



7 April 2021

## **Exploration Success for Perseus in Côte d'Ivoire**

## HIGHLIGHTS

Recent results from Perseus's exploration programmes in Côte d'Ivoire, demonstrate potential for organic growth of gold inventories across its multi-mine asset portfolio, as follows:

- Encouraging results at **Govisou**, 3km from Perseus's **Yaouré Gold Mine**, with wide intercepts of shallow gold mineralisation including:
  - YRC1574: 93m @ 2.74 g/t Au from 0m and 24m @ 1.18 g/t Au from 98m
  - YRC1596: 65m @ 2.73 g/t Au from 24m and 35m @ 3.49 g/t Au from 105m
  - YRC1457: 25m @ 3.33 g/t Au from 55m
  - YRC1458: 52m @ 3.02 g/t Au from 28m
  - YRC1573: 92m @ 2.60 g/t Au from 0m
  - YRC1565: 77m @ 2.47 g/t Au from 0m
  - YRC1572: 76m @ 2.40 g/t Au from 8m

Early indications suggest Govisou hosts a 'pencil- shaped' plunging structure that remains open at depth. Follow-up drilling is planned to improve understanding of the Govisou mineralization.

- Drilling at **Bagoé** permit, 70km from Perseus's **Sissingué Gold Mine**, confirms gold mineralisation at the Antoinette, Véronique and Juliette prospects, with recent drill results including:
  - 12m @ 3.49 g/t Au from 0m and 17m @ 6.45 g/t Au from 32m (Antoinette)
  - 10m @ 4.19 g/t Au from 27m and 14m @ 3.21 g/t Au from 41m (Antoinette)
  - 6m @ 6.75 g/t Au from 27m, 11m @ 3.89 g/t Au from 44m and 10m @ 2.66 g/t Au from 68m (Antoinette)
  - 18m @ 8.42 g/t Au from 78m (Antoinette)
  - 20m @ 5.36 g/t Au from 1m (Antoinette)
  - 33m @ 2.94 g/t Au from 0m (Véronique)
  - 14m @ 6.29 g/t Au from 22m (Véronique)
  - 10m @ 6.16 g/t Au from 20m (Véronique)
  - 15m @ 3.30 g/t Au from 36m (Juliette)
  - 7m @ 7.78 g/t Au from 52m (Juliette)

Drill results from the Bagoé prospects will form the basis for a Definitive Feasibility Study (DFS) on a mining and trucking operation that will result in ore being transported to Sissingué for processing. The DFS is due to be completed in the June 2021 quarter.

• Perseus is on track to deliver on its plan of producing more than 500,000oz gold pa from FY2022, with each of its Edikan, Sissingue and Yaoure gold mines in production and producing to plan.

\_

PO Box 1578 Subiaco WA 6008 Facsimile: +61 8 6144 1799 Website: www.perseusmining.com



Perseus's Managing Director & Chief Executive Officer, Mr Jeff Quartermaine said:

"For the last five years or so, Perseus has been very focussed on funding the development of new mines. In that time, we have spent nearly US\$400 million developing two new mines, one at Sissingué and the other at Yaouré in Côte d'Ivoire. This has left little capital available to invest in the organic growth of our Company. With the completion of construction and the pouring of first gold at Yaouré in December 2020, we are now able to adequately fund exploration programmes aimed at extending the lives of all our existing mines and organically growing our Company.

The results published today illustrate the significant potential for the delineation of further Mineral Resources and Ore reserves in the vicinity of existing infrastructure at each of our mines. Our Yaouré tenements are showing excellent potential for further discoveries and the drilling results achieved at Bagoé demonstrate why Perseus acquired Exore Resources Limited last year and promise to provide mill feed to materially extend the life of our Sissingué operation."



## PREAMBLE

Perseus Mining Limited (ASX/TSX: PRU) is pleased to provide an update on its recent exploration activities at its Bagoé and Yaouré properties, both located in Côte d'Ivoire. The results demonstrate the potential for the Company to organically grow its gold inventory through further drilling success.

Yaouré is Perseus's third gold mine, commencing production in December 2020. Recent exploration has focused on the drilling of satellite prospects within five kilometres of the Yaouré mill with the potential to deliver shallow oxide ore during the early stages of the project. (Refer to *Figure 1*) Progress has also been made with the definition of drill targets from the 3D seismic survey completed in 2020, recently supplemented by the completion of an airborne gravity (FTGG) survey.

The Bagoé exploration licence, 60km south of Perseus's Sissingué Gold Mine, (Refer to *Figures 2 and 3*) was acquired when Exore Resources Limited was acquired in September 2020 (ASX announcement 26<sup>th</sup> September 2020). Perseus's pre-acquisition evaluation of Exore's exploration work at Bagoé indicated potential for the economic exploitation of the Antoinette, Juliette and Véronique gold deposits by open pit mining and either processing in-situ or transporting ore to Sissingué for processing. Recent exploration drilling has focused on converting the previously defined Inferred Resources to Measured and Indicated Resources to support a DFS to confirm the technical and financial viability of the two development concepts.

## YAOURÉ EXPLORATION DRILLING – GOVISOU AND ANGOVIA 2 PROSPECTS

Perseus has focused recent exploration activities at the Yaouré permits on the Angovia 2 and Govisou prospects, both within 5km of the Yaouré mill (Refer to *Figure 1*).

Particularly encouraging results have been returned from the Govisou prospect, 3km southwest of the Yaouré mill site, where 5,642 metres were drilled in 61 Reverse Circulation ("RC") holes (with an additional 1,127 metres drilled in 14 holes during the December 2020 quarter). Mineralisation at Govisou occurs in pervasively altered and pyritized basaltic-andesitic volcanics intruded by a dioritic stock, with no clearly identifiable structural controls (*Figure 4*). Better intercepts from this drilling programme are included in *Table 1* below.

The geometry of the Govisou mineralisation remains uncertain at this stage, but current indications suggest a 'pencil'-shaped plunging structure that remains open at depth (*Figure 5*). Further drilling, including oriented diamond core holes, is planned to elucidate the structural and lithological controls on mineralisation at Govisou.

At Angovia 2, located 3 kilometres southeast of the Yaouré mill, results were received for Resource definition drilling completed in the December 2020 quarter aimed at defining shallow ore beneath the planned oxide pit. The results from this campaign suggest potential exists for a deepening of this pit beyond the currently planned depth. Better intercepts from this program are included in *Table 1* below.



A complete summary of the recent Yaouré drilling is included in *Appendix A – Table 1*.

Ongoing exploration programmes at Yaouré will focus on:

- Follow up drilling at Govisou to elucidate the lithostructural controls on the mineralisation and to follow potential down plunge extensions to the high-grade pod defined in the latest drilling.
- The commencement of drill testing of targets generated from the 3D seismic survey conducted in early 2020, with an initial focus on near-surface targets.

| Govisou                                    | Angovia 2                                                     |
|--------------------------------------------|---------------------------------------------------------------|
| YRC1457: 25m @ 3.33 g/t from 55m           | YRC1472: 23m @ 1.67 g/t from 37m                              |
| YRC1458: 52m @ 3.02 g/t from 28m           | YRC1476: 31m @ 1.55 g/t from 8m                               |
| YRC1459: 63m @ 2.35 g/t from 9m            | YRC1480: 11m @ 1.56 g/t from 94m                              |
| YRC1460: 22m @ 2.58 g/t from 20m           | YRC1481: 43m @ 4.07 g/t from 76m                              |
| YRC1558: 66m @ 1.47 g/t from 54m           | YRC1482: 15m @ 2.83 g/t from 73m                              |
| YRC1559: 66m @ 2.13 g/t from 54m           | YRC1485: 12m @ 1.56 g/t from 46m                              |
| YRC1560: 79m @ 1.25 g/t from 39m           | YRC1487: 43m @ 1.56 g/t from 45m                              |
| YRC1562: 35m @ 1.33 g/t from 6m            | YRC1491: 9m @ 13.97 g/t from 4m                               |
| YRC1564: 76m @ 1.86 g/t from 42m           | YRC1492: 43m @ 3.04 g/t from 5m                               |
| YRC1565: 77m @ 2.47 g/t from 0m            | YRC1493: 14m @ 1.59 g/t from 13m                              |
| YRC1571: 59m @ 2.05 g/t from 0m            | YRC1495: 13m @ 1.75 g/t from 23m                              |
| YRC1572: 76m @ 2.40 g/t from 8m            | YRC1496: 7m @ 2.97 g/t from 33m                               |
| YRC1573: 92m @ 2.60 g/t from 0m            | YRC1497: 14m @ 3.17 g/t from 13m                              |
| YRC1574: 93m @ 2.74 g/t from 0m and 24m @  | YRC1505: 8m @ 3.06 g/t from 12m                               |
| 1.18 g/t from 98m                          | YRC1509: 15m @ 1.64 g/t from 9m                               |
| YRC1590: 86m @ 2.18 g/t from 30m           | YRC1518: 16m @ 9.60 g/t from 0m                               |
| YRC1592: 64m @ 1.87 g/t from 50m           | YRC1522: 13m @ 4.83 g/t from 41m                              |
| YRC1593: 51m @ 1.06 g/t from 69m           | YRC1526: 25m @ 1.71 g/t from 9m                               |
| YRC1594: 39m @ 1.71 g/t from 78m           | YRC1527: 16m @ 2.00 g/t from 36m                              |
| YRC1596: 65m @ 2.73 g/t from 24m and 35m @ | YRC1542: 2m @ 4.03 g/t from 63m                               |
| 3.49 g/t from 105m                         | YRC1547: 10m @ 2.1 g/t from 40m and 7m @ 1.38                 |
| YRC1597: 38m @ 1.23 g/t from 82m           | g/t from 58m                                                  |
|                                            | YRC1551: 22m @ 0.74 g/t from 7m                               |
|                                            | YRC1552: 12m @ 0.97 g/t from 19m                              |
|                                            | YRC1555: 21m @ 0.96 g/t from 2m and 10m @                     |
|                                            | 1.15 g/t from 37m                                             |
|                                            | YRC1556: 46m @ 0.71 g/t from 4m and 3m @ 1.56<br>g/t from 53m |
|                                            |                                                               |

## Table 1: Intercepts from Yaoure Mining Licence - Govisou and Angovia 2 Prospects



## **BAGOÉ EXPLORATION PERMIT**

Resource definition drilling was undertaken at the Antoinette, Véronique and Juliette prospects on the Bagoé permit (*Figures 2 and 3*). A total of 18,665 metres was drilled in 52 Air Core ("AC"), 252 RC and 6 diamond drilling ("DD") holes, plus nine geotechnical and exploratory water bores. Almost all results have now been received for this drilling, generally confirming the tenor and width of previous drilling and suggesting possible extensions.

At Véronique, drilling defined strong mineralisation over a core zone of approximately 440 metres over widths of 3 to 9 metres. (Refer to *Figures 6 and 7*) Better intercepts are shown in *Table 2*.

At Juliette, drilling confirmed strong mineralisation over a strike length of 250 metres with widths ranging from 4 to 22 metres (*Figures 8 and 9*). The mineralisation remains open to the southwest and at depth. Better intercepts from the Juliette drilling are included in the second column of *Table 2*.

Drilling at Antoinette Central was also successful in confirming strong mineralisation over a strike length of 875 metres with average widths of 5 to 44 metres. The mineralisation appears to remain open to both the northeast and southwest and at depth. (Refer to *Figures 10 and 11*) Better intercepts from the Antoinette drilling are included in the last column of *Table 2*.

A complete summary of the recent Bagoé drilling is included in Appendix A - Table 2.

Exploration will now focus on investigation of other prospective opportunities identified on the Bagoé tenement, including:

- Strike and dip extensions to known deposits identified from the recent resource drilling.
- The Antoinette-Juliette 'gap' to follow up previous encouraging intercepts in AC and RC drilling beneath transported cover.
- Drilling to follow up encouraging drill intercepts between Antoinette and Antoinette South.
- Drilling to follow up encouraging intercepts on potential repetitions of the Véronique deposit and at regional prospects such as Odette and Brigette.
- Augering at early-stage regional prospects such as Ludivine.



Véronique

#### Table 2 Intercepts\*\* from Bagoé Exploration Permit - Véronique, Juliette and Antoinette Deposits

Antoinette

Juliette

BDAC001682: 5m @ 13.6 g/t from 43m\* BDAC001686: 15m @ 2.64 g/t from 10m BDAC001687: 33m @ 2.94 g/t from 0m BDAC001688: 14m @ 6.29 g/t from 22m BDAC001689: 7m @ 3.30 g/t from 23m BDAC001690: 8m @ 3.25 g/t from 37m BDAC001691: 5m @ 5.67 g/t from 18m BDAC001695: 9m @ 6.22 g/t from 25m\* BDRC0280: 6m @ 8.36 q/t from 56m BDRC0283: 5m @ 8.74 g/t from 53m BDRC0291: 5m @ 3.97 q/t from 53m BDRC0306: 2m @ 5.31 g/t from 21m BDRC0307: 9m @ 2.35 g/t from 18m BDRC0352: 10m @ 3.22 g/t from 27m BDRC0353: 6m @ 5.24 q/t from 12m BDRC0355: 10m @ 6.16 g/t from 20m BDRC0358: 9m @ 3.89 q/t from 17m BDRC0412: 2m @ 25.2 g/t from 17m\* BDRC0421: 3m @ 4.33 g/t from 22m BDRC0362: 15m @ 4.81 g/t from 3m\* BDRC0366: 3m @ 34.9 g/t from 37m\* BDRC0370: 3m @ 23.3 g/t from 21m\* BDRC0386: 8m @ 7.03 q/t from 13m\* BDRC0433: 6m @ 2.15 g/t from 14m BDRC0434: 3m @ 35.66 g/t from 10m\* BDRC0440: 6m @ 1.08 g/t from 16m BDRC0447: 10m @ 1.14 g/t from 7m BDRC0450: 4m @ 4.25 g/t from 30m BDRC0456: 20m @ 1.44 g/t from 64m BDRC0457: 2m @ 5.72 g/t from 67m

BDRC0325: 15m @ 3.30 g/t from 36m BDRC0326: 12m @ 2.55 g/t from 55m BDRC0327: 10m @ 2.63 g/t from 38m BDRC0328: 9m @ 1.78 g/t from 52m BDRC0330: 8m @ 2.71 g/t from 37m BDRC0332: 7m @ 7.78 g/t from 52m BDRC0338: 6m @ 2.08 g/t from 64m BDRC0339: 22m @ 1.23 g/t from 40m BDRC0340: 16m @ 1.52 g/t from 48m BDRC0340: 16m @ 1.52 g/t from 48m BDRC0341: 9m @ 1.86 g/t from 6m and 8m @ 1.90 g/t from 34 BDRC0342: 9m @ 2.39 g/t from 45m BDRC0343: 13m @ 1.10 g/t from 26m

BDRC0343: 13m @ 1.10 g/t from 26m BDRC0344: 13m @ 2.72 g/t from 26m BDRC0345: 13m @ 2.25 g/t from 26m BDRC0458: 5m @ 3.16 g/t from 36m BDRC0459: 10m @ 3.05 g/t from 50m BDRC0461: 16m @ 2.23 g/t from 41m BDRC0465: 18m @ 1.58 g/t from 39m BDRC0466: 19m @ 2.19 g/t from 59m BDAC01696: 11m @ 2.98 g/t from 0m BDAC01697: 11m @ 4.95 g/t from 6m BDAC01698: 20m @ 5.36 g/t from 1m BDAC01699: 14m @ 2.49 g/t from 4m BDAC01700: 12m @ 3.49 g/t from 0m and 17m @ 6.45 g/t from 32m BDRC0467: 10m @ 3.95 g/t from 7m and 8m @ 2.93 g/t from 30m BDRC0469: 10m @ 4.19 g/t from 27m and 14m @ 3.21 g/t from 41m BDRC0469: 6m @ 6.75 g/t from 27m and 11m @ 3.89 g/t from 44m and 10m @ 2.66 g/t from 68m BDRC0471: 44m @ 2.37 g/t from 12m BDRC0472: 6m @ 6.01 g/t from 17m BDRC0473: 14m @ 3.02 a/t from 0m BDRC0474: 32m @ 4.03 g/t from 33m BDRC0475: 8m @ 3.02 g/t from 49m BDRC0476: 11m @ 2.19 g/t from 34m BDRC0479: 21m @ 4.43 g/t from 29m BDRC0480: 10m @ 3.43 g/t from 65m and BDRC0480: 18m @ 8.42 g/t from 78m BDRC0481: 17m @ 2.74 g/t from 18m BDRC0482: 5m@ 2.08 g/t from 45m BDRC0483: 15m @ 2.5 g/t from 42m BDRC0484: 14m @ 3.35 g/t from 0m and 5m @ 2.00 g/t from 55m BDRC0485: 8m @ 3.42 g/t from 93m BDRC0486: 12m @ 2.16 g/t from 43m BDRC0488: 8m @ 2.36 g/t from 77m BDRC0489: 6m @ 2.22 g/t from 0m BDRC0490: 10m @ 3.27 g/t from 19m BDRC0491: 12m @ 2.83 g/t from 44m BDRC0492: 9m @ 4.09 g/t from 9m BDRC0494: 7m @ 2.53 g/t from 69m BDRC0496: 11m @ 4.12 g/t from 73m BDRC0497: 12m @ 8.32 g/t from 21m BDRC0498: 6m @ 2.47 g/t from 52m BDRC0505: 10m @ 7.13 g/t from 10m and 11m @ 3.22 g/t from 32m BDRC0507: 11m @ 2.45 a/t from 47m BDRC0513: 24m @ 3.33 g/t from 70m BDDD0015: 8.5m @ 3.35 g/t from 20m BDDD0016: 10m @ 3.54 g/t from 0m BDDD0017: 14m @ 4.23 g/t from 63m BDDD0020: 5m @ 28.56 g/t from 70m BDDD0021: 10m @ 9.14 g/t from 76m BDDD0021: 9m @ 17.88 g/t from 116m BDDD0022: 7m @ 6.92 g/t from 18m BDDD0022: 8m @ 2.53 g/t from 34m

BDDD0022: 12m @ 6.01 from 74m

Notes:



- \* Previously reported ASX announcement of 20<sup>th</sup> January 2021.
- \*\* Significant intercepts calculated using a minimum grade of 0.3 g/t, a minimum length of 2m and maximum internal dilution of 2m.

# This announcement has been approved for release by the Technical Committee of the Board of Directors of the Company.

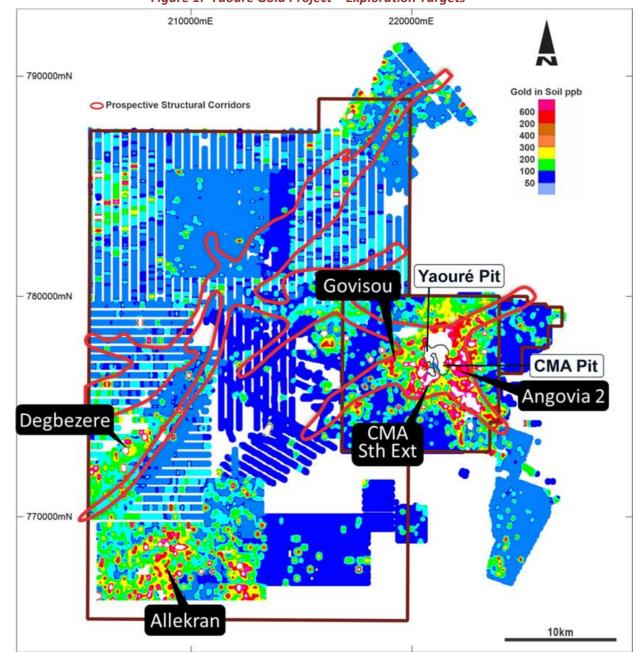
To discuss any aspect of this announcement, please contact:

| Managing Director: | Jeff Quartermaine at telephone +61 8 6144 1700 or email |
|--------------------|---------------------------------------------------------|
|                    | jeff.quartermaine@perseusmining.com;                    |
| Media Relations:   | Nathan Ryan at telephone +61 4 20 582 887 or email      |
|                    | nathan.ryan@nwrcommunications.com.au (Melbourne)        |

#### **Competent Person Statement:**

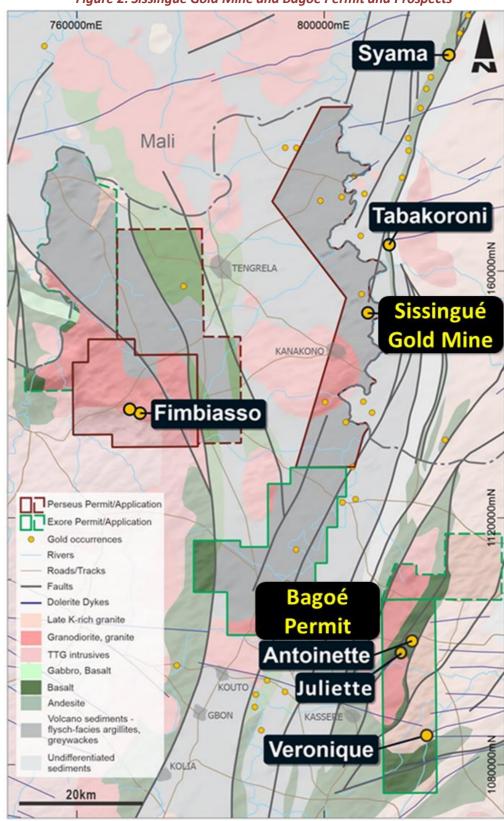
All production targets for Edikan, Sissingué and Yaouré referred to in this report are underpinned by estimated Ore Reserves which have been prepared by competent persons in accordance with the requirements of the JORC Code. The information in this report that relates to Esuajah North Mineral Resources estimate was first reported by the Company in compliance with the JORC Code 2012 and NI43-101 in a market announcement entitled "Perseus Mining Updates Mineral Resources & Ore Reserves" released on 29 August 2018. The information in this report that relates to the Mineral Resource and Ore Reserve estimates for the Bokitsi South and AFG Gap deposits at the EGM was first reported by the Company in compliance with the JORC Code 2012 and NI43-101 in a market announcement released on 26 August 2020. The information in this report that relates to the Mineral Resource and Ore Reserve estimates for the Mineral Resource and Ore Reserve estimates for the other EGM deposits (Fetish and Esuajah South Underground) was first reported by the Company in compliance with the JORC Code 2012 and NI43-101 in a market announcement released for depletion until 30 June 2020 in a market announcement released on 26 August 2020. The Company confirms that it is not aware of any new information or data that materially affect the information in those market releases and that all material assumptions underpinning those estimates and the production targets, or the forecast financial information derived therefrom, continue to apply and have not materially changed. The Company further confirms that material assumptions underpinning the estimates of Ore Reserves described in "Technical Report — Central Ashanti Gold Project, Ghana" dated 30 May 2011 continue to apply.

The information in this report that relates to Mineral Resources and Ore Reserves for Sissingué was first reported by the Company in compliance with the JORC Code 2012 and NI43-101 in a market announcement released on 29 October 2018 and includes an update for depletion as at 30 June 2020. The information in this report that relates to Mineral Resources and Ore Reserves for the Fimbiasso East and West deposits, previously Bélé East and West respectively, was first reported by the Company in compliance with the JORC Code 2012 and NI43-101 in a market announcement released on 26 August 2020. The Company confirms that material assumptions underpinning the estimates of Mineral Resources and Ore Reserves described in those market announcements. The Company confirms that it is not aware of any new information or data that materially affect the information in these market releases and that all material assumptions underpinning those estimates and the production targets, or the forecast financial information derived therefrom, continue to apply and have not materially changed. The Company further confirms that material assumptions underpinning the estimates of Ore Reserves described in "Technical Report — Sissingué Gold Project, Côte d'Ivoire" dated 29 May 2015 continue to apply. The information in this report in relation to Yaouré Mineral Resource and Ore Reserve estimates was first reported by the Company in compliance with the JORC Code 2012 and NI43-101 in a market announcement on 28 August 2019. The Company confirms that all material assumptions underpinning those estimates and the production targets, or the forecast financial information derived therefrom, in that market release continue to apply and have not materially changed. The Company further confirms that material assumptions underpinning the estimates of Ore Reserves described in "Technical Report — Yaouré Gold Project, Côte d'Ivoire" dated 18 December 2017 continue to apply.


The information in this report and the attachments that relate to exploration drilling results at the Yaouré and Bagoé Projects is based on, and fairly represents, information and supporting documentation prepared by Dr Douglas Jones, a Competent Person who is a Chartered Professional Geologist. Dr Jones is the Group General Manager Exploration of the Company. Dr Jones has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves''') and to qualify as a "Qualified Person" under National Instrument 43-101 – Standards of Disclosure for Mineral Projects ("NI 43-101"). Dr Jones consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.



