

2 March 2021

High-grade silver results from infill drilling in southern region of Paris Deposit

- High-grade silver reported in first complete results from infill drilling in the southern region
 of the Paris resource
- Results support continuation of silver grade and mineralisation either side of the Line 1
 Indicated Resource zone
- Infill drill program in the southern region focussed on the opportunity to extend existing
 Indicated Resource estimate
- Mineralisation on the three lines reported in this release remain open to both east and west
- Assays for ~20% of the 22,000 samples remain pending, with all final results anticipated to be received by April
- Revised resource estimate to be delivered by May
- Significant results include:
 - o <u>Line 1.25</u>
 - 16m @ 236g/t Silver from 52m in hole PPRC549; including
 - 9m @ 273g/t Silver from 59m
 - 19m @ 185g/t Silver from 43m in hole PPRC553; including
 - 7m @ 282g/t Silver from 48m; and
 - 1m @ 1,360g/t Silver from 43m; and followed by
 - **16m @ 297g/t Silver** from 78m
 - Line 0.75
 - 22m @ 120g/t Silver from 49m in hole PPRC541; including
 - 3m @ 445g/t Silver from 53m;
 - Line 0.5
 - 16m @ 261g/t Silver from 94m in hole PPRC520; including
 - 14m @ 294g/t Silver from 96m

Investigator Resources Limited (ASX: IVR, "Investigator" or the "Company") is pleased to report further assay results from the 20,500m infill drilling campaign completed in December 2020 at its 100% owned Paris Silver Project in South Australia.

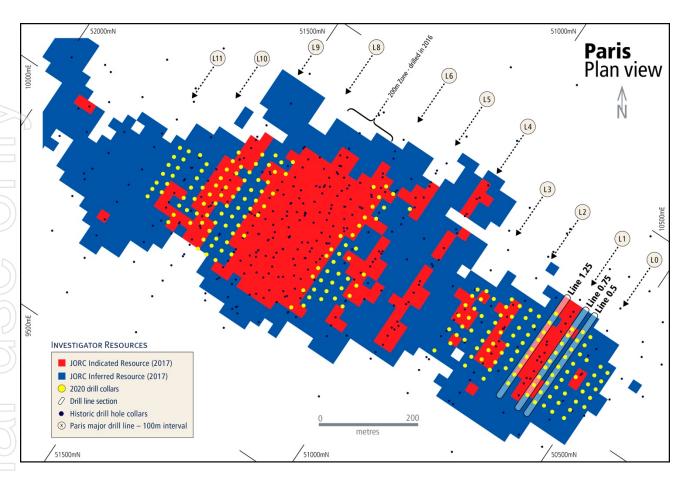
The Paris Silver Project is the highest-grade undeveloped primary silver project in Australia. With a JORC 2012 resource estimate of 9.3 Mt @ 139g/t silver and 0.6% Pb for 42 Moz contained silver and 55 kt contained lead¹, Paris is a shallow, high-grade silver deposit amenable to open pit mining.

Investigator's Managing Director, Andrew McIlwain said: "These results continue to support the improved continuity of grade and confidence in location of mineralisation in the Paris Silver Project. We have seen this in the previously reported results from the northern region of the project and this is now being seen in the southern region which had previously received a lower density of drilling.

"In particular, there are some high-grade zones present with substantial widths and down hole continuity. Coupled with the closer spaced drilling undertaken in the infill program, this will add support to an increased confidence in the upcoming resource estimate.

"Hole PPRC553 in Line 1.25 hosts two broad high-grade intersections of 19m @ 185g/t Silver (from 43m – including 7m @ 282g/t Silver and 1m @ 1,360g/t Silver) followed by 16m @ 297g/t Silver from 78m.

"We are now receiving results from the laboratory on a regular basis and particularly look forward to the receipt and compilation of results from drilling beyond Line 0 and Line 10 which have the potential to extend the Indicated Resource estimate outside its current footprint".

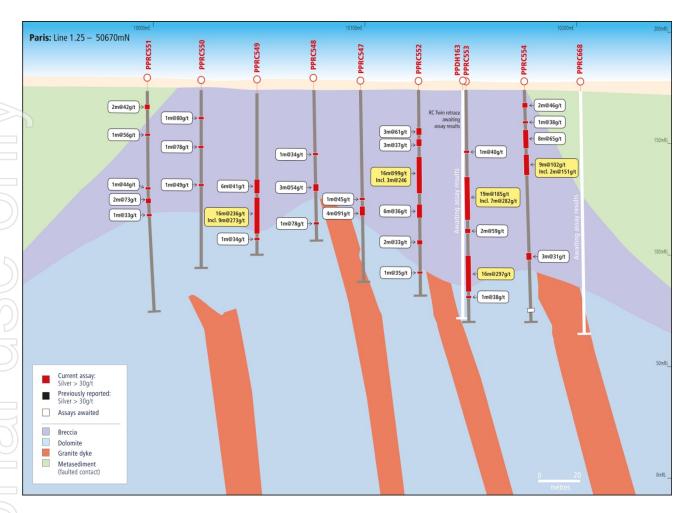

Paris 2020 infill drilling program

The Reverse Circulation ("RC") infill drill program at Paris was completed in late 2020 having drilled a total of 20,483 metres in 223 holes. Drilling was focussed in the areas classified as Inferred Resource with the objective of both improving the confidence in the grade and continuity of mineralisation, and to increase the confidence of the pending resource estimate. In most areas, the holes were drilled 25m apart, with the locations of the completed drilling across the Paris resource shown in Figure 1 below.

