

Level 3 22 Railway Road Subiaco 6008 Western Australia PO Box 8187 Subiaco East WA 6008 T: +61 8 6146 5325 www.ironbark.gl admin@ironbark.gl

11 February 2021

Australian Securities Exchange Limited Level 40, Central Park, 152-158 St Georges Terrace PERTH WA 6000

Citronen Project - Exploration Target

Ironbark Zinc Limited ("Ironbark", "the Company" or "IBG") is pleased to provide a JORC 2012 compliant Exploration Target for the Citronen Project.

Project Highlights

- Updated geology model and Exploration Target, completed as part of the ongoing Bankable Feasibility Study refresh, confirms Citronen contains substantial exploration upside beyond current Mineral Resource
- The Exploration Target is comprised of six areas; four of which are adjacent to current Esrum, Beach and Discovery Zone orebodies
- Substantial systematic multi-year exploration and resource development program, including geophysics, planned to coincide with the beginning of project construction

Ironbark has identified an Exploration Target, in addition to the known Mineral Resource, of 40 Mt to 90 Mt at 5.0% to 7.1% zinc + lead combined (Figure 1). The Exploration Target is based upon review of project drilling, rock chip samples and the limited geophysical data available. A 3D geological model of the project was used to assist in identifying prospective areas.

Disclaimer: The potential quantity and grade of the Exploration Target is conceptual in nature and is an approximation. There has been insufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource.

IBG Managing Director Michael Jardine commented:

"Ironbark has already defined a large Mineral Resource, which includes the maiden Ore Reserve declared earlier this year, at Citronen but we think this only scratches the surface of the deposit's potential. The ore body is open in essentially every direction and the current Mineral Resource is only constrained by the drilling density to date.

The field exploration program underpinning the existing Mineral Resource took place a decade ago. Since then there have been significant advances in hard rock exploration techniques, especially in geophysics. The potential for further mine life extension via drilling in the targeted areas is considered highly likely.

While all the usual caveats exist given this work is exploratory in nature at present, and is not likely to take place until we have successfully mobilised to site, I am confident future exploration work will allow Ironbark to re-assess the base case mine plan released to the market in 2020."

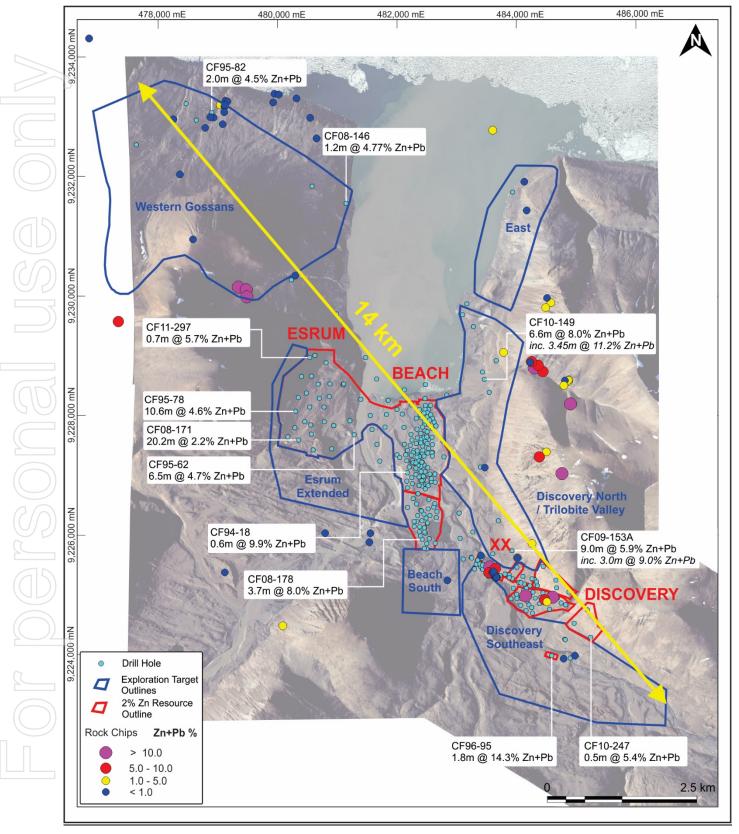


Figure 1: Plan view of Citronen orebody showing current Zn Mineral Resource outline in red, drill hole and rock chip sample locations and Exploration Targets areas in blue.