#### Caution Regarding Forward Looking Information:


This report contains forward-looking information which is based on the assumptions, estimates, analysis and opinions of management made in light of its experience and its perception of trends, current conditions and expected developments, as well as other factors that management of the Company believes to be relevant and reasonable in the circumstances at the date that such statements are made, but which may prove to be incorrect. Assumptions have been made by the Company regarding, among other things: the price of gold, continuing commercial production at the Edikan Gold Mine and the Sissingué Gold Mine and achieving commercial production at the Yaouré Gold Mine without any major disruption due to the COVID-19 pandemic or otherwise, the receipt of required governmental approvals, the accuracy of capital and operating cost estimates, the ability of the Company to operate in a safe, efficient and effective manner and the ability of the Company to obtain financing as and when required and on reasonable terms. Readers are cautioned that the foregoing list is not exhaustive of all factors and assumptions which may have been used by the Company. Although management believes that the assumptions made by the Company and the expectations represented by such information are reasonable, there can be no assurance that the forward-looking information will prove to be accurate. Forward-looking information involves known and unknown risks, uncertainties, and other factors which may cause the actual results, performance or achievements of the Company to be materially different from any anticipated future results, performance or achievements expressed or implied by such forward-looking information. Such factors include, among others, the actual market price of gold, the actual results of current exploration, the actual results of future exploration, changes in project parameters as plans continue to be evaluated, as well as those factors disclosed in the Company's publicly filed documents. The Company believes that the assumptions and expectations reflected in the forward-looking information are reasonable. Assumptions have been made regarding, among other things, the Company's ability to carry on its exploration and development activities, the timely receipt of required approvals, the price of gold, the ability of the Company to operate in a safe, efficient and effective manner and the ability of the Company to obtain financing as and when required and on reasonable terms. Readers should not place undue reliance on forward-looking information. Perseus does not undertake to update any forward-looking information, except in accordance with applicable securities laws.















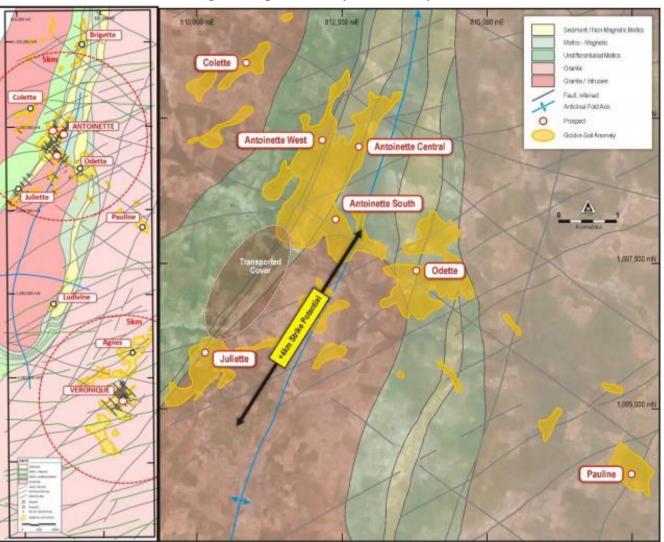
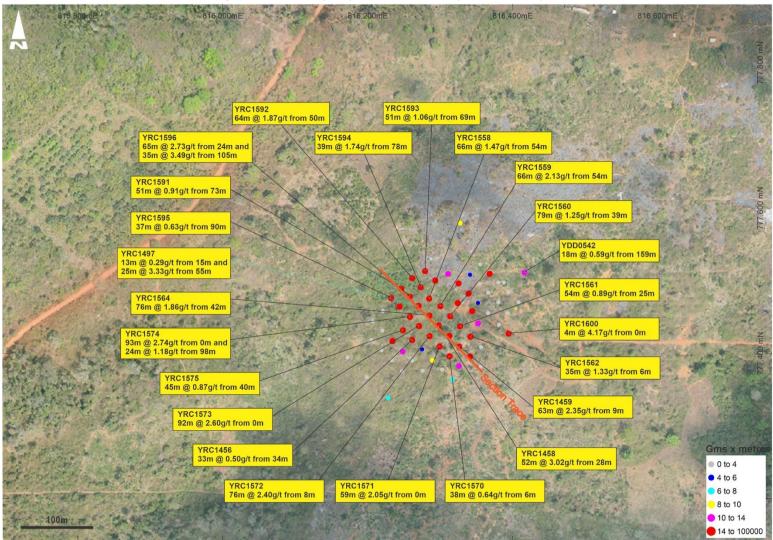



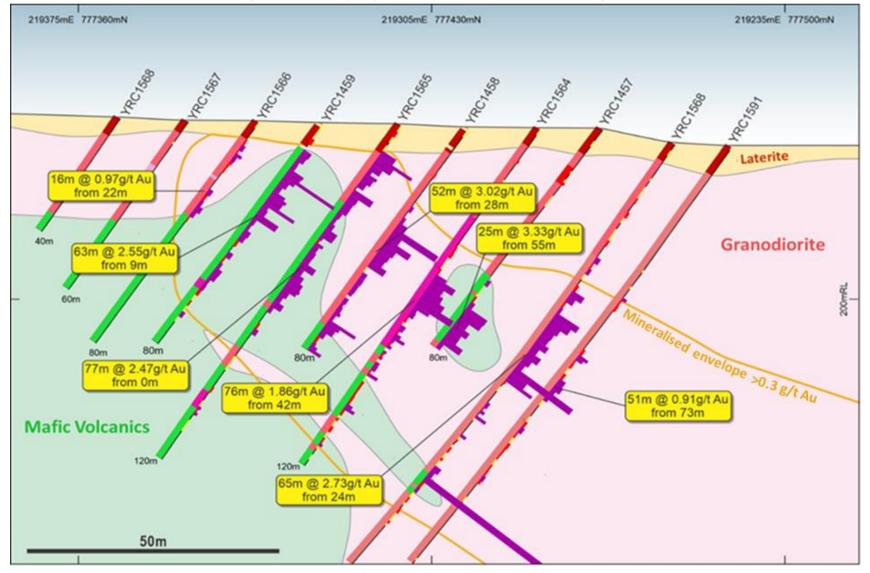
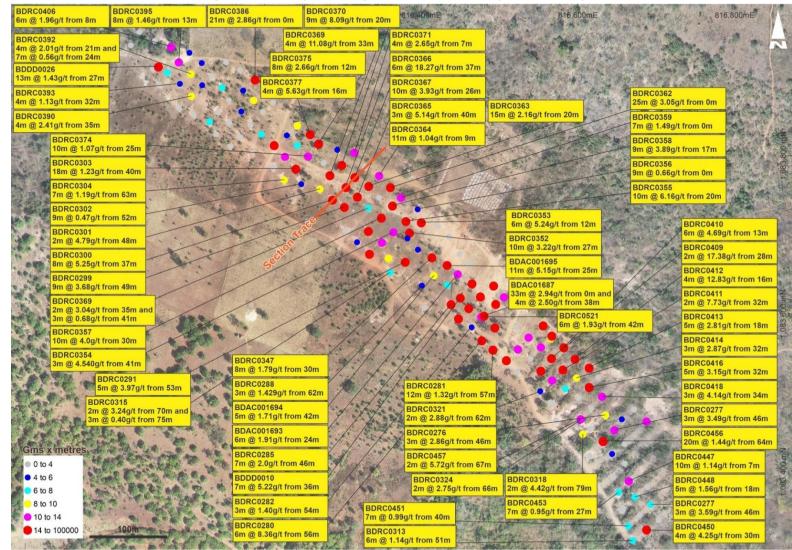

Figure 3: Bagoé Permit Deposits and Prospects

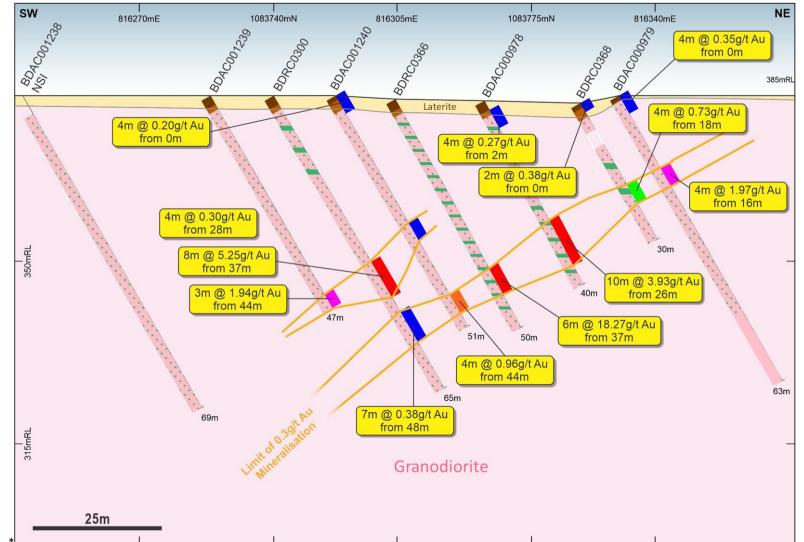




#### Figure 4: Govisou prospect - Plan View of Gold Intercepts





Figure 5: Govisou prospect: SE/NW Vertical Section - Looking SW





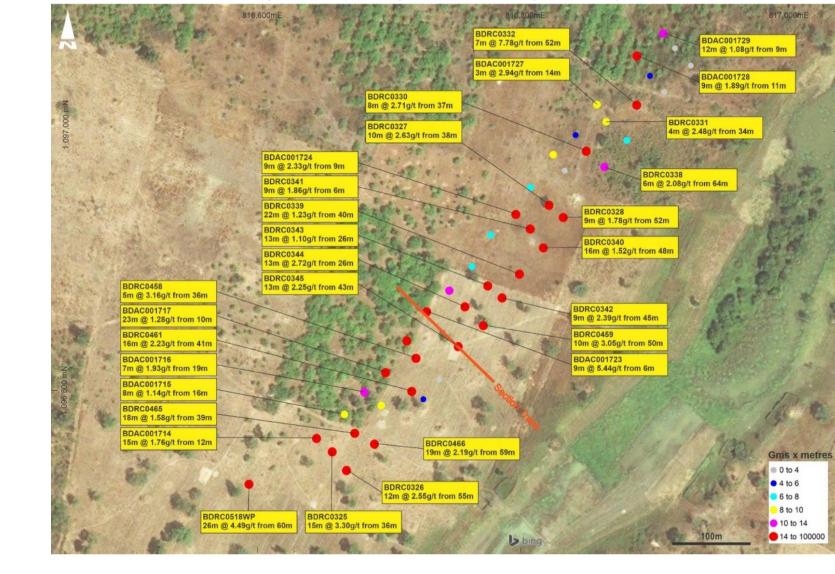
#### Figure 6: Véronique Drilling Results - Plan View of Gold Intercepts

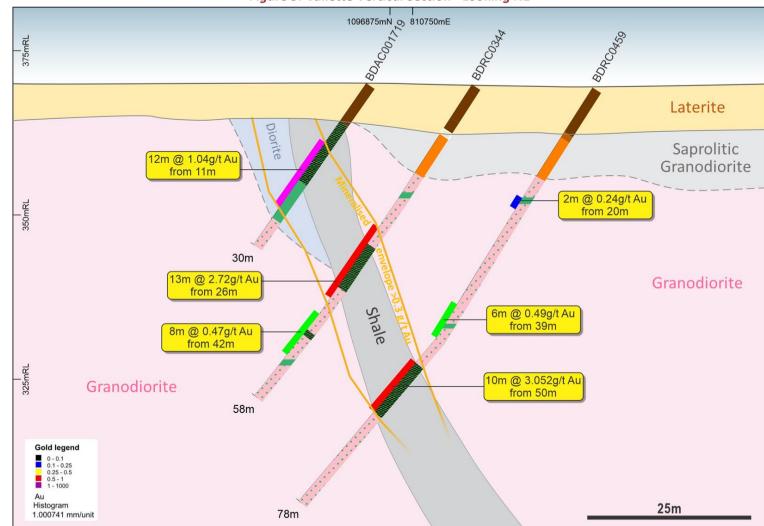




#### Figure 7: Véronique Vertical Section – looking NW

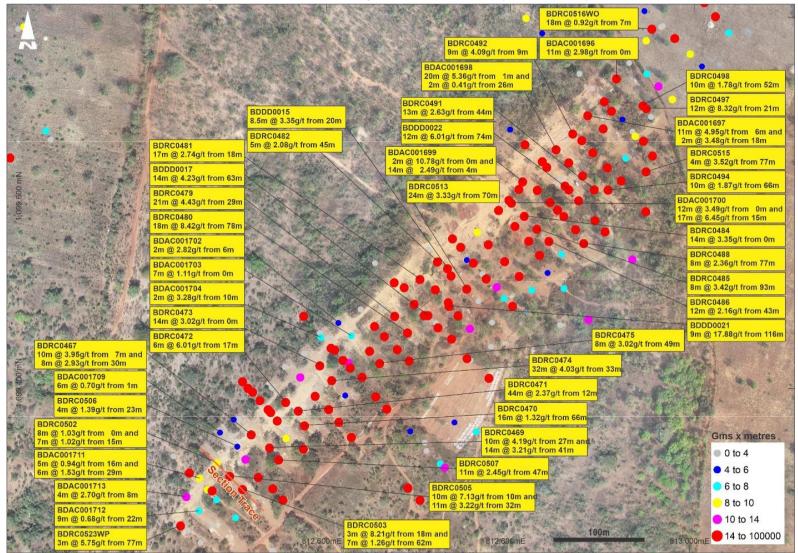






Figure 8: Juliette Drilling Results - Plan View of Gold Intercepts

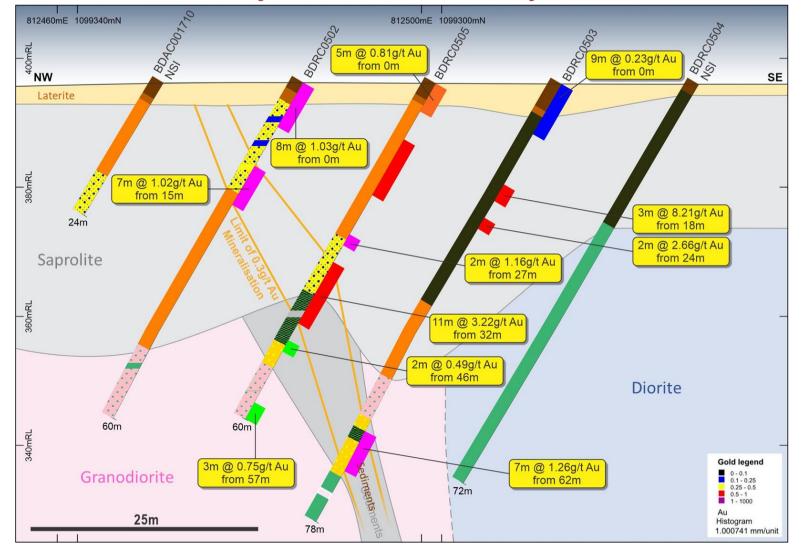
0 to 4 • 4 to 6

6 to 8 8 to 10


14 to 100000






#### Figure 9: Juliette Vertical Section - Looking NE





#### Figure 10: Antoinette Drilling Results - Plan View of Gold Intercepts





#### Figure 11: Antoinette Vertical Section – Looking NE



## **APPENDIX A – DETAILED DRILL RESULTS**

| Hole ID | East        | North       | RL      | Drill | Azimuth | Dip | Depth | No of   | From | То  | Width | Grade |
|---------|-------------|-------------|---------|-------|---------|-----|-------|---------|------|-----|-------|-------|
|         | (mE)        | (mN)        | (mRL)   | Туре  | (°)     | (°) | (m)   | samples | (m)  | (m) | (m)   | (g/t) |
| GOVISOU |             |             |         |       |         |     |       |         |      |     |       |       |
| YDD0542 | 219416.62   | 777512.405  | 244.63  | DD    | 225     | -50 | 275.7 | 22      | 159  | 177 | 18    | 0.59  |
| YDD0543 | 219327.297  | 777579.849  | 246.69  | DD    | 130     | -50 | 285.3 | 21      | 152  | 168 | 16    | 0.52  |
| YRC1435 | 219363.6253 | 777542.3088 | 240.207 | RC    | 325     | -55 | 87    | NSI     |      |     |       |       |
| YRC1436 | 219396.667  | 777509.959  | 245.199 | RC    | 325     | -55 | 80    | NSI     |      |     |       |       |
| YRC1437 | 219418.7956 | 777486.058  | 247.106 | RC    | 325     | -55 | 80    | NSI     |      |     |       |       |
| YRC1438 | 219449.8179 | 777458.0204 | 247.995 | RC    | 325     | -55 | 80    | NSI     |      |     |       |       |
| YRC1451 | 219152.1265 | 777417.8484 | 250.613 | RC    | 135     | -55 | 80    | NSI     |      |     |       |       |
| YRC1452 | 219176.2503 | 777392.0717 | 255.17  | RC    | 135     | -55 | 80    | NSI     |      |     |       |       |
| YRC1453 | 219203.2689 | 777362.591  | 256.496 | RC    | 135     | -55 | 80    | NSI     |      |     |       |       |
| YRC1454 | 219227.3354 | 777337.4479 | 257.249 | RC    | 135     | -55 | 80    | 2       | 0    | 5   | 5     | 1.36  |
| YRC1455 | 219290.9681 | 777389.8992 | 253.868 | RC    | 135     | -55 | 80    | 9       | 42   | 58  | 16    | 0.54  |
| YRC1456 | 219265.0363 | 777415.0898 | 253.258 | RC    | 135     | -55 | 80    | 17      | 34   | 67  | 33    | 0.5   |
| YRC1457 | 219272.3824 | 777464.7578 | 250.886 | RC    | 135     | -55 | 80    | 13      | 55   | 80  | 25    | 3.33  |
| YRC1458 | 219299.6398 | 777438.3718 | 251.208 | RC    | 135     | -55 | 80    | 32      | 28   | 80  | 52    | 3.02  |
| YRC1459 | 219327.949  | 777408.3488 | 252.461 | RC    | 135     | -55 | 80    | 36      | 9    | 72  | 63    | 2.35  |
| YRC1460 | 219345.3809 | 777450.9415 | 248.511 | RC    | 135     | -55 | 80    | 7       | 2    | 16  | 14    | 0.83  |
| YRC1460 | 219345.3809 | 777450.9415 | 248.511 | RC    | 135     | -55 | 80    | 11      | 20   | 42  | 22    | 2.58  |
| YRC1558 | 219284.756  | 777476.117  | 249.896 | RC    | 135     | -55 | 120   | 9       | 26   | 38  | 12    | 0.39  |
| YRC1558 | 219284.756  | 777476.117  | 249.896 | RC    | 135     | -55 | 120   | 52      | 54   | 120 | 66    | 1.47  |
| YRC1559 | 219300.127  | 777465.712  | 249.452 | RC    | 135     | -55 | 120   | 12      | 10   | 29  | 19    | 0.3   |
| YRC1559 | 219300.127  | 777465.712  | 249.452 | RC    | 135     | -55 | 120   | 52      | 54   | 120 | 66    | 2.13  |
| YRC1560 | 219313.855  | 777451.746  | 249.75  | RC    | 135     | -55 | 120   | 55      | 39   | 118 | 79    | 1.25  |
| YRC1561 | 219327.405  | 777438.066  | 250.94  | RC    | 135     | -55 | 100   | 29      | 25   | 79  | 54    | 0.89  |
| YRC1561 | 219327.405  | 777438.066  | 250.94  | RC    | 135     | -55 | 100   | 3       | 84   | 89  | 5     | 1.15  |
| YRC1562 | 219341.787  | 777423.787  | 251.534 | RC    | 135     | -55 | 80    | 19      | 6    | 41  | 35    | 1.33  |
| YRC1563 | 219356.245  | 777409.392  | 251.746 | RC    | 135     | -55 | 60    | NSI     |      |     |       |       |
| YRC1564 | 219284.981  | 777452.653  | 250.822 | RC    | 135     | -55 | 120   | 56      | 42   | 118 | 76    | 1.86  |
| YRC1565 | 219312.667  | 777424.745  | 252.16  | RC    | 135     | -55 | 120   | 44      | 0    | 77  | 77    | 2.47  |

#### Table 1: Yaouré drill holes and significant intercepts



| YRC1565 | 219312.667 | 777424.745 | 252.16  | RC | 135 | -55 | 120 | 18  | 83  | 112 | 29 | 0.37 |
|---------|------------|------------|---------|----|-----|-----|-----|-----|-----|-----|----|------|
| YRC1566 | 219341.128 | 777396.253 | 253.287 | RC | 135 | -55 | 80  | 9   | 6   | 18  | 12 | 0.99 |
| YRC1566 | 219341.128 | 777396.253 | 253.287 | RC | 135 | -55 | 80  | 9   | 22  | 38  | 16 | 0.97 |
| YRC1567 | 219355.412 | 777382.12  | 253.185 | RC | 135 | -55 | 60  | NSI |     |     |    |      |
| YRC1568 | 219368.856 | 777368.383 | 254.114 | RC | 135 | -55 | 40  | NSI |     |     |    |      |
| YRC1569 | 219325.839 | 777383.01  | 254.54  | RC | 135 | -55 | 80  | 13  | 7   | 28  | 21 | 0.4  |
| YRC1569 | 219325.839 | 777383.01  | 254.54  | RC | 135 | -55 | 80  | 17  | 32  | 57  | 25 | 0.2  |
| YRC1570 | 219312.64  | 777396.56  | 253.875 | RC | 135 | -55 | 100 | 21  | 6   | 44  | 38 | 0.6  |
| YRC1571 | 219298.892 | 777410.169 | 252.812 | RC | 135 | -55 | 132 | 31  | 0   | 59  | 59 | 2.0  |
| YRC1571 | 219298.892 | 777410.169 | 252.812 | RC | 135 | -55 | 132 | 10  | 68  | 83  | 15 | 0.2  |
| YRC1571 | 219298.892 | 777410.169 | 252.812 | RC | 135 | -55 | 132 | 7   | 106 | 115 | 9  | 0.8  |
| YRC1572 | 219285.028 | 777424.592 | 252.68  | RC | 135 | -55 | 120 | 43  | 8   | 84  | 76 | 2.4  |
| YRC1573 | 219270.671 | 777438.473 | 252.28  | RC | 135 | -55 | 120 | 50  | 0   | 92  | 92 | 2.6  |
| YRC1574 | 219258.276 | 777450.875 | 251.718 | RC | 135 | -55 | 122 | 57  | 0   | 93  | 93 | 2.7  |
| YRC1574 | 219258.276 | 777450.875 | 251.718 | RC | 135 | -55 | 122 | 16  | 98  | 122 | 24 | 1.1  |
| YRC1575 | 219248.331 | 777432.481 | 252.716 | RC | 135 | -55 | 124 | 25  | 40  | 85  | 45 | 0.8  |
| YRC1576 | 219274.955 | 777406.029 | 253.773 | RC | 135 | -55 | 120 | 7   | 38  | 52  | 14 | 0.3  |
| YRC1577 | 219302.852 | 777378.023 | 254.674 | RC | 135 | -55 | 90  | NSI |     |     |    |      |
| YRC1578 | 219316.642 | 777364.388 | 254.99  | RC | 135 | -55 | 70  | 7   | 14  | 28  | 14 | 0.4  |
| YRC1579 | 219275.444 | 777376.845 | 254.674 | RC | 135 | -55 | 50  | NSI |     |     |    |      |
| YRC1580 | 219261.253 | 777390.634 | 254.535 | RC | 135 | -55 | 75  | NSI |     |     |    |      |
| YRC1581 | 219247.789 | 777403.813 | 254.32  | RC | 135 | -55 | 100 | 18  | 74  | 96  | 22 | 0.5  |
| YRC1582 | 219234.089 | 777418.915 | 253.636 | RC | 135 | -55 | 100 | 20  | 72  | 100 | 28 | 0.8  |
| YRC1583 | 219220.245 | 777432.732 | 252.1   | RC | 135 | -55 | 100 | NSI |     |     |    |      |
| YRC1584 | 219207.273 | 777445.755 | 250.874 | RC | 135 | -55 | 100 | NSI |     |     |    |      |
| YRC1585 | 219205.092 | 777419.274 | 253.66  | RC | 135 | -55 | 80  | NSI |     |     |    |      |
| YRC1586 | 219219.033 | 777405.344 | 254.582 | RC | 135 | -55 | 80  | NSI |     |     |    |      |
| YRC1587 | 219231.838 | 777392.256 | 254.983 | RC | 135 | -55 | 80  | NSI |     |     |    |      |
| YRC1588 | 219247.787 | 777376.68  | 255.372 | RC | 135 | -55 | 60  | NSI |     |     |    |      |
| YRC1589 | 219221.476 | 777459.595 | 247.863 | RC | 135 | -55 | 110 | NSI |     |     |    |      |
| YRC1590 | 219243.957 | 777464.856 | 246.983 | RC | 135 | -55 | 162 | 3   | 18  | 24  | 6  | 1.3  |
| YRC1590 | 219243.957 | 777464.856 | 246.983 | RC | 135 | -55 | 162 | 56  | 30  | 116 | 86 | 2.1  |
| YRC1591 | 219246.829 | 777490.896 | 245.388 | RC | 135 | -55 | 168 | 3   | 54  | 59  | 5  | 0.8  |