In 2016, a smaller infill drill program that focussed on the central "200m Zone" of the Paris project between drill Lines 6 and 8, delivered a 20% uplift in silver grade and a 26% increase in contained silver ounces, as reported in the revised 2017 resource estimate². Importantly, as the confidence level of the estimated resource improved, the Inferred Resource grade of 113g/t silver increased by 37% to 163g/t silver in the Indicated Resource status.

¹ First reported in ASX announcement of 19 April 2017. The Company confirms that it is not aware of new information or data that materially affects the information included in the market announcement, and that material assumptions and technical parameters underpinning the estimate continue to apply.

 $^{^{2}}$ As referenced in footnote 1 – above.

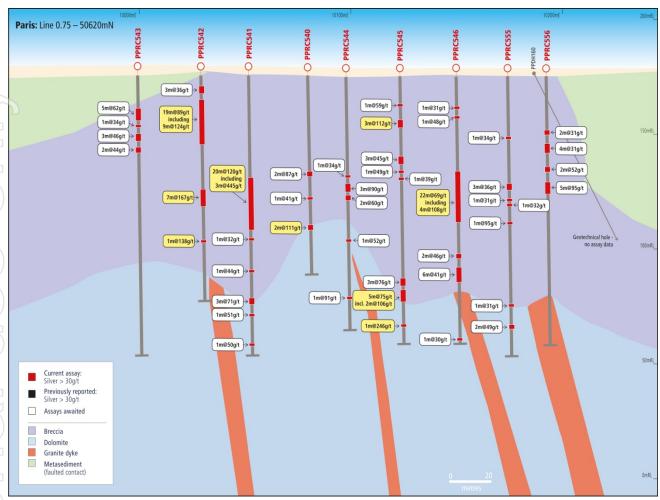

Figure 1: Shows the 3 drill lines referred to in this release. A total of 223 holes (yellow dots) were drilled in the 2020 infill program across the 2017 Paris project. Each major line of drilling is 100m apart with intermediate lines of drilling spaced 25m apart.

Line 1.25

Line 1.25 is a 25m step-out to the north of Line 1, which provided the majority of the 2017 Indicated Resource in the southern region of the Paris resource.

Significant width and grade intersections have been identified in Line 1.25 and will support resource estimation confidence and the opportunity to extend the "Line 1 Indicated Resource" volume to the north. A total of 9 new RC drillholes and 1 "diamond twin" (which will form part of Quality Assurance and Quality Control ("QA/QC") in upcoming resource estimation) were completed on this Line. These are shown in Figure 2 below.

With mineralisation present in hole PPRC551 to the west, and assay results outstanding from hole PPRC668 drilled to the far east, opportunity exists for mineralisation to continue beyond extent of the Line. Assay results from the diamond twin hole are yet to be returned.

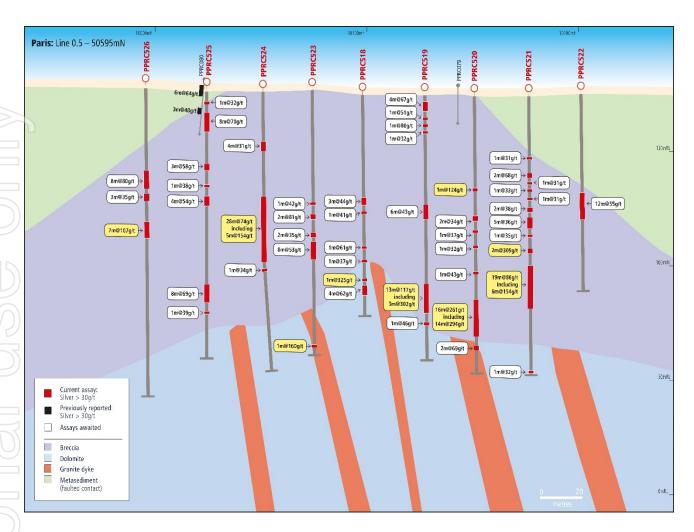

Figure 2: Cross-section along Line 1.25 showing the holes drilled in the 2020 infill program (red labels on collars). Holes are shown as grey traces with red indicating the location of assays above 30g/t silver. Intersections above 100g/t silver are noted in yellow "call-out" boxes. Intersections above 30g/t silver are noted in white "call-out" boxes. White traces show where results within the hole are yet to be received. The section window is +/-12.5m.

Line 0.75

Line 0.75 is located 25m south of the "2017 Line 1 Indicated Resource", with results from infill drilling on this section continuing to build confidence in the geometry and distribution of mineralisation.

Hole PPRC541 has returned 22m @ 120g/t Silver (from 49m), including 3m @ 445g/t Silver from 53m.

Again, significant mineralised intersections can be seen in Figure 3 below.


Figure 3: Cross-section along Line 0.75 showing the holes drilled in the 2020 infill program (red labels on collars). Holes are shown as grey traces with red indicating the location of assays above 30g/t silver. Intersections above 100g/t silver are shown in yellow "call-out" boxes. Intersections above 30g/t silver are noted in white "call-out" boxes. White traces show where results within the hole are yet to be received. The section window is +/-12.5m.

Line 0.5

A total of 9 holes were drilled across this Line, located 50m south of the "Line 1 Indicated Resource".

Mineralisation remains open at both the eastern and western extremities of this Line.

Highlight results include the significant intercept of 16m @ 261g/t Silver from 94m in hole PPRC520, including 14m @ 294g/t Silver as shown in Figure 4 below.

