

Final Results at Big Springs confirm Successful Drill Campaign

HIGHLIGHTS:

- Excellent assay results received from the final six holes of the 2020 Big Springs diamond drilling campaign, with best intervals including:
 - 16.76m @ 2.36 g/t Au from 29.87m, including 3.05m @ 7.90g/t;
 - 9.14m @ 2.48 g/t Au from 55.78m, including 2.74m @ 6.82g/t;
 - 9.14m @ 2.18 g/t Au from 54.25m, including 3.05m @ 4.37g/t; and
 - 6.10m @ 2.80 g/t Au from 77.11m, including 1.89m @ 5.92g/t.
- Defined continuity of mineralisation enhanced at both the SWX Shoot and Crusher Zone at North Sammy.
- SWX Shoot extended down-dip for a further approx. 50 metres (and remains open) with footwall lodes also discovered.
- Design of the 2021 Big Springs exploration program is almost complete with an overview of planned activities expected to be released in coming weeks.
 - The 2021 program is planned to aggressively test extensions to existing resources at Big Springs as well as drilling of high-priority new exploration targets worked up through the 2020 field season.

Anova Metals Limited (ASX: AWV) (**Anova** or the **Company**) is pleased to advise of assay results received for the residual six diamond holes from the 2020 drilling program at its 100%-owned Big Springs Gold Project in Nevada (**Big Springs**).

Commenting on the final results, Anova Managing Director, Dr Mingyan (Joe) Wang, said:

"The final results from the 2020 drilling program again show the strong mineralisation profile evident across the Big Springs Gold Project. The strong widths at excellent grades returned from these holes have delivered some key outcomes. Mineralisation continuity has been improved at both the SWX Shoot and Crusher Zone at North Sammy. Mineralisation at the SWX Shoot has also been extended down-dip and remains open in that direction. The discovery of footwall lodes at the SWX Shoot is also very encouraging.

"We now look forward to embarking upon our aggressive exploration plans for Big Springs in 2021. This program is targeted at significant resource growth via extensional drilling of existing deposits plus testing of high-potential exploration targets derived from the extensive geophysical work undertaken through 2020. We believe this program has the clear potential to reposition scale expectations for Big Springs. We look forward to commencing these workstreams, which are planned to include significant RC and diamond drilling through this year."

Wide mineralised intercepts at excellent grades were received at both the SWX Shoot and Crusher Zone at North Sammy. Drill hole intercepts are summarised in Tables 1 and 2, with the best results including:

- BS-010A: 15.24m @ 2.53g/t from 28.35m, including 3.05m @ 7.90g/t;
- BS-010A: 9.14m @ 2.18g/t from 54.25m, including 3.05m @ 4.37g/t;
- BS-003: 9.14m @ 2.48g/t from 55.78m, including 2.74m @ 6.82g/t;
- BS-009: 6.10m @ 2.80g/t from 77.11m, including 1.89m @ 5.92g/t;
- BS-008: 3.11m @ 2.39g/t from 5.27m; and
- BS-007: 16.76m @ 1.20g/t from 29.87m, including 3.05m @ 2.03g/t.

Main lode mineralisation at both the SWX Shoot and Crusher Zone are within Unit D, demonstrating strong alteration of silicification decarbonisation and argillic alteration. The dominant sulphide minerals are arsenopyrite and pyrite. Texture of brecciation, vuggy and stringers are observed. Unit D hosts most of the gold mineralisation at Big Springs.