Background

The Citronen ore body is currently defined as one of the largest undeveloped zinc resources in the world. The mineralisation was first discovered in 1993 from an extensive (+2km) zone of out-cropping sulphide mineralisation now known as the Discovery Zone (Figure 2). From this region, the drilling expanded out with the aid of some minor geophysics. Three hundred diamond drill holes for approximately 66,000m have been completed at the Project to date. The result was the definition of three deposits known as the Discovery, Beach and Esrum zones.

Figure 2: Discovery Zone sulphides.

Citronen is a sediment hosted deposit. These deposits have typically been organised into two subgroups – sedimentary exhalative (SEDEX) and Mississippi Valley Type (MVT). Recent studies propose that some deposits previously classified as SEDEX lack evidence of the "exhalative" component (Taylor, 2009) and therefore, for the purposes of exploration targeting, it is more appropriate to treat these two deposits types as one.

This approach draws on the relation that ores classified as SEDEX in Leach *et al.* (2005) are hosted in clastic-dominated sedimentary rock sequences in mainly passive margin, continental rifts and sag basins (Taylor *et al.* 2009). The mineralisation is hosted in multiple deposits in multiple horizons (Emsbo *et al.*, 2016). The result of compiling these deposits together is shown on Figure 3, which highlights how these deposits form in 'camps' or groups such as Mt Isa-McArthur Basin (Century, Mount Isa and Hilton-George Fisher deposits) in Queensland and Brooks Range, Alaska, USA which is host to the giant Red Dog deposit.

The Franklinian Basin which hosts Citronen is considered highly prospective for zinc mineralisation, it was also host to the now exhausted Polaris and Nanisivik mines in Canada and there are numerous other zinc prospects throughout northern Greenland. The Citronen Deposit is open in almost every direction and Ironbark is confident the resource will be expanded with further exploration drilling.

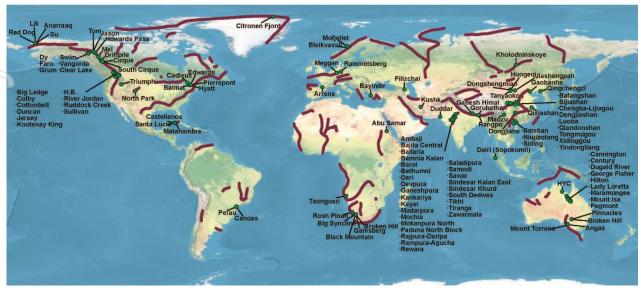


Figure 3: Global distribution of clastic-dominated lead-zinc deposits and ancient passive margin sequences (shown as purple lines); from Taylor et al., 2009.

Citronen in Detail

The three known orebodies at Citronen share common metallurgy and orientation with only minor differences in the metal grade and zinc – lead ratios. The orebodies are all primarily zinc deposits with minor accessory lead mineralisation. The orebodies are each centred on a historic sulphide mound that has been covered with sediment in episodic events. In some cases, the mineralising events have reactivated later and created a series of stacked lodes (Figure 4) termed Level 1, Level 2 and Level 3. The relatively flat-lying orebodies at Citronen have proven to be continuous with the Beach Zone mineralisation extending uninterrupted over 2,500 metres. Promisingly, it remains open to the south (Figure 6). The confidence level to extend these orebodies laterally is very high with the potential likelihood that further lenses will be discovered beneath the currently defined orebodies (Level 4).

The mineral resources currently defined at Citronen are hosted above the Lower Debris Flow geological unit (Figure 5). Very few holes were drilled through the Lower Debris Flow as drilling was predominantly focused on near surface, lateral extension and increasing the confidence levels (i.e. resources category). However, three holes in 1995 were drilled through the Lower Debris Flow and intersected semi-massive to massive pyrite mineralisation indicating the possibility of a Level 4 sulphide horizon. The peak grade intersected was in hole CF95-56 which returned 0.55m @ 0.3% Zn & 0.21% Pb from 343.35m (Figure 7).

