ASX RELEASE

PURSJIT

11 June 2021

Warrior Project Update: Heritage Clearance Received

The Company's principal business objectives are the acquisition, exploration, development and operation of PGE, copper, nickel, silver, gold, vanadium and other precious minerals.

Directors

Peter Wall (Chairman) Mark Freeman (Managing Director) Jeremy Read (Technical Director)

Company Secretary Mark Freeman

Capital Structure

ASX Code	PUR
Share Price	8 cents
Shares	903, 238, 840
Market Cap	A\$72 million
Cash	\$9 Million
Options	
10c exp 31/10/21	76,166,073*
20c exp 28/8/21	15,000,000
20c exp 28/2/21	1,992,000
25c exp 14/8/21	850,000
4.9c exp 6/11/21	2,000,000
0 7c exp 18/0/23	59 000 000

Warrior Project:

- Phil's Hill PGE-Ni-Cu Prospect
 - Aboriginal Cultural Heritage requirements have been met and the Company's cleared to undertake drilling at Phil's Hill
 - o Government approvals are anticipated by month-end
 - Refurbishment of the contracted drill rig has been completed and rig will be mobilised to site prior to month-end
 - Follow-up **MLEM** planned to be undertaken late June with larger EM loops to identify anomalism at depth
- Regional soil geochemical results have been received from Bindi Bindi, Calingiri West, Calingiri East– encouraging first pass results highlighting anomalous Pt-Pd-Ni

Combatant

 Field reconnaissance underway – our geology team are currently onsite and assessing access and geological and geophysical features of interest

In relation to the Calingiri East soil sampling, Pursuit Managing Director, Mark Freeman, said:

"Regional sampling assays indicate the Bindi-Bindi tenement is prospective and return assays within regional Calingiri East and northern extent of Phil's Hill continue to be very encouraging. Of particular interest is very anomalous Nickel-Chrome to the north of Phil's Hill. As we complete each stage of exploration at Phil's Hill, the targets look more compelling with the prospect extending over 1,600m in strike length. Our objective is to commence drilling targets in early to mid-July subject to government approvals. The results from our regional programs will also be followed up and start to contribute to a pipeline of drillable prospects."

Phil's Hill Prospect, Warrior (100%) – Drilling Update

Pursuit Minerals Ltd ("Pursuit" or the "Company") (ASX:PUR) is pleased to confirm that Aboriginal Cultural Heritage requirements have been approved and the Company has been cleared to undertake drilling at Phil's Hill. Drilling approval is now limited to the Program of Work ("POW") being received, which the Company anticipates by month-end. Refurbishment of the contracted drill rig by Mt Magnet Drilling has been completed and rig

will be mobilised to site prior to month end. Follow-up MLEM has been planned to be undertaken in late June with a large EM loop program targeting anomalism at depth.

Warrior (100%) – Soil and Rock Anomalies

The Company has received results for the 123 soil and 29 rock samples collected over the Warrior Project, located ~20 to 170km north-east of Chalice's high-grade Gonneville PGE-Ni-Cu discovery on the Julimar Project.

The Project has direct access to major highway, rail, power and port infrastructure in one of the world's most attractive mining jurisdictions – Western Australia (Figure 5).

Pursuit's sampling has confirmed the presence of anomalous PGE's, Nickel, Copper and Gold associated with mafic-ultramafic rocks which are the host for the PGE-Ni-Cu mineralisation at Julimar.

A total of 38 samples assayed elevated levels of Au-Pt-Pd combined anomalism with maximum values of **385ppb** (0.38g/t) (Au 381 ppb, Pt 2.5 ppb and Pd 2 ppb). Refer to Figure 1 and 2 and Table 1 and 2 for significant results.

- Significant gold anomalism up to 381 ppb was identified at the Ablett prospect at Calingiri east.
- Anomalous copper values > 700 ppm in rock chips and broadly co-incident with gold and PGE's were also encountered at Phil's Hill.
- Anomalous nickel values > 200 ppm and up to 729 ppm copper were also identified in rock chips at Phil's Hill and remains open to the north.
- Anomalous chrome values > 3000 ppm and up to 7050 ppm with elevated nickel > 1000 ppm and up to 6710 ppm where also identified in rock chips to the north of Phil's Hill, indicative of more maficultramafic source material.

Similar levels of extensive PGE anomalism in soils are commonly associated with mineralised nickel sulphide systems elsewhere in WA and support the presence of magmatic nickel sulphides at the Warrior Project.

Sample ID	Easting	Northing	RL	Sample Depth cm	Au ppb	Cr ppm	Cu ppm	Mg ppm	Ni ppm	Pd ppb	Pt ppb	Zn ppm	Au+Pt+Pd ppb
21WS0264	432493	6621373	275	50	2	780	24.1	13400	123.5	1	2.5	38	5.5
21WS0265	432442	6621374	273	60	1	216	16.6	1500	33	1	2.5	11	4.5
21WS0270	432190	6621372	264	60	4	162	83.5	14000	129	4	2.5	32	10.5
21WS0291	430502	6625096	284	20	1	294	45.4	17000	107.5	3	8	43	12
21WS0327	459591	6554579	300	60	23	401	100.5	2200	80.1	12	2.5	3	37.5
21WS0328	459628	6554612	297	60	10	459	175	2500	90.6	8	2.5	4	20.5
21WS0329	459666	6554645	300	60	11	399	176.5	3400	121.5	10	7	9	28
21WS0330	459704	6554676	299	60	3	226	137.5	2500	120	2	2.5	18	7.5
21WS0332	459781	6554739	301	60	6	57	64.7	4700	45.6	3	2.5	25	11.5
21WS0334	459859	6554804	306	60	3	49	138.5	4500	34.8	10	7	24	20
21WS0342	457570	6554707	286	60	22	248	184.5	7000	40.4	27	14	21	63
21WS0343	457607	6554736	285	60	17	904	102	2900	60.6	19	6	17	42
21WS0344	457645	6554769	289	70	23	457	83.3	1900	52.9	16	6	7	45
21WS0345	457686	6554799	291	50	18	264	58.8	1500	50.6	8	2.5	5	28.5
21WS0346	457724	6554832	295	40	18	315	72.5	1300	49.4	10	2.5	5	30.5
21WS0347	457761	6554864	299	40	22	393	66.6	1300	52.3	7	2.5	3	31.5
21WS0348	457799	6554898	301	40	381	223	83.4	800	47.3	2	2.5	6	385.5