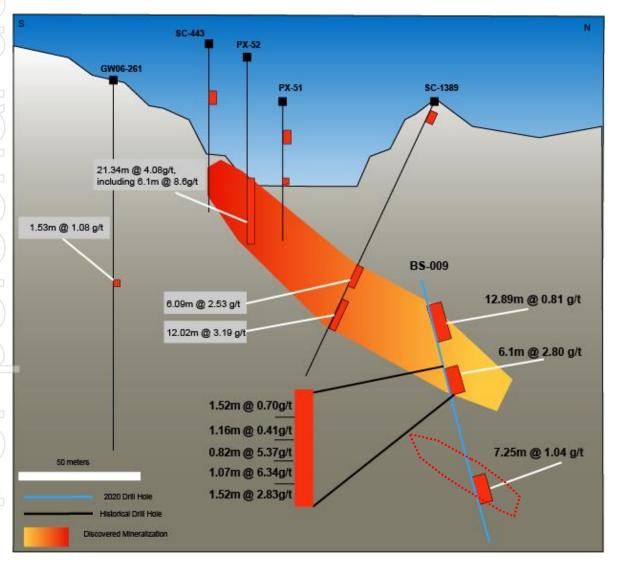


Figure 1: Cross section showing new drill hole BS-009 at SWX Shoot, North Sammy. Mineralisation has been extended by about 50 metres down dip, with the main lode interval of 6.1m @ 2.8 g/t, including 3.05m @ 7.90g/t. Footwall lode with interval of 7.25m @ 1.04g/t discovered.

2

Continuity of wide gold mineralisation at SWX Shoot, North Sammy has been enhanced through the intervals returned from BS-010A and BS-007, with encouraging assay results of 15.24m @ 2.53g/t from 28.35m (including 3.05m @ 7.90g/t) and 16.76m @ 1.20g/t from 29.87m (Figures 1 and 2).

Intercepts returned from BS-009 have successfully extended the mineralisation at SWX Shoot, North Sammy for approximately 50 metres down-dip, with an interval of 6.1m @ 2.80g/t from 77.11m, including 3.05m @ 7.90g/t (Figure 2). SWX Shoot mineralisation remains open down dip.

Footwall lode mineralisation for the SWX Shoot was established from three new drill holes (BS-007, BS-009, and BS-010A), with intervals of 9.14m @ 2.18g/t from 54.25m (including 3.05m @ 4.37g/t) and 7.25m @ 1.04g/t (Figure 2) from 136.92m.

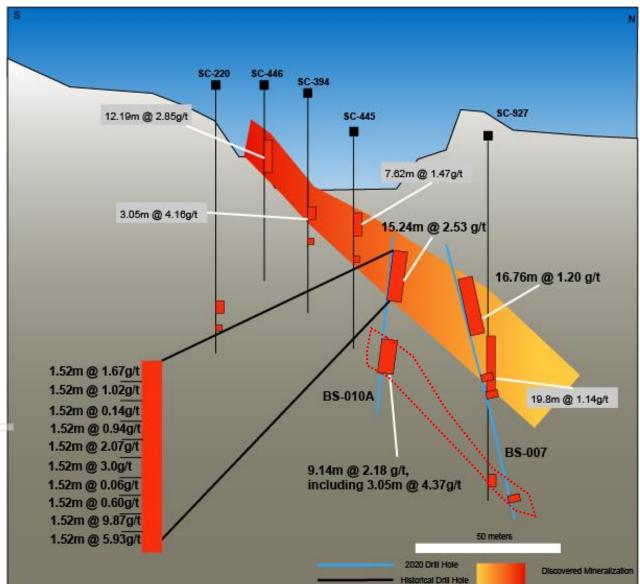


Figure 2: Cross section showing new drill hole BS-007 and BS-010A at SWX Shoot, North Sammy. Intervals received from infill holes have further improved the continuity of wide mineralisation. Main lode intervals of 15.24m @ 2.53 g/t and 16.76m @ 1.20g/t were returned. Footwall lode discovered with interval of 9.14m @ 2.18g/t.

3

Intervals of 9.14m @ 2.48g/t from 55.78m (including 2.74m @ 6.82g/t) in BS-003 and 1.52m @ 1.92g/t from 97.23m in BS-002 have further advanced the understanding of the geology at the Crusher Zone, North Sammy. The continuity of defined mineralisation for this area has also been significantly improved.

A noteworthy interval of 3.11m @ 2.39g/t from 5.27m was received from BS-008 at the North Shoot, North Sammy. This indicates the clear potential for further shallow discoveries of oxide resources.