| YRC1591  | 219246.829 | 777490.896 | 245.388 | RC | 135 | -55 | 168 | 29  | 73  | 124 | 51 | 0.93     |
|----------|------------|------------|---------|----|-----|-----|-----|-----|-----|-----|----|----------|
| YRC1592  | 219261.02  | 777504.557 | 244.933 | RC | 135 | -55 | 114 | 39  | 50  | 114 | 64 | 1.8      |
| YRC1593  | 219279.36  | 777514.777 | 244.633 | RC | 135 | -55 | 120 | 12  | 39  | 63  | 24 | 0.5      |
| YRC1593  | 219279.36  | 777514.777 | 244.633 | RC | 135 | -55 | 120 | 43  | 69  | 120 | 51 | 1.0      |
| YRC1594  | 219272.967 | 777492.581 | 245.881 | RC | 135 | -55 | 117 | 15  | 49  | 75  | 26 | 0.2      |
| YRC1594  | 219272.967 | 777492.581 | 245.881 | RC | 135 | -55 | 117 | 28  | 78  | 117 | 39 | 1.7      |
| YRC1595  | 219231.761 | 777478.526 | 245.513 | RC | 135 | -55 | 164 | 26  | 90  | 127 | 37 | 0.6      |
| YRC1596  | 219258.095 | 777479.35  | 246.395 | RC | 135 | -55 | 170 | 34  | 24  | 89  | 65 | 2.7      |
| YRC1596  | 219258.095 | 777479.35  | 246.395 | RC | 135 | -55 | 170 | 6   | 93  | 100 | 7  | 1.:      |
| YRC1596  | 219258.095 | 777479.35  | 246.395 | RC | 135 | -55 | 170 | 26  | 105 | 140 | 35 | 3.4      |
| YRC1597  | 219293.009 | 777500.808 | 245.499 | RC | 135 | -55 | 120 | 9   | 61  | 79  | 18 | 0.4      |
| YRC1597  | 219293.009 | 777500.808 | 245.499 | RC | 135 | -55 | 120 | 26  | 82  | 120 | 38 | 1.2      |
| YRC1598  | 219324.233 | 777469.747 | 247.863 | RC | 135 | -55 | 128 | 1   | 4   | 6   | 2  | 4.8      |
| YRC1598  | 219324.233 | 777469.747 | 247.863 | RC | 135 | -55 | 128 | 17  | 28  | 62  | 34 | 0.       |
| YRC1598  | 219324.233 | 777469.747 | 247.863 | RC | 135 | -55 | 128 | 8   | 66  | 80  | 14 | 0.4      |
| YRC1599  | 219353.381 | 777441.172 | 249.688 | RC | 135 | -55 | 60  | 7   | 9   | 22  | 13 | 0.8      |
| YRC1600  | 219393.991 | 777428.249 | 249.608 | RC | 135 | -55 | 40  | 1   | 0   | 4   | 4  | 4.1      |
| YRC1601  | 219381.034 | 777441.569 | 249.281 | RC | 135 | -55 | 50  | NSI |     |     |    |          |
| YRC1602  | 219366.412 | 777455.905 | 248.892 | RC | 135 | -55 | 70  | NSI |     |     |    |          |
| YRC1603  | 219352.333 | 777470.395 | 247.718 | RC | 135 | -55 | 90  | 9   | 24  | 42  | 18 | 0.3      |
| YRC1604  | 219339.347 | 777483.175 | 245.837 | RC | 135 | -55 | 90  | 16  | 47  | 72  | 25 | 0.7      |
| YRC1605  | 219325.498 | 777496.874 | 244.52  | RC | 135 | -55 | 90  | 1   | 4   | 6   | 2  | 2.4      |
| YRC1605  | 219325.498 | 777496.874 | 244.52  | RC | 135 | -55 | 90  | 25  | 53  | 87  | 34 | 0.4      |
| YRC1606  | 219353.789 | 777524.896 | 240.074 | RC | 135 | -55 | 50  | NSI |     |     |    |          |
| YRC1607  | 219339.144 | 777511.29  | 241.339 | RC | 135 | -55 | 66  | 9   | 36  | 47  | 11 | 0.4      |
| YRC1608  | 219312.418 | 777510.371 | 244.049 | RC | 135 | -55 | 90  | 3   | 2   | 8   | 6  | 2.0      |
| YRC1608  | 219312.418 | 777510.371 | 244.049 | RC | 135 | -55 | 90  | 16  | 64  | 86  | 22 | 0.4      |
| YRC1609  | 219369.391 | 777509.61  | 244.471 | RC | 135 | -55 | 60  | 11  | 14  | 36  | 22 | 0.6      |
| YRC1610  | 219353.967 | 777496.335 | 245.111 | RC | 135 | -55 | 70  | NSI |     |     |    |          |
| YRC1611  | 219393.828 | 777456.424 | 249.299 | RC | 135 | -55 | 50  | NSI |     |     |    |          |
| YRC1612  | 219408.392 | 777470.645 | 249.098 | RC | 135 | -55 | 40  | NSI |     |     |    |          |
| YRC1613  | 219394.093 | 777485.101 | 247.972 | RC | 135 | -55 | 60  | NSI |     |     |    |          |
| YRC1614A | 219384.083 | 777495.263 | 246.599 | RC | 135 | -55 | 18  | NSI |     |     |    | <u> </u> |



|   | YRC1614B  | 219388.083  | 777495.263  | 246.599  | RC | 135 | -55 | 60       | NSI |          |          |      |      |
|---|-----------|-------------|-------------|----------|----|-----|-----|----------|-----|----------|----------|------|------|
| ľ | YRC1615   | 219379.237  | 777471.869  | 248.344  | RC | 135 | -55 | 60       | NSI |          |          |      |      |
| ľ | YRC1616   | 219366.64   | 777484.422  | 246.797  | RC | 135 | -55 | 70       | NSI |          |          |      |      |
|   | ANGOVIA 2 | Į           | Į           | <u> </u> |    | 1   | 1   | <u> </u> |     | <u>,</u> | <u>.</u> |      |      |
| ľ | YDD0550   | 221771.103  | 776350.362  | 298.074  | DD | 290 | -90 | 123.8    | 17  | 14       | 30       | 16   | 1.22 |
| ľ | YDD0550   | 221771.103  | 776350.362  | 298.074  | DD | 290 | -90 | 123.8    | 2   | 35       | 37       | 2    | 2.54 |
| ľ | YDD0550   | 221771.103  | 776350.362  | 298.074  | DD | 290 | -90 | 123.8    | 2   | 81       | 83       | 2    | 2.27 |
|   | YDD0551   | 221799.726  | 776344.964  | 299.381  | DD | 270 | -50 | 153.5    | 17  | 61       | 76       | 15   | 0.29 |
|   | YDD0551   | 221799.726  | 776344.964  | 299.381  | DD | 270 | -50 | 153.5    | 15  | 84       | 98       | 14   | 0.81 |
| ſ | YDD0551   | 221799.726  | 776344.964  | 299.381  | DD | 270 | -50 | 153.5    | 23  | 101      | 122      | 21   | 0.73 |
| ľ | YDD0552   | 221840.325  | 776345.081  | 299.429  | DD | 270 | -50 | 153.8    | 15  | 25       | 39       | 14   | 1.02 |
| ſ | YDD0552   | 221840.325  | 776345.081  | 299.429  | DD | 270 | -50 | 153.8    | 8   | 59       | 66       | 7    | 1.05 |
| ſ | YDD0552   | 221840.325  | 776345.081  | 299.429  | DD | 270 | -50 | 153.8    | 3   | 120      | 123      | 3    | 1.61 |
| ſ | YDD0552   | 221840.325  | 776345.081  | 299.429  | DD | 270 | -50 | 153.8    | 3   | 142.15   | 145      | 2.85 | 1.45 |
| ſ | YDD0553   | 221744.982  | 776400.188  | 304.674  | DD | 180 | -55 | 150.7    | 11  | 37       | 47       | 10   | 1.03 |
| ľ | YDD0553   | 221744.982  | 776400.188  | 304.674  | DD | 180 | -55 | 150.7    | 32  | 94       | 124      | 30   | 1.6  |
|   | YDD0553   | 221744.982  | 776400.188  | 304.674  | DD | 180 | -55 | 150.7    | 19  | 131      | 147.1    | 16.1 | 0.84 |
|   | YDD0554   | 221743.918  | 776335.577  | 288.959  | DD | 270 | -90 | 112.1    | 6   | 9.7      | 18       | 8.3  | 0.66 |
|   | YDD0554   | 221743.918  | 776335.577  | 288.959  | DD | 270 | -90 | 112.1    | 6   | 32       | 37       | 5    | 1.83 |
|   | YDD0554   | 221743.918  | 776335.577  | 288.959  | DD | 270 | -90 | 112.1    | 9   | 63       | 72       | 9    | 1    |
|   | YDD0554   | 221743.918  | 776335.577  | 288.959  | DD | 270 | -90 | 112.1    | 26  | 88.6     | 111      | 22.4 | 0.99 |
|   | YDD0555   | 221771.844  | 776400.126  | 314.788  | DD | 180 | -55 | 159.9    | 6   | 0        | 9        | 9    | 0.86 |
|   | YDD0555   | 221771.844  | 776400.126  | 314.788  | DD | 180 | -55 | 159.9    | 5   | 45       | 50       | 5    | 4.86 |
|   | YDD0555   | 221771.844  | 776400.126  | 314.788  | DD | 180 | -55 | 159.9    | 38  | 55       | 91       | 36   | 0.69 |
|   | YDD0555   | 221771.844  | 776400.126  | 314.788  | DD | 180 | -55 | 159.9    | 5   | 108      | 113      | 5    | 0.88 |
|   | YDD0555   | 221771.844  | 776400.126  | 314.788  | DD | 180 | -55 | 159.9    | 9   | 116      | 124.3    | 8.3  | 6.18 |
|   | YDD0555   | 221771.844  | 776400.126  | 314.788  | DD | 180 | -55 | 159.9    | 22  | 141.3    | 159.9    | 18.6 | 2.95 |
|   | YRC1461   | 221607.1511 | 776242.958  | 261.429  | RC | 0   | -55 | 48       | NSI |          |          |      |      |
|   | YRC1462   | 221607.1336 | 776264.7614 | 262.904  | RC | 0   | -55 | 54       | 7   | 46       | 53       | 7    | 0.75 |
|   | YRC1463   | 221631.7837 | 776240.7776 | 262.706  | RC | 0   | -55 | 54       | NSI |          |          |      |      |
|   | YRC1464   | 221631.9039 | 776264.232  | 264.267  | RC | 0   | -55 | 54       | NSI |          |          |      |      |
|   | YRC1465   | 221631.9149 | 776287.5046 | 265.927  | RC | 0   | -55 | 60       | 28  | 19       | 47       | 28   | 0.81 |
|   | YRC1465   | 221631.9149 | 776287.5046 | 265.927  | RC | 0   | -55 | 60       | 5   | 50       | 55       | 5    | 0.98 |



| YRC1466 | 221656.8829 | 776238.7412 | 265.377 | RC | 0 | -55 | 54  | NSI |    |          |    |      |
|---------|-------------|-------------|---------|----|---|-----|-----|-----|----|----------|----|------|
| YRC1467 | 221656.8411 | 776262.7742 | 266.282 | RC | 0 | -55 | 54  | 2   | 0  | 2        | 2  | 3.38 |
| YRC1467 | 221656.8411 | 776262.7742 | 266.282 | RC | 0 | -55 | 54  | 2   | 24 | 26       | 2  | 3.4  |
| YRC1468 | 221656.8705 | 776286.852  | 267.626 | RC | 0 | -55 | 60  | 12  | 47 | 59       | 12 | 0.92 |
| YRC1469 | 221656.8434 | 776306.5074 | 270.474 | RC | 0 | -55 | 60  | 20  | 33 | 53       | 20 | 0.61 |
| YRC1470 | 221681.9018 | 776235.8473 | 269.587 | RC | 0 | -55 | 48  | 6   | 41 | 47       | 6  | 1.01 |
| YRC1471 | 221681.8449 | 776259.4706 | 271.263 | RC | 0 | -55 | 60  | 22  | 29 | 51       | 22 | 0.71 |
| YRC1471 | 221681.8449 | 776259.4706 | 271.263 | RC | 0 | -55 | 60  | 6   | 54 | 60       | 6  | 0.94 |
| YRC1472 | 221681.8461 | 776282.7469 | 273.126 | RC | 0 | -55 | 66  | 23  | 37 | 60       | 23 | 1.7  |
| YRC1473 | 221681.775  | 776307.1105 | 275.125 | RC | 0 | -55 | 66  | 16  | 0  | 16       | 16 | 0.75 |
| YRC1473 | 221681.775  | 776307.1105 | 275.125 | RC | 0 | -55 | 66  | 8   | 55 | 63       | 8  | 0.86 |
| YRC1474 | 221707.1063 | 776232.8159 | 273.553 | RC | 0 | -55 | 66  | NSI |    |          |    |      |
| YRC1475 | 221706.7705 | 776254.6724 | 276.435 | RC | 0 | -55 | 96  | 10  | 20 | 30       | 10 | 0.51 |
| YRC1476 | 221706.9648 | 776279.8104 | 277.955 | RC | 0 | -55 | 96  | 30  | 8  | 39       | 31 | 1.55 |
| YRC1476 | 221706.9648 | 776279.8104 | 277.955 | RC | 0 | -55 | 96  | 24  | 72 | 96       | 24 | 1.09 |
| YRC1477 | 221706.9832 | 776303.5619 | 278.675 | RC | 0 | -55 | 96  | 14  | 0  | 15       | 15 | 0.79 |
| YRC1477 | 221706.9832 | 776303.5619 | 278.675 | RC | 0 | -55 | 96  | 5   | 65 | 70       | 5  | 1.4  |
| YRC1477 | 221706.9832 | 776303.5619 | 278.675 | RC | 0 | -55 | 96  | 15  | 77 | 92       | 15 | 0.58 |
| YRC1478 | 221756.9577 | 776232.8566 | 278.177 | RC | 0 | -55 | 66  | 19  | 46 | 65       | 19 | 0.66 |
| YRC1479 | 221756.9331 | 776251.6317 | 280.9   | RC | 0 | -55 | 117 | 40  | 6  | 46       | 40 | 1.19 |
| YRC1479 | 221756.9331 | 776251.6317 | 280.9   | RC | 0 | -55 | 117 | 17  | 49 | 66       | 17 | 0.69 |
| YRC1480 | 221757.1314 | 776275.178  | 283.699 | RC | 0 | -55 | 114 | 17  | 8  | 25       | 17 | 1.08 |
| YRC1480 | 221757.1314 | 776275.178  | 283.699 | RC | 0 | -55 | 114 | 6   | 28 | 34       | 6  | 0.9  |
| YRC1480 | 221757.1314 | 776275.178  | 283.699 | RC | 0 | -55 | 114 | 11  | 94 | 105      | 11 | 1.56 |
| YRC1481 | 221757.4815 | 776298.7511 | 289.17  | RC | 0 | -55 | 120 | 14  | 9  | 23       | 14 | 1.39 |
| YRC1481 | 221757.4815 | 776298.7511 | 289.17  | RC | 0 | -55 | 120 | 28  | 43 | 71       | 28 | 2.97 |
| YRC1481 | 221757.4815 | 776298.7511 | 289.17  | RC | 0 | -55 | 120 | 43  | 76 | 119      | 43 | 4.07 |
| YRC1482 | 221756.8813 | 776320.0965 | 291.677 | RC | 0 | -55 | 102 | 15  | 0  | 15       | 15 | 0.87 |
| YRC1482 | 221756.8813 | 776320.0965 | 291.677 | RC | 0 | -55 | 102 | 12  | 18 | 30       | 12 | 1.25 |
| YRC1482 | 221756.8813 | 776320.0965 | 291.677 | RC | 0 | -55 | 102 | 10  | 53 | 63       | 10 | 0.69 |
| YRC1482 | 221756.8813 | 776320.0965 | 291.677 | RC | 0 | -55 | 102 | 15  | 73 | 88       | 15 | 2.83 |
| YRC1483 | 221756.9199 | 776340.9654 | 294.422 | RC | 0 | -55 | 90  | 7   | 9  | 16<br>25 | 7  | 0.68 |
| YRC1483 | 221756.9199 | 776340.9654 | 294.422 | RC | 0 | -55 | 90  | 6   | 19 | 25       | 6  | 6.03 |



| YRC1483 | 221756.9199 | 776340.9654 | 294.422 | RC | 0 | -55 | 90 | 27  | 46 | 73 | 27 | 0.72 |
|---------|-------------|-------------|---------|----|---|-----|----|-----|----|----|----|------|
| YRC1483 | 221756.9199 | 776340.9654 | 294.422 | RC | 0 | -55 | 90 | 2   | 78 | 80 | 2  | 2.97 |
| YRC1484 | 221757.2762 | 776363.1751 | 299.66  | RC | 0 | -55 | 84 | 9   | 0  | 9  | 9  | 0.91 |
| YRC1484 | 221757.2762 | 776363.1751 | 299.66  | RC | 0 | -55 | 84 | 9   | 17 | 26 | 9  | 1.2  |
| YRC1484 | 221757.2762 | 776363.1751 | 299.66  | RC | 0 | -55 | 84 | 22  | 57 | 79 | 22 | 1.1  |
| YRC1485 | 221756.0746 | 776385.4036 | 302.503 | RC | 0 | -55 | 78 | 14  | 15 | 29 | 14 | 0.63 |
| YRC1485 | 221756.0746 | 776385.4036 | 302.503 | RC | 0 | -55 | 78 | 12  | 46 | 58 | 12 | 1.56 |
| YRC1486 | 221807.1792 | 776254.621  | 280.91  | RC | 0 | -55 | 84 | 2   | 22 | 24 | 2  | 3.04 |
| YRC1486 | 221807.1792 | 776254.621  | 280.91  | RC | 0 | -55 | 84 | 11  | 38 | 49 | 11 | 0.52 |
| YRC1486 | 221807.1792 | 776254.621  | 280.91  | RC | 0 | -55 | 84 | 15  | 56 | 71 | 15 | 0.4  |
| YRC1487 | 221806.9474 | 776274.6504 | 284.489 | RC | 0 | -55 | 90 | 16  | 14 | 30 | 16 | 1.54 |
| YRC1487 | 221806.9474 | 776274.6504 | 284.489 | RC | 0 | -55 | 90 | 43  | 45 | 88 | 43 | 1.56 |
| YRC1488 | 221807.3079 | 776296.7698 | 289.504 | RC | 0 | -55 | 96 | 9   | 13 | 22 | 9  | 0.51 |
| YRC1488 | 221807.3079 | 776296.7698 | 289.504 | RC | 0 | -55 | 96 | 21  | 35 | 56 | 21 | 1.35 |
| YRC1488 | 221807.3079 | 776296.7698 | 289.504 | RC | 0 | -55 | 96 | 8   | 60 | 68 | 8  | 2.08 |
| YRC1489 | 221806.9965 | 776319.9907 | 293.093 | RC | 0 | -55 | 90 | 27  | 9  | 36 | 27 | 1.16 |
| YRC1489 | 221806.9965 | 776319.9907 | 293.093 | RC | 0 | -55 | 90 | 12  | 40 | 52 | 12 | 0.46 |
| YRC1490 | 221807.0403 | 776343.9134 | 298.826 | RC | 0 | -55 | 84 | 19  | 31 | 50 | 19 | 0.95 |
| YRC1491 | 221857.1206 | 776227.1412 | 281.238 | RC | 0 | -55 | 60 | 9   | 4  | 13 | 9  | 13.9 |
| YRC1491 | 221857.1206 | 776227.1412 | 281.238 | RC | 0 | -55 | 60 | 11  | 31 | 42 | 11 | 2.77 |
| YRC1491 | 221857.1206 | 776227.1412 | 281.238 | RC | 0 | -55 | 60 | 6   | 54 | 60 | 6  | 1.1  |
| YRC1492 | 221856.617  | 776249.7919 | 284.662 | RC | 0 | -55 | 66 | 43  | 5  | 48 | 43 | 3.04 |
| YRC1493 | 221856.491  | 776271.049  | 288.385 | RC | 0 | -55 | 72 | 14  | 13 | 27 | 14 | 1.59 |
| YRC1493 | 221856.491  | 776271.049  | 288.385 | RC | 0 | -55 | 72 | 12  | 42 | 54 | 12 | 0.53 |
| YRC1493 | 221856.491  | 776271.049  | 288.385 | RC | 0 | -55 | 72 | 2   | 64 | 66 | 2  | 2.21 |
| YRC1494 | 221856.4254 | 776293.9372 | 292.664 | RC | 0 | -55 | 78 | 8   | 5  | 13 | 8  | 0.51 |
| YRC1495 | 221856.6215 | 776316.7504 | 296.742 | RC | 0 | -55 | 78 | 5   | 14 | 20 | 6  | 0.72 |
| YRC1495 | 221856.6215 | 776316.7504 | 296.742 | RC | 0 | -55 | 78 | 13  | 23 | 36 | 13 | 1.75 |
| YRC1496 | 221856.8536 | 776339.3237 | 299.288 | RC | 0 | -55 | 84 | 7   | 33 | 40 | 7  | 2.97 |
| YRC1497 | 221856.9602 | 776362.4843 | 301.971 | RC | 0 | -55 | 90 | 11  | 16 | 27 | 11 | 3.13 |
| YRC1497 | 221856.9602 | 776362.4843 | 301.971 | RC | 0 | -55 | 90 | 32  | 48 | 80 | 32 | 1    |
| YRC1498 | 221906.6913 | 776205.3218 | 277.214 | RC | 0 | -55 | 61 | 13  | 0  | 13 | 13 | 0.55 |
| YRC1499 | 221906.3078 | 776226.398  | 280.928 | RC | 0 | -55 | 66 | NSI |    |    |    |      |



| YRC1500            | 221906.5218                | 776247.606  | 284.957            | RC       | 0   | -55        | 68 | NSI |    |    |         |      |
|--------------------|----------------------------|-------------|--------------------|----------|-----|------------|----|-----|----|----|---------|------|
| YRC1501            | 221906.3374                | 776272.8274 | 289.232            | RC       | 0   | -55        | 72 | 7   | 0  | 8  | 8       | 0.59 |
| YRC1501            | 221906.3374                | 776272.8274 | 289.232            | RC       | 0   | -55        | 72 | 13  | 22 | 35 | 13      | 0.75 |
| YRC1501            | 221906.3374                | 776272.8274 | 289.232            | RC       | 0   | -55        | 72 | 8   | 43 | 51 | 8       | 1.02 |
| YRC1502            | 221906.761                 | 776292.8851 | 292.766            | RC       | 0   | -55        | 66 | 24  | 0  | 25 | 25      | 0.74 |
| YRC1503            | 221906.5997                | 776317.2547 | 295.698            | RC       | 0   | -55        | 66 | 10  | 23 | 33 | 10      | 0.56 |
| YRC1504            | 221906.5769                | 776339.8054 | 298.399            | RC       | 0   | -55        | 72 | 12  | 0  | 12 | 12      | 0.6  |
| YRC1504            | 221906.5769                | 776339.8054 | 298.399            | RC       | 0   | -55        | 72 | 7   | 35 | 42 | 7       | 0.87 |
| YRC1504            | 221906.5769                | 776339.8054 | 298.399            | RC       | 0   | -55        | 72 | 16  | 56 | 72 | 16      | 0.6  |
| YRC1505            | 221953.8773                | 776225.2965 | 282.444            | RC       | 0   | -55        | 54 | 8   | 12 | 20 | 8       | 3.06 |
| YRC1506            | 221954.5117                | 776248.5914 | 284.925            | RC       | 0   | -55        | 56 | NSI |    |    |         |      |
| YRC1507            | 221952.077                 | 776263.1486 | 286.575            | RC       | 0   | -55        | 54 | 11  | 5  | 16 | 11      | 0.85 |
| YRC1507            | 221952.077                 | 776263.1486 | 286.575            | RC       | 0   | -55        | 54 | 19  | 35 | 54 | 19      | 0.95 |
| YRC1508            | 221954.9523                | 776324.5707 | 303.547            | RC       | 0   | -90        | 36 | NSI | -  | 24 | 45      | 1.54 |
| YRC1509            | 221956.1425                | 776290.3425 | 297.351            | RC       | 0   | -55        | 60 | 15  | 9  | 24 | 15      | 1.64 |
| YRC1510            | 222004.9612                | 776497.347  | 313.581            | RC       | 0   | -55<br>-55 | 42 | 12  | 0  | 13 | 13      | 0.39 |
| YRC1511<br>YRC1511 | 222005.7152                | 776474.263  | 312.657            | RC<br>RC | 0   | -55        | 42 | 10  | 13 | 10 | 10<br>6 | 0.55 |
| YRC1511            | 222005.7152<br>222006.1056 | 776449.4521 | 312.657<br>312.831 | RC       | 0   | -55        | 42 | NSI | 15 | 19 | 0       | 1.// |
| YRC1512            | 222007.0199                | 776424.6594 | 315.005            | RC       | 0   | -55        | 42 | 24  | 0  | 25 | 25      | 0.36 |
| YRC1514            | 222007.0133                | 776397.2172 | 320.42             | RC       | 0   | -55        | 42 | 14  | 0  | 16 | 16      | 0.30 |
| YRC1514            | 222010.5504                | 776397.2172 | 320.42             | RC       | 0   | -55        | 48 | 26  | 19 | 45 | 26      | 0.55 |
| YRC1515            | 222007.5928                | 776365.3533 | 326.562            | RC       | 0   | -55        | 60 | 11  | 0  | 11 | 11      | 0.73 |
| YRC1515            | 222007.5928                | 776365.3533 | 326.562            | RC       | 0   | -55        | 60 | 27  | 32 | 59 | 27      | 0.96 |
| YRC1516            | 221957.4187                | 776425.4401 | 320.457            | RC       | 0   | -55        | 48 | 22  | 1  | 23 | 22      | 0.55 |
| YRC1516            | 221957.4187                | 776425.4401 | 320.457            | RC       | 0   | -55        | 48 | 13  | 27 | 40 | 13      | 0.38 |
| YRC1517            | 221956.1181                | 776398.288  | 323.359            | RC       | 0   | -55        | 54 | 10  | 0  | 11 | 11      | 0.61 |
| YRC1517            | 221956.1181                | 776398.288  | 323.359            | RC       | 0   | -55        | 54 | 12  | 14 | 26 | 12      | 0.51 |
| YRC1517            | 221956.1181                | 776398.288  | 323.359            | RC       | 0   | -55        | 54 | 10  | 32 | 42 | 10      | 1.3  |
| YRC1518            | 221956.4004                | 776375.8531 | 321.676            | RC       | 0   | -55        | 54 | 16  | 0  | 16 | 16      | 9.6  |
| YRC1519            | 221957.2826                | 776375.7838 | 321.682            | RC       | 0   | -90        | 54 | 22  | 0  | 22 | 22      | 0.54 |
| YRC1519            | 221957.2826                | 776375.7838 | 321.682            | RC       | 0   | -90        | 54 | 11  | 41 | 52 | 11      | 0.55 |
| YRC1520            | 222010.9771                | 776261.7566 | 307.916            | RC       | 160 | -90        | 36 | NSI |    |    |         |      |



