ASX/Media Release 16 June 2021 # Resumption of Mining Operations at Granny Venn. - A Proposal to commence Mining Operations within ML29/189 (Granny Venn) has been technically assessed and approved by the WA Government (DMIRS). - Operations are expected to commence in late June 2021. - Additional intervals of extensive gold mineralisation have been received following completion of Grade Control Drilling; Peak Assays include: - 21EMRC016 11m @ 5.46gt/au from 23m - 21EMRC024 14m @ 2.15gt/ au from 22m - 21EMRC026 10m @ 3.45gt/ au from 22m - 21EMRC063 15m @ 3.43gt/au from 3m - 21EMRC065 16m @ 3.08gt/au from 5m - 21EMRC067 9m @3.79gt /au from 17m - Resource modelling and mine planning studies have identified five areas of interest to exploit previously reported Indicated and Inferred Resource. - A Toll Milling Agreement to process all production through the Lakewood Mill is in an advanced stage of completion. - The resumption of operations represents the first significant mining activity to take place in the East Menzies Goldfield since 1998. Resources & Energy Group Limited (ASX: REZ or the Company) advise that a proposal to resume Mining at Granny Venn has been approved by the regulatory authority. Operations are expected to commence in late June 2021, with mobilisation of plant and equipment to commence immediately. The resumption of operations will be the first mining activity to be carried out at Granny Venn since 1998. The mining operations will be directed by BM Mining, who will assume all responsibilities to manage mining operations to exploit the resource. #### **Background** The original Granny Venn open cut was developed by Money Mining in association with Paddington Gold in 1997-1998. At that time mining was based on a pit design optimised at a gold price of \$454/oz. The Granny Venn Project was a successful mining exercise. The optimised pit recovered 532kt of ore which was processed at the Paddington Gold Mill at an overall head grade of 3.52g/t with 94% recovery of contained metal for approximately 60k oz Au. In late 2020 Resources and Energy Group completed a survey over the Granny Venn Open Cut void and compiled historical mining records including previous exploration and grade control drilling, mine closure plans and reports, pit survey drawings and resource modelling. These data were used to prepare a global (JORC 2012) mineral resource estimate (1) comprising: - Indicated 133.7kt @ 2.03gt/au for 8.7k oz/au. - Inferred 41kt @ 2.14gt/au for 2.8k oz/au. (1) ASX Release 19 February 2021 ACN 162 869 276 ABN 68 162 869 276 During March, the Granny Venn Open pit access ramp was rehabilitated, and the mine dewatered to expose the pit floor at completion of operations in 1998. A program of Grade Control Drilling was subsequently carried out. A total of 68 holes were drilled within the footprint and periphery of the Granny Venn Open cut for an advance of 1779m. In-pit drilling operations focussed on a potential cut- back to exploit an interpreted extension to the main Granny Venn ore body in the north-west and north-east end of the pit. Drilling in the ramp at the pit-top end of the pit and in the adjacent Aunt Nellie pit was also carried out. The samples were submitted to ALS Kalgoorlie for gold assay, with initial results for the first 3 submissions reported in early May 2021⁽²⁾. In late May 2021, the results for the remaining samples were received. Peak Assays from the second lot of submissions include: - 21EMRC016 11m @ 5.46gt/au from 23m - 21EMRC024 14m @ 2.15gt/ au from 22m - 21EMRC026 10m @ 3.45gt/ au from 22m - 21EMRC063 15m @ 3.43gt/au from 3m - 21EMRC065 16m @ 3.08gt/au from 5m - 21EMRC067 9m @3.79gt /au from 17m A summary of these most recent assays at a COG of 0.3gt/au is presented in Table 1. Complete assays and collar details, together with JORC Table 1 are presented in Appendix 1 and 2. The Grade Control drilling results have been used to confirm previous modelling work and has been the basis of mine planning carried out by BM Mining. Five areas of immediate interest have been identified as a result of these activities. The locations of these areas are shown on figure 1. Figure 1 Location Plan showing Granny Venn Pit and Proposed Mining Areas | Borehole | Prin | cipal Interva | al at COG 0.3 | g/t* | | Inc | luding | | |-----------|-------|---------------|---------------|----------|-------|-------|--------------|----------| | Reference | From | То | Interval (m) | Au (g/t) | From | То | Interval (m) | Au (g/t) | | 21EMRC014 | 29.00 | 33.00 | 4.00 | 1.14 | | | | | | 21EMRC015 | 12.00 | 27.00 | 15.00 | 1.50 | 20.00 | 27.00 | 7.00 | 1.86 | | 21EMRC016 | 23.00 | 34.00 | 11.00 | 5.46 | 25.00 | 33.00 | 8.00 | 7.14 | | 21EMRC022 | 20.00 | 26.00 | 6.00 | 2.44 | 22.00 | 26.00 | 4.00 | 3.57 | | 21EMRC023 | 21.00 | 28.00 | 7.00 | 3.44 | | | | | | 21EMRC024 | 22.00 | 36.00 | 14.00 | 2.15 | 26.00 | 34.00 | 8.00 | 3.17 | | 21EMRC025 | 22.00 | 24.00 | 2.00 | 2.60 | | | | | | 21EMRC026 | 22.00 | 32.00 | 10.00 | 3.45 | 28.00 | 32.00 | 4.00 | | | 21EMRC028 | 18.00 | 27.00 | 9.00 | 1.00 | 19.00 | 21.00 | 2.00 | 2.23 | | 21EMRC029 | 19.00 | 26.00 | 7.00 | 1.08 | 20.00 | 24.00 | 4.00 | 1.51 | | 21EMRC030 | 21.00 | 24.00 | 3.00 | 1.83 | | | | | | 21EMRC031 | 16.00 | 26.00 | 10.00 | 2.00 | 16.00 | 23.00 | 7.00 | 2.73 | | 21EMRC032 | 21.00 | 26.00 | 6.00 | 1.12 | 23.00 | 26.00 | 3.00 | 1.58 | | 21EMRC062 | 7.00 | 19.00 | 12.00 | 1.81 | 16.00 | 19.00 | 3.00 | 4.66 | | 21EMRC063 | 3.00 | 