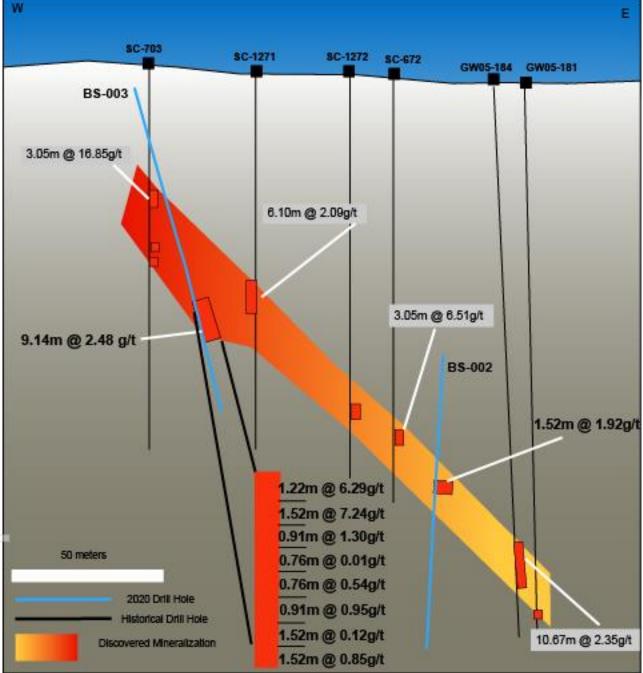


Figure 3: Cross section showing new drill hole BS-002 and BS-003 at Crusher Zone, North Sammy, with returned intervals of 9.14m @ 2.48g/t and 1.52m @ 1.92g/t. Mineralisation continuity significantly improved.

4

Anova has now received all assay results for its 2020 diamond drilling program. This program comprised seven holes at North Sammy and three holes at South Sammy for a total of 1,702 metres (Table 1).

A total of 1,154 samples were sent to the ALS Lab for analysis. Assay results for the three holes at 401 deposit, South Sammy (ZBF-001, ZBF-002a, and ZBF-003), and one at North Shoot, North Sammy (BS-006), were reported previously. These results included outstanding high-grade intervals of 5.49m @ 15.23g/t (BS-006), 4.54m @ 3.98g/t (ZBF-002a), and 10.85m @ 3.96g/t (see Anova ASX releases dated 18 January 2021 and 25 January 2021).

Drillhole	Area	Depth (m)	Easting	Northing	Elevation	Azimuth	Dip
BS-002	Crusher, North Sammy	199.3	585785	4602403	7264	200	-80
BS-003	Crusher, North Sammy	125.9	585695	4602391	7284	119	-71
BS-007	SWX, North Sammy	205.7	585299	4601660	7505	27	-75
BS-008	North, North Sammy	153.3	585641	4602178	7503	330	-61
BS-009	SWX, North Sammy	183.8	585299	4601660	7505	53	-65
BS-010A	SWX, North Sammy	124.4	585994	4601939	7495	98	-50
BS-006	North, North Sammy	200.6	585641	4602178	7503	101	-78
ZBF-001	401, South Sammy	166.1	585982	4601930	7693	261	-63
ZBF-002a	401, South Sammy	136.6	585982	4601930	7693	285	-52
ZBF-003	401, South Sammy	130.1	585982	4601930	7693	233	-50