| YRC1521 | 222009.2612 | 776286.7697 | 313.278 | RC | 70  | -90 | 42 | NSI |    |    |    |      |
|---------|-------------|-------------|---------|----|-----|-----|----|-----|----|----|----|------|
| YRC1522 | 222003.1669 | 776307.9137 | 318.202 | RC | 160 | -90 | 54 | 13  | 41 | 54 | 13 | 4.83 |
| YRC1523 | 222012.6868 | 776337.8917 | 330.555 | RC | 0   | -90 | 60 | 15  | 0  | 18 | 18 | 0.82 |
| YRC1524 | 222012.665  | 776335.5975 | 330.644 | RC | 25  | -90 | 60 | 23  | 13 | 37 | 24 | 0.54 |
| YRC1525 | 221907.0498 | 776430.1551 | 329.136 | RC | 115 | -90 | 60 | 11  | 0  | 11 | 11 | 0.81 |
| YRC1525 | 221907.0498 | 776430.1551 | 329.136 | RC | 115 | -90 | 60 | 12  | 26 | 40 | 14 | 0.31 |
| YRC1525 | 221907.0498 | 776430.1551 | 329.136 | RC | 115 | -90 | 60 | 5   | 48 | 53 | 5  | 1.57 |
| YRC1526 | 221907.6979 | 776405.3138 | 327.907 | RC | 180 | -90 | 72 | 5   | 0  | 5  | 5  | 0.96 |
| YRC1526 | 221907.6979 | 776405.3138 | 327.907 | RC | 180 | -90 | 72 | 25  | 9  | 34 | 25 | 1.71 |
| YRC1526 | 221907.6979 | 776405.3138 | 327.907 | RC | 180 | -90 | 72 | 11  | 55 | 66 | 11 | 0.63 |
| YRC1527 | 221907.7891 | 776404.6369 | 327.795 | RC | 350 | -90 | 78 | 5   | 0  | 5  | 5  | 1.67 |
| YRC1527 | 221907.7891 | 776404.6369 | 327.795 | RC | 350 | -90 | 78 | 9   | 8  | 17 | 9  | 0.77 |
| YRC1527 | 221907.7891 | 776404.6369 | 327.795 | RC | 350 | -90 | 78 | 16  | 36 | 52 | 16 | 2    |
| YRC1528 | 221857.8413 | 776436.5312 | 336.878 | RC | 180 | -60 | 78 | 9   | 0  | 9  | 9  | 0.69 |
| YRC1528 | 221857.8413 | 776436.5312 | 336.878 | RC | 180 | -60 | 78 | 11  | 21 | 32 | 11 | 0.85 |
| YRC1528 | 221857.8413 | 776436.5312 | 336.878 | RC | 180 | -60 | 78 | 6   | 36 | 42 | 6  | 2.14 |
| YRC1528 | 221857.8413 | 776436.5312 | 336.878 | RC | 180 | -60 | 78 | 23  | 51 | 74 | 23 | 0.85 |
| YRC1529 | 221857.0284 | 776435.418  | 337.123 | RC | 110 | -90 | 66 | 10  | 0  | 10 | 10 | 1.18 |
| YRC1529 | 221857.0284 | 776435.418  | 337.123 | RC | 110 | -90 | 66 | 37  | 13 | 50 | 37 | 0.71 |
| YRC1530 | 221757.1487 | 776430.7517 | 317.506 | RC | 165 | -90 | 66 | NSI |    |    |    |      |
| YRC1531 | 221796.4245 | 776402.915  | 316.977 | RC | 0   | 0   | 78 | 7   | 10 | 17 | 7  | 0.62 |
| YRC1531 | 221796.4245 | 776402.915  | 316.977 | RC | 0   | 0   | 78 | 7   | 37 | 44 | 7  | 0.72 |
| YRC1532 | 221807.2139 | 776380.8209 | 312.517 | RC | 105 | -90 | 60 | 25  | 24 | 49 | 25 | 0.62 |
| YRC1533 | 221606.1028 | 776297.3209 | 277.206 | RC | 200 | -90 | 54 | 33  | 0  | 33 | 33 | 0.58 |
| YRC1533 | 221606.1028 | 776297.3209 | 277.206 | RC | 200 | -90 | 54 | 7   | 47 | 54 | 7  | 0.92 |
| YRC1534 | 221606.8888 | 776320.4083 | 287.052 | RC | 200 | -90 | 66 | 33  | 31 | 64 | 33 | 1.14 |
| YRC1535 | 221606.6605 | 776345.9871 | 291.539 | RC | 350 | -90 | 72 | 9   | 55 | 64 | 9  | 0.49 |
| YRC1536 | 221607.0622 | 776371.3096 | 296.64  | RC | 10  | -90 | 83 | 5   | 3  | 8  | 5  | 0.92 |
| YRC1536 | 221607.0622 | 776371.3096 | 296.64  | RC | 10  | -90 | 83 | 22  | 43 | 65 | 22 | 0.63 |
| YRC1537 | 221607.2135 | 776396.1952 | 301.399 | RC | 35  | -90 | 86 | 31  | 31 | 62 | 31 | 0.85 |
| YRC1537 | 221607.2135 | 776396.1952 | 301.399 | RC | 35  | -90 | 86 | 2   | 66 | 68 | 2  | 2.91 |
| YRC1538 | 221632.0716 | 776424.0832 | 309.424 | RC | 255 | -90 | 60 | 2   | 46 | 48 | 2  | 6    |
| YRC1539 | 221632.236  | 776449.0919 | 313.188 | RC | 135 | -90 | 54 | 19  | 11 | 30 | 19 | 0.51 |



| YRC1540 | 221632.4742 | 776400.1051 | 304.952 | RC | 345 | -90 | 68 | NSI |    |    |    |     |
|---------|-------------|-------------|---------|----|-----|-----|----|-----|----|----|----|-----|
| YRC1541 | 221657.0578 | 776448.0998 | 317.315 | RC | 345 | -90 | 60 | NSI |    |    |    |     |
| YRC1542 | 221657.0098 | 776423.5328 | 313.653 | RC | 270 | -90 | 66 | 10  | 0  | 10 | 10 | 0.4 |
| YRC1542 | 221657.0098 | 776423.5328 | 313.653 | RC | 270 | -90 | 66 | 2   | 63 | 65 | 2  | 4.0 |
| YRC1543 | 221657.1205 | 776398.5721 | 310.197 | RC | 320 | -90 | 72 | 4   | 64 | 68 | 4  | 1.0 |
| YRC1544 | 221657.1311 | 776378.452  | 304.907 | RC | 170 | -90 | 72 | 13  | 45 | 58 | 13 | 0.4 |
| YRC1545 | 221633.7511 | 776371.8496 | 299.172 | RC | 220 | -90 | 72 | 23  | 31 | 54 | 23 | 0.3 |
| YRC1546 | 221682.2286 | 776391.1449 | 308.378 | RC | 10  | -90 | 72 | NSI |    |    |    |     |
| YRC1547 | 221681.7577 | 776415.7323 | 315.762 | RC | 215 | -90 | 72 | 10  | 40 | 50 | 10 | 2.: |
| YRC1547 | 221681.7577 | 776415.7323 | 315.762 | RC | 215 | -90 | 72 | 7   | 58 | 65 | 7  | 1.3 |
| YRC1548 | 221707.031  | 776416.1648 | 315.663 | RC | 175 | -90 | 84 | NSI |    |    |    |     |
| YRC1549 | 221707.1232 | 776368.2551 | 298.708 | RC | 110 | -90 | 66 | 14  | 0  | 17 | 17 | 0.4 |
| YRC1549 | 221707.1232 | 776368.2551 | 298.708 | RC | 110 | -90 | 66 | 10  | 34 | 44 | 10 | 0.9 |
| YRC1549 | 221707.1232 | 776368.2551 | 298.708 | RC | 110 | -90 | 66 | 7   | 59 | 66 | 7  | 0.8 |
| YRC1550 | 221682.141  | 776362.0592 | 296.111 | RC | 305 | -90 | 72 | NSI |    |    |    |     |
| YRC1551 | 221655.6574 | 776350.3268 | 290.987 | RC | 320 | -90 | 72 | 22  | 7  | 29 | 22 | 0.7 |
| YRC1552 | 221682.7831 | 776346.2685 | 289.25  | RC | 200 | -90 | 60 | 12  | 19 | 31 | 12 | 0.9 |
| YRC1553 | 221633.6785 | 776350.435  | 294.194 | RC | 170 | -90 | 72 | NSI |    |    |    |     |
| YRC1554 | 221705.2743 | 776390.008  | 303.24  | RC | 130 | -90 | 72 | 23  | 33 | 56 | 23 | 0.7 |
| YRC1555 | 221706.9716 | 776332.3203 | 284.054 | RC | 0   | -55 | 72 | 24  | 2  | 26 | 24 | 0.8 |
| YRC1555 | 221706.9716 | 776332.3203 | 284.054 | RC | 0   | -55 | 72 | 10  | 37 | 47 | 10 | 1.1 |
| YRC1555 | 221706.9716 | 776332.3203 | 284.054 | RC | 0   | -55 | 72 | 16  | 56 | 72 | 16 | 0.6 |
| YRC1556 | 221633.2528 | 776319.6245 | 275.652 | RC | 245 | -90 | 60 | 46  | 4  | 50 | 46 | 0.7 |
| YRC1556 | 221633.2528 | 776319.6245 | 275.652 | RC | 245 | -90 | 60 | 3   | 53 | 56 | 3  | 1.5 |
| YRC1557 | 221948.8438 | 776342.3916 | 304.917 | RC | 45  | -90 | 54 | NSI |    |    |    |     |



| Hole ID    | East        | North       | RL      | Drill Type | Azimuth | Dip | Depth | No of   | From | То   | Width | Grade |
|------------|-------------|-------------|---------|------------|---------|-----|-------|---------|------|------|-------|-------|
|            | (mE)        | (mN)        | (mRL)   |            | (°)     | (°) | (m)   | samples | (m)  | (m)  | (m)   | (g/t) |
| ANTOINETTE |             |             |         |            |         |     |       |         |      |      |       |       |
| BDAC001696 | 812913.8631 | 1099734.548 | 405.13  | AC         | 315     | -60 | 36    | 11      | 0    | 11   | 11    | 2.98  |
| 3DAC001697 | 812887.5282 | 1099693.364 | 405.356 | AC         | 315     | -60 | 36    | 11      | 6    | 17   | 11    | 4.95  |
| BDAC001697 | 812887.5282 | 1099693.364 | 405.356 | AC         | 315     | -60 | 36    | 2       | 18   | 20   | 2     | 3.48  |
| BDAC001698 | 812854.3321 | 1099658.443 | 405.531 | AC         | 315     | -60 | 36    | 20      | 1    | 21   | 20    | 5.36  |
| BDAC001699 | 812817.7286 | 1099622.596 | 409.138 | AC         | 315     | -60 | 36    | 2       | 0    | 2    | 2     | 10.7  |
| BDAC001699 | 812817.7286 | 1099622.596 | 409.138 | AC         | 315     | -60 | 36    | 14      | 4    | 18   | 14    | 2.49  |
| BDAC001700 | 812807.1961 | 1099596.726 | 406.035 | AC         | 315     | -60 | 48    | 12      | 0    | 12   | 12    | 3.49  |
| BDAC001700 | 812807.1961 | 1099596.726 | 406.035 | AC         | 315     | -60 | 48    | 17      | 15   | 32   | 17    | 6.45  |
| BDAC001701 | 812714.086  | 1099547.406 | 404.01  | AC         | 315     | -60 | 24    | NSI     |      |      |       |       |
| BDAC001702 | 812619.3287 | 1099466.962 | 400.656 | AC         | 315     | -60 | 24    | 2       | 6    | 8    | 2     | 2.82  |
| BDAC001703 | 812634.2824 | 1099452.352 | 400.672 | AC         | 315     | -60 | 30    | 7       | 0    | 7    | 7     | 1.11  |
| BDAC001704 | 812601.497  | 1099451.296 | 399.984 | AC         | 315     | -60 | 24    | 2       | 10   | 12   | 2     | 3.28  |
| BDAC001705 | 812581.3017 | 1099433.505 | 399.483 | AC         | 315     | -60 | 24    | NSI     |      |      |       |       |
| BDAC001706 | 812561.3759 | 1099418.832 | 398.886 | AC         | 315     | -60 | 36    | NSI     |      |      |       |       |
| BDAC001707 | 812546.3991 | 1099399.117 | 398.3   | AC         | 315     | -60 | 24    | NSI     |      |      |       |       |
| BDAC001708 | 812511.7816 | 1099360.765 | 397.127 | AC         | 315     | -60 | 24    | NSI     |      |      |       |       |
| BDAC001709 | 812491.578  | 1099348.901 | 396.697 | AC         | 315     | -60 | 30    | 6       | 1    | 7    | 6     | 0.7   |
| BDAC001710 | 812472.0347 | 1099330.893 | 396.244 | AC         | 315     | -60 | 24    | NSI     |      |      |       |       |
| BDAC001711 | 812470.9037 | 1099300.07  | 395.631 | AC         | 315     | -60 | 48    | 5       | 16   | 21   | 5     | 0.94  |
| BDAC001711 | 812470.9037 | 1099300.07  | 395.631 | AC         | 315     | -60 | 48    | 6       | 29   | 35   | 6     | 1.53  |
| BDAC001712 | 812467.6072 | 1099263.358 | 395.039 | AC         | 315     | -60 | 42    | 9       | 22   | 31   | 9     | 0.68  |
| BDAC001713 | 812454.0097 | 1099276.652 | 395.217 | AC         | 315     | -60 | 24    | 4       | 8    | 12   | 4     | 2.7   |
| BDDD0013   | 812792.1028 | 1099469.456 | 404.227 | DD         | 315     | -50 | 100   | NSI     |      |      |       |       |
| BDDD0014   | 812739.2387 | 1099664.476 | 406.306 | DD         | 135     | -50 | 105   | NSI     |      |      |       |       |
| BDDD0015   | 812733.9401 | 1099527.31  | 404.202 | DD         | 315     | -50 | 75    | 15      | 20   | 28.5 | 8.5   | 3.35  |
| BDDD0015   | 812733.9401 | 1099527.31  | 404.202 | DD         | 315     | -50 | 75    | 7       | 45.5 | 49.5 | 4     | 4.98  |
| BDDD0016   | 812802.9513 | 1099600.495 | 405.882 | DD         | 135     | -50 | 85    | 10      | 0    | 10   | 10    | 3.54  |
| BDDD0016   | 812802.9513 | 1099600.495 | 405.882 | DD         | 135     | -50 | 85    | 4       | 66   | 70   | 4     | 1.11  |
| BDDD0017   | 812715.918  | 1099475.43  | 402.867 | DD         | 315     | -60 | 116   | 14      | 63   | 77   | 14    | 4.23  |

## Table 2: Bagoé drill holes and significant intercepts



|   | BDDD0017 | 812715.918  | 1099475.43  | 402.867 | DD | 315 | -60 | 116   | 11  | 85   | 96   | 11   | 1.69  |
|---|----------|-------------|-------------|---------|----|-----|-----|-------|-----|------|------|------|-------|
|   | BDDD0018 | 812811      | 1099613     | 387     | DD | 315 | -60 | 19.4  | NSI |      |      |      |       |
|   | BDDD0019 | 812811.5    | 1099613     | 387     | DD | 315 | -60 | 13.6  | NSI |      |      |      |       |
| 2 | BDDD0020 | 812813.7879 | 1099570.603 | 406.029 | DD | 315 | -60 | 85    | 20  | 5.5  | 25.7 | 20.2 | 1.62  |
|   | BDDD0020 | 812813.7879 | 1099570.603 | 406.029 | DD | 315 | -60 | 85    | 6   | 38.7 | 44.7 | 6    | 1.81  |
|   | BDDD0020 | 812813.7879 | 1099570.603 | 406.029 | DD | 315 | -60 | 85    | 2   | 65   | 67   | 2    | 3.51  |
|   | BDDD0020 | 812813.7879 | 1099570.603 | 406.029 | DD | 315 | -60 | 85    | 5   | 70   | 75   | 5    | 28.56 |
|   | BDDD0021 | 812743.013  | 1099485.675 | 403.557 | DD | 315 | -60 | 131   | 10  | 76   | 86   | 10   | 9.14  |
|   | BDDD0021 | 812743.013  | 1099485.675 | 403.557 | DD | 315 | -60 | 131   | 9   | 116  | 125  | 9    | 17.88 |
|   | BDDD0022 | 812868.5546 | 1099613.494 | 406.306 | DD | 315 | -60 | 120.6 | 7   | 18   | 25   | 7    | 6.92  |
|   | BDDD0022 | 812868.5546 | 1099613.494 | 406.306 | DD | 315 | -60 | 120.6 | 3   | 28   | 31   | 3    | 2.33  |
|   | BDDD0022 | 812868.5546 | 1099613.494 | 406.306 | DD | 315 | -60 | 120.6 | 8   | 34   | 42   | 8    | 2.53  |
|   | BDDD0022 | 812868.5546 | 1099613.494 | 406.306 | DD | 315 | -60 | 120.6 | 12  | 74   | 86   | 12   | 6.01  |
|   | BDDD0022 | 812868.5546 | 1099613.494 | 406.306 | DD | 315 | -60 | 120.6 | 5   | 109  | 114  | 5    | 1.77  |
|   | BDRC0467 | 812526.3228 | 1099345.64  | 396.682 | RC | 315 | -60 | 60    | 10  | 7    | 17   | 10   | 3.95  |
|   | BDRC0467 | 812526.3228 | 1099345.64  | 396.682 | RC | 315 | -60 | 60    | 8   | 30   | 38   | 8    | 2.93  |
|   | BDRC0468 | 812565.2792 | 1099343.932 | 397.635 | RC | 315 | -60 | 108   | 9   | 57   | 66   | 9    | 0.65  |
|   | BDRC0468 | 812565.2792 | 1099343.932 | 397.635 | RC | 315 | -60 | 108   | 8   | 100  | 108  | 8    | 1.21  |
|   | BDRC0469 | 812540.5257 | 1099333.769 | 397.206 | RC | 315 | -60 | 88    | 10  | 27   | 37   | 10   | 4.19  |
|   | BDRC0469 | 812540.5257 | 1099333.769 | 397.206 | RC | 315 | -60 | 88    | 14  | 41   | 55   | 14   | 3.21  |
|   | BDRC0469 | 812540.5257 | 1099333.769 | 397.206 | RC | 315 | -60 | 88    | 19  | 68   | 87   | 19   | 1.59  |
|   | BDRC0470 | 812587.9661 | 1099355.248 | 397.96  | RC | 315 | -60 | 84    | 6   | 48   | 54   | 6    | 0.75  |
|   | BDRC0470 | 812587.9661 | 1099355.248 | 397.96  | RC | 315 | -60 | 84    | 16  | 66   | 82   | 16   | 1.32  |
|   | BDRC0471 | 812573.1173 | 1099370.785 | 398.182 | RC | 315 | -60 | 90    | 44  | 12   | 56   | 44   | 2.37  |
|   | BDRC0471 | 812573.1173 | 1099370.785 | 398.182 | RC | 315 | -60 | 90    | 6   | 59   | 65   | 6    | 1.58  |
|   | BDRC0472 | 812560.2619 | 1099383.802 | 398.234 | RC | 315 | -60 | 60    | 6   | 17   | 23   | 6    | 6.01  |
|   | BDRC0473 | 812597.3899 | 1099417.361 | 399.139 | RC | 315 | -60 | 60    | 14  | 0    | 14   | 14   | 3.02  |
|   | BDRC0473 | 812597.3899 | 1099417.361 | 399.139 | RC | 315 | -60 | 60    | 6   | 26   | 32   | 6    | 1.34  |
|   | BDRC0474 | 812610.5036 | 1099404.53  | 399.225 | RC | 315 | -60 | 90    | 32  | 33   | 65   | 32   | 4.03  |
|   | BDRC0475 | 812661.7976 | 1099425.153 | 400.66  | RC | 315 | -60 | 60    | 8   | 49   | 57   | 8    | 3.02  |
|   | BDRC0476 | 812648.7753 | 1099438.071 | 400.488 | RC | 315 | -60 | 60    | 11  | 0    | 11   | 11   | 0.82  |
|   | BDRC0476 | 812648.7753 | 1099438.071 | 400.488 | RC | 315 | -60 | 60    | 2   | 25   | 27   | 2    | 2.29  |
|   | BDRC0476 | 812648.7753 | 1099438.071 | 400.488 | RC | 315 | -60 | 60    | 11  | 34   | 45   | 11   | 2.19  |



|   | BDRC0477 | 812625.3544 | 1099390.258 | 399.311 | RC | 315 | -60 | 72  | 3   | 30  | 33  | 3  | 1.47 |
|---|----------|-------------|-------------|---------|----|-----|-----|-----|-----|-----|-----|----|------|
|   | BDRC0478 | 812669.2045 | 1099487.074 | 402.086 | RC | 315 | -60 | 60  | NSI |     |     |    |      |
|   | BDRC0479 | 812683.1534 | 1099472.809 | 402.053 | RC | 315 | -60 | 100 | 21  | 29  | 50  | 21 | 4.43 |
| 2 | BDRC0479 | 812683.1534 | 1099472.809 | 402.053 | RC | 315 | -60 | 100 | 4   | 68  | 72  | 4  | 1.36 |
|   | BDRC0479 | 812683.1534 | 1099472.809 | 402.053 | RC | 315 | -60 | 100 | 8   | 76  | 84  | 8  | 0.65 |
|   | BDRC0479 | 812683.1534 | 1099472.809 | 402.053 | RC | 315 | -60 | 100 | 4   | 91  | 95  | 4  | 1.14 |
|   | BDRC0480 | 812698.1242 | 1099457.855 | 402.146 | RC | 315 | -60 | 96  | 10  | 65  | 75  | 10 | 3.43 |
|   | BDRC0480 | 812698.1242 | 1099457.855 | 402.146 | RC | 315 | -60 | 96  | 18  | 78  | 96  | 18 | 8.42 |
|   | BDRC0481 | 812709.2144 | 1099515.87  | 403.22  | RC | 315 | -60 | 54  | 17  | 18  | 35  | 17 | 2.74 |
|   | BDRC0481 | 812709.2144 | 1099515.87  | 403.22  | RC | 315 | -60 | 54  | 4   | 40  | 44  | 4  | 1.13 |
|   | BDRC0482 | 812729.3568 | 1099531.78  | 404.032 | RC | 315 | -60 | 60  | 4   | 0   | 4   | 4  | 1.68 |
|   | BDRC0482 | 812729.3568 | 1099531.78  | 404.032 | RC | 315 | -60 | 60  | 2   | 13  | 15  | 2  | 3.46 |
|   | BDRC0482 | 812729.3568 | 1099531.78  | 404.032 | RC | 315 | -60 | 60  | 4   | 19  | 23  | 4  | 3.88 |
|   | BDRC0482 | 812729.3568 | 1099531.78  | 404.032 | RC | 315 | -60 | 60  | 5   | 45  | 50  | 5  | 2.08 |
|   | BDRC0483 | 812743.2985 | 1099518.076 | 404.224 | RC | 315 | -60 | 90  | 15  | 42  | 57  | 15 | 2.5  |
|   | BDRC0483 | 812743.2985 | 1099518.076 | 404.224 | RC | 315 | -60 | 90  | 28  | 61  | 89  | 28 | 1.22 |
|   | BDRC0484 | 812819.8556 | 1099583.456 | 406.179 | RC | 315 | -60 | 84  | 14  | 0   | 14  | 14 | 3.35 |
|   | BDRC0484 | 812819.8556 | 1099583.456 | 406.179 | RC | 315 | -60 | 84  | 14  | 17  | 31  | 14 | 1.23 |
|   | BDRC0484 | 812819.8556 | 1099583.456 | 406.179 | RC | 315 | -60 | 84  | 8   | 55  | 63  | 8  | 1.36 |
|   | BDRC0485 | 812832.4142 | 1099570.32  | 406.179 | RC | 315 | -60 | 120 | 14  | 17  | 31  | 14 | 0.92 |
|   | BDRC0485 | 812832.4142 | 1099570.32  | 406.179 | RC | 315 | -60 | 120 | 8   | 93  | 101 | 8  | 3.42 |
|   | BDRC0486 | 812846.6874 | 1099556.057 | 406.216 | RC | 315 | -60 | 102 | 12  | 43  | 55  | 12 | 2.16 |
|   | BDRC0487 | 812859.5109 | 1099542.713 | 406.114 | RC | 315 | -60 | 92  | 3   | 68  | 71  | 3  | 2.01 |
|   | BDRC0488 | 812885.9198 | 1099553.332 | 406.455 | RC | 315 | -60 | 90  | 8   | 77  | 85  | 8  | 2.36 |
|   | BDRC0489 | 812868.3495 | 1099643.93  | 406.056 | RC | 315 | -60 | 84  | 15  | 0   | 15  | 15 | 1.16 |
|   | BDRC0489 | 812868.3495 | 1099643.93  | 406.056 | RC | 315 | -60 | 84  | 11  | 23  | 34  | 11 | 1.25 |
|   | BDRC0489 | 812868.3495 | 1099643.93  | 406.056 | RC | 315 | -60 | 84  | 2   | 61  | 63  | 2  | 4.19 |
|   | BDRC0490 | 812882.8085 | 1099628.628 | 406.242 | RC | 315 | -60 | 120 | 10  | 19  | 29  | 10 | 3.27 |
|   | BDRC0490 | 812882.8085 | 1099628.628 | 406.242 | RC | 315 | -60 | 120 | 16  | 98  | 114 | 16 | 1.89 |
|   | BDRC0490 | 812882.8085 | 1099628.628 | 406.242 | RC | 315 | -60 | 120 | 2   | 118 | 120 | 2  | 3.05 |
|   | BDRC0491 | 812897.0801 | 1099613.551 | 406.422 | RC | 315 | -60 | 72  | 13  | 44  | 57  | 13 | 2.63 |
|   | BDRC0492 | 812872.8244 | 1099672.186 | 406.003 | RC | 315 | -60 | 50  | 9   | 9   | 18  | 9  | 4.09 |
|   | BDRC0492 | 812872.8244 | 1099672.186 | 406.003 | RC | 315 | -60 | 50  | 5   | 23  | 28  | 5  | 1.9  |