Figure 4: Cross-section along Line 0.5 showing the holes drilled in the 2020 infill program (red labels on collars) and limited previous drilling. Holes are shown as grey traces with red indicating the location of assays above 30g/t silver. Intersections above 100g/t silver are noted in yellow "call-out" boxes. Intersections above 30g/t silver are noted in white "call-out" boxes. White traces show where results within the hole are yet to be received. The section window is +/-12.5m.

About the Paris Silver Project – 100% Investigator

The Paris Silver Project is Australia's highest-grade undeveloped silver project. With a JORC 2012 resource of 9.3 Mt @ 139g/t silver and 0.6% Pb for 42 Moz contained silver and 55 kt contained lead as estimated in 2017³, the Paris resource is a shallow, high-grade silver deposit amenable to a bulk open pit mining method.

The program developed to complete a Pre-Feasibility Study ("PFS") includes infill drilling to advance the existing Inferred Resource to Indicated Resource status, further development and refinement of process plant flowsheet and design, open pit mine design and scheduling as well as refinement of power and water supply options.

³ First reported in ASX announcement of 19 April 2017. The Company confirms that it is not aware of new information or data that materially affects the information included in the market announcement, and that material assumptions and technical parameters underpinning the estimate continue to apply.

At completion of the PFS, an improved level of confidence in key operating parameters and cost assumptions will enable comprehensive project economic analysis, development and finance decisions to be made.

For and on behalf of the Board of Directors

Andrew McIlwain

Managing Director

About Investigator Resources

Investigator Resources Limited (ASX code: IVR) is a metals explorer with a focus on the opportunities for silver-lead, copper-gold and other metal discoveries.

Investors are encouraged to stay abreast of Investigator's news and announcements by registering their interest via the following weblink address: https://investres.com.au/enews-updates/

For further information contact:

Mr Andrew Mcllwain
Managing Director
Investigator Resources Limited

info@investres.com.au Phone: +61 8 7325 2222

Web: www.investres.com.au

Mr Peter Taylor
Investor Relations
NWR Communications

peter@nwrcommunications.com.au

Phone: +61 412 036 231

COMPETENT PERSONS STATEMENT

The information in this presentation relating to exploration results is based on information compiled by Mr. Jason Murray who is a full-time employee of the company. Mr. Murray is a member of the Australasian Institute of Mining and Metallurgy. Mr. Murray has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Murray consents to the inclusion in this report of the matters based on information in the form and context in which it appears.

The information in this presentation that relates to Mineral Resources Estimates at the Paris Silver Project is extracted from the reports titled:

- "Significant 26% upgrade for Paris Silver Resource to 42Moz contained silver" dated 19 April 2017; and
- "Upgraded Paris resource estimate: 60% increase to 33Moz silver" dated 9 November 2015,

and are available to view via the ASX. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Collar Location Table

HOLE ID	Local E (metres)	Local N (metres)	RL (metres)	Azimuth	Dip	Total Depth (metres)	Туре
PPRC518	10098.7	50593.4	179.4	0	-90	102	RC
PPRC519	10127.5	50592.5	179.3	0	-90	120	RC
PPRC520	10151.1	50590.6	179.1	0	-90	126	RC
PPRC521	10176.9	50591.0	179.1	0	-90	126	RC
PPRC522	10201.5	50590.9	179.1	0	-90	90	RC
PPRC523	10074.0	50594.3	179.6	0	-90	120	RC
PPRC524	10051.1	50593.8	179.8	0	-90	126	RC
PPRC525	10023.8	50594.6	180.0	0	-90	120	RC
PPRC526	9995.8	50592.7	180.1	0	-90	138	RC
PPRC540	10079.9	50618.4	179.0	0	-90	90	RC
PPRC541	10052.0	50618.4	179.1	0	-90	126	RC
PPRC542	10029.4	50617.9	179.2	0	-90	102	RC
PPRC543	10000.3	50617.5	179.4	0	-90	126	RC
PPRC544	10098.3	50617.9	178.9	0	-90	114	RC
PPRC545	10123.2	50617.3	178.8	0	-90	120	RC
PPRC546	10150.0	50617.4	178.7	0	-90	120	RC
PPRC555	10174.5	50616.4	178.8	0	-90	126	RC
PPRC556	10192.5	50616.0	178.9	0	-90	120	RC
PPRC547	10098.4	50670.2	177.9	0	-90	90	RC
PPRC548	10076.3	50670.3	177.9	0	-90	72	RC
PPRC549	10050.1	50671.0	177.9	0	-90	78	RC
PPRC550	10023.7	50671.4	178.0	0	-90	84	RC
PPRC551	9997.9	50672.0	177.5	0	-90	102	RC
PPRC552	10125.8	50669.6	177.9	0	-90	96	RC
PPRC553	10148.2	50669.2	178.0	0	-90	108	RC
PPRC554	10175.7	50670.6	178.2	0	-90	108	RC
PPRC668	10202.1	50669.5	178.4	0	-90	114	RC

Results Table

The following table lists the results from the 29 holes reported in this release.

Intersections of over 100g/t silver are highlighted.

* Denotes where not all assays have been received and the preliminary closed off intersection in the hole may be only partially reported.