Table 1: Drill hole location details for the completed holes in 2020

*: BS, Big Springs; ZBF, Zone of Briens Fault

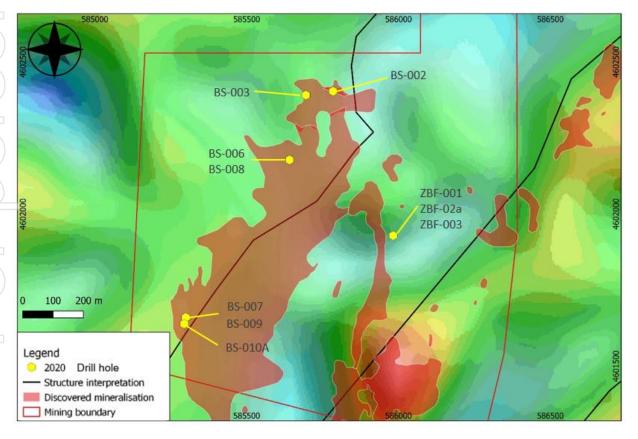


Figure 4: Plan view of the 2020 drill holes at Big Springs Project, Nevada

Table 2: Summary of Received Drill Hole Intercepts

Hole-ID	From (m)	To (m)	Interval	Au (g/t)	Note
BS-008	5.27	8.38	3.11	2.39	
BS-008	100.89	103.66	2.77	1.44	
BS-007	29.87	46.63	16.76	1.20	including 3.05m @ 2.03g/t
BS-007	63.40	64.92	1.52	1.97	
BS-007	67.97	69.49	1.52	1.59	
BS-009	57.30	69.49	12.19	0.81	
BS-009	77.11	83.21	6.10	2.80	including 1.89m @ 5.92g/t
BS-009	136.92	144.17	7.25	1.04	
BS-010A	29.87	45.11	15.24	2.53	including 3.05m @ 7.90g/t
BS-010A	54.25	63.40	9.14	2.18	including 3.05m @ 4.37g/t
BS-003	55.78	64.92	9.14	2.48	including 2.74m @ 6.82g/t
BS-002	97.23	98.76	1.52	1.92	
ZBF-001	51.21	54.25	3.05	1.06	
ZBF-001	75.59	77.11	1.52	1.03	
ZBF-001	87.33	98.18	10.85	3.96	including 3.05m @ 6.16g/t
ZBF-003	66.9	68	1.1	1.03	
ZBF-003	80.77	85.04	4.27	1.14	
ZBF-02a	38.15	40.45	2.3	2.1	
ZBF-02a	91.75	96.29	4.54	3.98	including 1.39m @ 7.24g/t
BS-006	19.2	20.73	1.52	5.95	
BS-006	106.07	111.56	5.49	15.23	including 1.52m @ 31.5g/t

This announcement has been authorised for release by: Mingyan Wang, Managing Director

CONTACT:

Investors +61 8 9481 0389 info@anovametals.com.au Media Michael Vaughan (Fivemark Partners) +61 422 602 720

About the Big Springs Gold Project

The Big Springs Gold Project is a Carlin-style gold deposit located 80 km north of Elko in northeast Nevada, USA. Big Springs produced 386,000 ounces of gold between 1987 and 1993, ceasing production due to low gold prices. It is located in proximity to multiple +10 Moz resource Carlin-style gold projects within the region, including the producing Jerritt Canyon Gold Mine which is 20km south of Big Springs (see Figure 3). Big Springs has Measured, Indicated and Inferred Mineral Resources of 16 Mt at 2.0 g/t Au for 1.03 Moz (refer Table 1 and Anova ASX release dated 26 June 2014), over 50 km² of highly prospective ground. The high-grade portion of the Mineral Resources, reported at a cut-off grade of 2.5 g/t gold, contains 3.1 Mt at 4.2 g/t for 415 koz. Big Springs is fully permitted for Stage 1 mining operations.