|   | BDRC0493   | 812931.0512 | 1099647.769 | 406.139 | RC | 315 | -60 | 72 | 2   | 50 | 52 | 2  | 3.92 |
|---|------------|-------------|-------------|---------|----|-----|-----|----|-----|----|----|----|------|
|   | BDRC0494   | 812910.7376 | 1099599.37  | 406.728 | RC | 315 | -60 | 84 | 10  | 66 | 76 | 10 | 1.87 |
|   | BDRC0495   | 812916.0652 | 1099662.737 | 405.922 | RC | 315 | -60 | 66 | 4   | 24 | 28 | 4  | 2.31 |
| 2 | BDRC0496   | 812901.5067 | 1099677.113 | 405.816 | RC | 315 | -60 | 88 | 10  | 0  | 10 | 10 | 1.03 |
|   | BDRC0496   | 812901.5067 | 1099677.113 | 405.816 | RC | 315 | -60 | 88 | 11  | 73 | 84 | 11 | 4.12 |
|   | BDRC0497   | 812948.7955 | 1099703.111 | 405.347 | RC | 315 | -60 | 68 | 12  | 21 | 33 | 12 | 8.32 |
|   | BDRC0498   | 812934.8594 | 1099717.895 | 405.367 | RC | 315 | -60 | 84 | 13  | 1  | 14 | 13 | 0.36 |
|   | BDRC0498   | 812934.8594 | 1099717.895 | 405.367 | RC | 315 | -60 | 84 | 10  | 52 | 62 | 10 | 1.78 |
|   | BDRC0499   | 812959.3182 | 1099688.785 | 405.558 | RC | 315 | -60 | 72 | NSI |    |    |    |      |
|   | BDRC0500   | 812483.7937 | 1099248.44  | 395.101 | RC | 315 | -60 | 72 | NSI |    |    |    |      |
|   | BDRC0501   | 812497.969  | 1099235.284 | 394.979 | RC | 315 | -60 | 72 | NSI |    |    |    |      |
|   | BDRC0502   | 812487.7227 | 1099315.892 | 396.269 | RC | 315 | -60 | 60 | 8   | 0  | 8  | 8  | 1.03 |
|   | BDRC0502   | 812487.7227 | 1099315.892 | 396.269 | RC | 315 | -60 | 60 | 7   | 15 | 22 | 7  | 1.02 |
|   | BDRC0503   | 812516.5324 | 1099287.934 | 396.02  | RC | 315 | -60 | 78 | 3   | 18 | 21 | 3  | 8.21 |
|   | BDRC0503   | 812516.5324 | 1099287.934 | 396.02  | RC | 315 | -60 | 78 | 2   | 24 | 26 | 2  | 2.66 |
|   | BDRC0503   | 812516.5324 | 1099287.934 | 396.02  | RC | 315 | -60 | 78 | 7   | 62 | 69 | 7  | 1.26 |
|   | BDRC0504   | 812531.5644 | 1099272.914 | 395.982 | RC | 315 | -60 | 72 | NSI |    |    |    |      |
|   | BDRC0505   | 812502.4502 | 1099301.501 | 396.118 | RC | 315 | -60 | 60 | 5   | 0  | 5  | 5  | 0.81 |
|   | BDRC0505   | 812502.4502 | 1099301.501 | 396.118 | RC | 315 | -60 | 60 | 10  | 10 | 20 | 10 | 7.13 |
|   | BDRC0505   | 812502.4502 | 1099301.501 | 396.118 | RC | 315 | -60 | 60 | 11  | 32 | 43 | 11 | 3.22 |
|   | BDRC0506   | 812507.1177 | 1099332.976 | 396.731 | RC | 315 | -60 | 60 | 4   | 23 | 27 | 4  | 1.39 |
|   | BDRC0507   | 812555.5331 | 1099318.65  | 396.955 | RC | 315 | -60 | 60 | 11  | 47 | 58 | 11 | 2.45 |
|   | BDRC0508   | 812844.5495 | 1099523.051 | 405.802 | RC | 315 | -60 | 84 | 5   | 25 | 30 | 5  | 1.1  |
| _ | BDRC0508   | 812844.5495 | 1099523.051 | 405.802 | RC | 315 | -60 | 84 | 4   | 68 | 72 | 4  | 1.3  |
|   | BDRC0509   | 812829.5005 | 1099504.075 | 405.224 | RC | 315 | -60 | 92 | 4   | 68 | 72 | 4  | 1.85 |
|   | BDRC0510   | 812792.4239 | 1099506.294 | 404.816 | RC | 315 | -60 | 60 | 4   | 26 | 30 | 4  | 3    |
|   | BDRC0510   | 812792.4239 | 1099506.294 | 404.816 | RC | 315 | -60 | 60 | 12  | 41 | 53 | 12 | 0.96 |
|   | BDRC0511   | 812787.0759 | 1099475.068 | 404.275 | RC | 315 | -60 | 78 | NSI |    |    |    |      |
|   | BDRC0512   | 812769.4617 | 1099491.955 | 404.152 | RC | 315 | -60 | 60 | NSI |    |    |    |      |
|   | BDRC0513   | 812755.8804 | 1099505.459 | 404.054 | RC | 315 | -60 | 95 | 24  | 70 | 94 | 24 | 3.33 |
|   | BDRC0514   | 812982.7944 | 1099674.83  | 405.943 | RC | 315 | -60 | 96 | NSI |    |    |    |      |
|   | BDRC0515   | 812948.1058 | 1099634.939 | 406.368 | RC | 315 | -60 | 96 | 4   | 77 | 81 | 4  | 3.52 |
|   | BDRC0516WO | 812956.7206 | 1099787.466 | 405.067 | RC | 0   | -90 | 80 | 18  | 7  | 25 | 18 | 0.92 |
|   |            |             |             |         |    |     |     |    |     |    |    | L  |      |



| BDRC0516WO | 812956.7206 | 1099787.466 | 405.067  | RC | 0        | -90 | 80   | 19  | 29 | 48 | 19 | 0.67   |
|------------|-------------|-------------|----------|----|----------|-----|------|-----|----|----|----|--------|
| BDRC0517WP | 812948.6263 | 1099773.616 | 404.763  | RC | 0        | -90 | 90   | 11  | 7  | 18 | 11 | 0.86   |
| BDRC0517WP | 812948.6263 | 1099773.616 | 404.763  | RC | 0        | -90 | 90   | 9   | 51 | 60 | 9  | 0.8    |
| BDRC0517WP | 812948.6263 | 1099773.616 | 404.763  | RC | 0        | -90 | 90   | 5   | 69 | 74 | 5  | 1.66   |
| VÉRONIQUE  |             |             |          |    | <u> </u> | 1   | 1    |     |    |    |    |        |
| BDAC001678 | 816539.821  | 1083594.096 | 377.7134 | AC | 45       | -60 | 25   | NSI |    |    |    |        |
| BDAC001679 | 816525.5934 | 1083579.869 | 378.0794 | AC | 45       | -60 | 42   | NSI |    |    |    |        |
| BDAC001680 | 816525.3149 | 1083606.088 | 378.0564 | AC | 45       | -60 | 25   | NSI |    |    |    |        |
| BDAC001681 | 816513.4974 | 1083590.721 | 378.2814 | AC | 45       | -60 | 36   | NSI |    |    |    |        |
| BDAC001682 | 816497.2559 | 1083579.639 | 378.7344 | AC | 45       | -60 | 54   | 5   | 43 | 48 | 5  | 13.64  |
| BDAC001683 | 816540.6994 | 1083567.574 | 378.0264 | AC | 45       | -60 | 42   | 8   | 24 | 32 | 8  | 1.34   |
| BDAC001684 | 816558.9725 | 1083582.854 | 377.2044 | AC | 45       | -60 | 25   | 8   | 0  | 8  | 8  | 2.05   |
| BDAC001685 | 816556.6837 | 1083555.421 | 377.7714 | AC | 45       | -60 | 42   | 8   | 24 | 32 | 8  | 1.28   |
| BDAC001686 | 816569.947  | 1083569.937 | 377.2864 | AC | 45       | -60 | 25   | 5   | 1  | 6  | 5  | 0.85   |
| BDAC001686 | 816569.947  | 1083569.937 | 377.2864 | AC | 45       | -60 | 25   | 15  | 10 | 25 | 15 | 2.64   |
| BDAC001687 | 816483.3779 | 1083594.732 | 378.7294 | AC | 45       | -60 | 54   | 33  | 0  | 33 | 33 | 2.94   |
| BDAC001687 | 816483.3779 | 1083594.732 | 378.7294 | AC | 45       | -60 | 54   | 4   | 38 | 42 | 4  | 2.5    |
| BDAC001688 | 816498.1062 | 1083609.501 | 378.3784 | AC | 45       | -60 | 36   | 14  | 22 | 36 | 14 | 6.29   |
| BDAC001689 | 816478.5511 | 1083618.703 | 378.4964 | AC | 45       | -60 | 36   | 7   | 23 | 30 | 7  | 3.3    |
| BDAC001690 | 816463.9185 | 1083603.822 | 379.1134 | AC | 45       | -60 | 54   | 8   | 37 | 45 | 8  | 3.25   |
| BDAC001691 | 816467.64   | 1083635.105 | 378.4164 | AC | 45       | -60 | 30   | 5   | 18 | 23 | 5  | 5.67   |
| BDAC001692 | 816436.3388 | 1083632.979 | 379.2084 | AC | 45       | -60 | 54   | 2   | 37 | 39 | 2  | 3.77   |
| BDAC001693 | 816449.5779 | 1083646.692 | 378.8094 | AC | 45       | -60 | 36   | 6   | 24 | 30 | 6  | 1.91   |
| BDAC001694 | 816418.925  | 1083644.646 | 379.4964 | AC | 45       | -60 | 54   | 5   | 42 | 47 | 5  | 1.71   |
| BDAC001695 | 816435.8467 | 1083658.332 | 379.1804 | AC | 45       | -60 | 36   | 11  | 25 | 36 | 11 | 5.15   |
| BDDD0010   | 816450.8132 | 1083615.599 | 379.3004 | DD | 45       | -60 | 49   | 9   | 36 | 43 | 7  | 5.22   |
| BDDD0011   | 816556.7105 | 1083443.333 | 379.0794 | DD | 45       | -50 | 98.8 | NSI |    |    |    |        |
| BDDD0012   | 816450.4279 | 1083704.262 | 378.8654 | DD | 225      | -50 | 80   | NSI |    |    |    |        |
| BDDD0023   | 816622.5165 | 1083453.924 | 377.107  | DD | 45       | -60 | 75   | NSI |    |    |    | $\mid$ |
| BDDD0024   | 816569.5427 | 1083482.178 | 378.272  | DD | 45       | -60 | 85   | NSI | 40 | 42 | 2  | 1.00   |
| BDDD0025   | 816380.5154 | 1083692.403 | 380.598  | DD | 45       | -60 | 72   | 3   | 40 | 43 | 3  | 1.98   |
| BDDD0026   | 816067.1708 | 1083907.77  | 378.071  | DD | 45       | -60 | 42.5 | 13  | 27 | 40 | 13 | 1.43   |
| BDRC0266   | 816543.4333 | 1083541.212 | 378.2444 | RC | 45       | -60 | 60   | NSI |    |    |    |        |



|   | BDRC0267 | 816526.6224 | 1083524.707 | 378.7494 | RC | 45 | -60 | 78 | NSI |    |    |    |       |
|---|----------|-------------|-------------|----------|----|----|-----|----|-----|----|----|----|-------|
| ł | BDRC0268 | 816527.2002 | 1083552.404 | 378.4324 | RC | 45 | -60 | 60 | 11  | 40 | 51 | 11 | 1.18  |
| ł | BDRC0269 | 816512.5035 | 1083538.577 | 378.7584 | RC | 45 | -60 | 73 | 10  | 55 | 65 | 10 | 2.25  |
| 2 | BDRC0270 | 816496.0257 | 1083551.23  | 379.0364 | RC | 45 | -60 | 60 | NSI |    |    |    |       |
| ľ | BDRC0271 | 816556.3701 | 1083525.682 | 378.2524 | RC | 45 | -60 | 60 | 4   | 44 | 48 | 4  | 8.2   |
| ľ | BDRC0272 | 816571.2407 | 1083513.686 | 378.1474 | RC | 45 | -60 | 66 | 3   | 47 | 50 | 3  | 3.36  |
| ſ | BDRC0273 | 816588.0782 | 1083503.097 | 377.7894 | RC | 45 | -60 | 66 | 3   | 47 | 50 | 3  | 2.53  |
|   | BDRC0274 | 816605.3017 | 1083491.93  | 377.5184 | RC | 45 | -60 | 66 | NSI |    |    |    |       |
|   | BDRC0275 | 816621.3178 | 1083478.894 | 377.1904 | RC | 45 | -60 | 66 | NSI |    |    |    |       |
|   | BDRC0276 | 816639.5029 | 1083470.326 | 376.7494 | RC | 45 | -60 | 60 | 3   | 46 | 49 | 3  | 2.86  |
|   | BDRC0277 | 816651.1332 | 1083451.509 | 376.2874 | RC | 45 | -60 | 64 | 3   | 46 | 49 | 3  | 3.59  |
|   | BDRC0278 | 816664.4044 | 1083434.344 | 375.9764 | RC | 45 | -60 | 66 | NSI |    |    |    |       |
|   | BDRC0279 | 816665.0553 | 1083409.381 | 376.0884 | RC | 45 | -60 | 66 | NSI |    |    |    |       |
|   | BDRC0280 | 816480.7689 | 1083563.304 | 379.2004 | RC | 45 | -60 | 72 | 6   | 56 | 62 | 6  | 8.36  |
|   | BDRC0281 | 816494.9769 | 1083551.602 | 378.9444 | RC | 45 | -60 | 72 | 12  | 57 | 69 | 12 | 1.32  |
|   | BDRC0282 | 816467.7583 | 1083579.895 | 379.4304 | RC | 45 | -60 | 72 | 3   | 54 | 57 | 3  | 1.4   |
|   | BDRC0283 | 816450.9692 | 1083590.709 | 379.7674 | RC | 45 | -60 | 72 | 5   | 53 | 58 | 5  | 8.74  |
|   | BDRC0284 | 816435.4929 | 1083574.848 | 379.8984 | RC | 45 | -60 | 84 | NSI |    |    |    |       |
|   | BDRC0285 | 816441.0463 | 1083608.693 | 379.6584 | RC | 45 | -60 | 66 | 7   | 46 | 53 | 7  | 2     |
|   | BDRC0286 | 816422.1839 | 1083618.477 | 379.9724 | RC | 45 | -60 | 72 | NSI |    |    |    |       |
|   | BDRC0287 | 816407.6421 | 1083604.329 | 380.4504 | RC | 45 | -60 | 84 | NSI |    |    |    |       |
|   | BDRC0288 | 816403.7861 | 1083632.335 | 380.1094 | RC | 45 | -60 | 72 | 3   | 62 | 65 | 3  | 1.42  |
|   | BDRC0289 | 816389.7674 | 1083617.822 | 380.7494 | RC | 45 | -60 | 84 | NSI |    |    |    |       |
|   | BDRC0290 | 816387.1397 | 1083637.617 | 380.4864 | RC | 45 | -60 | 78 | NSI |    |    |    |       |
|   | BDRC0291 | 816382.1442 | 1083662.016 | 380.4744 | RC | 45 | -60 | 72 | 5   | 53 | 58 | 5  | 3.97  |
|   | BDRC0292 | 816364.7285 | 1083646.887 | 381.1894 | RC | 45 | -60 | 72 | NSI |    |    |    |       |
|   | BDRC0293 | 816360.6835 | 1083666.267 | 381.2324 | RC | 45 | -60 | 80 | 2   | 60 | 62 | 2  | 4.77  |
|   | BDRC0293 | 816360.6835 | 1083666.267 | 381.2324 | RC | 45 | -60 | 80 | 2   | 70 | 72 | 2  | 4.57  |
|   | BDRC0294 | 816352.2831 | 1083686.086 | 381.5554 | RC | 45 | -60 | 72 | 4   | 60 | 64 | 4  | 3.14  |
|   | BDRC0295 | 816336.4533 | 1083671.626 | 382.4304 | RC | 45 | -60 | 80 | 3   | 69 | 72 | 3  | 5.1   |
|   | BDRC0295 | 816336.4533 | 1083671.626 | 382.4304 | RC | 45 | -60 | 80 | 4   | 76 | 80 | 4  | 2.96  |
|   | BDRC0296 | 816334.7448 | 1083700.263 | 381.8684 | RC | 45 | -60 | 70 | 2   | 51 | 53 | 2  | 2.95  |
|   | BDRC0296 | 816334.7448 | 1083700.263 | 381.8684 | RC | 45 | -60 | 70 | 3   | 58 | 61 | 3  | 11.96 |



| 1 | BDRC0297 | 816320.538  | 1083686.384 | 382.6234 | RC | 45 | -60 | 80  | 8   | 71 | 79 | 8  | 0.62 |
|---|----------|-------------|-------------|----------|----|----|-----|-----|-----|----|----|----|------|
|   | PDPC0308 | 816205 5720 | 1082700 705 | 202 4504 | DC | 45 | 60  | 80  | NCI |    |    |    |      |
|   | BDRC0298 | 816305.5729 | 1083700.795 | 382.4584 | RC | -  | -60 | 80  | NSI |    |    |    |      |
|   | BDRC0299 | 816303.7493 | 1083730.528 | 381.7844 | RC | 45 | -60 | 65  | 9   | 49 | 58 | 9  | 3.68 |
| 2 | BDRC0300 | 816288.6603 | 1083739.482 | 381.7234 | RC | 45 | -60 | 65  | 8   | 37 | 45 | 8  | 5.25 |
|   | BDRC0301 | 816272.5628 | 1083752.996 | 381.6144 | RC | 45 | -60 | 65  | 2   | 48 | 50 | 2  | 4.79 |
|   | BDRC0302 | 816248.6282 | 1083759.258 | 381.8704 | RC | 45 | -60 | 66  | 9   | 52 | 61 | 9  | 0.47 |
|   | BDRC0303 | 816241.3141 | 1083778.475 | 381.5194 | RC | 45 | -60 | 60  | 18  | 40 | 58 | 18 | 1.23 |
|   | BDRC0304 | 816226.7455 | 1083764.045 | 382.1774 | RC | 45 | -60 | 80  | 7   | 63 | 70 | 7  | 1.19 |
|   | BDRC0305 | 816211.808  | 1083780.094 | 381.9564 | RC | 45 | -60 | 80  | NSI |    |    |    |      |
|   | BDRC0306 | 816227.7599 | 1083793.689 | 381.1344 | RC | 45 | -60 | 65  | 2   | 21 | 23 | 2  | 5.31 |
|   | BDRC0306 | 816227.7599 | 1083793.689 | 381.1344 | RC | 45 | -60 | 65  | 6   | 37 | 43 | 6  | 1.28 |
|   | BDRC0307 | 816213.6666 | 1083808.008 | 380.8954 | RC | 45 | -60 | 65  | 9   | 18 | 27 | 9  | 2.35 |
|   | BDRC0307 | 816213.6666 | 1083808.008 | 380.8954 | RC | 45 | -60 | 65  | 3   | 44 | 47 | 3  | 2.25 |
|   | BDRC0308 | 816197.5417 | 1083821.529 | 380.4674 | RC | 45 | -60 | 65  | 7   | 37 | 44 | 7  | 1.08 |
|   | BDRC0309 | 816180.727  | 1083793.564 | 381.5674 | RC | 45 | -60 | 65  | NSI |    |    |    |      |
|   | BDRC0310 | 816183.3305 | 1083833.211 | 380.0054 | RC | 45 | -60 | 65  | NSI |    |    |    |      |
|   | BDRC0311 | 816170.1381 | 1083817.792 | 380.6624 | RC | 45 | -60 | 80  | NSI |    |    |    |      |
|   | BDRC0312 | 816157.937  | 1083806.27  | 380.9164 | RC | 45 | -60 | 65  | NSI |    |    |    |      |
|   | BDRC0313 | 816677.8297 | 1083312.593 | 377.2914 | RC | 45 | -60 | 84  | 6   | 51 | 57 | 6  | 1.14 |
|   | BDRC0314 | 816154.7049 | 1083836.813 | 379.9724 | RC | 45 | -60 | 80  | NSI |    |    |    |      |
|   | BDRC0315 | 816363.4869 | 1083648.756 | 381.2894 | RC | 45 | -60 | 86  | 2   | 70 | 72 | 2  | 3.24 |
|   | BDRC0316 | 816577.1174 | 1083462.501 | 378.4984 | RC | 45 | -60 | 102 | NSI |    |    |    |      |
|   | BDRC0317 | 816619.23   | 1083421.243 | 377.1374 | RC | 45 | -60 | 102 | NSI |    |    |    |      |
|   | BDRC0318 | 816611.4164 | 1083444.731 | 377.3434 | RC | 45 | -60 | 96  | 2   | 79 | 81 | 2  | 4.42 |
|   | BDRC0319 | 816594.1886 | 1083450.238 | 377.8604 | RC | 45 | -60 | 102 | NSI |    |    |    |      |
|   | BDRC0320 | 816591.1952 | 1083476.793 | 377.9404 | RC | 45 | -60 | 84  | NSI |    |    |    |      |
|   | BDRC0321 | 816556.6061 | 1083499.188 | 378.5784 | RC | 45 | -60 | 84  | 2   | 62 | 64 | 2  | 2.88 |
|   | BDRC0322 | 816573.2493 | 1083485.028 | 378.3854 | RC | 45 | -60 | 84  | NSI |    |    |    |      |
|   | BDRC0323 | 816542.0349 | 1083512.445 | 378.8084 | RC | 45 | -60 | 78  | NSI |    |    |    |      |
|   | BDRC0324 | 816608.7187 | 1083464.058 | 377.7034 | RC | 45 | -60 | 84  | 2   | 66 | 68 | 2  | 2.75 |
|   | BDRC0346 | 816451.5468 | 1083672.64  | 378.9934 | RC | 45 | -60 | 25  | NSI |    |    |    |      |
|   | BDRC0347 | 816415.9436 | 1083667.696 | 379.5484 | AC | 45 | -60 | 48  | 8   | 30 | 38 | 8  | 1.79 |
|   | BDRC0348 | 816437.578  | 1083694.566 | 379.1124 | RC | 45 | -60 | 18  | NSI |    |    |    |      |
|   |          |             |             |          |    |    |     |     |     |    |    |    |      |