LINE	HOLE	FROM (metres)	TO (metres)	WIDTH (metres)	SILVER (g/t)	INTERCEPT
0.5	PPRC518	50	53	3	44	3m @ 44g/t Ag [50-53m]
0.0	1111220	56	57	1	41	1m @ 41g/t Ag [56-57m]
		71	72	1	61	1m @ 61g/t Ag [71-72m]
		77	78	1	37	1m @ 37g/t Ag [77-78m]
		85	86	1	325	1m @ 325g/t Ag [85-86m]
		88	92	4	62	4m @ 62g/t Ag [88-92m]
	PPRC519	8	12	4	67	4m @ 67g/t Ag [8-12m]
		15	16	1	51	1m @ 51g/t Ag [15-16m]
		18	19	1	80	1m @ 80g/t Ag [18-19m]
		21 53	22 59	6	32 43	1m @ 32g/t Ag [21-22m]
		87	100	13	117	6m @ 43g/t Ag [53-59m] 13m @ 117g/t Ag [87-100m]
		67	100		117	includes 3@302g/t [90-93m]
		104	105	1	46	1m @ 46g/t Ag [104-105m]
	PPRC520	46	47	1	124	1m @ 124g/t Ag [46-47m]
		58	60	2	34	2m @ 34g/t Ag [58-60m]
		64	65	1	37	1m @ 37g/t Ag [64-65m]
		71	72	1	32	1m @ 32g/t Ag [71-72m]
		82	83	1	43	1m @ 43g/t Ag [82-83m]
		94	110	16	261	16m @ 261g/t Ag [94-110m] includes 14@294g/t [96-110m]
		114	116	2	69	2m @ 69g/t Ag [114-116m]
	PPRC521	32	33	1	31	1m @ 31g/t Ag [32-33m]
		39	41	2	68	2m @ 68g/t Ag [39-41m]
		43	44	1	31	1m @ 31g/t Ag [43-44m]
		46	47	1	33	1m @ 33g/t Ag [46-47m]
		50	51	1	31	1m @ 31g/t Ag [50-51m]
		54	56	2	38	2m @ 38g/t Ag [54-56m]
		58	63	5	36	5m @ 36g/t Ag [58-63m]
		66	67	1	35	1m @ 35g/t Ag [66-67m]
		72	74	2	309	2m @ 309g/t Ag [72-74m]
		79	98	19	86	19m @ 86g/t Ag [79-98m] includes 6@154g/t [81-87m]
		435	176	1	22	
	PPRC522	125 47	126 59	1 12	32 55	1m @ 32g/t Ag [125-126m] 12m @ 55g/t Ag [47-59m]
	PPRC523	52	53	1	42	1m @ 42g/t Ag [52-53m]
		57	59	2	81	2m @ 81g/t Ag [57-59m]
		65	67	2	35	2m @ 35g/t Ag [65-67m]
		69	77	8	53	8m @ 53g/t Ag [69-77m]
		114	115	1	160	1m @ 160g/t Ag [114-115m]
	PPRC524	26	30	4	31	4m @ 31g/t Ag [26-30m]
		50	78	28	74	28m @ 74g/t Ag [50-78m] includes 5@154g/t [54-59]
		81	82	1	34	1m @ 34g/t Ag [81-82m]
	PPRC525	9	10	1	32	1m @ 32g/t Ag [9-10m]
	TTREE	14	22	8	70	8m @ 70g/t Ag [14-22m]
		36	39	3	58	3m @ 58g/t Ag [36-39m]
		45	46	1	38	1m @ 38g/t Ag [45-46m]
		50	54	4	54	4m @ 54g/t Ag [50-54m]
		88	96	8	69	8m @ 69g/t Ag [88-96m]
		100	101	1	39	1m @ 39g/t Ag [100-101m]
	PPRC526	39	47	8	80	8m @ 80g/t Ag [39-47m]
		49	52	3	35	3m @ 35g/t Ag [49-52m]
	nnn er 40	61	68	7	107	7m @ 107g/t Ag [61-68m]
0.75	PPRC540	46	48	2	87	2m @ 87g/t Ag [46-48m]
		57 69	58 71	2	41 111	1m @ 41g/t Ag [57-58m] 2m @ 111g/t Ag [69-71m]
	PPRC541	49	71	22	120	22m @ 120g/t Ag [49-71m]
	1111011	15	/1		120	includes 3@445g/t [53-56m]
		75	76	1	32	1m @ 32g/t Ag [75-76m]
		89	90	1	44	1m @ 44g/t Ag [89-90m]
		101	104	3	71	3m @ 71g/t Ag [101-104m]
		108	109	1	51	1m @ 51g/t Ag [108-109m]
		121	122	1	50	1m @ 50g/t Ag [121-122m]
	PPRC542	9	12	3	36	3m @ 36g/t Ag [9-12m]
		15	34	19	89	19m @ 89g/t Ag [15-34m] includes 9@124g/t [24-33m]
		54	61	7	167	7m @ 167g/t Ag [54-61m]
		76	77	1	138	1m @ 138g/t Ag [76-77m]
	PPRC543	19	24	5	62	5m @ 62g/t Ag [19-24m]
	1	26	27	1	34	1m @ 34g/t Ag [26-27m]
		20				
		30	33	3	46	3m @ 46g/t Ag [30-33m] 2m @ 44g/t Ag [36-38m]

(T)