18.00 | 15.00 | 3.43 | 3.00 | 6.00 | 3.00 | 9.15 | | 21EMRC064 | 9.00 | 10.00 | 1.00 | 1.26 | | | | | | 21EMRC064 | 13.00 | 14.00 | 1.00 | 1.10 | | | | | | 21EMRC065 | 5.00 | 21.00 | 16.00 | 3.08 | 11.00 | 18.00 | 7.00 | 6.63 | | 21EMRC066 | 5.00 | 26.00 | 21.00 | 2.62 | 14.00 | 19.00 | 5.00 | 5.64 | | 21EMRC067 | 8.00 | 26.00 | 18.00 | 2.26 | 17.00 | 26.00 | 9.00 | 3.79 | | 21EMRC067 | 8.00 | 9.00 | 1.00 | 5.15 | | | | | | 21EMRC067 | 17.00 | 26.00 | 9.00 | 3.79 | | | | | | 21EMRC070 | 4.00 | 26.00 | 22.00 | 1.76 | 16.00 | 21.00 | 5.00 | 4.18 | | 21EMRC074 | 5.00 | 6.00 | 1.00 | 1.44 | | | | | | 21EMRC075 | 4.00 | 5.00 | 1.00 | 1.69 | | | | | | 21EMRC076 | 3.00 | 9.00 | 6.00 | 1.81 | 6.00 | 9.00 | 3.00 | 3.23 | Table 1 2021 Drilling Significant Results at COG 0.3g/t au with up to 1m of internal dilution <0.3g/t #### **Next Steps** The company has recently applied for an abstraction License to enable periodical pumping of mine water from the pit as operations progress. A vegetation clearance permit has also been applied for to enable removal of regrowth which is present along the existing bunding on the north-east side of the Granny Venn Pit. A geotechnical report with recommendations for final pit wall slopes is being prepared which will govern final waste volumes. An analysis of historical exploration results around the perimeter of the Granny Venn Pit has also identified several shallow areas for follow up investigation-areas 3,4 and 5 shown on Figure 2. Drill testing these resource areas will also commence in the next few weeks with opportunity to add ounces to the existing resource. #### **About Resources and Energy** Resources and Energy Group Limited (ASX: REZ) is an independent, ASX-listed mineral resources explorer, with projects located in premier mining jurisdictions in Western Australia and Queensland. In Western Australia, the company's flagship is the East Menzies Gold project (EMGP), situated 130km north of Kalgoorlie. The EMGP represents a +100km2 package of contiguous mining, exploration, and prospecting licenses, which are located within a significant orogenic lode gold province figures 3 and 4 Figure 3 Regional Location Plan For resource growth, the company's focus is presently exploring the eastern side of the project area. On the western side of the project area scoping and pit optimisation studies to investigate opportunities for renewed mining operations in M29/189 Granny Venn, M29/141 Goodenough, and M29/427 Maranoa have commenced. As part of this program the company recently upgraded the JORC 2012 MRE for M29/141-Goodneough which now stands at 37.5k oz indicated and 5.2k oz inferred for a total Indicated and Inferred Mineral Resource Estimate of 42.7k oz of Gold. Resource work comprising grade control drilling on remnant resources within the Granny Venn open pit has also commenced. Figure 4 East Menzies Gold Project-Tenement Location Plan In Queensland, the company has a 12km2 Mineral Development Licence over the Mount Mackenzie Mineral Resource and retains a further 15km2 as an Exploration Permit. These Development and Exploration Licences are in the Connors-Auburn Arc and are prospective for high, intermediate, and low sulphidation gold and base metals mineralisation. The current resource has been estimated at 3.42Mt @ 1.18g/t gold and 9g/t silver for a total of 129,000 oz gold and 862k oz silver. A program is currently underway at Mount Mackenzie to investigate primary mineralisation below the current drilled extents and to recover cored intervals through the entire ore body for comprehensive metallurgical testing. Further information: Richard Poole Executive Director E: communications@rezgroup.com.au P: +61 2 9227 8900 Approved for Release by the REZ Board #### **Competent Persons Statement and Consent** The information in this release that relates to Exploration Results is based on and fairly represents information compiled by Mr. Michael Johnstone Principal Consultant for Minerva Geological Services (MGS). Mr Johnstone is a member of the Australasian Institute of Mining and Metallurgy and has sufficient experience that is relevant to the reporting of Exploration Results to qualify as a Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Johnstone consents to the inclusion in this release of the matters based on their information in the form and context in which it appears. ### **Appendix 1 Drilling
Details and Assays** | Hole Ref | TD (m) | Easting
Mga Z51 | Northing
MgA Z51 | RL | Azimuth
(Mn) | Dip | From
(m) | To
(m) | Length
(m) | Au
(ppm) | |-----------------|--------|--------------------|---------------------|--------|-----------------|--|-------------|-----------|---------------|-------------| | | | | | | | | 0 | 24 | 24 | NSR | | | | | | | | | 24 | 25 | 1 | 0.44 | | | | | | | | | 25 | 26 | 1 | 0.14 | | | | | | | | | 26 | 27 | 1 | 0.11 | | 24 51 40 604 4 | 22 | 245240.47 | 6747400 | 422.42 | 445.00 | 50.05 | 27 | 28 | 1 | 0.15 | | 21EMRC014 | 33 | 315318.17 | 6717109 | 433.42 | 115.98 | -59.05 | 28 | 29 | 1 | 0.13 | | | | | | | | | 29 | 30 | 1 | 1.26 | | | | | | | | | 30 | 31 | 1 | 0.72 | | | | | | | | | 31 | 32 | 1 | 8.0 | | | | | | | | | 32 | 33 | 1 | 1.78 | | | | | | | | | 0 | 11 | 11 | NSR | | | | | | | | | 11 | 12 | 1 | 0.13 | | | | | | | | | 12 | 13 | 1 | 0.93 | | | | | | | | | 13 | 14 | 1 | 1.05 | | | | | | | | | 14 | 15 | 1 | 3.49 | | | | | | | | | 15 | 16 | 1 | 1.14 | | | | | | | | | 16 | 17 | 1 | 0.48 | | | | | | | | | 17 | 18 | 1 | 1.95 | | 21EMRC015 | 27 | 315318.17 | 6717109 | 433.42 | 113.94 | -73.64 | 18 | 19 | 1 | 0.25 | | | | | | | 20 | | 19 | 20 | 1 | 0.23 | | | | | | | | 20 | 21 | 1 | 0.85 | | | | | | | | | 21 22 1