Table 1: Significant Soil Anomalies at Warrior

PURSJIT

Sample ID	Easting	Northing	RL	Sample Depth cm	Au ppb	Cr ppm	Cu ppm	Mg ppm	Ni ppm	Pd ppb	Pt ppb	Zn ppm	Au+Pt+Pd ppb
21WS0349	457839	6554928	304	20	44	250	201	1000	69.4	2	2.5	5	48.5
21WS0350	457878	6554962	301	30	19	291	95.5	800	48.3	3	2.5	12	24.5
21WS0351	457915	6554992	301	60	43	373	161.5	2800	64.4	14	5	8	62
21WS0352	457952	6555025	301	60	59	334	173	2700	62.4	15	6	11	80
21WS0353	457991	6555059	298	40	16	309	62.8	1200	61.7	7	2.5	5	25.5
21WS0354	458030	6555091	299	60	13	290	66.8	1300	64	5	2.5	6	20.5
21WS0355	458067	6555122	301	60	10	236	91.7	1200	72.2	5	2.5	6	17.5
21WS0356	458107	6555154	300	60	15	244	153.5	1700	91.3	9	2.5	18	26.5
21WS0357	458145	6555187	302	60	8	337	64.6	1100	95.4	4	2.5	13	14.5
21WS0358	458183	6555217	300	70	10	227	53.6	1300	81.8	4	2.5	5	16.5
21WS0359	458221	6555251	300	50	8	182	44.1	1100	63.9	2	2.5	10	12.5
21WS0361	458298	6555314	307	40	12	182	41.7	600	60.7	11	2.5	6	25.5

Table 2: Significant Rock samples

Sample ID	Easting	Northing	RL	Au ppb	Cr ppm	Cu ppm	Mg ppm	Ni ppm	Pd ppb	Pt ppb	Zn ppm	Au+Pd+Pt ppb
21WK0001	463819	6546869	299	1	16	741	800	119.5	2	2.5	414	5.5
21WK0005	463814	6546509	267	9	153	729	400	238	7	2.5	171	18.5
21WK0014	463322	6550444	272	2	7050	6.3	133000	6710	1	5	105	8
21WK0015	463277	6550450	272	2	3410	7.6	4700	1060	0.5	2.5	52	5
21WK0018	437084	6619623	282	1	115	4.7	38900	99.5	9	11	85	21
21WK0019	432067	6621331	257	0.5	106	10.8	34500	74.5	7	8	108	15.5
21WK0022	431830	6625118	265	0.5	105	24.8	32400	92.9	7	5	119	12.5
21WK0027	459781	6554739	301	1	24	444	1000	33.5	0.5	2.5	127	4
21WK0029	459425	6554889	306	13	52	42.9	600	24.4	3	2.5	35	18.5

Regional Soil lines

Regional reconnaissance lines of soil geochemical samples were also completed over AEM anomalies at Calingiri East as part of the program. Of the 7 regional lines, 4 lines returned anomalous gold and PGE's. Three of these lines also had co-incident nickel. Chrome was also anomalous with all the PGE and nickel response. Chrome anomalous presence indicated the presence of mafic-ultramafic host rocks. These results warrant further investigation and offer the potential to identify further PGE-Ni-Cu mineralisation on the tenement. Refer to Figures 1 and 2.

ASX RELEASE

PURSUIT

Next Steps

Due to the compelling nature of the PGE-Ni-Cu target at the Phil's Hill Prospect, Pursuit continues to expedite plans for drill testing. Commencement of drilling is contingent on Government POW approval. The Company has secured a drilling contractor and is preparing to undertake drilling commencing in July.

The Phil's Hill Prospect was identified from an initial interpretation of the preliminary AEM and magnetic data, additional follow-up areas of interest were indicated at Calingiri West and Wubin are awaiting post processing due to shallow conductive cover in these areas. Fully processed AEM data was delivered in late April and is with Terra Resources undergoing post processing to identify additional priority targets. These results will drive additional on ground exploration programs at Calingiri West, Calingiri East, Wubin and Wubin South. Ground follow-up of targets identified from the full AEM and aeromagnetic data may entail additional ground EM surveys and/or soil geochemical surveys.

For more information about Pursuit Minerals and its projects, contact:

Mark Freeman Managing Director E: <u>markf@pursuitminerals.com.au</u> T:+ 61 412 692 146 Mathew Perrot Exploration Manager E: <u>mathewp@pursuitminerals.com.au</u> T: + 61 411 406 810

www.pursuitminerals.com.au

Competent Person's Statement

Statements contained in this announcement relating to exploration results, are based on, and fairly represents, information and supporting documentation prepared by Mr. Mathew Perrot, who is a Registered Practicing Geologist Member No 10167 and a member of the Australian Institute of Geoscientists, Member No 2804. Mr. Perrot is a full time employee the Company, as the Company's Exploration Manager and has sufficient relevant experience in relation to the mineralisation style being reported on to qualify as a Competent Person for reporting exploration results, as defined in the Australian Code for Reporting of Identified Mineral Resources and Ore Reserves (JORC) Code 2012. Mr Perrot consents to the use of this information in this announcement in the form and context in which it appears.