UNE 0.75		metres		(metres)		INTERCEPT
0.73	PPRC544		AO		24	1m @ 24a/t Aa [47 49m]
	PPKC544	47 51	48 54	3	34 90	1m @ 34g/t Ag [47-48m] 3m @ 90g/t Ag [51-54m]
		56	58	2	60	2m @ 60g/t Ag [56-58m]
	ŀ	75	76	1	52	1m @ 52g/t Ag [75-76m]
	l	100	101	1	91	1m @ 91g/t Ag [100-101m]
	PPRC545	16	17	1	59	1m @ 59g/t Ag [16-17m]
		23	26	3	112	3m @ 112g/t Ag [23-26m]
		39	42	3	45	3m @ 45g/t Ag [39-42m]
		45	46	1	49	1m @ 49g/t Ag [45-46m]
		48	49	1	39	1m @ 39g/t Ag [48-49m]
		92	95	3	76	3m @ 76g/t Ag [92-95m]
		97	102	5	75	5m @ 75g/t Ag [97-102m]
	DDD CE 4C	112	113	1	246	1m @ 246g/t Ag [112-113m]
	PPRC546	17	18	1	31	1m @ 31g/t Ag [17-18m]
		21 45	22 67	22	48 69	1m @ 48g/t Ag [21-22m] 22m @ 69g/t Ag [45-67m]
		45	67	22	09	includes 4@108g/t [48-52m]
		81	83	2	46	2m @ 46g/t Ag [81-83m]
	ŀ	87	93	6	41	6m @ 41g/t Ag [87-93m]
	ŀ	118	119	1	30	1m @ 30g/t Ag [118-119m]
	PPRC555	30	31	1	34	1m @ 34g/t Ag [30-31m]
		50	53	3	36	3m @ 36g/t Ag [50-53m]
		57	58	1	31	1m @ 31g/t Ag [57-58m]
	l	59	60	1	32	1m @ 32g/t Ag [59-60m]
	l	67	68	1	95	1m @ 95g/t Ag [67-68m]
		103	104	1	31	1m @ 31g/t Ag [103-104m]
		112	114	2	49	2m @ 49g/t Ag [112-114m]
	PPRC556	27	29	2	31	2m @ 31g/t Ag [27-29m]
		33	37	4	31	4m @ 31g/t Ag [33-37m]
		43	45	2	52	2m @ 52g/t Ag [43-45m]
		50	55	5	95	5m @ 95g/t Ag [50-55m]
1.25	PPRC547	52	53	1	45	1m @ 45g/t Ag [52-53m]
		56	60	4	91	4m @ 91g/t Ag [56-60m]
	PPRC548	32	33	1	34	1m @ 34g/t Ag [32-33m]
		46	49	3	54	3m @ 54g/t Ag [46-49m]
	PPRC549	63 44	64 50	6	78 41	1m @ 78g/t Ag [63-64m] 6m @ 41g/t Ag [44-50m]
	FFNC343	52	68	16	236	16m @ 236g/t Ag [52-68m]
		32	00	10	230	includes 9@273g/t [59-68m]
		70	71	1	31	1m @ 31g/t Ag [70-71m]
	PPRC550	16	17	1	80	1m @ 80g/t Ag [16-17m]
		29	30	1	78	1m @ 78g/t Ag [29-30m]
		46	47	1	49	1m @ 49g/t Ag [46-47m]
	PPRC551	10	12	2	42	2m @ 42g/t Ag [10-12m]
		23	24	1	56	1m @ 56g/t Ag [23-24m]
	-	47	48	2	44	1m @ 44g/t Ag [47-48m]
		52 59	54 60	1	73 33	2m @ 73g/t Ag [52-54m] 1m @ 33g/t Ag [59-60m]
	PPRC552	21	24	3	61	3m @ 61g/t Ag [21-24m]
	TI NGJJZ	26	29	3	37	3m @ 37g/t Ag [26-29m]
		34	50	16	99	16m @ 99g/t Ag [34-50m]
			50	10	33	includes 3@246g/t [46-49]
	1	55	61	6	36	6m @ 36g/t Ag [55-61m]
	l	71	73	2	33	2m @ 33g/t Ag [71-73m]
		85	86	1	35	1m @ 35g/t Ag [85-86m]
	PPRC553	31	32	1	40	1m @ 40g/t Ag [31-32m]
		43	62	19	185	19m @ 185g/t Ag [43-62m]
						includes 7@282g/t [48-55m]
						and 1@1360g/t [43-44m]
		66	68	2	59	2m @ 59g/t Ag [66-68m]
	l	78	94	16	297	16m @ 297g/t Ag [78-94m]
		96	97	1	38	1m @ 38g/t Ag [96-97m]
	PPRC554	10	12	2	46	2m @ 46g/t Ag [10-12m]
	[18	19	1	38	1m @ 38g/t Ag [18-19m]
		22	30	8	65	8m @ 65g/t Ag [22-30m]
		33	42	9	102	9m @ 102g/t Ag [33-42m]
1			80	3	31	includes 2@151g/t [38-40m] 3m @ 31g/t Ag [77-80m]
1		77				

APPENDIX 1: JORC Code, 2012 Edition - Table 1

The following section is provided to ensure compliance with the JORC (2012) requirements for the reporting of the Exploration Drilling Results at the Paris Silver Deposit in the ASX release "High-grade silver results from infill drilling in southern region of Paris Deposit" on 2 March 2021:

Assessment and Reporting Criteria Table Mineral Resource – JORC 2012

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate	Reverse Circulation (RC) Drilling
-	to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	RC drilling was sampled at nominal 1m intervals down hole. The upper colluvium/soil material (generally 4-5m depth) was not sampled in this program.
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	 Where dry samples were intersected, sampling was undertaken using a stand-alone riffle splitter. Approximately 3kg of the original sample volume was submitted to the laboratory for assay. Where samples were judged to be sufficiently wet that riffle splitting
	Aspects of the determination of mineralisation that are Material to the Public Report.	may be compromised (balling clays or muddy) then samples were quarantined on site, transferred to poly-weave bags with Hole ID and Interval recorded and dried until processing in the same format as an originally dry interval could be achieved <i>i.e.</i> riffle split to obtain an
	• In cases where 'industry standard' work has been done this would be relatively simple (eg 'RC drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 approximate 3kg sample submitted to the laboratory for pulverisation and assay. Riffle splitters were visually inspected prior to drilling to confirm appropriate construction and fitness for purpose and regularly cleaned. Drill intervals had visual moisture content and volume recorded ie Dry, Moist, Wet and Normal, Low, Excessive.
Drilling techniques	Drill type (eg core, RC, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 RC drilling completed as part of this program of infill resource drilling utilised 5 1/2 inch face sampling percussion hammers and were drilled in a vertical orientation. Drilling did not utilise a rig attached splitter due to the potential for cross contamination should balling clay or similar intervals be