22 23 1
23 24 1
24 25 1 | 1 | 2.29 | | | | | | | | | | | 22 | 23 | 1 | 1.82 | | | | | | | | | 24 | 1 | 2.17 | | | | | | | | | | 24 | 25 | 1 | 0.57 | | | | | | | | | 25 | 26 | 1 | 3.57 | | | | | | | | | 26 | 27 | 1 | 1.81 | | | | | | | | | 0 | 16 | 16 | NSR | | | | | | | | | 16 | 17 | 1 | 0.03 | | | | | | | | | 17 | 18 | 1 | 0.14 | | | | | | | | | 18 | 19 | 1 | 0.12 | | | | | | | | | 19 | 20 | 1 | 0.1 | | | | | | | | | 20 | 21 | 1 | 0.03 | | | | | | | | | 21 | 22 | 1 | 0.15 | | | | | | | | | 22 | 23 | 1 | 0.03 | | | _ | | | | | | 23 | 24 | 1 | 0.47 | | 21EMRC016 | 34 | 315311.09 | 6717103 | 432.5 | 105.93 | -49.05 | 24 | 25 | 1 | 1 | | | | | | | | | 25 | 26 | 1 | 3.74 | | | | | | | | | 26 | 27 | 1 | 3.91 | | | | | | | | | 27 | 28 | 1 | 5.98 | | | | | | | | | 28 | 29 | 1 | 4.27 | | | | | | | | | 29 | 30 | 1 | 17.6 | | | | | | | | | 30 | 31 | 1 | 12.5 | | | | | | | | | 31 | 32 | 1 | 5.92 | | | | | | | | | 32 | 33 | 1 | 3.21 | | 24 51 40 62 1 7 | 20 | 24524125 | 674710 | 400 5 | 40:0- | 65.00 | 33 | 34 | 1 | 1.56 | | 21EMRC017 | 29 | 315311.09 | | 432.5 | | -65.39 | | | | NSR | | 21EMRC018 | 35 | 315300.76 | 6717099 | 431.65 | 114.39 | -44.69 | | | | NSR | | Hole Ref | TD (m) | Easting
Mga Z51 | Northing
MgA Z51 | RL | Azimuth
(Mn) | Dip | From
(m) | To
(m) | Length
(m) | Au
(ppm) | |-----------|--------|--------------------|---------------------|--------|-----------------|------------------------------|-------------|-----------|---------------|-------------| | 21EMRC019 | 35 | 315344.15 | 6717117 | 437.1 | 168.04 | -57.4 | (111) | (111) | (111) | NSR | | 21EMRC020 | 49 | 315344.15 | 6717117 | 437.1 | 174.56 | -49.36 | | | | NSR | | | | | | | | | 0 | 22 | 22 | NSR | | | | | | | | | 22 | 23 | 1 | 0.29 | | | | | | | | | 23 | 24 | 1 | 0.08 | | | | | | | | | 24 | 25 | 1 | 0.11 | | 21EMRC021 | 30 | 315222.99 | 6716797 | 424.32 | 126.55 | -46.41 | 25 | 26 | 1 | 1.62 | | | | | | | | | 26 | 27 | 1 | 0.15 | | | | | | | | | 27 | 28 | 1 | 0.1 | | | | | | | | | 28 | 29 | 1 | 0.26 | | | | | | | | | 29 | 30 | 1 | 0.06 | | | | | | | | | 0 | 20 | 20 | NSR | | | | | | | | | 20 | 21 | 1 | 0.17 | | | | | | | | | 21 | 22 | 1 | 0.18 | | 21EMRC022 | 26 | 315227.7 | 6716807 | 422.86 | 120.44 | -68.63 | 22 | 23 | 1 | 3.34 | | | | | | | | | 23 | 24 | 1 | 6.03 | | | | | | | | | 24 | 25 | 1 | 2.75 | | | | | | | | | 25 | 26 | 1 | 2.17 | | | | | | | | | 0 | 21 | 21 | NSR | | | | | | | | | 21 | 22 | 1 | 2.55 | | | | | | | | | 22 | 23 | 1 | 3.55 | | 21EMRC023 | 28 | 315232.91 | 6716815 | 421.73 | 123.19 | 23.19 -60.79 24 25 1 | 1 | 2.83 | | | | | | | | | 2: | | | 1 | 3.68 | | | | | | | | | | 26 | 26
27 | 1 | 4.19 | | | | | | | | | 27 | 28 | 1 | 4.82 | | | | | | | | | 0 | 22 | 22 | NSR | | | | | | | | | 22 | 23 | 1 | 1.18 | | | | | | | | | 23 | 24 | 1 | 1.48 | | | | | | | | | 24 | 25 | 1 | 1.16 | | | | | | | | | 25 | 26 | 1 | 0.18 | | | | | | | | | 26 | 27 | 1 | 1.79 | | | | | | | | | 27 | 28 | 1 | 1.56 | | 21EMRC024 | 35 | 315233.48 | 6716814 | 421.9 | 122.9 | -44.48 | 28 | 29 | 1 | 3.48 | | | | | | | | | 29 | 30 | 1 | 6.88 | | | | | | | | | 30 | 31 | 1 | 3.62 | | | | | | | | | 31 | 32 | 1 | 3.45 | | | | | | | | | 32 | 33 | 1 | 2.11 | | | | | | | | | 33 | 34 | 1 | 2.49 | | | | | | | | | 34 | 35 | 1 | 0.32 | | | | | | | | | 35 | 36 | 1 | 0.41 | | | | | | | | | 0 | 22 | 22 | NSR | | | | | | | | | 22 | 23 | 1 | 0.81 | | 21EMRC025 | 36 | 315238.13 | 6716824 | 420.6 | 123.33 | -63.67 | 23 | 24 | 1 | 4.4 | | | | | | | | | 24 | 25 | 1 | 0.13 | | | | | | | | | 25 | 26 | 1 | 0.1 | | | | | | | | | 26 | 27 | 1 | 0.06 | | | | 045555 | | | | | 0 | 13 | 13 | NSR | | 21EMRC026 | 35 | 315239.15 | 6716823 | 420.48 | 123.56 | -42.55 | 13 | 14 | 1 | 0.24 | | | | | | | | | 14 | 15 | 1 | 0.35 | | Hole Ref | TD (m) | Easting | Northing | RL | Azimuth | Dip | From | То | Length | Au | |------------|-------------|-----------|----------|--------|-----------|--------|------|-----|--------|-------| | Hole Her | .5 (, | Mga Z51 | MgA Z51 | | (Mn) | ٥.,٥ | (m) | (m) | (m) | (ppm) | | | | | | | | | 15 | 16 | 1 | 0.68 | | | | | | | | | 16 | 17 | 1 | 0.08 | | | | | | | | | 17 | 18 | 1 | 0.03 | | | | | | | | | 18 | 19 | 1 | 0.04 | | | | | | | | | 19 | 20 | 1 | 0.05 | | | | | | | | | 20 | 21 | 1 | 0.03 | | | | | | | | | 21 | 22 | 1 | 0.07 | | | | | | | 48 123.56 | | 22 | 23 | 1 | 0.38 | | | | | | 420.48 | | | 23 | 24 | 1 | 1.23 | | 21EMRC026 | 35 | 315239.15 | 6716823 | | | -42.55 | 24 | 25 | 1 | 1.65 | | ZILWINCOZO | 33 | 313233.13 | 0710023 | 420.40 | 125.50 | 42.55 | 25 | 26 | 1 | 0.95 | | | | | | | | | 26 | 27 | 1 | 1.07 | | | | | | | | | 27 | 28 | 1 | 0.89 | | | | | | | | | 28 | 29 | 1 | 9.16 | | | | | | | | | 29 | 30 | 1 | 9.09 | | | | | | | | | 30 | 31 | 1 | 8.04 | | | | | | | | | 31 | 32 | 1 | 2.05 | | | | | | | | | 32 | 33 | 1 | 0.57 | | | | | | | | | 33 | 34 | 1 | 0.66 | | | | | | | | | 34 | 35 | 1 | 0.53 | | | | | | | | | 0 | 5 | 5 | NSR | | 21EMRC027 | .EMRC027 28 | 315245.81 | 6716830 | 418.36 | 121.4 | -69.15 | 5 | 6 | 1 | 0.44 | | | | | | | | | 6 | 28 | 22 | NSR | | | | | | | | | 0 | 1 | 1 | 0.13 | | | | | | | | | 1 | 2 | 1 | 0.17 | | | | | | | | | 2 | 3 | 1 | 0.25 | | | | | | | | -54.71 | 3 | 4 | 1 | 0.15 | | | | | | | | | 4 | 5 | 1 | 0.03 | | | | | | | | | 5 | 6 | 1 | 0.85 | | | | | | | | | 6 | 18 | 12 | NSR | | | | | | | | | 18 | 19 | 1 | 