Forward looking statements

Statements relating to the estimated or expected future production, operating results, cash flows and costs and financial condition of Pursuit Minerals Limited's planned work at the Company's projects and the expected results of such work are forward-looking statements. Forwardlooking statements are statements that are not historical facts and are generally, but not always, identified by words such as the following: expects, plans, anticipates, forecasts, believes, intends, estimates, projects, assumes, potential and similar expressions. Forward-looking statements also include reference to events or conditions that will, would, may, could or should occur. Information concerning exploration results and mineral reserve and resource estimates may also be deemed to be forward-looking statements, as it constitutes a prediction of what might be found to be present when and if a project is actually developed.

These forward-looking statements are necessarily based upon a number of estimates and assumptions that, while considered reasonable at the time they are made, are inherently subject to a variety of risks and uncertainties which could cause actual events or results to differ materially from those reflected in the forward-looking statements, including, without limitation: uncertainties related to raising sufficient financing to fund the planned work in a timely manner and on acceptable terms; changes in planned work resulting from logistical, technical or other factors; the possibility that results of work will not fulfil projections/expectations and realize the perceived potential of the Company's projects; uncertainties involved in the interpretation of drilling results and other tests and the estimation of gold reserves and resources; risk of accidents, equipment breakdowns and labour disputes or other unanticipated difficulties or interruptions; the possibility of environmental issues at the Company's projects; the possibility of cost overruns or unanticipated expenses in work programs; the need to obtain permits and comply with environmental laws and regulations and other government requirements; fluctuations in the price of gold and other risks and uncertainties.

About the Warrior Nickel-Copper-PGE Project, Western Australia

The western margin of the Archean Yilgarn Craton is highly prospective for Platinum Group Elements ("PGE") and Nickel (Ni) – Copper (Cu) sulphide mineralisation associated with intrusive mafic to ultramafic rocks. The discovery of PGE-Ni-Cu mineralisation on the Julimar Project held by Chalice Mining Limited (see Chalice Mining ASX Announcement 23 March 2020), is the first significant PGE-Ni-Cu discovery in the region. It is becoming apparent that the prospective mafic-ultramafic intrusions which host Chalice Mining's PGE-Ni-Cu mineralisation are far more widespread than previously thought throughout the western margin of the Yilgarn Craton. The area of the Warrior Project remains poorly explored for PGE-Ni-Cu mineralisation due to the lack of outcrop, predominance of farmland and the prior focus of exploration companies on bauxite and iron. Pursuit secured the Warrior Project in December 2020.

In February 2021, Pursuit flew a detailed airborne EM survey over the Calingiri East, Calingiri West, Wubin and Wubin South exploration licences on the Warrior PGE-Nickel-Copper Project. Several conductive features identified at Phil's Hill were followed up with moving loop ground EM ("MLEM") during March and April and confirmed that the airborne conductors are discrete basement conductors.

In May 2021, the Company announced that highly conductive features (up to 5,093 S/m) are now evident on 9 lines of MLEM data over a strike length of ~1,600 m. The modelled depth to top of the conductors is ~100 m and coincident with the edge of an interpreted ultramafic sequence. The conductance of the Phil's Hill Prospect is significant and well within the known range of conductance for the Gonneville PGE-Ni-Cu discovery. Based on the EM response, Phil's Hill represents a high-priority drill target. Further MLEM surveys have now refined the interpreted EM plates and have identified 4 discrete EM responses and increased both the conductivity and strike length. These EM responses have not been closed off to either the south or north by MLEM surveys.

ID (grid north)	Easting (Cen	Northing tre Top of Plat	RL e Referer	Depth nced)	Dip	Dip Azi	Strike/ Depth Extent	Conductivity (S/m)
06a	464290	6545240	113	132	60°	052	130/77	3,500
10a	464171	6545652	153	99	43°	069	352/80	5,093
17a	463995	6546380	134	128	65°	093	180/120	2,000
20a	463855	6546720	175	88	60°	085	80/80	3,300

Subsequently on 20 May 2021, Pursuit received results for the first 238 hand auger soil samples over the Phil's Hill PGE-Ni-Cu Prospect. The sampling has confirmed the presence of anomalous PGE's, Nickel, Copper and Gold associated with mafic-ultramafic rocks which are the host for the PGE-Ni-Cu mineralisation at Julimar.

A total of 15 samples assayed demonstrate elevated levels of Au-Pt-Pd combined anomalism with maximum values of 1,164ppb (1.1g/t) (Au 52 ppb, Pt 777 ppb and Pd 335 ppb) with a strike length greater than 1,100m at Phil's Hill and remain open to the north. Refer to Figure 4 and Table 3 for significant results with significant gold anomalism up to 81 ppb was identified at Phil's Hill over a 1,200m strike which remains open to the north. Additionally anomalous copper values greater than 100 ppm and broadly co-incident with gold and PGE's were also encountered over 950m strike at Phil's Hill. Anomalous Nickel values > 100 ppm and up to 310 ppm over a strike length of 1,100m was identified at Phil's Hill and remains open to the

north. Similar levels of extensive PGE anomalism in soils are commonly associated with mineralised nickel sulphide systems elsewhere in WA and support the presence of magmatic nickel sulphides at the Warrior Project.