Criteria	JORC Code explanation	Commentary
		 intersected. Drillers supplied sample on a per metre basis into large format numbered sample bags.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	 Whole bag weights were recorded for all 1m intervals. Wet or dry sample intervals were also recorded. Bag weights for designated wet samples were taken after drying of intervals, with the majority of samples in the program having a dry
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	weight recovery value. Moist but splittable samples were weighed at the time of splitting.
		 2016 QA/QC analysis of RC recovery versus grade based upon 5857 samples found that 94% of bag weights were within +/- 2 Standard Deviations (2SD) of the mean. Plots of silver assay vs bag weight
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	showed no discernible bias between recovery and grade in that program. Recording of sample recovery for the current drill program is being completed in the same format as the 2016 QA/QC program of work.
		RC holes with poor recovery in target zones are identified and flagged for potential DH redrill.
		Observed poor and variable recovery is flagged in the sampling database. Wet or moist samples are also flagged in the sampling database.
		Selective twinning of a representative number of holes with diamond drilling is undertaken to support recovery/grade operations and appropriateness of method. This was completed in prior programs of work, and is underway at the time of reporting, however results have not been returned to allow comparison on this program at this time.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 Entire holes are logged comprehensively and photographed on site. Qualitative logging includes lithology, colour, mineralogy, veining type and percentage, sulphide content and percentage, description, marker horizons, weathering, texture, alteration, mineralization, and mineral percentage.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Quantitative logging includes magnetic susceptibility. Portable XRF is utilised on an informal basis to identify zones of mineralisation and mineralogical components to assist in lithological logging but not
	The total length and percentage of the relevant intersections logged.	relied upon for reporting of mineralisation in this release.

Criteria	JORC Code explanation	Commentary
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	Certified reference standards including "blank", low, medium and high range silver are inserted on every 25 th sample within the program with the standard selected on a randomised basis. Laboratory sample preparation
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. 	 A certified and accredited global laboratory (ALS Laboratories) ("ALS") was used for all assays. Samples were analysed using methods MEMS61 with 25g prepared sample total digest with perchloric, nitric, hydrofluoric and hydrochloric acids and analysed by ICP-AES and ICP-MS for 48 elements including Ag and Pb. Over-range samples (>100ppm Ag, >1% Pb) were re-assayed using ME-OG62, 4 acid digest with ICP-AES finish to 1500ppm Ag and 20% Pb. Silver results greater than 1,500ppm are re assayed by ME-OG62H using 4 acid digest with ICP-AES finish to 3,000ppm Ag.

Criteria	JORC Code explanation	Commentary
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 If samples remain over-range after this method, then GRA-21 is used for Ag (0.1 – 1.0% Ag). ALS have recently closed their Australian laboratory capable of undertaking the method of analysis and any GRA21 analyses are required to be undertaken at their Vancouver, Canada facility. Samples with silver greater than 1% are analysed by Ag-CON01 for Ag (0.7 – 995000ppm). Internal certified laboratory QA/QC is undertaken by ALS and results are monitored by Investigator Resources Ltd ("Investigator"). Umpire check analysis with an alternate NATA accredited laboratory for a subset of assays from the current program is in the process of being completed. QA/QC Summary
		 Records of QA/QC techniques undertaken during each drilling program are retained by Investigator. Certified reference standards including blanks, were randomly selected and inserted into the sampling sequence (1 in 25 samples) for all RC drilling where 1m sample intervals were assayed. Field duplicate samples were routinely taken on every 20th sample for all RC drilling. No significant analytical biases have been detected in the results presented.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	 Results of significant intersections were verified by Investigator personnel visually and utilising Micromine drill hole validation. 12 drill holes at Paris have been twinned during 2012-2013 to assess representivity and short-range spatial variability. This has included DD/DD twinning, DD/RC and DD/AC twinning. An additional 6 DD/RC twin holes were drilled as part of the 2016 infill resource drilling program.
	The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Results in general confirmed the presence of mineralisation, and geological continuity however twins highlight the heterogeneity of the Paris Project breccia host, with some short distance grade continuity differences present.
	Discuss any adjustment to assay data.	A program of 4 selected DD/RC twin holes for the current program has been completed, however results have not allowed for comparison at the time of reporting results and will be reviewed and