0.42 | | 21EMRC028 | 28 | 315245.67 | 6716830 | 418.19 | 123.72 | | 19 | 20 | 1 | 3.12 | | ZILWINCOZO | 20 | 313243.07 | 0710830 | 410.13 | 123.72 | -54.71 | 20 | 21 | 1 | 1.34 | | | | | | | | | | | | 0.17 | | | | | | | | | 21 | 22 | 1 | 0.09 | | | | | | | | | 22 | 23 | 1 | 0.09 | | | | | | | | | 23 | 24 | 1 | | | | | | | | | | 24 | 25 | 1 | 1.17 | | | | | | | | | 25 | 26 | 1 | 2.07 | | | | | | | | | 26 | 27 | 1 | 0.42 | | | | | | | | | 27 | 28 | 1 | 0.05 | | | | | | | | | 0 | 1 | 1 | 0.89 | | | | | | | | | 1 | 2 | 1 | 0.13 | | | | | | | | | 2 | 3 | 1 | 1.01 | | | | | | | | | 3 | 4 | 1 | 0.17 | | 21EMRC029 | 32 | 315247.11 | 6716829 | 419.1 | 124.23 | -39.96 | 4 | 5 | 1 | 0.07 | | | | | | 5.1 | 3 | | 5 | 6 | 1 | 0.04 | | | | | | | | | 6 | 7 | 1 | 1.85 | | | | | | | | | 7 | 8 | 1 | 0.24 | | | | | | | | | 8 | 19 | 11 | NSR | | | | | | | | | 19 | 20 | 1 | 0.69 | | | TD () | Easting | Northing | D. | Azimuth | . . | From | То | Length | Au | |-----------|--------|-----------|----------|--------|---------|------------|------|-----|--------|-------| | Hole Ref | TD (m) | Mga Z51 | MgA Z51 | RL | (Mn) | Dip | (m) | (m) | (m) | (ppm) | | | | | | | | | 21 | 22 | 1 | 0.88 | | | | | | | | | 22 | 23 | 1 | 1.73 | | | | | | | | | 23 | 24 | 1 | 1.2 | | 21EMRC029 | 32 | 315247.11 | 6716829 | 419.1 | 124.23 | -39.96 | 24 | 25 | 1 | 0.5 | | | | | | | | | 25 | 26 | 1 | 0.32 | | | | | | | | | 26 | 27 | 1 | 0.04 | | | | | | | | | 27 | 32 | 5 | NSR | | | | | | | | | 0 | 21 | 21 | NSR | | | | | | | | | 21 | 22 | 1 | 1.44 | | 21EMRC030 | 28 | 315310.74 | 6716919 | 405.59 | 124.93 | -52.01 | 22 | 23 | 1 | 2.18 | | | | | | | | | 23 | 24 | 1 | 1.89 | | | | | | | | | 24 | 28 | 4 | NSR | | | | | | | | | 0 | 16 | 16 | NSR | | | | | | | | | 16 | 17 | 1 | 1.35 | | | | | | | | | 17 | 18 | 1 | 2.94 | | | | | | | | | 18 | 19 | 1 | 1.86 | | | | | | | | | 19 | 20 | 1 | 5.97 | | 21EMRC031 | 27 | 315314.17 | 6716917 | 405.4 | 124.07 | -41.51 | 20 | 21 | 1 | 3.63 | | | | | | | | | 21 | 22 | 1 | 2.05 | | | | | | | | | 22 | 23 | 1 | 1.35 | | | | | | | | | 23 | 24 | 1 | 0.24 | | | | | | | | | 24 | 25 | 1 | 0.41 | | | | | | | | | 25 | 26 | 1 | 0.23 | | | | | | | | | 26 | 27 | 1 | 0.19 | | | | | | | | | 0 | 21 | 21 | NSR | | | | | | | | | 21 | 22 | 1 | 0.49 | | | | | 6716927 | 405.16 | | -52.85 | 22 | 23 | 1 | 0.36 | | 21EMRC032 | 30 | 315316.24 | | | 123.31 | | 23 | 24 | 1 | 2.42 | | | | | | | 123.31 | | 24 | 25 | 1 | 1.38 | | | | | | | | | 25 | 26 | 1 | 0.95 | | | | | | | | | 26 | 27 | 1 | 0.07 | | | | | | | | | 27 | 30 | 3 | NSR | | | | | | | | | 0 | 7 | 7 | NSR | | | | | | | | | 7 | 8 | 1 | 1 | | | | | | | | | 8 | 9 | 1 | 2.46 | | | | | | | | | 9 | 10 | 1 | 0.32 | | | | | | | | | 10 | 11 | 1 | 0.14 | | | | | | | | | 11 | 12 | 1 | 0.22 | | | | | | | | | 12 | 13 | 1 | 2.79 | | 045 | | 04.555.5 | | | | | 13 | 14 | 1 | 0.49 | | 21EMRC062 | 23 | 315336.61 | 6716930 | 401.26 | 140.36 | -73.36 | 14 | 15 | 1 | 0.14 | | | | | | | | | 15 | 16 | 1 | 0.21 | | | | | | | | | 16 | 17 | 1 | 3.69 | | | | | | | | | 17 | 18 | 1 | 3.77 | | | | | | | | | 18 | 19 | 1 | 6.54 | | | | | | | | | 19 | 20 | 1 | 0.15 | | | | | | | | | 20 | 21 | 1 | 0.02 | | | | | | | | | 21 | 22 | 1 | 0.07 | | | | | | | | | 22 | 23 | 1 | 0.06 | | 21EMRC063 | 18 | 315338.22 | 6716929 | 401.51 | 117.37 | -60.63 | 0 | 3 | 3 | NR | | | Hole Ref | TD (m) | Easting |
Northing | RL | Azimuth | Dip | From | То | Length | Au | |--|--------------------|--------|-----------|----------|----------|-------------|--------|--------|----------|--------|-------------| | | Hole Ref | (ווו) | Mga Z51 | MgA Z51 | IV. | (Mn) | Dip | (m) | (m) | (m) | (ppm) | | | | | | | | | | 3 | 4 | 1 | 12.6 | | | | | | | | | | 4 | 5 | 1 | 10.5 | | | | | | | | | | 5 | 6 | 1 | 4.35 | | | | | | | | | | 6 | 7 | 1 | 0.84 | | | | | | | | | | 7 | 8 | 1 | 0.44 | | | | | | | | | | 8 | 9 | 1 | 0.67 | | | | | 315338.22 | | 9 401.51 | 1.51 117.37 | -60.63 | 9 | 10 | 1 | 9.1 | | | 21EMRC063 | 18 | | 6716929 | | | | 10 | 11 | 1 | 4.54 | | | | | | | | | | 11 | 12 | 1 | 0.78 | | | | | | | | | | 12 | 13 | 1 | 0.79 | | | | | | | | | | 13 | 14 | 1 | 0.62 | | | | | | | | | | 14 | 15 | 1 | 0.57 | | | | | | | | | | 15 | 16 | 1 | 0.5 | | | | | | | | | | 16 | 17 | 1 | 1.3 | | | | | | | | | | 17 | 18 | 1 | 3.87 | | | | | | | | | | 0 | 7 | 7 | NSR | | | | | | | | | | 7 | 8 | 1 | 0.22 | | | | | | | | | | 8 | 9 | 1 | 0.15 | | | | | | | | | | 9 | 10 | 1 | 1.26 | | | | | | | | | | 10 | 11 | 1 | 0.47 | | | | | | | | | | 11 | 12 | 1 | 0.4 | | | | | | | | | | 12 | 13 | 1 | 0.61 | | | 21EMRC064 | 2.2 | 24524047 | 6746007 | 404.0 | 02.62 | 47.54 | 13 | 14 | 1 | 1.1 | | | | 23 | 315340.17 | 6716937 | 401.2 | 83.62 | -47.54 | 14 | 15 | 1 | 0.49 | | | | | | | | | | 15 | 16 | 1 | 0.75 | | | | | | | | | | 16 | 17 | 1 | 1.02 | | | | | | | | | | 17 | 18 | 1 | 0.36 | | | | | | | | | 18 | 19 | 1 | 0.45 | | | | | | | | | | | 19 | 20 | 1 | 0.38 | | | | | | | | | | 20 | 21 | 1 | 0.36 | | | | | | | | | | 21 | 22 | 1 | 0.95 | | | | | | | | | | 22 | 23 | 1 | 0.87
NSR | | | | | | | | | | 0 | 5 | 5 | 0.22 | | | | | | | | | | 5
6 | 6
7 | 1 | 0.22 | | | | | | | | | | 7 | 8 | 1 | 0.42 | | | | | | | | | | | 9 | | 0.42 | | | | | | | | | | 8
9 | | 1 | 0.40 | | | | | | | | | | 10 | 10