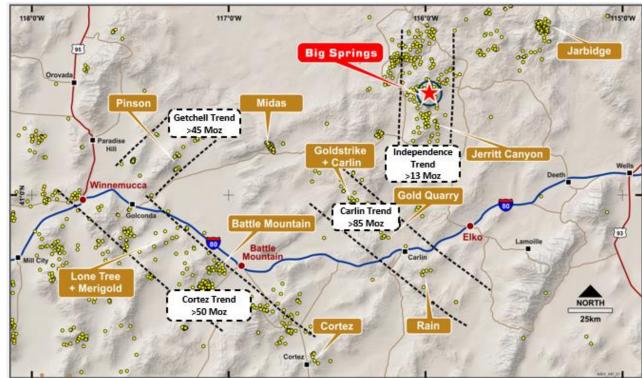


Figure 5: Location of Big Springs Project, Nevada USA

Table 3: Mineral Resources

		Measured			Indicated			Inferred			Combined	
Project	kT	Grade	Koz	kТ	Grade	Koz	kТ	Grade	Koz	kТ	Grade	Koz
Big Springs (JORC 2012)												
North Sammy	346	7.0	77.9	615	3.1	62.2	498	2.8	44.1	1,458	3.9	184.1
North Sammy Contact				443	2.3	32.4	864	1.4	39.3	1,307	1.7	71.8
South Sammy	295	4.0	38.2	3,586	2.1	239.9	3,721	1.3	159	7,602	1.8	437.2
Beadles Creek				119	2.2	8.2	2,583	2.3	193.5	2,702	2.3	201.7
Mac Ridge							1,887	1.3	81.1	1,887	1.3	81.1
Dorsey Creek							278	1.4	12.9	278	1.4	12.9
Briens Fault							799	1.6	40.5	799	1.6	40.5
		·										
Big Springs Sub-Total	641	5.6	116.1	4,762	2.2	343.3	10,630	1.7	570.4	16,032	2.0	1,029.9

Note: Appropriate rounding applied

1. The information in this announcement that relates to the mineral resources for the Company's Big Springs Project was first reported by the Company in its resource announcement ("Resource Announcement") dated 26 June 2014. The Company confirms that it is not aware of any new information or data that materially affects the information included in the Resource Announcement, and in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the Resource Announcement continue to apply and have not materially changed.

Competent Person Statement

The information in this report that relates to Exploration Result for the Big Springs Project is based on information compiled by Dr. Geoffrey Xue. Dr. Xue is a full time employee of Anova and a member of the Australasian Institute of Mining and Metallurgy and has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration, and to the activities undertaken to qualify as Competent Persons as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Dr. Xue consents to the inclusion in this report of the matters based on his information in the form and context in which they appear.

The information in this report that relates to Mineral Resources for the Big Springs Project is based on information compiled by Mr Lauritz Barnes, Principal Consultant Geologist – Trepanier Pty Ltd. Mr Barnes is a shareholder of Anova. Mr Barnes is a member of the Australian Institute of Geoscientists and has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration, and to the activities undertaken to qualify as Competent Persons as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Barnes consents to the inclusion in this report of the matters based on his information in the form and context in which they appear.

Anova Metals Limited ABN 20 147 678 779

Appendix 1: JORC Code, 2012 Edition – Supporting tables.

The following section is provided to ensure compliance with the JORC (2012) requirements for the reporting of exploration results for the Big Springs gold deposit in Nevada.

Section 1: Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 10 diamond drill holes were completed for this program to test mineralisation extension at both North and South Sammy diamond core samples have been half cut with automatic core saw about 1-1.5 meter samples are collected from the core trays as marked out by the supervising geologist Reflex multishot camera survey is used for downhole dip measurement. Core is continuously cut on the same side of the orientation line and the same side is sampled to ensure the sample is representative and no bias is introduced. Determination of mineralisation has been based on geological logging. Samples will be sent to lab for Au and other multi elements analysis. Diamond Core drilling was used to obtain 3-6m length samples from the barrel which are then marked in one meter intervals based on the drillers core block measurement. Assay samples are selected based on geological logging boundaries or on the nominal meter marks. Collect samples weigh a nominal 2-3 kg (depending on sample recovery) was sent to lab and pulverised. Samples have been dispatched to ALS Global in Reno, NV for analysis Fire assay will be used for Au analysis and aqua regia/ICP MS will be used for multi
Drilling techniques	Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 element analysis. Drilling was undertaken using HQ sized drill core. Hole was collar with mud rotary from surface.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples.	 Core recovery was recorded by the drill crew and verified by the geologist. RQD measurements were recorded to ensure recovery details were captured.