Criteria	JORC Code explanation	Commentary
		 presented as part of resource estimation. Primary data is captured directly into an in-house referential and integrated database system managed by the Project Manager. All assay data is cross-validated using Micro Mine drill hole validation checks including interval integrity checks. Laboratory assay data is not adjusted aside converting all results released as % to ppm. Below detection results reported with a "<" sign are converted to "-" as part of validation. Where an over range re-assay is returned, the result is transferred into the database with the method of analysis identified against each sample number with such over range results.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (codown-hole surveys), trenches, mine workings and other located 	
	used in Mineral Resource estimation. Specification of the grid system used.	 All coordinates are recorded in GDA 94 MGA Zone 53. Holes have been field located utilising hand held GPS (accuracy of approximately +/ 4m) and orthography. Prior to utilisation of drilling.
	Quality and adequacy of topographic control.	 approximately +/- 4m) and orthoimagery. Prior to utilisation of drilling data in any future resource estimation collars are located utilising differential GPS with a typical accuracy of +/-10cm – holes in this release have not had this detailed survey undertaken at the time of reporting results. Topographic control uses a high resolution DTM generated by a AeroMetrex 28cm survey. A local grid conversion was applied to all data in order to simplify and be consistent with previous resource estimation processes. This transformation was completed using SURPAC software by HS&C and corroborated by using Micromine by Investigator. This resulted in a clockwise rotation from MGA to local of 40 degrees using a two-common point transformation. Down hole surveys
		 Drillholes were drilled in a vertical orientation (-90°) and had collar orientation surveyed at 6m and an end of hole orientation surveyed. Due to the vertical hole orientation, only dip was recorded. Holes are generally less than 120m deep and as such significant deviation is not expected.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	 Drill hole spacing is variable over the approximate 1,600m x 800m area delineated as the Paris Project. The current program of drilling is undertaken to infill coverage to a

Investigator Resources Ltd ABN 90 115 338 979

Tel: + 61 8 7325 2222 www.investres.com.au PO Box 3635, Norwood, SA 5067 info@investres.com.au

Criteria	JORC Code explanation	Commentary
	 Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	nominal 25m x 25m spacing which was established during the 2017 Paris Resource Estimation as an appropriate spacing for establishing geological and grade continuity for resource estimation. • Field sample compositing was not undertaken.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The majority of the known mineralisation is interpreted to occur in both primary and alteration controlled horizontal to sub-horizontal layers. The drilling orientations are considered appropriate to test these orientations. A minority of the mineralisation is interpreted to occur in sub-vertical fault breccia and replaced structures. These orientations may be inadequately represented in the existing drilling. The main strike of the mineralisation is towards 320 degrees (true). Drill sections have been aligned orthogonal to the main interpreted strike direction. Declination for all drilling as part of this program of work was -90 degrees. Previous drill programs conducted from 2012 to 2014 included drilling at -60degree declination along section and orthogonal to section to test target features at the time. This prior work has confirmed the suitability of a dominant -90degree declination for programs at Paris.
Sample security	The measures taken to ensure sample security.	 Samples were collected at rig site in individually numbered calico sample bags and tied and placed into poly-weave bags in groups of approximately 5 samples and cable tied to prevent access. Samples were dispatched to ALS laboratories in Adelaide by Investigator personnel or independent contractors. Records of each batch dispatched included the sample numbers sent, date and the name of the person transporting each batch. Investigator personnel provided, separate to the sample dispatch a submission sheet detailing the sample numbers in the dispatch and analytical procedures. ALS laboratories conducted an audit of samples received to confirm correct numbers per the submission sheet provided. Assay pulps are returned to Investigator from contracted laboratories on a regular basis and stored securely at a secure warehouse facility leased by Investigator. Pulp samples are stored in original cardboard boxes supplied by the laboratory with laboratory batch code displayed

Investigator Resources Ltd ABN 90 115 338 979 Tel: + 61 8 7325 2222 www.investres.com.au PO Box 3635, Norwood, SA 5067 info@investres.com.au

ASX code: IVR Page 17

Criteria	JORC Code explanation	Commentary
		 on each box. Boxes are stacked on pallets and shrink wrapped. Samples may suffer from oxidation and are not stored under nitrogen or in a freezer.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Original sampling methodology and procedures were independently reviewed by Mining Plus who undertook the 2013 Paris resource estimation. Additional review of methodology and practices was completed by H&SC during the 2016 infill drilling program completed as part of the 2017 updated resource estimation. H&SC confirmed at the time of review that the 2016 QA/QC body of work was of industry best practice standard. Reviews of past drill hole data has seen continual improvement, with significant changes to recording of quality control data from drill holes to ensure maximum confidence in assessment of drill and assay data. Current drilling and sampling procedures have been reviewed during site visits by the competent person, in addition to ongoing review and supervision by an Investigator geologist with Paris Project experience of greater than 8 years.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Paris Project is contained within EL 6347 that was granted to Sunthe Uranium Pty Ltd a wholly owned subsidiary of Investigator Resources Limited ("Investigator"). Investigator manages EL 6347 and holds 100% interest. EL 6347 is located on Crown Land covered by several pastoral leases. An ILUA has been signed with the Gawler Range Native Title Group and the Paris Project area has been Culturally and Heritage cleared for exploration activities. This ILUA terminated on 28th February, 2017 however this termination does not affect EL 6347 (or any renewals, regrants and extensions) as the explorer entered into an accepted contract prior to 28th February, 2017. There are no registered Conservation or National Parks on EL 6347. An Exploration PEPR (Program for Environment Protection and Rehabilitation) for the entirety of EL 6347 has been approved by DEM (South Australian Government Department for Energy and Mining). All drilling work has been conducted under DEM approved work program permitting, and within the Exploration PEPR guidelines. All relevant land owner notifications have been completed as part of work programs.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 No previous exploration work has been undertaken at the Paris Project by other parties. The deposit was discovered by Investigator in 2011.
Geology	Deposit type, geological setting and style of mineralisation.	 The Paris Project is an Ag-Pb deposit that is hosted predominantly within a sequence of flat lying polymictic volcanic breccia related to the Gawler Range Volcanics. Paris is an intermediate sulphidation mineralised body associated with a felsic volcanic breccia system in an epithermal environment with a significant component of stratabound control. The deposit has an elongate sub-horizontal tabular shape with dimensions of approximately 1.6km length and approximately 800m width and is situated at the base of a Gawler Range Volcanic (mid-Proterozoic) sequence at an unconformity with the underlying Hutchison Group (Palaeo-Proterozoic) dolomitic marble. Some of the deposit impinges