Sample ID	Easting	Northing	RL	Sample Depth cm	Au ppb	Cr ppm	Cu ppm	Ni ppm	Pd ppb	Pt ppb	Au+Pt+Pd ppb
21WS0025	464379	6545790	266	10	1	260	468	214	-1	-5	-5
21WS0029	464230	6545669	262	60	8	258	188	110.5	14	20	42
21WS0035	464029	6545699	261	50	10	149	140	99.4	2	5	17
21WS0038	464143	6545796	261	60	6	206	90.1	101.5	11	11	28
21WS0039	464182	6545829	270	60	5	146	69.7	78.1	12	10	27
21WS0053	464238	6546072	275	20	47	105	571	208	-1	-5	41
21WS0057	464088	6545946	270	60	9	166	187	110.5	6	7	22
21WS0061	463934	6545816	261	60	22	192	104	122	1	-5	18
21WS0066	464064	6546128	273	60	81	657	169.5	285	17	15	113
21WS0102	463857	6546395	263	40	1	800	99.9	244	1	-5	-3
21WS0103	463816	6546363	261	50	4	311	50.1	310	3	-5	2
21WS0104	463701	6546500	263	50	8	191	122.5	103	5	7	20
21WS0110	463929	6546692	273	50	52	346	46.8	52.7	335	777	1,164
21WS0112	464005	6546757	278	60	6	313	68.2	109	7	-5	8
21WS0125	463665	6548199	281	50	11	159	154.5	104	20	5	36
21WS0126	463626	6548168	280	50	11	115	90.1	62.9	16	6	33
21WS0127	463588	6548136	278	50	16	496	120.5	116	33	15	64
21WS0128	463550	6548104	277	50	8	168	102	93.9	18	13	39
21WS0131	463435	6548008	277	50	9	229	85.3	143	13	6	28

Figure 3 – Phil's Hill Prospect, MLEM plates (red) over RTP magnetic image (left) and 3D magnetic susceptibility isosurfaces (right). Magnetic Isosurfaces 10 and 20 x 10⁻³SI.

Figure 4 – Calingiri East (E70/5379) - Phil's Hill Prospect, VTEM Channel 45 (7ms) image and geochemistry results

PURSJIT

Figure 5 – Warrior PGE-Ni-Cu Project Location

About Platinum Group Elements

The Platinum Group Elements (PGEs) are a group of six precious metals clustered together on the periodic table: platinum (Pt), palladium (Pd), iridium (Ir), osmium (Os), rhodium (Rh) and ruthenium (Ru).

PGEs have many desirable properties and as such have a wide variety of applications. Most notably, they are used as auto-catalysts (pollution control devices for vehicles), but are also used in jewellery, electronics as well as in hydrogen production, purification and fuel cells.

Palladium is the most expensive of the four major precious metals – gold, silver and platinum being the others. With an acute supply shortage driving prices to a recent record high of US\$2,856/oz in February 2020. The current spot price is approximately US\$2,600/oz. Strong demand growth (~11.5Moz in 2019) is being driven by regulations requiring increased use of the metal, particularly as an auto-catalyst in gasoline and gasoline-hybrid vehicles. The total palladium market supply from all sources in 2019 was ~10.8Moz, and >75% is sourced from mines in Russia and South Africa¹.

Table 1: Soil sample results for selected elements. Below detection limits have been adjusted to half the detection limit. Au+Pt+Pd has been calculated as a simple sum following converting below detection limits

SAMPLEID	Easting	Northing	RL	Sample Depth.cm	Au nnh	Cr	Cu	Mg	Ni	Pd nnb	Pt nnh	Zn	Au+Pt+Pd
21WS0240	437287	6619831	273	70	1	62	21	2700	22.8	2	2.5	11	5.5
21WS0241	437251	6619795	271	40	2	74	38.1	7200	30.3	0.5	2.5	13	5
21WS0242	437217	6619759	272	50	4	55	84.8	6500	21.2	1	2.5	15	7.5
21WS0243	437182	6619722	275	70	3	14	22.7	1000	6.1	4	2.5	6	9.5
21WS0244	437148	6619688	277	65	1	13	8.9	500	6.6	0.5	2.5	4	4
21WS0245	437112	6619651	277	40	2	21	6	1000	9.6	1	2.5	6	5.5
21WS0246	437054	6619615	279	70	1	21	4.7	500	6.7	1	2.5	3	4.5
21WS0247	437042	6619579	280	50	1	31	9.6	1400	11.9	1	2.5	7	4.5
21WS0248	437009	6619544	283	50	1	32	16.3	1800	16.8	1	2.5	24	4.5
21WS0249	436974	6619509	286	40	1	42	17.9	1300	11.8	2	2.5	10	5.5
21WS0250	436858	6619387	284	40	1	20	8.6	700	9.2	0.5	2.5	9	4
21WS0251	436835	6619366	285	40	2	17	8.7	600	7.8	0.5	2.5	10	5
21WS0252	436798	6619330	289	70	1	15	5.1	500	5.6	0.5	2.5	6	4
21WS0253	436765	6619295	291	70	1	15	4.2	400	6.3	0.5	2.5	5	4
21WS0254	436729	6619259	295	60	1	22	6	500	11	1	2.5	6	4.5
21WS0255	436694	6619222	295	50	1	21	10.3	600	8.9	1	2.5	9	4.5
21WS0256	436658	6619188	295	50	2	29	12.4	1000	13	1	2.5	11	5.5
21WS0257	436618	6619153	297	50	1	118	45.5	4200	38.9	1	9	34	11
21WS0258	436588	6619115	298	20	0.5	42	29.4	1400	15.9	0.5	2.5	18	3.5
21WS0259	436555	6619080	298	20	1	27	23.8	1300	13.8	3	2.5	25	6.5
21WS0260	436520	6619044	298	70	2	45	13.1	1000	28.3	1	2.5	11	5.5
21WS0261	436485	6619008	299	50	1	53	24.6	1100	33.8	1	2.5	9	4.5
21WS0262	436451	6618972	301	50	1	43	14.5	900	20.4	1	2.5	11	4.5
21WS0263	432539	6621375	270	50	1	78	14.1	1500	21.7	1	2.5	10	4.5
21WS0264	432493	6621373	275	50	2	780	24.1	13400	123.5	1	2.5	38	5.5
21WS0265	432442	6621374	273	60	1	216	16.6	1500	33	1	2.5	11	4.5
21WS0266	432391	6621374	271	70	1	101	16.9	2800	37.3	1	2.5	12	4.5
21WS0267	432341	6621373	267	40	1	117	28.6	2100	26.2	0.5	2.5	9	4