Criteria	JORC Code explanation	Commentary
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Sample recovery in both holes was high. •
Logging Sub-sampling techniques and sample preparation	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 Detailed industry standard of collecting core in core trays, marking meter intervals & drawing core orientation lines was undertaken Core trays were photographed wet and dry prior to sampling. Drill hole logs are recorded in Excel spread sheets and validated in Micromine Software as the drilling progressed. The entire length of both holes was logged. Core is half cut using an automatic core saw to achieve a nominal 2-3kg split sample for laboratory submission The sample preparation technique is considered industry best standard practice No field duplicates have been collected in this program. Sample sizes are appropriate to the grain cire of the minerplication.
Quality of assay data and laboratory tests	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 size of the mineralisation. Field QC procedures has involved the use of certified reference material assay standards and blanks, as well as assay duplicates The sample sizes are considered appropriate for the style of mineralisation, which is fine grained disseminated gold with minimal nugget effect. The ALS lab in Reno, NV will be used for Au and multi elements analysis (including 51 elements). Fire assay used for Au analysis and aqua regia for multi elements. Industry standard QAQC procedures were applied by ALS lab.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes.	 Results verified by Company geologist The data was collected and logged using Excel spreadsheets. The data will be

Criteria	JORC Code explanation	Commentary
D	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 loaded into an externally hosted and managed database and loaded by an independent consultant, before being validated and checked. No adjustments have been made to the assay data other than length weighted averaging.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 The holes were pegged by the Company contract geologist on site using a sub meter GPS The rig was setup over the nominated hole position and final GPS pickup occurred at the completion of the hole. UTM Zone 11 using NAD83 datum.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 The nominal drillhole spacing is approximately 50ft by 50ft (15m), is down to 40ft by 40ft in the Measured resource zones at 601 - and increases in places. Correspondingly, as the drillhole spacing increases and confidence in geological and mineralisation continuity decreases, the resource classification changes from Measured to Indicated to Inferred. Gateway and Anova holes have been drilled as infill to these grids as confirmation of mineralisation. The 2020 drilling program is designed as infill and resource extension. Drill hole spacing is varied from 30 meters to 15 meters. The mineralised domains have demonstrated sufficient continuity in both geological and grade to support the definition of Mineral Resource and Reserves, and the classification applied under the 2012 JORC code.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 No sample compositing is applied. Azimuth for the proposed drill hole in 2020 varies in a wide range. Dip angle is in the range of 50 – 90 degree. The orientation of the mineralisation is variable. The drill holes were planned to intersect mineralised zones as close to perpendicular as possible. The orientations of mineralised zones were determined from previous angled drilling and no bias has been identified.
Sample security Audits or reviews	The measures taken to ensure sample security. The results of any audits or reviews of sampling techniques and data.	 All data will be digitally stored by the Contractor and relayed to Anova. All information were initially processed and interpreted by a qualified person.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites The security of the tenure held at the time of reporting along with any known	 The Big Springs project tenements, comprising a total of 710 unpatented Lode Mining Claims (14,149 acres or 5,72 ha) are all owned by Anova. Claims are subject to a Net Smelter Return ranging from zero 3% payable to various parties. There are no known adverse surface rights. There are no known impediments. All liabilities with respect to the
	impediments to obtaining a licence to operate in the area.	decommissioning of the open pit mines are the responsibility of AngloGold Ashanti N.A Inc.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Not Applicable
Geology	Deposit type, geological setting and style of mineralisation.	 The Project's disseminated, sedimenthosted gold deposits have been classified by several authors as typical Carlin-type deposits. The Big Springs deposits are hosted predominantly within the flaser bedded siltstone of the Overlap Assemblage, which is Mississippian to Permian in age (30Ma to 360Ma), with structure and host stratigraphy being the primary controls on gold mineralisation. Mineralisation at North Sammy is typicall hosted within black, highly carbonaceous siltstone and calcareous sandy siltstone. These units are generally located betwee the Argillic thrust of the footwall and the Schoonover thrust in the hangingwall. Individual high-grade ore shoots at North Sammy generally plunge moderately to the NNW and are controlled by intersections of E-W-striking faults with the NE-SW-striking Argillic thrust. The South Sammy Creek deposit is more complex with a series of controlling structures, in particular the Briens fault along the western margin. On the eastern side of the Briens fault, the thick, tabular South Sammy ore deposit forms a largely continuous zone that is semi-concordant with the permeable and brittle host rocks of the Overlap Assemblage. The Mac Ridge East Prospect is believed to be located in the Hanson Creek formation – the main host to gold mineralization at Jerritt Canyon.
	A summary of all information material to	mineralization at service carryon.