11 | 1 | 0.14 | | | | | | | | | | 11 | 12 | 1 | 6.09 | | | 21EMRC065 | 21 | 315339.35 | 6716937 | 401.16 | 121.11 | -49.63 | 12 | 13 | 1 | 11.75 | | | 21LWINC005 | 21 | 313333.33 | 0/1093/ | 401.10 | 121.11 | -49.03 | 13 | 14 | 1 | 4.89 | | | | | | | | | | 14 | 15 | | 16 | | | | | | | | | | 15 | 16 | 1 | 2.13 | | | | | | | | | | 16 | 17 | 1 | 1.95 | | | | | | | | | | 17 | 18 | 1 | 3.63 | | | | | | | | | | 18 | 19 | 1 | 0.4 | | | | | | | | | | 19 | 20 | 1 | 0.4 | | | | | | | | | | 20 | 21 | 1 | 0.13 | | | 21EMRC066 | 28 | 315337.48 | 6716029 | 401.06 | 84.63 | -55.87 | | | | NSR | | | Z T E IVIK C U b b | 28 | 313337.48 | 0/10938 | 401.06 | 64.03 | -၁5.8/ | 0 | 5 | 5 | INSK | | Hole Ref | TD (m) | Easting | Northing | RL | Azimuth | Dip | From | То | Length | Au | |-----------|--------|-------------|----------|----------|---------|----------|------|-----|--------|-------| | noie kei | 10 (m) | Mga Z51 | MgA Z51 | KL | (Mn) | Dip | (m) | (m) | (m) | (ppm) | | | | | | | | | 5 | 6 | 1 | 2.35 | | | | | | | | | 6 | 7 | 1 | 0.18 | | | | | | | | | 7 | 8 | 1 | 0.08 | | | | | | | | | 8 | 9 | 1 | 0.07 | | | | | | | | | 9 | 10 | 1 | 0.28 | | | | | | | | | 10 | 11 | 1 | 1.5 | | | | | | | | | 11 | 12 | 1 | 0.89 | | | | | | | | | 12 | 13 | 1 | 1.49 | | | | | | | | | | 13 | 14 | 1 | | | | | | | | | 14 | 15 | 1 | 8.26 | | | | | | | | | 15 | 16 | 1 | 10.95 | | 21EMRC066 | 28 | 315337.48 | 6716938 | 401.06 | 84.63 | -55.87 | 16 | 17 | 1 | 2.42 | | | | | | | | | 17 | 18 | 1 | 0.95 | | | | | | | | | 18 | 19 | 1 | 0.82 | | | | | | | | | 19 | 20 | 1 | 0.6 | | | | | | | | | 20 | 21 | 1 | 6.91 | | | | | | | | | 21 | 22 | 1 | 6.24 | | | | | | | | | 22 | 23 | 1 | 4.53 | | | | | | | | | 23 | 24 | 1 | 4.99 | | | | | | | | | 24 | 25 | 1 | 2.14 | | | | | | | | | 25 | 26 | 1 | 1.15 | | | | | | | | | 26 | 27 | 1 | 0.13 | | | | | | | | | 27 | 28 | 1 | 0.07 | | | | | | | | 0 | 8 | 8 | NSR | | | | | | | | | 8 | 9 | 1 | 5.15 | | | | | | | | | 9 | 10 | 1 | 0.54 | | | | | | | | | | 10 | 11 | 1 | 0.18 | | | | | | | | | 11 | 12 | 1 | 0.09 | | | | | | | | | 12 | 13 | 1 | 0.09 | | | | | | | | | 13 | 14 | 1 | 0.1 | | | | | | | | | 14 | 15 | 1 | 0.08 | | | | | | | | | 15 | 16 | 1 | 0.25 | | 21EMRC067 | 26 | 315340.16 | 6716936 | 401.29 | 66.13 | -62.31 | 16 | 17 | 1 | 0.12 | | | | | | | | | 17 | 18 | 1 | 5.32 | | | | | | | | | 18 | 19 | 1 | 2.77 | | | | | | | | | 19 | 20 | 1 | 3.72 | | | | | | | | | 20 | 21 | 1 | 3.23 | | | | | | | | | 21 | 22 | 1 | 1.97 | | | | | | | | | 22 | 23 | 1 | 7.42 | | | | | | | | | 23 | 24 | 1 | 6.47 | | | | | | | | | 24 | 25 | 1 | 0.2 | | | | | | | | | 25 | 26 | 1 | 3.06 | | 21EMRC068 | 34 | 315332.65 | 6716964 | 401.34 | 163.01 | -83.87 | - | | 0 | NSR | | 21EMRC069 | 20 | 315302.9 | 6717107 | 432.95 | 200.87 | -88.59 | | | 0 | NSR | | | - | 1 1 1 1 1 1 | | | | | 0 | 4 | 4 | NSR | | | | | | | | | 4 | 5 | 1 | 0.26 | | | | | | | 253.01 | 1 -88.62 | 5 | 6 | 1 | 1.06 | | 21EMRC070 | 26 | 315312.7 | 6717114 | 4 433.97 | | | 6 | 7 | 1 | 2.65 | | | | | | | | | 7 | 8 | 1 | 1.43 | | | | | | | | | 8 | 9 | 1 | 0.23 | | | ļ | Į | ļ | <u> </u> | | <u> </u> | ٥ | 9 | _ т | 0.23 | | Hole Ref | TD (m) | Easting
Mga Z51 | Northing
MgA Z51 | RL | Azimuth
(Mn) | Dip | From
(m) | To
(m) | Length
(m) | Au
(ppm) | |------------|--------|--------------------|---------------------|--------|-----------------|--------|-------------|-----------|---------------|-------------| | | | | | | () | | 9 | 10 | 1 | 1.62 | | | | | | | | | 10 | 11 | 1 | 1.2 | | | | | | | | | 11 | 12 | 1 | 0.87 | | | | | | | | | 12 | 13 | 1 | 1.19 | | | | | | | | | 13 | 14 | 1 | 1.47 | | | | | | | | | 14 | 15 | 1 | 1.12 | | | | | | | 97 253.01 | | 15 | 16 | 1 | 1.71 | | | | | | | | | 16 | 17 | 1 | 3.57 | | 21EMRC070 | 26 | 315312.7 | 6717114 | 433.97 | | -88.62 | 17 | 18 | 1 | 5.28 | | 212.0 | 20 | 313312.7 | 0,1,11 | 433.37 | | | 18 | 19 | 1 | 5.1 | | | | | | | | | 19 | 20 | 1 | 3.79 | | | | | | | | | | | 0 | 9.09 | | | | | | | | | 20 | 21 | 1 | 2.85 | | | | | | | | | 21 | 22 | 1 | 1.49 | | | | | | | | | 22 | 23 | 1 | 0.54 | | | | | | | | | 23 | 24 | 1 | 0.41 | | | | | | | | | 24 | 25 | 1 | 0.18 | | | | | | | | | 25 | 26 | 1 | 0.84 | | 21EMRC071 | 27 | 315318.63 | 6717120 | 434.74 | 120.41 | -80.68 | | | 0 | NSR | | 21EMRC072 | 22 | 315277.62 | 6716524 | 417.52 | 124.43 | -89.33 | | | 0 | NSR | | 21EMRC073 | 21 | 315289.43 | 6716518 | 417.53 | 132.6 | -89.03 | | | 0 | NSR | | | | | | | 3 189.22 | | 0 | 1 | 1 | 0.12 | | | | | | | | | 1 | 2 | 1 | 0.11 | | | | | | | | -89.29 | 2 | 3 | 1 | 0.18 | | | | | | | | | 3 | 4 | 1 | 0.14 | | | | | | | | | 4 | 5 | 1 | 0.16 | | 21EMRC074 | 12 | 315016 | 6716423 | 419.28 | | | 5 | 6 | 1 | 1.44 | | | | | | | | | 6 | 7 | 1 | 0.1 | | | | | | | | | 7 | 8 | 1 | 0.02 | | | | | | | | | 8 | 9 | 1 | 0.01 | | | | | | | | | 9 | 10 | 1 | 0 | | | | | | | | | 10 | 11 | 1 | 0.02 | | | | | | | | | 11
0 | 12
2 | 2 | NSR | | | | | | | | | 2 | 3 | 1 | 0.31 | | | | | | | | | 3 | 4 | 1 | 0.19 | | | | | | | | | 4 | 5 | 1 | 1.69 | | | | | | | | | 5 | 6 | 1 | 0.43 | | 21EMRC075 | 13 | 315023.32 | 6716423 | 419.21 | 213.88 | -89.73 | 6 | 7 | 1 | 0.15 | | | | | | | | | 7 | 8 | 1 | 0.74 | | | | | | | | | 8 | 9 | 1 | 0.15 | | | | | | | | | 9 | 10 | 1 | 0.12 | | | | | | | | | 10 | 11 | 1 | 0.1 | | | | | | | | | 11 | 13 | 2 | NSR | | | | | | | | | 0 | 3 | 3 | NSR | | | | | | | | | 3 | 4 | 1 | 0.55 | | | | | | | | | 4 | 5 | 1 | 0.19 | | 2451405555 | | 24502:35 | 6746433 | 440.55 | 02.53 | 72.5- | 5 | 6 | 1 | 0.44 | | 21EMRC076 | 14 | 315024.97 | 6716423 | 419.23 | 3 92.52 | -73.37 | 6 | 7 | 1 | 7.01 | | | | | | | | | 7 | 8 | 1 | 1.07 | | | | | | | | | 8 | 9 | 1 | 1.63 | | | | | | | | | 9 | 10 | 1 | 0.18 | ## Appendix 2 JORC Code, 2012 Edition – Table 1 ## **Section 1 Sampling Techniques and Data** (Criteria in this section apply to all succeeding sections.) | Criteria | JORC Code explanation | Commentary | |------------------------|--|--| | Sampling