¹ Source: S&P Global Market Intelligence

SAMPLEID	Easting	Northing	RL	Sample	Au	Cr	Cu	Mg	Ni	Pd	Pt	Zn	Au+Pt+Pd
				Depth cm	ppb	ppm	ppm	ppm	ppm	ppb	ppb	ppm	ppb
21WS0268	432291	6621372	268	50	1	59	12.2	2100	25.7	0.5	2.5	7	4
21WS0269	432242	6621374	266	60		144	50.1	12900	95.1			29	
21WS0270	432190	6621372	264	60	4	162	83.5	14000	129	4	2.5	32	10.5
21WS0271	432141	6621373	260	70	3	104	48.8	10300	91.9	3	2.5	24	8.5
21WS0272	432090	6621369	265	60	2	138	57.8	8400	91.3	2	2.5	30	6.5
21WS0273	432040	6621370	262	60	2	135	47.5	9800	90.3	2	2.5	20	6.5
21WS0274	431988	6621368	256	30	1	133	35.8	6500	67.5	0.5	2.5	16	4
21WS0275	431940	6621368	260	30	1	104	14.9	2100	29.5	0.5	2.5	8	4
21WS0276	431890	6621370	260	60	1	118	22.6	5000	50.5	1	2.5	10	4.5
21WS0277	431842	6621367	261	60	2	103	21.9	6000	47.5	1	2.5	8	5.5
21WS0278	431789	6621366	259	70	2	109	22.6	5600	45.3	1	2.5	10	5.5
21WS0279	431734	6621365	262	50	2	106	15.1	3000	28.2	1	2.5	11	5.5
21WS0280	431690	6621366	259	30	1	64	24	1700	17.9	0.5	2.5	8	4
21WS0281	431641	6621364	259	40	2	54	51.5	8100	27.7	1	2.5	9	5.5
21WS0282	431590	6621365	263	40	2	40	26.2	2900	14.7	1	2.5	10	5.5
21WS0283	431537	6621365	261	40	1	35	18.9	1600	11.4	1	2.5	12	4.5
21WS0284	431488	6621367	259	70	2	21	9.8	900	6.6	1	2.5	8	5.5
21WS0285	431430	6621361	257	50	4	50	27.9	2700	18.2	3	2.5	12	9.5
21WS0286	431391	6621361	257	60	2	69	30.3	2600	26.5	1	2.5	7	5.5
21WS0287	431331	6621360	258	40	1	93	31	600	20.5	1	2.5	, 8	4.5
21\050287	/31288	6621361	250	40	1	78	3/1 3	600	27.0	2	2.5	3	55
21/0/50200	431200	6625004	250	40	1	169	20.7	4200	20. 4 17.9	1	2.5	12	15
210030289	430401	6625005	271	20	1	100	20.7	4200 E000	47.0	1	12.5	12	4.5
210030290	430433	6625095	2/9	20	4	192	75	17000	30.7	3	•	10	25
210050291	430502	0025090	204	20	1	294	45.4	1200	107.5	3	0	43	12
210050292	430550	6625098	280	40	1	89	12.5	4200	32.9	1	2.5	14	4.5
21WS0293	430600	6625098	282	70	2	68	41.9	6600	32.4	1	2.5	18	5.5
21WS0294	430650	6625099	284	20	1	98	10.8	5700	38.3	1	2.5	/	4.5
21WS0295	430702	6625101	291	20	2	242	18.1	8900	91.7	1	2.5	1/	5.5
21WS0296	430757	6625101	291	40	1	67	13.4	3200	22.3	0.5	2.5	9	4
21WS0297	430802	6625100	292	40	1	45	11.1	3100	15.3	0.5	2.5	11	4
21WS0298	430851	6625100	295	40	1	34	16.3	4400	16	0.5	2.5	27	4
21WS0299	430903	6625102	293	20	3	50	15.2	5300	19.2	0.5	2.5	24	6
21WS0300	430953	6625102	291	20	2	20	11.2	3800	11.4	1	2.5	18	5.5
21WS0301	431003	6625104	292	20	2	30	9.6	3200	12.1	0.5	2.5	20	5
21WS0302	431056	6625107	292	20	1	18	12.8	3700	12.6	0.5	2.5	24	4
21WS0303	431101	6625104	289	20	1	16	13.8	3300	12.1	0.5	2.5	18	4
21WS0304	431155	6625106	292	30	1	18	16	1300	11.4	1	2.5	10	4.5
21WS0305	431202	6625105	291	20	0.5	22	102	4500	36.5	0.5	2.5	45	3.5
21WS0306	431252	6625106	294	40	1	22	18.4	1300	13.5	0.5	2.5	7	4
21WS0307	431302	6625105	296	40	1	30	19.1	2200	15.1	0.5	2.5	15	4
21WS0308	431353	6625106	298	40	1	27	18.9	1000	11.8	1	2.5	6	4.5
21WS0309	431402	6625110	296	20	1	38	26	2000	16.3	2	2.5	12	5.5
21WS0310	431453	6625109	293	20	1	27	27.2	3700	16.9	1	2.5	32	4.5
21WS0311	431505	6625109	288	20	1	24	19.8	2200	13.6	0.5	2.5	13	4
21WS0312	431554	6625110	283	70	2	60	134	8000	43.9	3	2.5	38	7.5
21WS0313	431603	6625110	280	50	4	65	104.5	6800	40.3	3	2.5	26	9.5
21WS0314	431651	6625110	275	50	3	94	72.3	7800	41.2	2	5	21	10
21WS0315	431704	6625110	271	50	1	66	40.8	6700	26.2	2	2.5	17	5.5
21WS0316	431750	6625111	274	20	0.5	43	24.4	2500	14.9	1	2.5	18	4
21WS0317	431802	6625113	272		1	37	24.1	43400	23.4	3	2.5	10	6.5
21WS0318	431854	6625112	269	20	- 05	34	17 1	1500	14 1	3	25	8	6
21W/\$0319	431903	6625112	268	60	05	34	18	4200	17 5	2	2.5	5	5
21/0/50313	431052	6625117	270	60	05	100	3/1 Q	6700	76	05	2.5	1/	25
21/0/50320	432004	6625115	267	<u>م</u>	0.5	10	9.7	1200	, 0 8 0	0.5	2.5	⊥ - ∕I	25
2110/50221	432004	6625115	207	- - 0 60	0.5	19 //1	ر. 17 و	1200	20.9	1	2.5	-+ 2	з.э Л
210030322	432033	0072110	200	00	0.5	41 -	11.0	1200	20.9	T	2.5	3	4

