation of	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The intersections in all drill holes are interpreted to be close to true widths.
data in relation to geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	As above
Sample security	The measures taken to ensure sample security.	Historical drilling: Industry standards are inferred to have been used.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Historical drilling: No specific audit documented but at least four successive drilling campaigns by different companies analysed by at least two separate laboratories have confirmed the presence of bedrock gold mineralisation.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	operating Dulcie Heap Leach Gold Project (DHLGO) in
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Refer to ASX release 21 st March 2019.
Geology	Deposit type, geological setting and style of mineralisation.	Archean mesothermal lode gold mineralisation hosted within banded iron formation (BIF) and mafic rock types.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: o easting and northing of the drill hole collar	Refer to Figures and Tables in body of text of this ASX release.
	o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	
	o dip and azimuth of the hole	
	o down hole length and interception depth	
	o hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high	High-grade intersections are length weighted average grades with minimum cut -off grade of 1.0g/t Au and no internal dilution, whilst lower grade intersections are length weighted average grades with minimum cut-off grade of 0.4g/t Au and maximum internal dilution of 4m.
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	

Data aggregation methods - continued	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship	These relationships are particularly important in the reporting of Exploration Results.	Drilling is angled -60 degrees east or vertical and based on current interpretation is thought to be representing true width thickness of the flat lying supergene or gentle west dipping gold mineralised zones however further drilling is required to confirm this interpretation.
between mineralisation widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Mineralised intervals reported are down-hole lengths but
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures and Tables in body of text of this ASX
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Refer to Figures and Tables in body of text of this ASX release.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other meaningful or material exploration data to be reported at this stage.
	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	
Further work	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Refer to figures in body of this report.