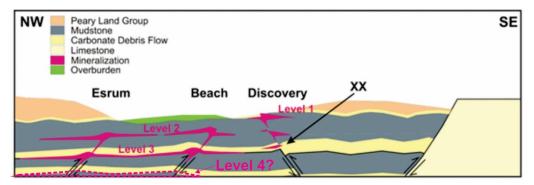


Figure 4: Schematic model of the sulphide mounds at Citronen showing the location of a possible Level 4 sulphide.

Mineralisation (4.5 - 5% Zn+Pb) has been encountered almost 4 km north west of the most northern of the known Mineral Resources, at the Western Gossans, and drill intercepts of >14% zinc have been encountered on the most southern drill hole as shown on Figure 1. Each ore body is limited only by drilling and remain open in several directions. The probability of significantly expanding the resource is considered very high.

Exploration Target

The Exploration Target of 40Mt to 90 Mt at 5.0% to 7.1% zinc + lead combined (Table 1) is based upon review of project drilling and the limited geophysical data available. A 3D Geological model of the project was used to assist in identifying prospective areas (Figure 5). Each area was systematically reviewed with tonnage ranges based on conceptual target sizes and area prospectivity. Exploration Target zinc and lead grade ranges and rock densities are based upon typical grades observed from the current Citronen Resource (refer to ASX announcement 12th March 2020). The Exploration Target calculation has been based on a combination of actual exploration results as discussed in this report and proposed exploration programmes. Further information on the drilling and rock samples is contained in the JORC Table 1. The grade of zinc and lead mineralisation in the target areas is expected to be similar to that estimated in the resource area. There are several areas, as shown on Figure 8, where the resource block model shows high grades on the edge of the resource, and the adjacent exploration target areas therefore may also contain higher average grades.

Prospective Tonnes from -Zinc % Grade Lead % Grade Combined zinc + lead **Prospect Area** sulphide to (Mt) range range grade horizons L3/L4 East 3 to 5Mt 4.6 to 6.5% Zn 0.4 to 0.6 % Pb 5 to 7.1% zinc + lead Western Gossans L3/L4 5 to 8Mt 4.6 to 6.5% Zn 0.4 to 0.6 % Pb 5 to 7.1% zinc + lead 4.6 to 6.5% Zn **Beach South** L2/L3 4 to 10Mt 0.4 to 0.6 % Pb 5 to 7.1% zinc + lead L3 Esrum Extended 12 to 28Mt 4.6 to 6.5% Zn 0.4 to 0.6 % Pb 5 to 7.1% zinc + lead L1/L2/L3 **Discovery South East** 10 to 25Mt 4.6 to 6.5% Zn 0.4 to 0.6 % Pb 5 to 7.1% zinc + lead Discovery North/Trilobite Valley L2/L3/L4 6 to 14 Mt 4.6 to 6.5% Zn 0.4 to 0.6 % Pb 5 to 7.1% zinc + lead Total 4.6 to 6.5% Zn 40 to 90 Mt 0.4 to 0.6 % Pb 5 to 7.1% zinc + lead

Table 1 - Exploration Target by area.

Disclaimer: The potential quantity and grade of the Exploration Target is conceptual in nature and is an approximation. There has been insufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource.

Western Gossans

The Western Gossans is the most north-westerly area of known mineralisation within the Citronen Project and remains under-explored. Several high-grade rock chip samples (including 29.97% Zn+Pb and 14.12% Zn+Pb) have been taken from this area and not followed up with drilling (Figure 1); and of the four holes drilled in the area - each hole intercepted mineralisation.

Beach South

The Beach South resource area is open to the west, east and south, and is limited only by lack of drilling (Figures 1 & 5). The southern most drill holes returned 5.0m @ 3.46% Zn+Pb (including 1.0m @ 8.2% Zn+Pb in CF11-290) and 7.8m @ 2.33% Zn+Pb (including 1.2m @ 6.93% Zn+Pb in CF08-148). A Level 3 sulphide resource has not been estimated in the Beach South area as only three drill holes have been drilled to the Level 3 depth, all of which intersected mineralisation.

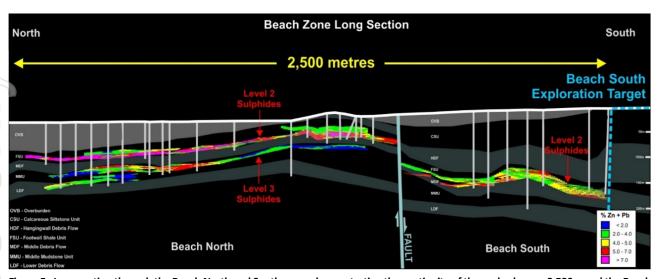


Figure 5: Long section through the Beach North and South zones demonstrating the continuity of the orebody over 2,500m and the Beach Zone south limited only by drilling.