SAMPLEID	Facting	Northing	RI	Sample	Au	Cr	Cu	Mg	Ni	Pd	Pt	Zn	Au+Pt+Pd
SAIVIFLEID	Lasting	Northing	NL.	Depth cm	ppb	ppm	ppm	ppm	ppm	ppb	ppb	ppm	ppb
21WS0323	432104	6625117	264	40	0.5	28	8.7	900	9.1	0.5	2.5	5	3.5
21WS0324	432155	6625118	261	40	0.5	17	9.4	800	6.9	1	2.5	3	4
21WS0325	432203	6625117	260	60	0.5	37	28.1	6100	20.5	1	2.5	7	4
21WS0326	432254	6625118	259	60	1	38	23.8	11500	22.6	1	2.5	7	4.5
21WS0327	459591	6554579	300	60	23	401	100.5	2200	80.1	12	2.5	3	37.5
21WS0328	459628	6554612	297	60	10	459	175	2500	90.6	8	2.5	4	20.5
21WS0329	459666	6554645	300	60	11	399	176.5	3400	121.5	10	7	9	28
21WS0330	459704	6554676	299	60	3	226	137.5	2500	120	2	2.5	18	7.5
21WS0331	459742	6554708	299	60	1	76	49.4	5600	74.5	3	2.5	31	6.5
21WS0332	459781	6554739	301	60	6	57	64.7	4700	45.6	3	2.5	25	11.5
21WS0333	459819	6554772	303	60	1	54	46.5	15300	49.9	3	2.5	25	6.5
21WS0334	459859	6554804	306	60	3	49	138.5	4500	34.8	10	7	24	20
21WS0335	459895	6554837	305	60	1	65	15	700	35.6	2	2.5	2	5.5
21WS0336	459935	6554869	307	60	1	53	10.6	500	31.9	0.5	2.5	-2	4
21WS0337	459972	6554900	309	60	2	68	9.9	1000	42.9	0.5	2.5	2	5
21WS0338	460010	6554933	311	70	1	41	10.7	600	15.1	0.5	2.5	10	4
21WS0339	460050	6554966	311	70	1	57	7.7	400	31.5	1	2.5	2	4.5
21WS0340	460087	6554997	312	40	0.5	69	6.5	400	33.6	1	2.5	-2	4
21WS0341	460127	6555030	312	40	0.5	64	9.8	400	29.5	0.5	2.5	3	3.5
21WS0342	457570	6554707	286	60	22	248	184.5	7000	40.4	27	14	21	63
21WS0343	457607	6554736	285	60	17	904	102	2900	60.6	19	6	17	42
21WS0344	457645	6554769	289	70	23	457	83.3	1900	52.9	16	6	7	45
21WS0345	457686	6554799	291	50	18	264	58.8	1500	50.6	8	2.5	5	28.5
21WS0346	457724	6554832	295	40	18	315	72.5	1300	49.4	10	2.5	5	30.5
21WS0347	457761	6554864	299	40	22	393	66.6	1300	52.3	7	2.5	3	31.5
21WS0348	457799	6554898	301	40	381	223	83.4	800	47.3	2	2.5	6	385.5
21WS0349	457839	6554928	304	20	44	250	201	1000	69.4	2	2.5	5	48.5
21WS0350	457878	6554962	301	30	19	291	95.5	800	48.3	3	2.5	12	24.5
21WS0351	457915	6554992	301	60	43	373	161.5	2800	64.4	14	5	8	62
21WS0352	457952	6555025	301	60	59	334	173	2700	62.4	15	6	11	80
21WS0353	457991	6555059	298	40	16	309	62.8	1200	61.7	7	2.5	5	25.5
21WS0354	458030	6555091	299	60	13	290	66.8	1300	64	5	2.5	6	20.5
21WS0355	458067	6555122	301	60	10	236	91.7	1200	72.2	5	2.5	6	17.5
21WS0356	458107	6555154	300	60	15	244	153.5	1700	91.3	9	2.5	18	26.5
21WS0357	458145	6555187	302	60	8	337	64.6	1100	95.4	4	2.5	13	14.5
21WS0358	458183	6555217	300	70	10	227	53.6	1300	81.8	4	2.5	5	16.5
21WS0359	458221	6555251	300	50	8	182	44.1	1100	63.9	2	2.5	10	12.5
21WS0360	458259	6555282	306	40	2	140	30.2	700	58.8	1	2.5	6	5.5
21WS0361	458298	6555314	307	40	12	182	41.7	600	60.7	11	2.5	6	25.5
21\WS0362	458338	6555348	312	20	4	133	26	600	73.2	2	25	7	85