|   | BDRC0349 | 816398.3671 | 1083677.581 | 379.9974 | RC | 45 | -60 | 54 | 4   | 34 | 38 | 4  | 1.08  |
|---|----------|-------------|-------------|----------|----|----|-----|----|-----|----|----|----|-------|
|   | BDRC0350 | 816408.7104 | 1083692.95  | 379.8554 | RC | 45 | -60 | 36 | NSI |    |    |    |       |
|   | BDRC0351 | 816423.375  | 1083707.733 | 379.4484 | RC | 45 | -60 | 25 | NSI |    |    |    |       |
| 2 | BDRC0352 | 816387.2094 | 1083698.834 | 380.4684 | RC | 45 | -60 | 50 | 10  | 27 | 37 | 10 | 3.22  |
|   | BDRC0353 | 816402.4444 | 1083711.83  | 380.1304 | RC | 45 | -60 | 35 | 6   | 12 | 18 | 6  | 5.24  |
|   | BDRC0354 | 816366.7731 | 1083699.089 | 380.9774 | RC | 45 | -60 | 55 | 3   | 41 | 44 | 3  | 4.54  |
|   | BDRC0355 | 816382.677  | 1083713.316 | 380.3644 | RC | 45 | -60 | 42 | 10  | 20 | 30 | 10 | 6.16  |
|   | BDRC0356 | 816397.6369 | 1083728.649 | 379.9804 | RC | 45 | -60 | 30 | 9   | 0  | 9  | 9  | 0.66  |
|   | BDRC0357 | 816351.172  | 1083717.266 | 381.1164 | RC | 45 | -60 | 55 | 10  | 30 | 40 | 10 | 4     |
|   | BDRC0358 | 816365.2246 | 1083732.792 | 380.5684 | RC | 45 | -60 | 42 | 9   | 17 | 26 | 9  | 3.89  |
|   | BDRC0359 | 816376.1724 | 1083742.849 | 380.0164 | RC | 45 | -60 | 30 | 7   | 0  | 7  | 7  | 1.49  |
|   | BDRC0359 | 816376.1724 | 1083742.849 | 380.0164 | RC | 45 | -60 | 30 | 4   | 13 | 17 | 4  | 2.06  |
|   | BDRC0360 | 816334.4108 | 1083729.278 | 381.1924 | RC | 45 | -60 | 55 | 2   | 35 | 37 | 2  | 3.04  |
|   | BDRC0361 | 816348.1607 | 1083742.92  | 380.6544 | RC | 45 | -60 | 42 | NSI |    |    |    |       |
|   | BDRC0362 | 816362.3406 | 1083756.169 | 380.0814 | RC | 45 | -60 | 30 | 25  | 0  | 25 | 25 | 3.05  |
|   | BDRC0363 | 816334.8639 | 1083757.351 | 380.6894 | RC | 45 | -60 | 40 | 15  | 20 | 35 | 15 | 2.6   |
|   | BDRC0364 | 816348.0737 | 1083770.285 | 380.2344 | RC | 45 | -60 | 30 | 11  | 9  | 20 | 11 | 1.04  |
|   | BDRC0365 | 816320.4717 | 1083743.754 | 381.2674 | RC | 45 | -60 | 50 | 3   | 40 | 43 | 3  | 5.14  |
|   | BDRC0366 | 816305.6434 | 1083755.573 | 381.0624 | RC | 45 | -60 | 50 | 6   | 37 | 43 | 6  | 18.27 |
|   | BDRC0367 | 816316.9715 | 1083768.455 | 380.7404 | RC | 45 | -60 | 40 | 10  | 26 | 36 | 10 | 3.93  |
|   | BDRC0368 | 816329.6619 | 1083781.803 | 380.2944 | RC | 45 | -60 | 30 | NSI |    |    |    |       |
|   | BDRC0369 | 816285.2168 | 1083770.545 | 381.1074 | RC | 45 | -60 | 45 | 4   | 33 | 37 | 4  | 11.08 |
|   | BDRC0370 | 816300.2295 | 1083783.68  | 380.6714 | RC | 45 | -60 | 30 | 9   | 20 | 29 | 9  | 8.09  |
| _ | BDRC0371 | 816316.3852 | 1083799.785 | 380.4224 | RC | 45 | -60 | 20 | 4   | 7  | 11 | 4  | 2.65  |
|   | BDRC0372 | 816294.3253 | 1083802.877 | 380.5024 | RC | 45 | -60 | 25 | 6   | 17 | 23 | 6  | 0.88  |
|   | BDRC0373 | 816277.1862 | 1083786.193 | 381.0424 | RC | 45 | -60 | 40 | NSI |    |    |    |       |
|   | BDRC0374 | 816256.9966 | 1083794.107 | 380.8494 | RC | 45 | -60 | 45 | 10  | 25 | 35 | 10 | 1.07  |
|   | BDRC0375 | 816270.3129 | 1083810.204 | 380.6874 | RC | 45 | -60 | 30 | 8   | 12 | 20 | 8  | 2.66  |
|   | BDRC0376 | 816243.2728 | 1083807.844 | 380.6844 | RC | 45 | -60 | 45 | 5   | 27 | 32 | 5  | 1.31  |
|   | BDRC0377 | 816259.3667 | 1083822.049 | 380.5164 | RC | 45 | -60 | 30 | 4   | 9  | 13 | 4  | 1.15  |
|   | BDRC0377 | 816259.3667 | 1083822.049 | 380.5164 | RC | 45 | -60 | 30 | 4   | 16 | 20 | 4  | 5.63  |
|   | BDRC0378 | 816229.7704 | 1083820.826 | 380.3794 | RC | 45 | -60 | 45 | 2   | 23 | 25 | 2  | 2.15  |
|   | BDRC0378 | 816229.7704 | 1083820.826 | 380.3794 | RC | 45 | -60 | 45 | 5   | 28 | 33 | 5  | 0.89  |



|   | BDRC0379 | 816243.0972 | 1083833.08  | 380.2644 | RC | 45 | -60 | 30 | 4   | 16 | 20 | 4  | 2.13  |
|---|----------|-------------|-------------|----------|----|----|-----|----|-----|----|----|----|-------|
|   | BDRC0380 | 816226.3169 | 1083848.851 | 379.9754 | RC | 45 | -60 | 30 | NSI |    |    |    |       |
|   | BDRC0381 | 816199.0324 | 1083850.291 | 379.7214 | RC | 45 | -60 | 45 | NSI |    |    |    |       |
| 2 | BDRC0382 | 816211.8886 | 1083862.153 | 379.6484 | RC | 45 | -60 | 30 | NSI |    |    |    |       |
|   | BDRC0383 | 816186.8578 | 1083864.378 | 379.3634 | RC | 45 | -60 | 45 | 8   | 13 | 21 | 8  | 1.24  |
|   | BDRC0384 | 816200.2925 | 1083876.726 | 379.1624 | RC | 45 | -60 | 30 | NSI |    |    |    |       |
|   | BDRC0385 | 816173.5398 | 1083876.919 | 379.0674 | RC | 45 | -60 | 45 | 2   | 10 | 12 | 2  | 2.03  |
|   | BDRC0386 | 816188.3823 | 1083890.653 | 378.9904 | RC | 45 | -60 | 30 | 21  | 0  | 21 | 21 | 2.86  |
|   | BDRC0387 | 816169.308  | 1083902.754 | 378.7104 | RC | 45 | -60 | 35 | NSI |    |    |    |       |
|   | BDRC0388 | 816151.4066 | 1083912.415 | 378.3624 | RC | 45 | -60 | 45 | NSI |    |    |    |       |
|   | BDRC0389 | 816121.1473 | 1083883.089 | 378.9084 | RC | 45 | -60 | 40 | 9   | 18 | 27 | 9  | 0.61  |
|   | BDRC0390 | 816107.2002 | 1083869.061 | 379.0154 | RC | 45 | -60 | 50 | 4   | 35 | 39 | 4  | 2.41  |
|   | BDRC0391 | 816120.4537 | 1083911.333 | 378.3604 | RC | 45 | -60 | 25 | 8   | 5  | 13 | 8  | 0.63  |
|   | BDRC0391 | 816120.4537 | 1083911.333 | 378.3604 | RC | 45 | -60 | 25 | 4   | 18 | 22 | 4  | 1.04  |
|   | BDRC0392 | 816106.5005 | 1083897.016 | 378.5074 | RC | 45 | -60 | 42 | 4   | 21 | 25 | 4  | 2.01  |
|   | BDRC0393 | 816092.557  | 1083884.599 | 378.6004 | RC | 45 | -60 | 54 | 4   | 32 | 36 | 4  | 1.13  |
|   | BDRC0394 | 816104.5865 | 1083924.001 | 378.0484 | RC | 45 | -60 | 30 | 5   | 7  | 12 | 5  | 0.97  |
|   | BDRC0395 | 816091.0866 | 1083911.753 | 378.2144 | RC | 45 | -60 | 50 | 8   | 13 | 21 | 8  | 1.46  |
|   | BDRC0396 | 816076.4067 | 1083898.366 | 378.2164 | RC | 45 | -60 | 60 | 7   | 28 | 35 | 7  | 1.04  |
|   | BDRC0397 | 816058.0369 | 1083903.174 | 378.0734 | RC | 45 | -60 | 50 | NSI |    |    |    |       |
|   | BDRC0398 | 816043.5085 | 1083919.268 | 377.5754 | RC | 45 | -60 | 50 | NSI |    |    |    |       |
|   | BDRC0399 | 816029.4628 | 1083933.009 | 377.0154 | RC | 45 | -60 | 50 | NSI |    |    |    |       |
|   | BDRC0400 | 816014.8208 | 1083945.052 | 376.7934 | RC | 45 | -60 | 50 | NSI |    |    |    |       |
|   | BDRC0401 | 816030.2327 | 1083961.569 | 376.5004 | RC | 45 | -60 | 40 | NSI |    |    |    |       |
|   | BDRC0402 | 816044.5632 | 1083976.555 | 376.4994 | RC | 45 | -60 | 30 | NSI |    |    |    |       |
|   | BDRC0403 | 816040.5289 | 1083949.642 | 376.8864 | RC | 45 | -60 | 40 | NSI |    |    |    |       |
|   | BDRC0404 | 816054.9137 | 1083960.091 | 376.8534 | RC | 45 | -60 | 30 | NSI |    |    |    |       |
|   | BDRC0405 | 816072.5041 | 1083946.052 | 377.4134 | RC | 45 | -60 | 30 | NSI |    |    |    |       |
|   | BDRC0406 | 816081.1038 | 1083931.302 | 377.7134 | RC | 45 | -60 | 30 | 6   | 8  | 14 | 6  | 1.96  |
|   | BDRC0407 | 816060.1396 | 1083939.073 | 377.3574 | RC | 45 | -60 | 40 | NSI |    |    |    |       |
|   | BDRC0408 | 816164.1358 | 1083925.939 | 378.1654 | RC | 45 | -60 | 30 | NSI |    |    |    |       |
|   | BDRC0409 | 816570.1458 | 1083541.67  | 377.8334 | RC | 45 | -60 | 42 | 2   | 28 | 30 | 2  | 17.38 |
|   | BDRC0410 | 816585.5006 | 1083555.41  | 377.1774 | RC | 45 | -60 | 25 | 6   | 13 | 19 | 6  | 4.69  |
| 1 |          |             |             |          |    |    |     |    |     |    |    |    |       |



|   | BDRC0411 | 816584.7109 | 1083527.204 | 377.5554 | RC | 45 | -60 | 42 | 2   | 32 | 34  | 2 | 7.73  |
|---|----------|-------------|-------------|----------|----|----|-----|----|-----|----|-----|---|-------|
|   | BDRC0412 | 816600.0452 | 1083541.038 | 377.1584 | RC | 45 | -60 | 25 | 4   | 16 | 20  | 4 | 12.83 |
|   | BDRC0413 | 816618.1147 | 1083529.957 | 376.7824 | RC | 45 | -60 | 25 | 5   | 18 | 23  | 5 | 2.81  |
| 2 | BDRC0414 | 816602.2018 | 1083516.802 | 377.4294 | RC | 45 | -60 | 42 | 3   | 32 | 35  | 3 | 2.87  |
|   | BDRC0415 | 816630.0063 | 1083517.943 | 376.7434 | RC | 45 | -60 | 25 | NSI |    |     |   |       |
|   | BDRC0416 | 816618.3103 | 1083505.597 | 377.2904 | RC | 45 | -60 | 45 | 5   | 32 | 37  | 5 | 3.15  |
|   | BDRC0417 | 816647.9169 | 1083506.463 | 376.2884 | RC | 45 | -60 | 25 | NSI |    |     |   |       |
|   | BDRC0418 | 816635.0428 | 1083493.516 | 376.7534 | RC | 45 | -60 | 42 | 3   | 34 | 37  | 3 | 4.14  |
|   | BDRC0419 | 816663.1311 | 1083495.471 | 376.4524 | RC | 45 | -60 | 25 | NSI |    |     |   |       |
|   | BDRC0420 | 816675.8152 | 1083478.105 | 375.4874 | RC | 45 | -60 | 25 | NSI |    |     |   |       |
|   | BDRC0421 | 816692.0807 | 1083462.652 | 375.0674 | RC | 45 | -60 | 25 | 3   | 22 | 25  | 3 | 4.33  |
|   | BDRC0422 | 816690.8241 | 1083436.669 | 375.2304 | RC | 45 | -60 | 25 | NSI |    |     |   |       |
|   | BDRC0423 | 816674.9337 | 1083420.156 | 375.7294 | RC | 45 | -60 | 42 | NSI |    |     |   |       |
|   | BDRC0424 | 816660.6094 | 1083465.601 | 376.0324 | RC | 45 | -60 | 42 | 3   | 31 | 34  | 3 | 1.43  |
|   | BDRC0425 | 816677.1841 | 1083448.147 | 375.3274 | RC | 45 | -60 | 45 | NSI |    |     |   |       |
|   | BDRC0426 | 816685.7678 | 1083402.718 | 375.6624 | RC | 45 | -60 | 39 | NSI |    |     |   |       |
|   | BDRC0427 | 816702.2211 | 1083416.919 | 375.2064 | RC | 45 | -60 | 25 | NSI |    |     |   |       |
|   | BDRC0428 | 816707.1355 | 1083391.611 | 375.4824 | RC | 45 | -60 | 25 | NSI |    |     |   |       |
|   | BDRC0429 | 816693.6287 | 1083379.864 | 375.8284 | RC | 45 | -60 | 42 | NSI |    |     |   |       |
|   | BDRC0430 | 816713.977  | 1083372.081 | 375.7684 | RC | 45 | -60 | 25 | NSI |    |     |   |       |
|   | BDRC0431 | 816698.3095 | 1083357.463 | 376.1194 | RC | 45 | -60 | 42 | 2   | 10 | 12  | 2 | 3.72  |
|   | BDRC0432 | 816708.5902 | 1083338.102 | 376.3214 | RC | 45 | -60 | 42 | NSI |    |     |   |       |
|   | BDRC0433 | 816508.8928 | 1083618.455 | 378.2684 | RC | 45 | -60 | 25 | 6   | 14 | 20  | 6 | 2.15  |
|   | BDRC0434 | 816495.2075 | 1083632.876 | 378.2954 | RC | 45 | -60 | 25 | 3   | 10 | 13  | 3 | 35.66 |
|   | BDRC0435 | 816464.7514 | 1083661.305 | 378.7434 | RC | 45 | -60 | 25 | NSI |    |     |   |       |
|   | BDRC0436 | 816091.4219 | 1083854.404 | 379.2444 | RC | 45 | -60 | 60 | NSI |    |     |   |       |
|   | BDRC0437 | 816076.3187 | 1083868.284 | 378.882  | RC | 45 | -60 | 60 | NSI |    |     |   |       |
|   | BDRC0438 | 816066.3703 | 1083883.436 | 378.6514 | RC | 45 | -60 | 60 | NSI |    |     |   |       |
|   | BDRC0439 | 816133.2789 | 1083894.766 | 378.7344 | RC | 45 | -60 | 60 | NSI | 10 | 22  | E | 1.00  |
|   | BDRC0440 | 816146.8242 | 1083880.12  | 378.9064 | RC | 45 | -60 | 65 | 6   | 16 | 22  | 6 | 1.08  |
|   | BDRC0441 | 816110.4829 | 1083845.602 | 379.6044 | RC | 45 | -60 | 66 | NSI | 50 | F 4 |   | 1.54  |
|   | BDRC0442 | 816131.0657 | 1083837.08  | 379.8354 | RC | 45 | -60 | 65 | 4   | 50 | 54  | 4 | 1.54  |
|   | BDRC0443 | 816155.3369 | 1083864.72  | 379.1274 | RC | 45 | -60 | 60 | NSI |    |     |   |       |



| BDAC001716         810677.9133         1096802.496         370.277         AC         315         -55         38         8         6         14         8         0.79           BDAC001716         810677.9133         1096802.496         370.277         AC         315         -55         38         8         6         14         8         0.79           BDAC001716         810677.9133         1096802.496         370.277         AC         315         -55         38         7         19         26         7         1.93           BDAC001717         810696.978         1096818.103         370.19         AC         315         -55         35         23         10         33         23         1.28           BDAC001718         810710.3658         1096838.277         369.931         AC         315         -55         30         14         9         23         14         1.88           BDAC001719         810745.0375         1096877.54         370.016         AC         315         -55         30         12         11         23         12         1.04           BDAC001720         810760.9231         1096897.028         369.755         AC         315 <td< th=""><th></th><th>222244</th><th>046400 4404</th><th>1000001 50</th><th>200 4074</th><th>20</th><th></th><th>60</th><th></th><th>NG</th><th></th><th></th><th>1</th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 222244     | 046400 4404 | 1000001 50  | 200 4074 | 20 |     | 60  |    | NG   |    |    | 1  |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------|-------------|-------------|----------|----|-----|-----|----|------|----|----|----|------|
| BORCOME         BLEADA BLE         2083809.312         379.014         RC         45         -0         72         NG         N         N         N           BORCOME         8186703.128         1093397.31         376.2284         RC         45         -60         66         100         7         17         10         1.14           BORCOME         816670.0824         1093366.71         376.5244         RC         45         -60         66         160         160         160         160         17         17         10         1.14           BORCOME         816650.781         1093366.71         376.524         RC         45         -60         66         44         30         34         4.1         4.25           BORCOMS         81665.3785         108332.82         376.974         RC         45         -60         34         7.7         40         4.7         4.0         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | BDRC0444   | 816139.4104 | 1083821.56  | 380.4074 | ĸĊ | 45  | -60 | 65 | INSI |    |    |    |      |
| BBRC0447         BL6F01.126         103337.137         376.2281         AC         4.5         4.60         6.6         1.00         7.         2.7         1.0         1.1           BBRC0447         BL6F78.0024         1033367.11         376.2281         RC         4.5         4.60         6.60         1.50         1.8         2.3         5         1.51           BBRC0449         BL6650.701         1033344.980         376.5574         RC         4.50         4.60         6.60         A.50         3.8         2.3         5         1.52           BBRC0449         BL6650.7012         1033344.980         376.5574         RC         4.50         4.60         6.60         A.40         4.7         4.0         4.7         7.0         7.0         7.0           BBRC0449         BL667.2633         1033372.64         376.7104         RC         4.50         4.60         8.4         7.0         7.7         7.7         7.0           BBRC045         BL6657.2633         1038347.137         376.634         RC         4.50         4.0         8.4         7.0         7.0         7.0           BBRC045         BL6657.2631         1038347.1373         376.634         RC         4.50 <th></th> <th>BDRC0445</th> <th>816171.2126</th> <th>1083850.326</th> <th>379.6624</th> <th>RC</th> <th>45</th> <th>-60</th> <th>66</th> <th>4</th> <th>27</th> <th>31</th> <th>4</th> <th>1.42</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | BDRC0445   | 816171.2126 | 1083850.326 | 379.6624 | RC | 45  | -60 | 66 | 4    | 27 | 31 | 4  | 1.42 |
| BORCOME         BL6578.0224         1083366.711         378.5314         RC         4.5         -60         66         5         1.8         2.3         5         1.58           BORCOME         816678.0211         1083346.328         375.5574         RC         45         -60         66         A         30         34         4         4.23           BORCOME         816693.319         1083325.82         375.024         RC         45         -60         66         44         .00         47         7         .09           BORCOMES         816602.8432         1083350.342         376.864         RC         45         -60         64         MSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ľ | BDRC0446   | 816140.9616 | 1083849.312 | 379.6364 | RC | 45  | -60 | 72 | NSI  |    |    |    |      |
| DBRC0449         B16685.0781         DB83344.938         375.574         RC         4.5         6.00         6.6         NSI             BDRC0449         816685.0781         1083324.938         375.5274         RC         4.5         6.00         6.6         NSI              BDRC0450         815693.119         1083325.82         375.9244         RC         4.5         4.60         8.4         7.7         .40         4.7 <td< th=""><th>2</th><th>BDRC0447</th><th>816670.1268</th><th>1083387.137</th><th>376.2284</th><th>RC</th><th>45</th><th>-60</th><th>66</th><th>10</th><th>7</th><th>17</th><th>10</th><th>1.14</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 | BDRC0447   | 816670.1268 | 1083387.137 | 376.2284 | RC | 45  | -60 | 66 | 10   | 7  | 17 | 10 | 1.14 |
| DRCMSO         R16400         R164000         R1640000         R1640000         R1640000         R1640000         R1640000         R16400000         R16400000         R104000000         R104000000         R10400000000         R104000000000         R10400000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ľ | BDRC0448   | 816678.0824 | 1083366.711 | 376.5314 | RC | 45  | -60 | 66 | 5    | 18 | 23 | 5  | 1.56 |
| BRC0451         816670.2024         1083330.164         376.9474         KC         45         60         84         7         40         47         7         99           BRC0452         816602.2081         1083330.924         376.8564         RC         45         600         84         NSI         7.         7.0         9.9           BRC0453         816602.2833         1083372.44         376.7104         RC         45         600         84         7         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0 <td< th=""><th></th><th>BDRC0449</th><th>816685.0781</th><th>1083344.938</th><th>376.5574</th><th>RC</th><th>45</th><th>-60</th><th>66</th><th>NSI</th><th></th><th></th><th></th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | BDRC0449   | 816685.0781 | 1083344.938 | 376.5574 | RC | 45  | -60 | 66 | NSI  |    |    |    |      |
| DRC0452         816662.8432         1083350.924         376.8564         RC         45         -60         84         NSI             BRC0453         816657.2853         1083372.04         376.7104         RC         455         -60         84         NSI <th></th> <th>BDRC0450</th> <th>816693.319</th> <th>1083325.82</th> <th>376.9024</th> <th>RC</th> <th>45</th> <th>-60</th> <th>66</th> <th>4</th> <th>30</th> <th>34</th> <th>4</th> <th>4.25</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | BDRC0450   | 816693.319  | 1083325.82  | 376.9024 | RC | 45  | -60 | 66 | 4    | 30 | 34 | 4  | 4.25 |
| DRC0453         316657.2633         1083372.64         376.7104         RC         4.5         -6.0         8.4         7.7         2.7         3.4         7.         0.95           BRC0454         316657.2633         1083327.131         376.7104         RC         4.5         -6.0         8.4         NS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ľ | BDRC0451   | 816670.2082 | 1083330.166 | 376.9474 | RC | 45  | -60 | 84 | 7    | 40 | 47 | 7  | 0.99 |
| Constrain         Constrain <thconstrain< th=""> <thconstrain< th=""> <thc< th=""><th>ľ</th><th>BDRC0452</th><th>816662.8432</th><th>1083350.924</th><th>376.8564</th><th>RC</th><th>45</th><th>-60</th><th>84</th><th>NSI</th><th></th><th></th><th></th><th></th></thc<></thconstrain<></thconstrain<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ľ | BDRC0452   | 816662.8432 | 1083350.924 | 376.8564 | RC | 45  | -60 | 84 | NSI  |    |    |    |      |
| International and any angle of the second state of the second s        |   | BDRC0453   | 816657.2853 | 1083372.64  | 376.7104 | RC | 45  | -60 | 84 | 7    | 27 | 34 | 7  | 0.95 |
| Image: bioling |   | BDRC0454   | 816650.5117 | 1083392.517 | 376.7914 | RC | 45  | -60 | 84 | NSI  |    |    |    |      |
| International         Internat         International         International                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | BDRC0455   | 816648.519  | 1083421.318 | 376.4234 | RC | 45  | -60 | 84 | 4    | 4  | 8  | 4  | 1.01 |
| L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ľ | BDRC0456   | 816636.8221 | 1083437.315 | 376.6894 | RC | 45  | -60 | 84 | 20   | 64 | 84 | 20 | 1.44 |
| L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L <thl< th="">         L         <thl< th=""> <thl< th=""></thl<></thl<></thl<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ľ | BDRC0457   | 816609.9188 | 1083465.379 | 377.6284 | RC | 45  | -60 | 72 | 2    | 67 | 69 | 2  | 5.72 |
| Image: Constraint of the state of         | ľ | BDRC0520   | 816566.7314 | 1083565.426 | 377.527  | RC | 45  | -60 | 28 | 5    | 14 | 19 | 5  | 1.91 |
| L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L <thl< th="">         L         <thl< th=""> <thl< th=""></thl<></thl<></thl<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ľ | BDRC0521   | 816476.9508 | 1083591.746 | 379.061  | RC | 45  | -60 | 54 | 6    | 42 | 48 | 6  | 1.93 |
| NULLETTE         NULL         NULL         NULL         NULL         NULL         NULL         NULL         NULL           BDAC001714         810645.7503         1096765.118         370.066         AC         315         -55         48         15         12         27         15         1.76           BDAC001714         810645.7503         1096765.118         370.066         AC         315         -55         48         33         44         47         33         191           BDAC001715         810661.4763         1096780.005         369.827         AC         315         -55         48         3         44         47         33         191           BDAC001715         810661.4763         1096780.005         369.827         AC         315         -55         48         3         16         24         8         1.14           BDAC001716         810677.9133         1096802.496         370.277         AC         315         -55         38         7         19         26         7         139           BDAC001716         810677.9133         1096818.103         370.277         AC         315         -55         30         14         9         23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | BDRC0522WP | 816255.8584 | 1083713.866 | 383.453  | RC | 0   | -90 | 97 | NSI  |    |    |    |      |
| BDAC001714         810645.7503         1096765.118         370.066         AC         315         -55         48         15         12         27         15         1.76           BDAC001714         810645.7503         1096765.118         370.066         AC         315         -55         48         3         44         47         3         191           BDAC001715         810661.4763         1096780.005         369.827         AC         315         -55         46         8         16         24         8         1.14           BDAC001716         810677.9133         1096802.496         370.277         AC         315         -55         38         8         6         14         8         0.79           BDAC001716         810677.9133         1096802.496         370.277         AC         315         -55         38         7         19         26         7         1.93           BDAC001716         810677.9133         1096802.496         370.277         AC         315         -55         38         7         19         26         7         1.93           BDAC001717         810696.978         1096818.103         370.277         AC         315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | BDRC0524WP | 816267.1482 | 1083703.978 | 383.395  | RC | 0   | -90 | 70 | NSI  |    |    |    |      |
| BDAC001714810645.75031096765.118370.066AC315-55483444731.91BDAC001715810661.47631096780.005369.827AC315-55468162481.14BDAC001716810677.91331096802.496370.277AC315-55387192671.93BDAC00171681067.91331096802.496370.277AC315-55387192671.93BDAC001716810696.9781096818.103370.19AC315-5535231033231.28BDAC001717810696.9781096818.103370.19AC315-553014923141.88BDAC001718810710.36581096838.277369.931AC315-5530121123121.04BDAC001720810760.9231109687.028369.775AC315-5530121123121.04BDAC001720810760.9231109697.028369.733AC315-55305101551.57BDAC001722810805.0841109695.6369.456AC315-5530311143<2.31BDAC001723810726.3099109686.069370.058AC315-553031114333 <th></th> <th>JULIETTE</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | JULIETTE   |             |             |          |    |     |     |    |      |    |    |    |      |
| BDAC001715         810661.4763         1096780.005         369.827         AC         315         -55         46         8         16         24         8         1.14           BDAC001716         810677.9133         1096802.496         370.277         AC         315         -55         38         8         6         14         8         0.79           BDAC001716         810677.9133         1096802.496         370.277         AC         315         -55         38         7         19         26         7         1.93           BDAC001716         810677.9133         1096802.496         370.277         AC         315         -55         38         7         19         26         7         1.93           BDAC001717         810696.978         1096818.103         370.19         AC         315         -55         35         23         10         33         23         1.28           BDAC001718         810710.3658         1096838.277         369.931         AC         315         -55         30         14         9         23         14         1.88           BDAC001719         810745.0375         1096877.54         370.016         AC         315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ľ | BDAC001714 | 810645.7503 | 1096765.118 | 370.066  | AC | 315 | -55 | 48 | 15   | 12 | 27 | 15 | 1.76 |
| BDAC001716         810677.9133         1096802.496         370.277         AC         315         -55         38         8         6         14         8         0.79           BDAC001716         810677.9133         1096802.496         370.277         AC         315         -55         38         7         19         26         7         1.93           BDAC001716         810677.9133         1096818.103         370.19         AC         315         -55         38         7         19         26         7         1.93           BDAC001717         810696.978         1096818.103         370.19         AC         315         -55         35         23         10         33         23         1.28           BDAC001718         810710.3658         1096838.277         369.931         AC         315         -55         30         14         9         23         14         1.88           BDAC001719         810745.0375         109687.54         370.016         AC         315         -55         30         12         11         23         12         1.04           BDAC001720         810760.9231         1096897.028         369.755         AC         315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | BDAC001714 | 810645.7503 | 1096765.118 | 370.066  | AC | 315 | -55 | 48 | 3    | 44 | 47 | 3  | 1.91 |
| BDAC001716         810677.9133         1096802.496         370.277         AC         315         -55         38         7         19         26         7         1.93           BDAC001717         810696.978         1096818.103         370.19         AC         315         -55         35         23         10         33         23         1.28           BDAC001717         810696.978         1096838.277         369.931         AC         315         -55         30         14         9         23         14         1.88           BDAC001719         810745.0375         1096877.54         370.016         AC         315         -55         30         14         9         23         14         1.88           BDAC001720         810760.9231         1096897.028         369.775         AC         315         -55         30         12         11         23         12         1.04           BDAC001720         810760.9231         1096897.028         369.775         AC         315         -55         30         9         8         17         9         0.77           BDAC001721         810776.322         1096918.242         369.533         AC         315 <td< th=""><th></th><th>BDAC001715</th><th>810661.4763</th><th>1096780.005</th><th>369.827</th><th>AC</th><th>315</th><th>-55</th><th>46</th><th>8</th><th>16</th><th>24</th><th>8</th><th>1.14</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | BDAC001715 | 810661.4763 | 1096780.005 | 369.827  | AC | 315 | -55 | 46 | 8    | 16 | 24 | 8  | 1.14 |
| Image: series of the         |   | BDAC001716 | 810677.9133 | 1096802.496 | 370.277  | AC | 315 | -55 | 38 | 8    | 6  | 14 | 8  | 0.79 |
| Image: Mark and         |   | BDAC001716 | 810677.9133 | 1096802.496 | 370.277  | AC | 315 | -55 | 38 | 7    | 19 | 26 | 7  | 1.93 |
| Image: Mark and         | ľ | BDAC001717 | 810696.978  | 1096818.103 | 370.19   | AC | 315 | -55 | 35 | 23   | 10 | 33 | 23 | 1.28 |
| Image: Mark Sector 1720         Stor 76.9231         1096897.028         369.775         AC         315         -55         30         9         8         17         9         0.77           BDAC001720         810760.9231         1096918.242         369.533         AC         315         -55         30         9         8         17         9         0.77           BDAC001721         810875.0841         1096918.242         369.533         AC         315         -55         30         5         10         15         55         1.57           BDAC001722         810805.0841         1096954.6         369.456         AC         315         -55         30         3         11         14         3         2.31           BDAC001723         810726.3099         1096860.069         370.058         AC         315         -55         30         9         6         15         9         5.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | BDAC001718 | 810710.3658 | 1096838.277 | 369.931  | AC | 315 | -55 | 30 | 14   | 9  | 23 | 14 | 1.88 |
| BDAC001721         810776.3322         1096918.242         369.533         AC         315         -55         30         5         10         15         5         1.57           BDAC001721         810805.0841         1096954.6         369.456         AC         315         -55         30         5         10         15         5         1.57           BDAC001722         810805.0841         1096954.6         369.456         AC         315         -55         30         3         11         14         3         2.31           BDAC001723         810726.3099         1096860.069         370.058         AC         315         -55         30         9         6         15         9         5.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ľ | BDAC001719 | 810745.0375 | 1096877.54  | 370.016  | AC | 315 | -55 | 30 | 12   | 11 | 23 | 12 | 1.04 |
| BDAC001722         810805.0841         1096954.6         369.456         AC         315         -55         30         3         11         14         3         2.31           BDAC001723         810726.3099         1096860.069         370.058         AC         315         -55         30         9         6         15         9         5.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | BDAC001720 | 810760.9231 | 1096897.028 | 369.775  | AC | 315 | -55 | 30 | 9    | 8  | 17 | 9  | 0.77 |
| BDAC001723         810726.3099         1096860.069         370.058         AC         315         -55         30         9         6         15         9         5.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | BDAC001721 | 810776.3322 | 1096918.242 | 369.533  | AC | 315 | -55 | 30 | 5    | 10 | 15 | 5  | 1.57 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | BDAC001722 | 810805.0841 | 1096954.6   | 369.456  | AC | 315 | -55 | 30 | 3    | 11 | 14 | 3  | 2.31 |
| BDAC001724         810791.506         1096935.531         369.477         AC         315         -55         30         9         9         18         9         2.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | BDAC001723 | 810726.3099 | 1096860.069 | 370.058  | AC | 315 | -55 | 30 | 9    | 6  | 15 | 9  | 5.44 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | BDAC001724 | 810791.506  | 1096935.531 | 369.477  | AC | 315 | -55 | 30 | 9    | 9  | 18 | 9  | 2.33 |
| BDAC001725         810819.3975         1096978.33         369.69         AC         315         -55         30         6         6         12         6         1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | BDAC001725 | 810819.3975 | 1096978.33  | 369.69   | AC | 315 | -55 | 30 | 6    | 6  | 12 | 6  | 1.66 |