techniques | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. | The results are based on samples recovered from a reverse circulation drilling program. | | | Include reference to measures taken
to ensure sample representivity and
the appropriate calibration of any
measurement tools or systems used. | The RC samples were collected for every 1 meter drilled using a cone splitter. A 1m primary sample was collected from the splitter, with a second field duplicate sample generally collected every 20th metre. Samples were reported dry and free flowing. | | | Aspects of the determination of min-
eralisation that are Material to the
Public Report. | The report includes RC drilling results only. | | | • In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent | The sampling method are industry standard. | | Criteria | JORC Code explanation | Commentary | |-----------------------
--|---| | | sampling problems. Unusual com-
modities or mineralisation types (eg
submarine nodules) may warrant dis-
closure of detailed information. | | | Drilling tech- niques | Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc). | The exploration results are based on Reverse Circulation drilling using a face sampling percussion hammer. The RC bit used was 141mm. | | Drill sample recovery | Method of recording and assessing
core and chip sample recoveries and
results assessed. | Recoveries for RC samples were visually assessed in the field and weighed and recorded at the labor-
atory. Results are uploaded into the database and sample weights were analysed as part of QAQC
protocols. | | | Measures taken to maximise sample
recovery and ensure representative
nature of the samples. | Field procedures included checking the splitter every sample to ensure no residue remained from the previously drilled interval. The cyclone and housing are also checked regularly and cleaned with com- pressed air. Checks on splitter level are made using a spirit level. Each calico sample collected weighed on average 3kg. | | | Whether a relationship exists be-
tween sample recovery and grade
and whether sample bias may have
occurred due to preferential loss/gain
of fine/coarse material. | No relationship has been identified at this stage. | | Logging | Whether core and chip samples have
been geologically and geotechnically
logged to a level of detail to support
appropriate Mineral Resource | RC samples have been geologically logged with alteration, colour, weathering, texture, mineralisation and main lithology reported. | | Criteria | JORC Code explanation | Commentary | |--|--|---| | 5 | estimation, mining studies and metal-
lurgical studies. • Whether logging is qualitative or | Logging is qualitative and descriptive using look up tables. Chip trays for recent drilling are labelled | | | quantitative in nature. Core (or costean, channel, etc) photography. | and photographed and have been retained and stored for future reference. | | | The total length and percentage of
the relevant intersections logged. | 100% of the historical drilling has been logged and has lithological information present. | | Sub-sampling
techniques
and sample | If core, whether cut or sawn and
whether quarter, half or all core
taken. | Not applicable. | | preparation | If non-core, whether riffled, tube sam-
pled, rotary split, etc and whether
sampled wet or dry. | • For RC samples, a cone splitter was used to obtain 1m sub samples with a weight of approximately 3kg. In the majority cases the sample has been classified dry. No overly wet sample intervals were encountered that would compromise the quality of the sample. | | | • For all sample types, the nature, quality and appropriateness of the sample preparation technique. | • The field procedures adopted for RC drilling are industry standard, adequate and appropriate. After initial collection in the field all subsequent sample preparation is carried out in a laboratory, under controlled conditions and specified by the relevant standards. | | | Quality control procedures adopted
for all sub-sampling stages to maxim-
ise representivity of samples. | The programme QAQC involved inserting Certified Reference Materials, blanks and collecting field duplicates samples per 20 metres drilled. CRM's were typically inserted in zones of interest. | | | Measures taken to ensure that the
sampling is representative of the in
situ material collected, including for
instance results for field dupli-
cate/second-half sampling. | Pre-numbered continuous Primary and Duplicate calico samples were collected every metre drilled. Blanks and CRMs were inserted every 20 metres, with multiple grade ranges of appropriate matrix material selected for the CRMs. Laboratory procedures also include the use of certified reference samples and blanks for internal QA/QC assurance. | | | Whether sample sizes are appropriate
to the grain size of the material being
sampled. | Sample sizes for the RC sampling were typically 3kg which is considered appropriate given nature of the material being sampled | | | | | | | Criteria | JORC Code explanation | Commentary | |----------|---|--|---| | > | Quality of as-
say data and
laboratory
tests | The nature, quality and appropriate-
ness of the assaying and laboratory
procedures used and whether the
technique is considered partial or to-