Table 2: Rock sample results for selected elements. Below detection limits have been adjusted to half the detection limit. Au+Pt+Pd has been calculated as a simple sum following converting below detection limits

SAMPLEID	Easting	Northing	RL	Au ppb	Cr ppm	Cu ppm	Mg ppm	Ni ppm	Pd ppb	Pt ppb	Zn ppm	Au+Pd+Pt ppb
21WK0001	463819	6546869	299	1	16	741	800	119.5	2	2.5	414	5.5
21WK0002	463788	6546841	282	2	80	91.9	100	23.9	0.5	2.5	62	5
21WK0003	463643	6546905	276	1	73	16.3	500	55	1	2.5	22	4.5
21WK0004	463822	6546773	282	2	26	201	200	44.5	0.5	2.5	175	5
21WK0005	463814	6546509	267	9	153	729	400	238	7	2.5	171	18.5
21WK0006	464183	6546174	274	1	9	24.4	1000	8	0.5	2.5	14	4
21WK0007	464169	6546144	273	1	93	62.3	34600	53.5	0.5	2.5	84	4
21WK0008	463880	6546218	259	1	22	19.9	600	38.1	0.5	2.5	142	4
21WK0009	464057	6545630	260	1	33	147	300	40	1	2.5	95	4.5
21WK0010	463988	6545602	261	2	87	56.3	2000	45	1	2.5	68	5.5
21WK0011	464339	6545551	256	1	17	55.3	700	13	0.5	2.5	8	4
21WK0012	460112	6552130	292	1	5	1.7	900	1	0.5	2.5	17	4
21WK0013	463358	6550203	261	1	16	7.3	300	4.7	0.5	2.5	2	4
21WK0014	463322	6550444	272	2	7050	6.3	133000	6710	1	5	105	8
21WK0015	463277	6550450	272	2	3410	7.6	4700	1060	0.5	2.5	52	5
21WK0016	463436	6550314	263	1	405	41.3	20300	252	1	2.5	27	4.5
21WK0017	464068	6550477	258	1	34	27	6900	35.4	0.5	2.5	54	4
21WK0018	437084	6619623	282	1	115	4.7	38900	99.5	9	11	85	21
21WK0019	432067	6621331	257	0.5	106	10.8	34500	74.5	7	8	108	15.5
21WK0020	432073	6621315	259	0.5	779	24.6	59100	210	3	2.5	100	6
21WK0021	430402	6625073	274	0.5	441	3.8	68600	202	1	5	109	6.5
21WK0022	431830	6625118	265	0.5	105	24.8	32400	92.9	7	5	119	12.5
21WK0023	431830	6625118	265	5	79	109.5	39100	65.4	1	2.5	95	8.5
21WK0024	432155	6625118	261	1	79	102	37400	59.2	0.5	2.5	103	4
21WK0025	428213	6624188	242	1	57	171	27000	51.5	0.5	2.5	283	4
21WK0026	428213	6624188	242	6	64	184.5	33100	62.8	0.5	2.5	119	9
21WK0027	459781	6554739	301	1	24	444	1000	33.5	0.5	2.5	127	4
21WK0028	459434	6554884	222	3	54	114.5	600	40.2	2	2.5	32	7.5
21WK0029	459425	6554889	306	13	52	42.9	600	24.4	3	2.5	35	18.5

SECTION 1 SAMPLING TECHNIQUES AND DATA

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Soil samples were collected utilising a hand auger to a depth judged to be below ploughing activities typically below 30 cm. Samples were sieved in the field to -60 micron where possible, wet samples were submitted to the laboratory for drying and sieving to the correct fraction Soil sample weights were typically greater than 200 grams post sieving All sieved material was collected into kraft paper bags The sampling techniques are considered appropriate for the landform and usage encountered Rocks were sampled using a geological hammer to obtain a representative sample, typically 500 to 1000 grams
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	• N/A
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	• N/A
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Soil sample sites are described noting the texture, colour, moisture and depth of sample Soil sample descriptions are considered qualitative in nature Rock chip samples were described noting the lithology, structure, colour and grainsize Rock chip descriptions are considered qualitative in nature
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	 Sample preparation of Pursuit follows industry best practice standards at accredited laboratories. Sample preparation comprises oven drying, jaw crushing and pulverising to -75 microns (80% pass) Samples where collected along lines where MLEM surveys where conducted at 50 m spacing At Phil's Hill soil sampling was conducted on 150 x 50 m grid to provide initial coverage over strong known EM responses Sample sizes > 200 g are considered appropriate for the technique