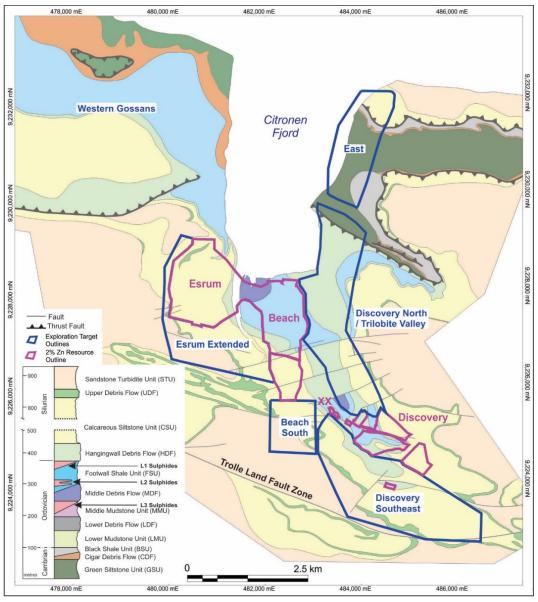


Figure 6: Citronen Geology.

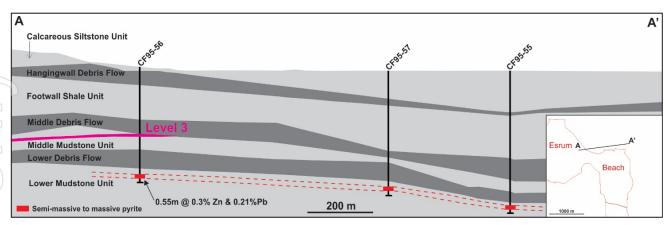


Figure 7: Cross section, looking north, through holes drilled in 1995 indicating sulphides beneath the Lower Debris Flow; a possible Level 4 sulphide orebody.

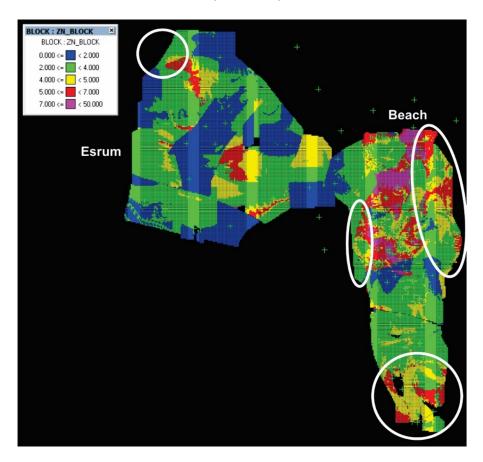


Figure 8: Plan view of the Esrum and Beach Block models showing areas of higher grade on the edge of the resource.

East Area

The East exploration target area lies over the strongest gravity anomaly from the 1994 ground gravity survey (Figure 9). The use of gravity as an exploration technique at Citronen is considered effective due to the coincident gravity high over the Beach North resource area which hosts the most mineralisation of the entire deposit. A stratigraphic hole drilled in the early years of exploration in the north end of the target area was only drilled to 140m depth and did intersect very minor pyrite. Three mineralised rock chips were collected to the east of this area.

Esrum Extended

The Esrum Extended area lies to the west of the Esrum orebody which is limited only by drilling as shown in Figure 1. Intercepts in the periphery holes of the Esrum orebody include 10.64m @ 4.63% Zn+Pb and 6.50m @ 4.7% Zn+Pb as shown on Figure 10.