tal. | The primary assay technique used was Fire Assay by ALS in Kalgoorlie, which is considered an appropriate assay technique. | |)
1) | | • For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. | Not applicable, the results are not based on these instruments. | | 2 | | Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | Datasets have been analysed, with no significant issues related to bias. | | | Verification
of sampling
and assaying | The verification of significant intersections by either independent or alternative company personnel. | All drilling intersections are verified by the Field Geologist, who has been present on site during the
complete drilling process. The sampled intersections are also checked by the Supervising Geologist
by reference to hole number, drilling depths, sample numbers, blanks and standards introduced into
the sampling stream. | |)) | | • | • | | | | The use of twinned holes. | No twin holes have been undertaken. | | 12
15 | | Documentation of primary data, data
entry procedures, data verification,
data storage (physical and electronic)
protocols. | • The primary data was collected at the drill site as drilling progressed by the Field Geologist and Field Technician. The Field Geologist recorded all lithological logging data directly into digital format via a rugged computer. The sample data, including allocation of sample number to interval, sample quality/recovery data, and insertion of QA/QC samples was recorded on a field sheet by the Field | | Criteria | JORC Code explanation | Commentary | |--|---|--| | D | | Technician and reviewed by the Field Geologist in the field. This data was later validated against assay files and checked by the Supervising Geologist. For recent drilling field sheets are kept on file and digital data backed up. The project data is stored in a MS access database on a cloud server. | | | Discuss any adjustment to assay data. | No adjustments have been made to the assay data. | | Location of data points | Accuracy and
quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. | All EMGP drill collars were initially located in the field by hand-held GPS, a final relocation survey ha been carried out using a dGPS by a qualified surveyor. Down-the hole surveys were completed using a north seeking Axis Champ Gyro which sits behind the overshot taking surveys every 30m during drilling operations to monitor deviation, and a continuous survey at the completion of each hole. | | | Specification of the grid system used. | The grid system used is MGA94_51s. | | | Quality and adequacy of topographic control. | Topographic controls have not been undertaken, and are not relevant to the results being reported. | | Data spacing and distribu- | Data spacing for reporting of Exploration Results. | The RC holes are close spaced and typically less than 15m apart | | tion | Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied | This is not applicable as a Mineral Resource or Ore Reserve is not being determined. | | | Whether sample compositing has been applied | Drill holes have not been composited. | | Orientation
of data in re-
lation to | Whether the orientation of sampling
achieves unbiased sampling of possi-
ble structures and the extent to which | Based on present understanding, the drill holes have been orientated 60/090, 60/060 and 60/130 These orientations are reasonably perpendicular to interpreted structures which are believed to be mineralised. | | Criteria | JORC Code explanation | Commentary | |-------------------------|--|---| | geological
structure | this is known, considering the deposit type. | | | | If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | The selected orientation has minimized potential for introducing sampling bias. | | Sample secu-
rity | The measures taken to ensure sample security. | • A chain of custody procedure was put in place. Samples were checked against the sample record sheet in the field prior to collection into sequentially numbered plastic bags. The plastic bags were sealed with cable ties before being secured along with sample submission sheets. The sample batches were loaded by the field team and transported directly to the Laboratory. Sample security measures for earlier drilling are not known. The sample batches were loaded by the field team and transported directly to the Laboratory by a 3 rd party contractor. The receiving laboratory verified sample numbers against the sample submission sheet/manifest and confirmed receipt. After receipt, the samples were bar coded and tracked through the entire analytical process. | | Audits or re-
views | The results of any audits or reviews of sampling techniques and data. | No audits have been undertaken. | ## **Section 2 Reporting of Exploration Results** | Criteria | IORC Code explanation | Commentary | |--|--|---| | Mineral tene-
ment and
land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. | The results have been obtained from 4 prospecting licenses (P29/2461, P29/242460, P29/2270). These tenements are wholly owned by Resources and Energy Group through a purchase agreement completed in December 2018. The land, from which the Exploration Results have been derived does not encompass Strategic cropping lands, wilderness, or protected landscapes. | | | The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | At the time of writing, the tenements are in good standing. There are no known impediments which would prohibit operations in accordance with the license conditions. | | Exploration done by other parties | Acknowledgment and appraisal of