JORC Code, 2012 Edition – Table 1 report template

Criteria	JORC Code explanation	Commentary
	• Whether sample sizes are appropriate to the grain size of the material being sampled.	 Rock chip samples where collected during soil sampling at outcrop, subcrop and farmers piles and recorded as they occurred.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples were submitted to ALS Laboratories in Perth WA. Samples were crushed and pulverised to 85% passing <75um. Soils samples were analysed for Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Mo, Na,Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta,Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr, Dy, Er, Eu, Gd, Ho, Lu, Nd, Pr, Sm, Tb, Tm, Yb, with four aciddigest ME-MS61 with gold analysed by fire assay Au-ICP21 (fire assay 30g). Results are considered to be near total. No standards or duplicates were submitted by the Company. ALS carried out duplicates from crushed samples and used internal standards. Samples are soil samples, acceptable levels of accuracy and precision is established.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No drilling results reported Primary soil sampling data and rock chip data was collected in hard copy and entered into excel spreadsheets before being transferred to the master database. Half detection limits where applied to Au, Pt, Pd prior to calculating the Au+Pt+Pd value
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Soil and Rock sample locations are recorded by Pursuit employees using a handheld GPS with a +/- 3m margin of error. The grid system used for the location of all soil sample sites is GDA94 - MGA (Zone 50)
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Regional orientation soil samples were collected along one line at a 50m spacing Unknown sample representivity at this early stage of exploration sampling Mineral Resource estimates are not being considered in this report No compositing undertaken for soil samples
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The orientation of the soil sampling lines has not considered to have introduced sampling bias Soil Sample orientation is perpendicular to general strike of geological formations.
Sample security	The measures taken to ensure sample security.	 Samples are collected in plastic bags and delivered directly from site to the assay laboratories in Wangara, Perth by a Pursuit employee.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	No review has been carried out to date

1.1 Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Exploration activities are ongoing over E 70/5379 and E 70/5392 and the tenements are in good standing. The majority of E 70/5379 and E 70/5392 lies within free-hold land requiring Pursuit Minerals to enter in a land access agreement with individual landowners. Pursuit has land access agreements with landowners over a significant portion of the tenement E 70/5379.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 June, 1997, Kevron completed a MAG/RAD/DEM survey for Stockdale Prospecting Ltd. The survey was acquired with line spacing of 250 m, line orientation of 000/180° and a mean terrain clearance of 60 m. (MAGIX ID - 1164) June 2003, UTS Geophysics completed a MAG/RAD/DEM survey for Geoscience Australia. The survey was acquired with line spacing of 400 m, line orientation of 000/180° and a mean terrain clearance of 60 m. November, 2010, Fugro Airborne Surveys completed a MAG/RAD/DEM survey for Brendon Bradley. The survey was acquired with line spacing of 50 m, line orientation of 090/270° and a mean terrain clearance of 35 m. (MAGIX ID - 3288) Dominion Mining Limited undertook auger sampling on the project in 2010. The results of this work are summarised in the ASX announcement. Further details can be obtained by accessing WAMEX Report a86032 at: https://geoview.dmp.wa.gov.au/geoview/?Viewer=GeoVIEW&layerTheme= Kingsgate Consolidated Limited undertook air core drilling within the area of Calingiri East Tenement Application in 2011. The results of this work are summarised in the ASX announcement. Further details can be obtained by accessing WAMEX Report a89716 at: https://geoview.dmp.wa.gov.au/geoview/?Viewer=GeoVIEW&layerTheme= Poseidon N.L. undertook auger soil sampling and rock chip sampling within the area of Bindi Bindi Tenement Application in 1968. The results of this work are summarised in the ASX announcement. Further details can be obtained by accessing WAMEX Report a7292 at: https://geoview.dmp.wa.gov.au/geoview/?Viewer=GeoVIEW&layerTheme= Washington Resources Limited undertook rock chip sampling within the area of Bindi Bindi Tenement Application in 2008. The results of this work are summarised in the ASX announcement. Further details can be obtained by accessing WAMEX Report a82005 at: https://geoview.dmp.wa.gov.au/geoview/?Viewer=GeoVIEW&layerTheme= Magnetic Resources Limited undertook air core and RC

JORC Code, 2012 Edition – Table 1 report template

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	The western margin of the Archean Yilgarn Craton is highly prospective for Platinum Group Elements ("PGE") and Nickel (Ni) – Copper (Cu) mineralisation associated with intrusive mafic to ultramafic rocks. The discovery of PGE-Ni-Cu mineralisation on the Julimar Project held by Chalice Gold Mines Limited (see Chalice Gold Mines ASX Announcement 23 March 2020) in 2020, is the first significant PGE-Ni-Cu discovery in the region which previously only had early-stage indications of mineralisation (Yarawindah, Bindi-Bindi). The PGE-Ni-Cu mineralisation hosted by the ultramafic-mafic Gonneville intrusion on Chalice's Julimar Project, has the potential to be the mos important deposit of PGE's in Australia. Increasingly it is becoming apparent that the prospective ultramafic-mafic intrusions are far more widespread than previously thought throughout the western margin of the Yilgarn Craton. The project area is located within the >3Ga age Western Gneiss Terrane of the Archean Yilgarn Block, which comprises a strongly deformed belt of gneisses, schists, quartzites, Banded Iron Formation, intruded by mafic to ultramafic rocks. The terrane is up to 70km wide, and possibly wider, and is bounded to the west of the Darling Fault and younger Archean rocks to the east. The general geological strike in northwest. The bedrock Archean metasedimentary gneisses, migmatites and intrusive mafic and ultramafic rocks occur in structurally complex settings. Dolerite dykes of Proterozoic Age also occur. Outcrops are rare and the basement geology is largely obscured by lateritic ironstones and deep saprolitic weathering.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 No drilling results reported No material information has been excluded
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Soil assay results are reported separately Rock assay results are reported separately Values reported for soil sampling show the combined Au+Pd+Pt for each sample site. Values reported for rock sampling show the combined Au+Pd+Pt for each sample site. No metal equivalents are reported in this report

JORC Code, 2012 Edition – Table 1 report template

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Soils sample results represent spot data and no width or intercept length is implied. Rock sample results represent spot data and no width or intercept length is implied.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to figures in the body of text.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All significant results from the orientation soil geochemical surveys are reported All significant results from the rock sampling is reported
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	All relevant and material data and results are reported
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Drilling, further moving loop ground EM surveys and soil sampling programs are planned