Criteria	JORC Code explanation	Commentary
		into the altered upper dolomite. The host volcanic stratigraphy comprises felsic volcanic breccia including dolomite, volcanic, sulphide, graphitic meta-sediment and granite clasts. The breccia host is fault-bounded on its long axis by graphitic meta-sediment indicating a possible elongate graben setting to the deposit. The upper margin to the host breccia is a thin layer of unconsolidated Quaternary colluvium clays and sands to the present-day surface. Steep dipping, granitic dyke intrusions occur in the underlying dolomite and are interpreted to have intruded parallel to the body of mineralisation and a brittle structural zone within the dolomite. Sporadic skarn alteration is observed within the dolomite and occurs at the margins of the dykes that is overprinted by the silver mineralisation. Felsic dyke intrusives and breccias occur at either end and at the centre of the deposit and may comprise different generations. These are interpreted to be associated with the brecciation event. Multiple stages of mineralisation associated with multiple phases of intrusion, alteration and brecciation have been identified at Paris. Silver mineralisation is predominantly in the form of acanthite and native silver with a minor component as solid solution within other sulphide species (galena, sphalerite, arsenopyrite etc). High grade zones within the breccia can be in the form of coarse clasts or aggregates/disseminations of sulphide clasts and in some instances are closely associated with cross cutting dacitic and partially brecciated dykes which are likely associated with pre-existing faults. A high degree of clay alteration has overprinted the breccia body, much of which is considered to be hypogene however a limited zone of secondary weathering effects which is interpreted at the base of complete oxidation. • An alternate model of emplacement, where a structural based emplacement model has been considered. This model presents some viable alternate genesis methodology, but is not regarded to change the overall deposit m
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information	Drill hole information is recorded within the Investigator in-house referential database.

Investigator Resources Ltd ABN 90 115 338 979

Tel: + 61 8 7325 2222 www.investres.com.au PO Box 3635, Norwood, SA 5067 info@investres.com.au

Page 20

Criteria	JORC Code explanation	Commentary
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	 The company has maintained continuous disclosure of drilling details and results for Paris, which are presented in previous public announcements. No material information is excluded.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Any references to reported intersections in this release are on the basis of weighted average intersections. No top cut to intersections has been applied. Allowance for 1m of internal dilution within intersection calculations is made. Lower cut-off grades for intersections by major elements are: Silver >30ppm, Lead >1000ppm, Zinc >1000ppm, Copper >500ppm. No metal equivalents are reported.
	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Mineralisation geometry is generally flat lying within the majority of the breccia hosted deposit however there may be a locally steeper dipping component within the dolomite basement. All reported intersections are on the basis of down hole length and have not been calculated to true widths.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See attached plans showing drill hole density (Figures 1 and 2).
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Comprehensive reporting is undertaken. All results for previous drill holes used in the 2017 mineral resource estimate have been previously announced in ASX releases with accompanying Table 1 documentation. A small number of drillholes or intervals may have un-returned assays and are clearly annotated on representative sections.

Criteria	J	ORC Code explan	ation		Co	mmentary
Other substantive exploration data	•	including (but not survey results; ge method of treatm groundwater, ged	n data, if meaningful and material, the limited to: geological observation eochemical survey results; bulk satent; metallurgical test results; bulk observations and rock characteristics entaminating substances.	ns; geophysical amples – size and k density,	•	Preliminary metallurgical test work has been completed. Four geometallurgical domains were tested including oxide breccia, transitional breccia, Mn-Carbonate and Dolomite domains. Metallurgical recovery from this body of work averaged at 74% Ag. Additional testwork is required to optimise and identify methods to enhance recovery further. Mineralisation is near surface and generally hosted by weathered and intensely altered volcanic lithologies where primary textures may be hard to distinguish or are obliterated. Groundwater is generally present below 40m depth. Multi-element geochemistry assaying (48 or 61 elements) is routine for all sampling. Some elemental associations are recognised within certain lithologies within the deposit and are used as a tool to assist in interpretation of original lithologies where alteration affected the ability to visually determine the lithology. Density measurements are undertaken on all competent core using Archimedes principle. Pycnometer measurements have been undertaken by ALS on six RC holes and ten diamond holes. A further nine diamond holes, in addition to normal density measurement using Archimedes principle have had wax immersion measurements undertaken at regular intervals. Archimedes density measurements of 2016 diamond drilling was comparable to earlier density results. Additional density check measurements were carried out on 2016 diamond core which included whole tray weight density checks with results in line with expectations. Density for lithological units and oxidation state were recorded. Whole bag weight RC data was converted to a recovery by applying the density of logged geology for each interval to determine a recovery percentage. Results were compared down hole with grade to further assess potential grade/recovery bias, with no obvious bias apparent. Aeromagnetic and gravity survey data covers the project area and 5 induced polarisation sections cross cut the deposit. This data has been used in targeting drilling and in some interpretation.
Further work	•		cale of planned further work (eg to oth extensions or large-scale step			Further QA/QC work to support an additional updated estimated resource is planned to occur. Additional metallurgical studies in addition to process flow sheet and
	Diagrams clearly highlighting the areas of possible extensions,			extensions,	other components to produce a prefeasibility level of study documer	
Investigator Resou	rces l	_td	Tel: + 61 8 7325 2222	PO Box 3635, Norwood,	SA 5	067 ASX code: IVR Page 22

Criteria	JORC Code explanation	Commentary
	including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	are planned.