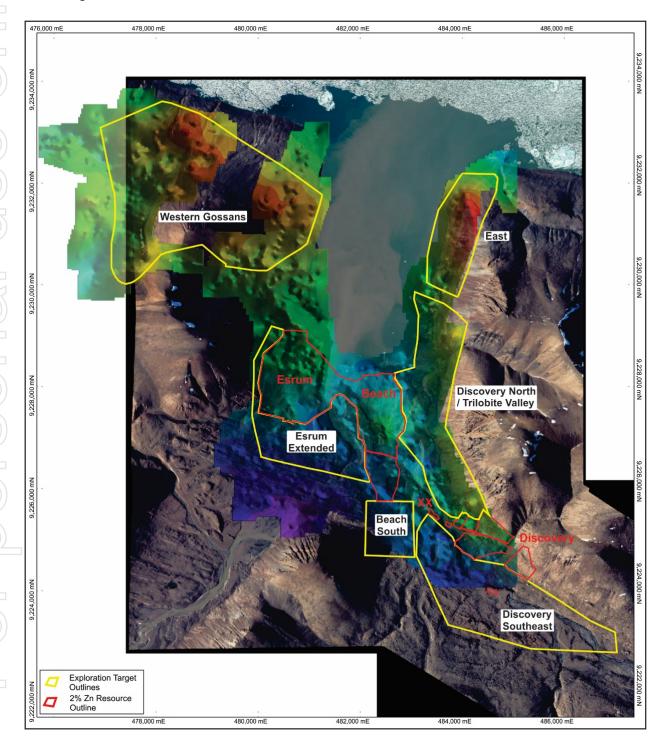


Figure 9: Current resources and exploration target areas over historic ground gravity survey anomalies.

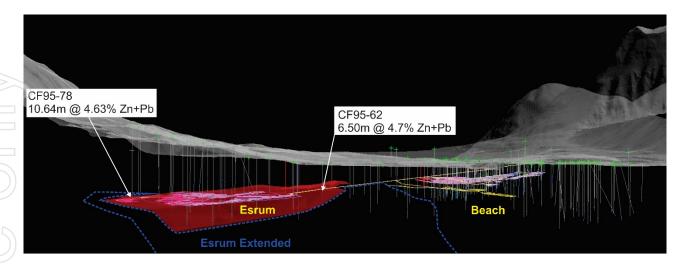


Figure 10: Oblique view across the Esrum resource area and Esrum Extended exploration target area.

Discovery South East

The Discovery South East area runs from the XX zone (Figures 1 & 6), which hosts the highest-grade mineralisation of the Citronen deposit remains open in several directions, to both the south and east of the Discovery orebody. The zone covers the Trolle Land Fault Zone which is believed to be a major control on the localisation of mineralisation in the Citronen area. Every drill hole in this area, which is the most southerly drilling in the Project, has hit mineralisation including grades up to 14% Zn+Pb (Figure 1). It is considered a highly prospective area.

Discovery North - Trilobite Valley

The Discovery North – Trilobite Valley area has several high-grade intercepts within it as shown on Figure 1 and Figure 11 however the drilling density is insufficient to estimate a Mineral Resource. There are also several mid to high grade rock chips east of this area. Similarly, the East exploration target area that have never been followed up by drilling.

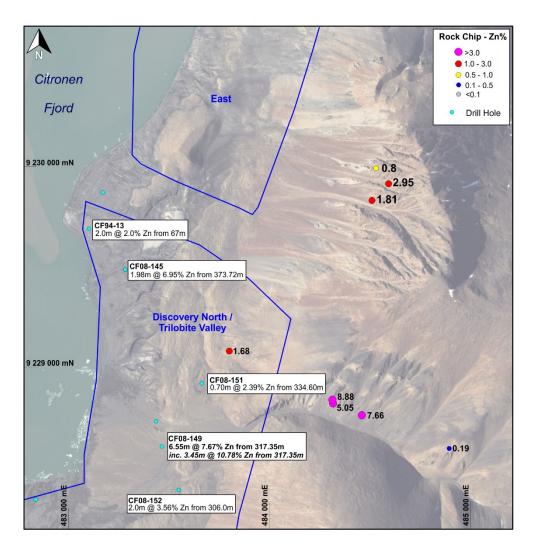


Figure 11: Drill intercepts and rock chip samples around the Discovery North - Trilobite Valley area.

Planned Exploration Program

Ironbark plans to test the Exploration Targets as part of a phased exploration and resource development program. This multi-year program is planned to commence concurrently with mine development and construction, and is aimed at further improving the current Citronen mine plan through some potential combination of mine life extensions, grade uplift and/or the deferral of major lateral mine development in the current schedule.