Criteria	
	following
	holes, in
	the drill l
	(Reduced
	in metre
	azimuth
	intercept
	exclusion
	the basis
	Material
	detract f
	report, t
	clearly ex
Data aggregation	In report
methods	averagin
	minimun
	high grad
	Material
	aggregat
	lengths o
	lengths o
	procedu
	should b
	example
	shown in
	any repo
	should b
Relationship	These re
between	importar
mineralisation	Results.
widths and	mineralis
intercept lengths	hole ang
	reported
	down ho
	should be
	(eg 'dow
Diagrama	known').
Diagrams	Appropri
	scales) ai
	should be
	discover
	include, of drill he
Delenced	appropri
Balanced	Where co
reporting	Explorati
	represen
1	high grad

Criteria	JORC Code explanation	Commentary
Citteria	following information for all Material drill	to test new targets, particularly for deep
	holes, including easting and northing of	ore lodeds. Relevant information can be
	the drill hole collar, elevation or RL	found in Table 1 in the announcement.
	(Reduced Level – elevation above sea level	
	in metres) of the drill hole collar, dip and	
D	azimuth of the hole, down hole length and	
	interception depth plus hole length. If the	
	exclusion of this information is justified on	
	the basis that the information is not	
	Material and this exclusion does not	
	detract from the understanding of the	
	report, the Competent Person should	
	clearly explain why this is the case.	
Data aggregation	In reporting Exploration Results, weighting	 All reported assays have been length
methods	averaging techniques, maximum and/or	weighted if appropriate. No top cuts have
methodo	minimum grade truncations (eg cutting of	been applied. A nominal 1.0 ppm Au
	high grades) and cut-off grades are usually	lower cut off has been applied, with only
	Material and should be stated. Where	intersections >1.0 g/t considered
	aggregate intercepts incorporate short	significant.
	lengths of high grade results and longer	 No metal equivalent values are used.
	lengths of low grade results, the	
	procedure used for such aggregation	
	should be stated and some typical	
	examples of such aggregations should be	
	shown in detail. The assumptions used for	
	any reporting of metal equivalent values	
	should be clearly stated.	
Relationship	These relationships are particularly	Modelled ore zones have been
between	important in the reporting of Exploration	intersected in multiple orientations by the
mineralisation	Results. If the geometry of the	different generations and types of drilling
widths and	mineralisation with respect to the drill	(e.g. RC vs. diamond core) and as such,
intercept lengths	hole angle is known, its nature should be	there is high confidence in both the
	reported. If it is not known and only the	geological and mineralised zone.
	down hole lengths are reported, there	•
	should be a clear statement to this effect	
	(eg 'down hole length, true width not	
	known').	
Diagrams	Appropriate maps and sections (with	• See figures and maps provided in the text
	scales) and tabulations of intercepts	of the announcement.
	should be included for any significant	
	discovery being reported These should	
	include, but not be limited to a plan view	
	of drill hole collar locations and	
	appropriate sectional views.	
Balanced	Where comprehensive reporting of all	 The CP believes this report to be a
reporting	Exploration Results is not practicable,	balanced representation of exploration
	representative reporting of both low and	undertaken.
	high grades and/or widths should be	
	practiced to avoid misleading reporting of	
	Exploration Results.	
Other substantive	Other exploration data, if meaningful and	 All meaningful & material exploration
exploration data	material, should be reported including (but	data has been reported.
	not limited to): geological observations;	
	geophysical survey results; geochemical	
	survey results; bulk samples – size and	

Criteria	JORC Code explanation	Commentary
	method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Further work planned includes comprehensive data interpretation, field mapping, and exploration drilling.