exploration by other parties. | • Exploration over the tenements has been completed over a number of campaigns and years with significant contributions by Money Mining who discovered the Granny Venn deposit in 1997. In 2011 Data Geo re-examined the block model to determine the remnant mineralization in the pit. 2012 Dr D Gee completed a review and data compilation of the area on behalf of Resource Assets Pty Ltd. In 2014 Stratum Metals commissioned a HeliTem survey by Fugro Pty Ltd over the greater East Menzies Goldfield and an interpretation of results by Core Geophysics Pty Ltd. In 2015-2016 Menzies Goldfield Pty Ltd completed 2 programs of MMI sampling over the prospect area. | | Geology | Deposit type, geological setting and style of mineralisation. | • The Granny Venn open pit is located within an Archaean Geological Terrane, which is part of the Wiluna-Norseman Greenstone Belt-a significant Orogenic lode gold province. At a prospect scale | | | | the project consists mainly of granodiorite and ultramafic schist. | |------------------------------------|--|---| | Drill hole Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. | Co-ordinate locations, elevation, depth, dip, and azimuth of all drillholes is provided in the accompanying documentation. Downhole length, interception depths and assay results have been furnished in Appendix 1- of the accompanying documentation. | | | • If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | All RC drilling results which are available to the company have been included in the accompanying documentation. | | Data aggre-
gation meth-
ods | In reporting Exploration Results,
weighting averaging techniques,
maximum and/or minimum grade
truncations (eg cutting of high
grades) and cut-off grades are usu-
ally Material and should be stated. | • The appendix 1 shows all the holes that have been drilled within the prospect area, whether or not they have significant intercepts. No grades have been changed or truncated. The mineralisation tabulated within the Appendix 1.1 are only the grades that are >0.1ppm. Holes with NSR indicated No Significant Results encountered i.e. no results >0.1ppm Au. | | | Where aggregate
intercepts incorpo-
rate short lengths of high grade re-
sults and longer lengths of low grade
results, the procedure used for such
aggregation should be stated and | • The broad nature of the mineralisation interpretation means in some instances shorter intervals of higher grade may be present within an individual drill hole. Where this is the case the higher-grade interval has been reported separately as well, however most of the intervals at 1m in length. | | | some typical examples of such ag-
gregations should be shown in detail. | | |---|---|--| | | The assumptions used for any report-
ing of metal equivalent values should
be clearly stated. | Metal equivalents have not been used. | | Relationship
between min-
eralisation
widths and in- | These relationships are particularly
important in the reporting of Explo-
ration Results. | | | tercept
lengths | If the geometry of the mineralisation
with respect to the drill hole angle is
known, its nature should be re-
ported. | The drillholes are believed to be perpendicular to mineralisation. | | | If it is not known and only the down
hole lengths are reported, there
should be a clear statement to this
effect (eg 'down hole length, true
width not known'). | All sample intervals have been reported as down hole lengths. | | Diagrams | Appropriate maps and sections (with
scales) and tabulations of intercepts
should be included for any significant
discovery being reported These
should include, but not be limited to a
plan view of drill hole collar locations
and appropriate sectional views. | The accompanying documentation includes plans showing specific areas of interest within the project
area. | | Balanced re-
porting | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. | Comprehensive reporting of all material data has been adopted. | | Other sub-
stantive | Other exploration data, if meaning-
ful and material, should be reported | A high resolution HeliTEM survey which highlights prospective structures and conductor anomalies within and adjacent to the project area has been completed by the previous operator. An output from | | | | | | exploration | including (but not limited to): geo- | has been used for exploration planning. | |--------------|---|--| | data | logical observations; geophysical sur- | | | | vey results; geochemical survey re- | | | | sults; bulk samples – size and | | | | method of treatment; metallurgical | | | П | test results; bulk density, groundwa- | | | | ter, geotechnical and rock character- | | | | istics; potential deleterious or con- | | | | taminating substances. | | | Further work | The nature and scale of planned fur- | Recommendations for future work are contained within the announcement and accompanying | | | ther work (eg tests for lateral exten- | maps. | | | sions or depth extensions or large- | | | | scale step-out drilling). | | | | Diagrams clearly highlighting the ar- | Maps that shows possible extensions to mineralisation have been included in the main body of the | | | eas of possible extensions, including | release | | | the main geological interpretations | | | | and future drilling areas, provided | | | | this information is not commercially | | | | sensitive. | |