The proposed program includes the acquisition of new geophysical (aerial gravity and EM) data to assist in target definition. A ground gravity survey was carried out over parts of the project area in the mid 1990's which proved to be very effective at identifying the main sulphide bodies (Figure 7). A more detailed aerial gravity survey program utilising a survey tool such as Falcon® Gravity Gradiometry (or similar) is being planned which will be expanded to cover the strike extents of the deposits. The planned survey areas will cover all Exploration Target areas, current resource areas and areas where mineralised rock chips samples have been collected.

The sulphide orebodies at Citronen are considered to be amenable to identification and mapping using electrical geophysical techniques. Consultants, Resource Potentials, in Perth has been engaged to provide advice and have recommended coverage of the project area and surrounds using a helicopter borne Electro-Magnetic (EM) Survey. IBG plans to carry out a heli-EM survey over the project to aid in identifying new drilling targets and extensions to known mineralisation.

Ironbark believes that acquiring new geophysical data at the project will greatly assist in highlighting prospective areas for zinc-lead mineralisation. From this data Ironbark plans to undertake drilling programs to evaluate the Exploration Target presented; it is estimated that this work will take place within two years of construction beginning at Citronen.

A systematic drilling program is planned to test extensions to the known mineralisation at the newly identified conceptual target areas. IBG already has four drill rigs at Citronen that are available for any future exploration program, and any further exploration equipment will be mobilised in conjunction with the site construction activities as required.

Further Details

This notice is authorised to be issued by the Board.

Please contact Managing Director Mr. Michael Jardine for any further inquiries on either <u>mjardine@ironbark.gl</u> or +61 424 615 047.

References

Emsbo, Poul, Seal, R.R., Breit, G.N., Diehl, S.F., and Shah, A.K., 2016, Sedimentary exhalative (sedex) zinc-lead-silver deposit model: U.S. Geological Survey Scientific Investigations Report 2010–5070–N, 57 p., http://dx.doi.org/10.3133/sir20105070N.

Taylor, R.D., Leach, D.L., Bradley, D.C., and Pisarevsky, S.A., 2009, Compilation of mineral resource data for Mississippi Valley-type and clastic-dominated sediment-hosted lead-zinc deposits: U.S. Geological Survey Open-File Report 2009–1297, 42 p.

ABOUT IRONBARK

Ironbark is listed on the Australian Securities Exchange and is seeking to become a base metal mining house. Ironbark seeks to build shareholder value through exploration and development of its projects and also seeks to actively expand the project base controlled by Ironbark through acquisition. The management and board of Ironbark have extensive technical and corporate experience in the minerals sector.

The wholly owned Citronen base metal project currently hosts in excess of 13.1 Billion pounds of zinc (Zn) and lead (Pb). For full details refer to ASX announcement 25 November 2014 – Citronen Project Resource Update – JORC 2012 compliant resource. Ironbark is not aware of any new information or data that materially affects the information included in this ASX release, and Ironbark confirms that, to the best of its knowledge, all material assumptions and technical parameters underpinning the resource estimates in this release continue to apply and have not materially changed.

JORC Resource

The current JORC 2012 compliant resource for Citronen (see ASX announcement dated 12 March 2020): **70.8 million tonnes at 5.7% Zn + Pb**

Category	Mt	Zn%	Pb%	Zn+Pb%
Measured	25.0	5.0	0.5	5.5
Indicated	26.5	5.5	0.5	6.0
Inferred	19.3	4.9	0.4	5.4
Total	70.8	5.1	0.5	5.7

JORC Table 1 included in an announcement to the ASX released on 12th March 2020: "Citronen Project Resources". Ironbark confirms that it is not aware of any new information or data that materially affects the information included in this announcement and that all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Ore Reserve

The Citronen Ore Reserve was prepared by independent mining consultancy Mining Plus, in accordance with the JORC Code 2012.

The current JORC 2012 complaint Ore Reserve for Citronen is summarised below:

21.3 million tonnes @ 6.3% Zn equiv containing 1.3Mt of Zn metal and 0.1mt of Pb metal.