|   | BDAC001726 | 810836.672  | 1096994.078 | 369.87  | AC | 315 | -55 | 30 | 5   | 15 | 20 | 5  | 0.94 |
|---|------------|-------------|-------------|---------|----|-----|-----|----|-----|----|----|----|------|
| ł | BDAC001727 | 810851.5799 | 1097016.808 | 369.789 | AC | 315 | -55 | 29 | 3   | 14 | 17 | 3  | 2.94 |
| ł | BDAC001728 | 810884.5568 | 1097053.399 | 369.886 | AC | 315 | -55 | 30 | 9   | 11 | 20 | 9  | 1.89 |
| 2 | BDAC001729 | 810901.8956 | 1097071.756 | 369.973 | AC | 315 | -55 | 30 | 12  | 9  | 21 | 12 | 1.08 |
| ł | BDRC0325   | 810657.2652 | 1096753.905 | 369.686 | RC | 315 | -55 | 73 | 15  | 36 | 51 | 15 | 3.3  |
| ł | BDRC0326   | 810667.6164 | 1096742.899 | 369.43  | RC | 315 | -55 | 96 | 18  | 23 | 41 | 18 | 0.29 |
| ľ | BDRC0326   | 810667.6164 | 1096742.899 | 369.43  | RC | 315 | -55 | 96 | 12  | 55 | 67 | 12 | 2.55 |
| ľ | BDRC0327   | 810819.4624 | 1096943.021 | 369.137 | RC | 315 | -55 | 54 | 10  | 38 | 48 | 10 | 2.63 |
|   | BDRC0328   | 810830.5601 | 1096934.954 | 368.781 | RC | 315 | -55 | 78 | 9   | 52 | 61 | 9  | 1.78 |
|   | BDRC0329   | 810830.3628 | 1096966.806 | 369.48  | RC | 315 | -55 | 54 | NSI |    |    |    |      |
|   | BDRC0330   | 810848.2076 | 1096984.049 | 369.475 | RC | 315 | -55 | 54 | 8   | 37 | 45 | 8  | 2.71 |
|   | BDRC0331   | 810863.4989 | 1097005.65  | 369.333 | RC | 315 | -55 | 54 | 4   | 34 | 38 | 4  | 2.48 |
|   | BDRC0332   | 810883.7785 | 1097020.869 | 369.575 | RC | 315 | -55 | 66 | 7   | 52 | 59 | 7  | 7.78 |
|   | BDRC0333   | 810906.8748 | 1097031.028 | 369.421 | RC | 315 | -55 | 78 | NSI |    |    |    |      |
|   | BDRC0334   | 810895.6072 | 1097042.266 | 369.73  | RC | 315 | -55 | 54 | 9   | 39 | 48 | 9  | 0.6  |
|   | BDRC0335   | 810913.8671 | 1097060.403 | 369.707 | RC | 315 | -55 | 54 | NSI |    |    |    |      |
|   | BDRC0336   | 810924.6915 | 1097048.114 | 369.348 | RC | 315 | -55 | 84 | NSI |    |    |    |      |
|   | BDRC0337   | 810875.3643 | 1096994.067 | 368.95  | RC | 315 | -55 | 78 | 5   | 54 | 59 | 5  | 1.49 |
|   | BDRC0338   | 810860.7219 | 1096972.024 | 369.159 | RC | 315 | -55 | 84 | 6   | 64 | 70 | 6  | 2.08 |
|   | BDRC0339   | 810798.2428 | 1096890.408 | 368.919 | RC | 315 | -55 | 72 | 22  | 40 | 62 | 22 | 1.23 |
|   | BDRC0340   | 810814.9189 | 1096911.362 | 368.845 | RC | 315 | -55 | 78 | 16  | 48 | 64 | 16 | 1.52 |
|   | BDRC0341   | 810804.2879 | 1096922.723 | 369.128 | RC | 315 | -55 | 54 | 9   | 6  | 15 | 9  | 1.86 |
|   | BDRC0341   | 810804.2879 | 1096922.723 | 369.128 | RC | 315 | -55 | 54 | 8   | 34 | 42 | 8  | 1.9  |
|   | BDRC0342   | 810782.2033 | 1096873.509 | 369.275 | RC | 315 | -55 | 72 | 9   | 45 | 54 | 9  | 2.39 |
|   | BDRC0343   | 810770.6076 | 1096884.648 | 369.398 | RC | 315 | -55 | 56 | 13  | 26 | 39 | 13 | 1.1  |
|   | BDRC0344   | 810755.4231 | 1096865.171 | 369.825 | RC | 315 | -55 | 58 | 13  | 26 | 39 | 13 | 2.72 |
|   | BDRC0345   | 810749.806  | 1096834.815 | 369.532 | RC | 315 | -55 | 76 | 13  | 43 | 56 | 13 | 2.25 |
|   | BDRC0458   | 810723.1232 | 1096827.907 | 369.73  | RC | 315 | -55 | 60 | 5   | 36 | 41 | 5  | 3.16 |
|   | BDRC0459   | 810769.6349 | 1096853.367 | 369.367 | RC | 315 | -55 | 78 | 10  | 50 | 60 | 10 | 3.05 |
|   | BDRC0460   | 810734.5278 | 1096813.908 | 369.385 | RC | 315 | -55 | 81 | NSI |    |    |    |      |
|   | BDRC0461   | 810709.9357 | 1096803.493 | 369.776 | RC | 315 | -55 | 60 | 16  | 41 | 57 | 16 | 2.23 |
|   | BDRC0462   | 810721.7034 | 1096795.033 | 369.697 | RC | 315 | -55 | 84 | 5   | 68 | 73 | 5  | 1.03 |
|   | BDRC0463   | 810689.0699 | 1096791.189 | 369.936 | RC | 315 | -55 | 65 | 4   | 38 | 42 | 4  | 2.42 |



|   | BDRC0464   | 810686.4533 | 1096757.971 | 369.44  | RC | 315 | -55 | 39 | NSI |    |    |    |      |
|---|------------|-------------|-------------|---------|----|-----|-----|----|-----|----|----|----|------|
|   | BDRC0465   | 810672.5804 | 1096767.613 | 369.541 | RC | 315 | -55 | 60 | 18  | 39 | 57 | 18 | 1.58 |
|   | BDRC0466   | 810686.752  | 1096759.986 | 369.435 | RC | 315 | -55 | 92 | 19  | 59 | 78 | 19 | 2.19 |
| 2 | BDRC0466   | 810686.752  | 1096759.986 | 369.435 | RC | 315 | -55 | 92 | 5   | 85 | 90 | 5  | 0.86 |
|   | BDRC0518WP | 810592.5044 | 1096732.634 | 369.818 | RC | 0   | -90 | 90 | 26  | 60 | 86 | 26 | 4.49 |
|   | BDRC0519WO | 810585.2157 | 1096717.169 | 369.59  | RC | 0   | -90 | 6  | NSI |    |    |    |      |
|   | BDRC0523WP | 812448.5978 | 1099245.25  | 394.748 | RC | 0   | -90 | 80 | 3   | 77 | 80 | 3  | 5.75 |



# APPENDIX B: JORC TABLE 1 – YAOURÉ GOLD PROJECT

#### Section 1 Sampling Techniques and Data

| Criteria                 | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques   | <ul> <li>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>Yaouré drill hole data derive from: <ul> <li>Air core ("kit-bit") drill holes generally drilled at 4" diameter;</li> <li>Reverse circulation percussion (RC) holes generally drilled at approximately 5¼" diameter using a face-sampling hammer;</li> <li>Diamond core holes generally drilled HQ diameter in weathered materials and NQ or NQ2 diameter in fresh rock;</li> <li>Diamond core holes with RC pre-collars.</li> </ul> </li> <li>In all air core holes other than those drilled in the Y2 North area samples were collected at 1m intervals, each 1m spear sampled and the spear samples composited into 4m intervals.</li> <li>Air core holes in the Y2 North area were sampled at 1m intervals and riffle split to produce a subsample of 2.4 – 3kg for submission for assay.</li> <li>RC drill samples are collected at 1m intervals and riffle split to produce a subsample of 2.5 – 4kg for submission for assay.</li> <li>Diamond core samples are halved and one half submitted for assay.</li> <li>Air core holes are sampled in entirety.</li> <li>RC and core holes drilled prior to 2017 were generally sampled in entirety. Fill material encountered in 2017 holes and 2018 has not been sampled.</li> <li>RC and core holes drilled prior to 2017 were sampled in entirety, including through mine backfill. In holes drilled in 2017 and 2018 backfill material has not been sampled. RC holes have been otherwise sampled in entirety. Diamond core has been selectively sampled through intervals displaying alteration and mineralisation and for several metres above and below such intervals.</li> </ul> |
| Drilling<br>techniques   | <ul> <li>Drill type (e.g. core, reverse circulation,<br/>open-hole hammer, rotary air blast, auger,<br/>Bangka, sonic, etc.) and details (e.g. core<br/>diameter, triple or standard tube, depth of<br/>diamond tails, face-sampling bit or other<br/>type, whether core is oriented and if so, by<br/>what method, etc.).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>Air core ("kit-bit") drill holes generally drilled at 4" diameter;</li> <li>Reverse circulation percussion (RC) holes generally drilled at approximately 5%" diameter using a face-sampling hammer.</li> <li>Diamond core holes generally drilled HQ diameter in weathered materials and NQ diameter in fresh rock.</li> <li>Diamond core in weakly weathered and fresh rock is oriented by means of digital orientation devices (Reflex tool or similar).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Drill sample<br>recovery | <ul> <li>Method of recording and assessing core<br/>and chip sample recoveries and results<br/>assessed.</li> <li>Measures taken to maximise sample<br/>recovery and ensure representative nature<br/>of the samples.</li> <li>Whether a relationship exists between<br/>sample recovery and grade and whether<br/>sample bias may have occurred due to<br/>preferential loss/gain of fine/coarse<br/>material.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>In all air core holes other than those drilled in the Y2 North area samples recoveries were not measured.</li> <li>Air core holes in the Y2 North area were sampled at 1m intervals and riffle split to produce a subsample of 2.4 – 3kg for submission for assay. Each entire recovered sample is weighed and each subsample is weighed before and after drying. The condition (dry, damp, wet) of each sample is recorded.</li> <li>RC drill samples are collected at 1m intervals and riffle split to produce a subsample of 2.5 – 4kg for submission for assay. Each entire recovered sample and each subsample is weighed before and after drying. The condition (dry, damp, wet) of each sample is measured and each subsample is weighed before and after drying. The condition (dry, damp, wet) of each sample is recorded.</li> <li>Length of recovered diamond core is measured and recovery calculated based on run length. Core recoveries in weathered</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



| Criteria                                                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Logging                                                 | <ul> <li>Whether core and chip samples have been<br/>geologically and geotechnically logged to a<br/>level of detail to support appropriate</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>materials are generally greater than 85%; core recovery in fresh rock is near 100%.</li> <li>There is no evident relationship between sample recovery and grade for diamond drilling.</li> <li>Air core and RC drill samples are logged for weathering, oxidation, rock type, alteration and mineralisation. Sieved chip samples are retained in plastic trays for future reference and all</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                         | <ul> <li>Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Prior to cutting, diamond drill core is logged for weathering, oxidation, rock type, alteration, veining, mineralisation and structure. Oriented core is also logged for geotechnical parameters.</li> <li>Whole core is photographed wet and dry.</li> <li>Logging is considered appropriate and reliable.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sub-sampling<br>techniques<br>and sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <ul> <li>In all air core holes other than those drilled in the Y2 North area samples were collected at 1m intervals, each 1m spear sampled and the spear samples composited into 4m intervals.</li> <li>Air core holes in the Y2 North area were sampled at 1m intervals and riffle split to produce a subsample of 2.4 – 3kg for submission for assay.</li> <li>RC drill samples are collected at 1m intervals and riffle split to produce a subsample of 2.5 – 4kg for submission for sample preparation and assay. Each subsample is weighed before and after drying.</li> <li>Diamond core is sawn in half using a motorized diamond blade saw; right half sent for assaying, left half stored in core trays for reference. Core in weathered materials may be halved using a knife or similar.</li> <li>Perseus, and previously Amara, run an on-site sample preparation laboratory. Both core and RC chips are dried, crushed to -2mm and a riffle split portion of approximately 1.5kg pulverised with a puck mill (LM2).</li> <li>Quartz wash samples are used between every sample in both crushing and pulverising stages.</li> <li>The sample pulp is thoroughly mixed on a rolling mat and 200 g of sub-sample collected. Internal laboratory checks are undertaken to ensure a grind of at least 90% passing -75 µm is maintained.</li> <li>Sample pups are then packed into cardboard boxes for transport to the assay laboratory.</li> <li>The sampling and sub-sampling procedures are considered</li> </ul> |
| Quality of<br>assay data<br>and<br>laboratory<br>tests  | <ul> <li>The nature, quality and appropriateness of<br/>the assaying and laboratory procedures<br/>used and whether the technique is<br/>considered partial or total.</li> <li>For geophysical tools, spectrometers,<br/>handheld XRF instruments, etc., the<br/>parameters used in determining the<br/>analysis including instrument make and<br/>model, reading times, calibrations factors<br/>applied and their derivation, etc.</li> <li>Nature of quality control procedures<br/>adopted (e.g. standards, blanks, duplicates,<br/>external laboratory checks) and<br/>whether acceptable levels of accuracy (i.e.<br/>lack of bias) and precision have been<br/>established.</li> </ul>                     | <ul> <li>appropriate and to meet or exceed industry norms.</li> <li>All air core, RC and core samples have been assayed by commercial laboratories using 50g standard fire assay.</li> <li>Duplicate field splits of air core RC samples are submitted at a ratio of 1:25.</li> <li>Field duplicates of core samples are not submitted.</li> <li>Blanks inserted at 1:25.</li> <li>Certified standards at 1:25</li> <li>Quartz wash samples are routinely composited and assayed.</li> <li>Internal laboratory standards, duplicates and repeats and various other tests have been carried out throughout the drilling programs.</li> <li>Assays of reference standards and blanks are routinely monitored and any laboratory batch that returns assays out of specification is re-assayed in entirety.</li> <li>Quality control procedures are considered to exceed industry</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



| Criteria                                                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                      | norms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Verification<br>of sampling<br>and assaying                         | <ul> <li>The verification of significant intersections<br/>by either independent or alternative<br/>company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data<br/>entry procedures, data verification, data<br/>storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul>                                                                                      | <ul> <li>Gold assays are routinely viewed in conjunction with geological logs and sense checked against results from adjacent holes.</li> <li>Drill logs and sample interval records are recorded on paper and transcribed into digital form.</li> <li>Digital data are imported into a relational database with inbuilt validation routines.</li> <li>All hard copies are filed on site.</li> <li>Downhole survey data and collar survey data are provided by the drilling contractors and surveyors respectively in digital format.</li> <li>No adjustments have been made to assay data. The first assay</li> </ul>                                                |
| Location of<br>data points                                          | <ul> <li>Accuracy and quality of surveys used to<br/>locate drill holes (collar and downhole<br/>surveys), trenches, mine workings and<br/>other locations used in Mineral Resource<br/>estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic<br/>control.</li> </ul>                                                                                                                             | <ul> <li>that fulfils QAQC hurdles is the primary database assay.</li> <li>All air core, RC and diamond core hole collar locations have been surveyed by qualified company surveyors using differential GPS equipment. Survey controls were established in 2007 by the Bureau National d'Etudes Techniques et de Developpement Centre de Cartographie et de Télédétection.</li> <li>RC and diamond core holes drilled since 2012 have been downhole surveyed, generally at approximately 30 metre depth increments, using single shot digital equipment. Downhole surveys are routinely sense checked.</li> <li>Air core holes are not down-hole surveyed.</li> </ul> |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Grid system used is WGS84 UTM Zone 30N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Data spacing<br>and<br>distribution                                 | <ul> <li>Data spacing for reporting of Exploration<br/>Results.</li> <li>Whether the data spacing and distribution<br/>is sufficient to establish the degree of<br/>geological and grade continuity<br/>appropriate for the Mineral Resource and<br/>Ore Reserve estimation procedure(s) and<br/>classifications applied.</li> <li>Whether sample compositing has been<br/>explicit.</li> </ul>                                                      | <ul> <li>After drilling completed in 2017 and 2018, drill spacing over the<br/>Yaouré pit area is mostly 25m x 25m. Drill spacing over the CMA<br/>deposit area is mostly 25m x 50m.</li> <li>Drill hole spacing, in conjunction with open pit exposures, is<br/>sufficient to reliably establish the orientation of mineralised<br/>structures.</li> <li>Sample intervals have not been composited prior to calculation<br/>of exploration drill intercepts.</li> </ul>                                                                                                                                                                                              |
| Orientation<br>of data in<br>relation to<br>geological<br>structure | <ul> <li>applied.</li> <li>Whether the orientation of sampling<br/>achieves unbiased sampling of possible<br/>structures and the extent to which this is<br/>known, considering the deposit type.</li> <li>If the relationship between the drilling<br/>orientation and the orientation of key<br/>mineralised structures is considered to<br/>have introduced a sampling bias, this<br/>should be assessed and reported if<br/>material.</li> </ul> | <ul> <li>Drill holes are oriented so as to intersect the dominant lode structures at a high angle and attain near true width drill intercepts.</li> <li>There are, however, in Yaouré pit a number of mineralised structures that strike at an angle that is oblique to the orientation of most drill holes.</li> </ul>                                                                                                                                                                                                                                                                                                                                               |
| Sample<br>security                                                  | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Samples from air core, RC and core drilling are processed through<br/>an on-site sample preparation laboratory that is supervised by<br/>highly experienced and professional Company employees.</li> <li>Sample pulps are packed in securely fastened boxes that are, in<br/>turn, packed in cartons for transport to commercial assay<br/>laboratories.</li> <li>Samples are normally transported from site to the commercial<br/>laboratory by personnel of that laboratory.</li> </ul>                                                                                                                                                                    |
| Audits or<br>reviews                                                | The results of any audits or reviews of<br>sampling techniques and data.                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>Assay data for holes drilled prior to 2017 were reviewed by Mario E. Rossi FAusIMM of GeoSystems International Inc, the last time being in December 2015.</li> <li>Sampling techniques and assay data available at 12 September 2017 were reviewed by Jonathon Abbott of MPR Geological</li> </ul>                                                                                                                                                                                                                                                                                                                                                           |



## Section 2 Reporting of Exploration Results - Yaouré

(Criteria listed in the preceding section also apply to this section.)

| Criteria                                      | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral tenement<br>and land tenure<br>status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</li> </ul> | <ul> <li>Reported RC, AC and DD results from the Sayikro are within the Yaouré exploitation permit (tenement PE50)</li> <li>The Yaouré exploitation permit has an expiry date of 23 April 2030. The permit is held by Perseus's subsidiary Perseus Mining Yaouré SA in which the government of Côte d'Ivoire holds a 10% free carried interest. The Government of Côte d'Ivoire is entitled to a royalty on production as follows:</li> <li>Spot price per ounce - London PM Fix Royalty Rate Less than or equal to US\$1000 3%</li> <li>Higher than US\$1000 and less than or equal to US\$1300</li> <li>Higher than US\$1600 and less than or equal to US\$1600</li> <li>Higher than US\$1600 and less than or equal to US\$1600</li> <li>Higher than US\$1600 and less than or equal to US\$1600</li> <li>The Allekran prospect lies within the Yaouré West Permis de Recherche (tenement PR615).</li> <li>The Yaouré West PR has an expiry date of 29 September 2022. The permit is held by Perseus's subsidiary Perseus Yaouré sarl. The Government of Côte d'Ivoire retains the right to take up 10% non-contributing beneficial ownership of any portion of the PR that is converted to an exploitation permit.</li> </ul> |
| Exploration done<br>by other parties          | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>specific environmental liabilities.</li> <li>No previous drilling has been conducted on the Sayikro prospect or at Allekran.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Geology                                       | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>The Sayikro and Allekran prospects are underlain by mafic volcanics intruded by granodiorite bodies.</li> <li>Mineralisation occurs as disseminations of py-apy in the granodiorite and in qtz-carbonate veins in both the intrusives and basalts.</li> <li>The three deep holes into the CMA thrust were designed to identify the structure at depth.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



| Drill hole<br>Information                                    | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:         <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | <ul> <li>Reported results are summarised in Table 3 within the attached announcement.</li> <li>The drill holes reported in this announcement have the following parameters:</li> <li>Grid co-ordinates are UTM WGS84_30N.</li> <li>Collar elevation is defined as height above sea level in metres (RL)</li> <li>Dip is the inclination of the hole from the horizontal. Azimuth is reported in WGS 84_29N degrees as the direction toward which the hole is drilled.</li> <li>Down hole length of the hole is the distance from the surface to the end of the hole, as measured along the drill trace</li> <li>Intersection depth is the distance down the hole as measured along the drill trace.</li> <li>Intersection width is the down hole distance of an intersection as measured along the drill trace</li> </ul> |  |  |  |  |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Hole length is the distance from the surface to the end of the hole, as measured along the drill trace.</li> <li>Previously reported drilling results have not been repeated in this announcement.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Data aggregation<br>methods                                  | In reporting Exploration Results, weighting averaging<br>techniques, maximum and/or minimum grade<br>truncations (e.g. cutting of high grades) and cut-off<br>grades are usually Material and should be stated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>A minimum cut-off grade of 0.3 g/t Au is applied to the reported intervals.</li> <li>Intervals of Internal dilution (&lt;0.3 g/t Au) within a reported interval cannot exceed 2m.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                                                              | <ul> <li>Where aggregate intercepts incorporate short<br/>lengths of high-grade results and longer lengths of<br/>low-grade results, the procedure used for such<br/>aggregation should be stated and some typical<br/>examples of such aggregations should be shown in<br/>detail.</li> <li>The assumptions used for any reporting of metal</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>No grade top cut has been applied.</li> <li>Samples have been weighted by length of sample interval</li> <li>No metal equivalent reporting is used or applied.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Relationship                                                 | equivalent values should be clearly stated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The reported results are from early stage evaluation drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| between<br>mineralisation<br>widths and<br>intercept lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').</li> </ul>                                                                                                                                                                                                                                                                                                                                | <ul> <li>The reported results are from early stage exploration drilling; the orientation of geological structures is currently not known with certainty (other than the CMA).</li> <li>Results are reported as down hole length, true width is unknown.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Diagrams                                                     | <ul> <li>Appropriate maps and sections (with scales) and<br/>tabulations of intercepts should be included for any<br/>significant discovery being reported These should<br/>include, but not be limited to a plan view of drill hole<br/>collar locations and appropriate sectional views.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>Drill hole plans are shown in Figures 5 &amp; 6 in Appendix A.</li> <li>Significant assay results are tabulated in body text of this announcement</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Balanced reporting                                           | <ul> <li>Where comprehensive reporting of all Exploration<br/>Results is not practicable, representative reporting of<br/>both low and high grades and/or widths should be<br/>practiced to avoid misleading reporting of<br/>Exploration Results.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Results have been comprehensively reported in this announcement.</li> <li>All drill holes completed, including holes with no significant gold intersections, are reported in Table 3 of Appendix A.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |



| Other substantive<br>exploration data | <ul> <li>Other exploration data, if meaningful and material,<br/>should be reported including (but not limited to):<br/>geological observations; geophysical survey results;<br/>geochemical survey results; bulk samples – size and<br/>method of treatment; metallurgical test results; bulk<br/>density, groundwater, geotechnical and rock<br/>characteristics; potential deleterious or<br/>contaminating substances.</li> </ul> | There is no other exploration data which is considered material to the results reported in this announcement                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Further work                          | <ul> <li>The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                                                                 | <ul> <li>Further drilling is warranted at Sayikro to assess the gold within both the mafic volcanics and the granodiorite, and to define the strike length of the intersected mineralisation.</li> <li>Results from Akakro &amp; Govisou are be assessed to determine whether further drilling is warranted.</li> <li>Grade-control drilling is planned for Angovia 2 to quantify a potential oxide resource.</li> <li>The CMA Deeps holes will be used for future down-hole seismic measurements.</li> </ul> |

| Diagrams                              | <ul> <li>Appropriate maps and sections (with scales) and<br/>tabulations of intercepts should be included for any<br/>significant discovery being reported These should<br/>include, but not be limited to a plan view of drill hole<br/>collar locations and appropriate sectional views.</li> </ul>                                                                                                                                 | <ul> <li>Drill hole plans are shown in Figures 2 &amp; 7. Assay results<br/>are tabulated in body text of this announcement</li> </ul>                                                         |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria                              | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                     |
| Balanced reporting                    | <ul> <li>Where comprehensive reporting of all Exploration<br/>Results is not practicable, representative reporting of<br/>both low and high grades and/or widths should be<br/>practiced to avoid misleading reporting of<br/>Exploration Results.</li> </ul>                                                                                                                                                                         | <ul> <li>Results have been comprehensively reported in this announcement.</li> <li>All drill holes completed, including holes with no significant gold intersections, are reported.</li> </ul> |
| Other substantive<br>exploration data | <ul> <li>Other exploration data, if meaningful and material,<br/>should be reported including (but not limited to):<br/>geological observations; geophysical survey results;<br/>geochemical survey results; bulk samples – size and<br/>method of treatment; metallurgical test results; bulk<br/>density, groundwater, geotechnical and rock<br/>characteristics; potential deleterious or<br/>contaminating substances.</li> </ul> | <ul> <li>There is no other exploration data which is considered<br/>material to the results reported in this announcement.</li> </ul>                                                          |
| Further work                          | <ul> <li>The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                                                                 | <ul> <li>Further drilling is warranted to test for extensions of the<br/>identified zones of mineralisation at Govisou, particularly at<br/>depth.</li> </ul>                                  |



# APPENDIX C – JORC TABLE 1 BAGOÉ PERMIT

### JORC Code, 2012 Edition – Table 1 Section 1 Sampling Techniques and Data

| Criteria                 | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Commentary                                                                                                                                                                                                                                                                                                   |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques   | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of</li> </ul>                            | Air core drilling (AC) used a 105mm face-<br>sampling blade bit.<br>Reverse Circulation drilling (RC) used a<br>135mm face sampling hammer.<br>Samples from both AC and RC holes were<br>collected at 1m intervals.<br>Each sample was manually riffle split to<br>produce a subsample of approximately 3kg. |
|                          | Independent of the determination of the mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. |                                                                                                                                                                                                                                                                                                              |
| Drilling<br>techniques   | <ul> <li>Drill type (eg core, reverse circulation,<br/>open-hole hammer, rotary air blast, auger,<br/>Bangka, sonic, etc) and details (eg core<br/>diameter, triple or standard tube, depth of<br/>diamond tails, face-sampling bit or other<br/>type, whether core is oriented and if so, by<br/>what method, etc).</li> </ul>                                                                                                                                                                                                                                             | Air core drilling (AC) used a 105mm face-<br>sampling blade bit.<br>Reverse Circulation drilling (RC) drilling used a<br>135mm face sampling hammer.                                                                                                                                                         |
| Drill sample<br>recovery | <ul> <li>Method of recording and assessing core<br/>and chip sample recoveries and results<br/>assessed.</li> <li>Measures taken to maximise sample<br/>recovery and ensure representative nature<br/>of the samples.</li> </ul>                                                                                                                                                                                                                                                                                                                                            | Sample condition (dry, damp, wet) and a<br>qualitative description of sample quality (high,<br>moderate, low) were logged.<br>The weight of each entire recovered sample<br>was recorded.<br>Reject samples have been retained at site in<br>"sample farms".                                                 |
|                          | <ul> <li>Whether a relationship exists between<br/>sample recovery and grade and whether<br/>sample bias may have occurred due to<br/>preferential loss/gain of fine/coarse<br/>material.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                        | The relationship between sample recoveries<br>and gold grades has yet to be investigated.                                                                                                                                                                                                                    |
| Logging                  | • Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.                                                                                                                                                                                                                                                                                                                                                                         | All holes were field logged by Perseus<br>geologists. Weathering, oxidation, lithology,<br>alteration and veining information were<br>recorded.<br>Reference samples were stored in chip trays                                                                                                               |
|                          | <ul> <li>Whether logging is qualitative or<br/>quantitative in nature. Core (or costean,<br/>channel, etc) photography.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                          | and all chip trays photographed.<br>All drill holes were logged in full.                                                                                                                                                                                                                                     |
|                          | The total length and percentage of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                              |



| Criteria                                                    | JORC Code explanation                                                                                                                                                                                                                                                            | Commentary                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                             | relevant intersections logged.                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                              |
| Sub-<br>sampling<br>techniques<br>and sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> </ul>                                                                             | Each sample was manually riffle split to<br>produce a 2-3kg subsample.<br>Subsamples were transported to Perseus's<br>sample preparation laboratory at Yaouré Gold<br>Mine where they were weighed as received,<br>dried, weighed after drying (to determine                                                                 |
|                                                             | <ul> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the</li> </ul> | moisture content), crushed to -2mm, then a<br>riffle split portion of approximately 1kg was<br>pulverised to approximately 90% passing 75<br>µm. The pulverised product was then dumped<br>on a rubber mat, rolled and approximately<br>300g selected by multiple dips of a spatula and<br>packaged in a kraft paper packet. |
|                                                             | sampling is representative of the in situ<br>material collected, including for instance<br>results for field duplicate/second-half<br>sampling.                                                                                                                                  | Sample grind size was monitored by screening<br>1:100 samples.<br>Duplicate field split samples were collected for<br>each 1:20 samples.                                                                                                                                                                                     |
|                                                             | <ul> <li>Whether sample sizes are appropriate to<br/>the grain size of the material being<br/>sampled.</li> </ul>                                                                                                                                                                | Duplicate pulp samples were created for each 1:20 samples.                                                                                                                                                                                                                                                                   |
| Quality of<br>assay data<br>and<br>laboratory<br>tests      | • The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.                                                                                                                               | Samples were assayed by Bureau Veritas<br>Abidjan using 50g fire assay with AAS finish for<br>gold only. The technique is considered a<br>measure of total gold.                                                                                                                                                             |
|                                                             | For geophysical tools, spectrometers,<br>handheld XRF instruments, etc, the<br>parameters used in determining the                                                                                                                                                                | Assay accuracy and reliability were monitored<br>by insertion of blanks at 1:20 samples and<br>reference standards (CRMs) at 1:20 samples.                                                                                                                                                                                   |
|                                                             | analysis including instrument make and<br>model, reading times, calibrations factors<br>applied and their derivation, etc.                                                                                                                                                       | The performances of blanks and standards were monitored as assay results were received.                                                                                                                                                                                                                                      |
|                                                             | <ul> <li>Nature of quality control procedures<br/>adopted (eg standards, blanks, duplicates,<br/>external laboratory checks) and whether<br/>acceptable levels of accuracy (ie lack of<br/>bias) and precision have been established.</li> </ul>                                 | The commercial laboratory's internal QAQC includes the use of certified reference materials and pulp replicates.                                                                                                                                                                                                             |
| Verification<br>of sampling<br>and<br>assaying              | <ul> <li>The verification of significant intersections<br/>by either independent or alternative<br/>company personnel.</li> <li>The use of twinned holes.</li> </ul>                                                                                                             | Intervals of significant gold grades were<br>compared to logging of quartz veining,<br>alteration and mineralisation and chip tray<br>photographs.                                                                                                                                                                           |
|                                                             | <ul> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> </ul>                                                                                                                                   | Assays were plotted on cross-sections to check<br>that significant intercepts conform to the<br>expected locations of mineralisation and make<br>geometric sense.                                                                                                                                                            |
|                                                             | Discuss any adjustment to assay data.                                                                                                                                                                                                                                            | Five diamond core holes have been drilled at<br>Véronique and six at Antoinette to twin RC<br>holes previously drilled by Exore Resources.<br>Assays from the twin holes are yet to be<br>received.                                                                                                                          |
|                                                             |                                                                                                                                                                                                                                                                                  | Hand-written records of sample intervals and sample numbers, and geological and sample quality logs are keyed into spreadsheet files which are then imported into an aQuire® database supervised by Perseus's database administrator.                                                                                        |
|                                                             |                                                                                                                                                                                                                                                                                  | Validation checks are undertaken to ensure<br>internal consistency of sample intervals and<br>logged hole depths and down-hole surveys are<br>sense checked.                                                                                                                                                                 |



| Criteria                                                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                    | Assay values that were below detection limit (0.01g/t Au) were adjusted to equal half of the detection limit value (0.005g/t Au).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Location of<br>data points                                          | <ul> <li>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                                                                              | Ground surveys of drill hole collars are<br>presently incomplete. The locations provided<br>in the announcement derive from hand-held<br>GPS readings which are expected to be<br>reliable to +/- 2m in X-Y. Coordinates are<br>stated in WGS84 Zone 29N UTM grid.<br>All holes have been down-hole surveyed at<br>approximately 30 depth increments using a<br>Reflex digital compass instrument.<br>Drone photogrammetric surveys have recently<br>been undertaken over the Antoinette, Juliette<br>and Véronique areas but results are yet to be<br>received. An interim topographic surface has<br>been created using +/- 1m spot height data<br>from the Shuttle Radar Topography Mission at<br>approximately 30m x 30m spacing and drill<br>hole collars "pinned" to that surface. |
| Data spacing<br>and<br>distribution                                 | <ul> <li>Data spacing for reporting of Exploration<br/>Results.</li> <li>Whether the data spacing and distribution<br/>is sufficient to establish the degree of<br/>geological and grade continuity appropriate<br/>for the Mineral Resource and Ore Reserve<br/>estimation procedure(s) and classifications<br/>applied.</li> <li>Whether sample compositing has been<br/>applied.</li> </ul>     | Recent drilling at Véronique has infilled drill<br>spacing to nominal 20m x 20m in plan view.<br>The announcement does not include<br>information concerning resource estimates.<br>The question concerning sample compositing<br>is not relevant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Orientation<br>of data in<br>relation to<br>geological<br>structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul> | Véronique mineralization strikes NW and dips<br>at approximately 45 degrees toward the SW.<br>In holes drilled at -60 degrees dip toward 045<br>degrees azimuth, true widths are approximately<br>equal to down-hole intercept lengths.<br>No orientation-based sampling bias has been<br>identified in the data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sample<br>security                                                  | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                      | Chain of custody was managed by Perseus.<br>Perseus employees retained custody of<br>subsamples from drill sites through transport to<br>the Yaouré sample preparation laboratory,<br>through that facility and then transport of<br>subsample pulps to the commercial laboratory<br>in Abidjan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Audits or<br>reviews                                                | The results of any audits or reviews of<br>sampling techniques and data.                                                                                                                                                                                                                                                                                                                           | No independent review of sampling techniques and data has been undertaken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



### Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

## JORC 2012 Table 1 – Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

| Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement and<br>land tenure<br>status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.</li> </ul> | Antoinette, Véronique and Juliette gold deposits form<br>part of the Bagoé Gold Project comprising Permit de<br>Recherche (PR) 321 covering 271.3 sq km. The permit<br>was granted 29 October 2014 and was recently renewed<br>for the first time to 28 October 2021. Further renewals<br>are permitted.<br>PR321 is held 100% by Aspire Nord Côte d'Ivoire sarl, a<br>wholly owned subsidiary of Perseus Mining Limited.<br>The Government of the Côte d'Ivoire retains the right to<br>take up 10% non-contributing beneficial ownership of<br>any portion of the PR that is converted to an exploitation<br>permit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Exploration<br>done by other<br>parties          | Acknowledgment and appraisal of exploration<br>by other parties.                                                                                                                                                                                                                                                                                                                                                                                   | Previous exploration was carried out by Apollo<br>Consolidated Ltd from October 2014 to June 2018.<br>Exploration activities included soil sampling and auger,<br>air core, RC and diamond drilling.<br>Previous exploration was carried out by Exore<br>Resources Limited between July 2018 and July 2020.<br>Exploration activities included air core, RC and diamond<br>drilling.<br>Data arising from work by Apollo and Exore are<br>available to Perseus and are considered generally<br>reliable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Geology                                          | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                      | The Bagoé Gold Project is located in the West African<br>Craton and covers Palaeo-proterozoic (Birimian) rocks<br>of the southern extension of the Syama Greenstone Belt<br>and the western margin of the Senoufo Greenstone Belt.<br>Gold deposits at Bagoé are of the orogenic, greenstone-<br>hosted type and probably lie within the Senoufo belt.<br>Antoinette gold deposit is hosted by a fine-grained,<br>siliceous and, in places, carbonaceous metasediment<br>unit within a sequence of felsic volcaniclastic rocks and<br>porphyritic dioritic dykes. Mineralisation is subvertical,<br>extends over about 650m strike, with individual lenses<br>generally about 10m wide though in places lenses<br>combine to form widths of up to 25m. Weathering<br>extends to 50-60m depth.<br>Juliette gold deposit is located 3.5km SW of Antoinette<br>and is hosted by the extension of the Antoinette<br>sequence/structure. Mineralisation is subvertical,<br>extends over about 300m strike and generally comprises<br>a single lens 4-10m wide. Weathering extends to 30-40m<br>depth.<br>Véronique gold deposit is located 16km SSE of<br>Antoinette. Mineralisation extends over 900m strike and<br>s generally comprises a single NW-striking quartz vein 1-<br>2m thick that dips at 45 degrees to the SW. The vein is<br>hosted by an extensive granodiorite stock. Alteration<br>selvages extending 2-3m either side of the vein result, in<br>places, in 6-8m true thickness of mineralisation.<br>Weathering extends to 50-60m depth. |
| Drill hole<br>information                        | <ul> <li>A summary of all information material to the<br/>understanding of the exploration results<br/>including a tabulation of the following</li> </ul>                                                                                                                                                                                                                                                                                          | A complete listing of results of all recent drill holes at<br>Véronique deposit is provided in the announcement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



| Criteria                                    | JORC Code explanation                                                                                                                                                                                                                                                                                      | Commentary                                                                                                                                                                                                                                                                                    |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             | information for all Material drill holes:                                                                                                                                                                                                                                                                  | The table includes hole locations, dips and azimuths and                                                                                                                                                                                                                                      |
|                                             | • easting and northing of the drill hole collar                                                                                                                                                                                                                                                            | total depths.                                                                                                                                                                                                                                                                                 |
|                                             | <ul> <li>elevation or RL (Reduced Level – elevation<br/>above sea level in metres) of the drill hole<br/>collar</li> </ul>                                                                                                                                                                                 | Details are not provided for other drill holes discussed in<br>the announcement, for which assays are not yet<br>available.                                                                                                                                                                   |
|                                             | • dip and azimuth of the hole                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                               |
|                                             | • down hole length and interception depth                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                               |
|                                             | hole length                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                               |
|                                             | <ul> <li>If the exclusion of this information is justified<br/>on the basis that the information is not<br/>Material and this exclusion does not detract<br/>from the understanding of the report, the<br/>Competent Person should clearly explain why<br/>this is the case.</li> </ul>                    |                                                                                                                                                                                                                                                                                               |
| Data<br>aggregation<br>methods              | <ul> <li>In reporting Exploration Results, weighting<br/>averaging techniques, maximum and/or<br/>minimum grade truncations (e.g. cutting of<br/>high grades) and cut-off grades are usually<br/>Material and should be stated.</li> </ul>                                                                 | Significant intercepts are those exceeding 5g/t x metres<br>using a 0.5g/t cut-off, 2m maximum included waste and<br>no top cut.<br>Short lengths of high grade that materially affect<br>aggregate results are reported separately as "included"<br>intercepts.                              |
|                                             | <ul> <li>Where aggregate intercepts incorporate short<br/>lengths of high grade results and longer<br/>lengths of low grade results, the procedure<br/>used for such aggregation should be stated<br/>and some typical examples of such<br/>aggregations should be shown in detail.</li> </ul>             | Metal equivalents are not reported.                                                                                                                                                                                                                                                           |
|                                             | <ul> <li>The assumptions used for any reporting of<br/>metal equivalent values should be clearly<br/>stated.</li> </ul>                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                               |
| between<br>mineralisation                   | • These relationships are particularly important<br>in the reporting of Exploration Results.                                                                                                                                                                                                               | Véronique mineralization dips at approximately 45 degrees. In holes drilled at -60 degrees dip, true widths                                                                                                                                                                                   |
|                                             | <ul> <li>If the geometry of the mineralisation with<br/>respect to the drill hole angle is known, its<br/>nature should be reported.</li> </ul>                                                                                                                                                            | are approximately equal to down-hole intercept lengths.                                                                                                                                                                                                                                       |
|                                             | <ul> <li>If it is not known and only the down hole<br/>lengths are reported, there should be a clear<br/>statement to this effect (e.g. 'down hole length,<br/>true width not known').</li> </ul>                                                                                                          |                                                                                                                                                                                                                                                                                               |
| Diagrams                                    | <ul> <li>Appropriate maps and sections (with scales)<br/>and tabulations of intercepts should be<br/>included for any significant discovery being<br/>reported. These should include, but not be<br/>limited to a plan view of drill hole collar<br/>locations and appropriate sectional views.</li> </ul> | A drill hole location map and representative cross-<br>section are included in the announcement.                                                                                                                                                                                              |
| Balanced<br>Reporting                       | <ul> <li>Accuracy and quality of surveys used to<br/>locate drill holes (collar and down-hole<br/>surveys), trenches, mine workings and other<br/>locations used in Mineral Resource</li> </ul>                                                                                                            | Ground surveys of drill hole collars are presently<br>incomplete. The locations provided in the<br>announcement derive from hand-held GPS.<br>Coordinates are stated in WGS84 Zone 29N UTM grid.                                                                                              |
|                                             | <ul> <li>estimation.</li> <li>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.</li> </ul>                                         | A complete listing of results of all recent drill holes at<br>Véronique deposit, including those with no significant<br>intercepts, is provided in the announcement. Details are<br>not provided for other drilling discussed in the<br>announcement, for which assays are not yet available. |
| Other<br>substantive<br>exploration<br>data | <ul> <li>Other exploration data, if meaningful and<br/>material, should be reported including (but not<br/>limited to): geological observations;</li> </ul>                                                                                                                                                | The results of exploration by previous operators of the Bagoé project have been the subject of announcements by those operators.                                                                                                                                                              |
| Gata                                        | geophysical survey results; geochemical<br>survey results; bulk samples - size and                                                                                                                                                                                                                         | Metallurgical test work by previous operator Exore Resources Limited has confirmed that:                                                                                                                                                                                                      |
|                                             | method of treatment; metallurgical test<br>results; bulk density, groundwater,<br>geotechnical and rock characteristics;<br>potential deleterious or contaminating<br>substances.                                                                                                                          | <ul> <li>oxide and transition mineralisation at Antoinette is<br/>amenable to gold extraction by cyanide leaching,<br/>with gold recoveries of 94 to 97%.</li> <li>Primary mineralization at Antoinette is partially<br/>refracted, with proliminant text work indicating</li> </ul>          |
|                                             |                                                                                                                                                                                                                                                                                                            | refractory, with preliminary test work indicating<br>cyanide leach gold recoveries of about 50%.                                                                                                                                                                                              |



|   | Criteria     | JORC Code explanation                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                         |
|---|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |              |                                                                                                                                                                                                                                       | <ul> <li>No cyanide leach tests have been undertaken on<br/>Véronique oxide and transition mineralization.<br/>Gold recoveries are expected to approximate 90%.</li> <li>Cyanide leach tests on samples of Véronique<br/>primary mineralization indicate gold recoveries of<br/>88-90%.</li> </ul> |
| 2 |              |                                                                                                                                                                                                                                       | No metallurgical test work has been undertaken on<br>Juliette mineralisation. Given the deposit's similarity to<br>Antoinette, it is expected that primary mineralisation is<br>partially refractory.                                                                                              |
|   |              |                                                                                                                                                                                                                                       | There are no known deleterious or contaminating<br>substances associated with any of the deposits that<br>might imperil their exploitation.                                                                                                                                                        |
|   | Further work | The nature and scale of planned further work<br>(e.g. tests for lateral extensions or depth<br>extensions or large- scale step-out drilling).                                                                                         | Perseus intends to use the results of drilling conducted<br>during the December 2020 quarter to update the<br>estimates of resources at Véronique and Antoinette                                                                                                                                   |
|   |              | <ul> <li>Diagrams clearly highlighting the areas of<br/>possible extensions, including the main<br/>geological interpretations and future drilling<br/>areas, provided this information is not<br/>commercially sensitive.</li> </ul> | deposits and produce a maiden resource estimate for<br>the Juliette deposit.<br>Exploration by previous operators has located other<br>occurrences of gold mineralization within the Bagoé<br>Gold Project that Perseus intends to pursue.                                                         |