Category	Tonnes (Mt)	ZnEq Grade (%)	Zn Grade (%)	Pb Grade (%)	ZnEq Metal (Mt)	Zn Metal (Mt)	Pb Metal (Mt)
Proved	7.8	6.3	5.9	0.6	0.5	0.5	0.04
Probable	13.5	6.3	6.0	0.4	0.8	0.8	0.06
Total P&P	21.3	6.3	6.0	0.5	1.3	1.3	0.10

JORC Table 1 included in an announcement to the ASX released on 14th September 2020: "Maiden Ore Reserve defined at Citronen Project". Ironbark confirms that it is not aware of any new information or data that materially affects the information included in this announcement and that all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Disclosure Statements and Important Information

Forward Looking Statements

The following information is not intended to guide any investment decisions in Ironbark Zinc Limited. This material contains certain forecasts and forward-looking information, including possible or assumed future performance, costs, production levels or rates, reserves and resources, prices and valuations and industry growth and other trends. Such forecasts and information are not a guarantee of future performance and involve many risks and uncertainties, as well as other factors. Actual results and developments may differ materially from those implied or expressed by these statements and are dependent on a variety of factors. The Company believes that it has a reasonable basis for making the forward looking statements in the announcement, based on the information contained in this and previous ASX announcements.

The Citronen Zinc Project is considered to be at an early development stage and will require further regulatory approvals and securing of finance and there is no certainty that these will occur. Nothing in this material should be construed as either an offer to seek a solicitation or as an offer to buy or sell Ironbark securities. Consideration of the technical and financial factors requires skilled analysis and understanding of their context.

Ironbark is not aware of any new information or data that materially affects the information included in this ASX release, and Ironbark confirms that, to the best of its knowledge, all material assumptions and technical parameters underpinning the estimates in this release continue to apply and have not materially changed.

Competent Persons Statement

The information included in this report that relates to Exploration Results, Mineral Resources and Exploration Targets is based on and fairly represents information compiled or reviewed by Ms Elizabeth Laursen (B. ESc Hons (Geol), GradDip App. Fin., MSEG, MAIG), an employee of Ironbark Zinc Limited. Ms Laursen has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which they are undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Ms Laursen is a member of the Australian Institute of Geoscientists and Society of Economic Geologists. Ms Laursen consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

The information included in this report, which relates to Ore Reserves, is based on information compiled by Mr Andrew Gasmier CP (Mining), who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Gasmier is employed full time by Mining Plus. He has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Gasmier consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Competent Persons Disclosure

Ms Laursen is an employee of Ironbark Zinc Limited and currently holds securities in the company.

Citronen Drilling

JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

JORC Code explanation	Commentary
 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 All samples are from diamond core, and include a mixture of quarter, half or whole core and BQ, NQ or HQ sizes. Samples are taken from varying intervals from 40cm length to 2.5m length depending on visual differences and compositions analysed by a hand-held Niton XL3t Analyser. Mineralised zones were analysed with a 30 second reading every 5cm along the core. These results are only used for onsite interpretation and form the basis of the samples chosen for laboratory assay. Sampling is carried out under QAQC procedures as per industry standards. Certified sample standards and duplicate samples are added in a ratio of 1 sample per every 10 samples. Most hole collars have been surveyed using a Trimble DGPS system which has an accuracy of <1m; the remaining holes have been surveyed by hand-held GPS with an accuracy of <5m. Two distinct exploration drilling campaigns have been conducted at Citronen. The first was between 1993 and 1997 conducted by Platinova A/S who drilled 149 holes totalling 32,842.95m. Sample intervals varied from 0.15 - 2.5m, the average sample width was 1.0m. The second campaign of drilling was conducted by Ironbark Zinc Limited between 2008 and 2011 who drilled 166 diamond holes totalling 34,239.93m. Sample intervals varied from 0.2 - 1.5m and the average sample width was 0.9m. A sampling program was conducted by Ironbark in 2007, where 2,645 samples were taken from the Platinova drill core. Samples were taken from the Platinova drill core and other samples were quarter core samples from previously assayed intervals, used as a quality control check. Core samples from the 1993 drilling were sent to Chemex Labs Ltd of North Vancouver B.C. Canada. Samples were crushed, spilt and a portion pulverised followed by a four-acid digest and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) finish. Core samples from the 1994 drilling were sent to Bondar Clegg Inchcape Testing Services
	random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may

crushed split, and a portion pulversied to minus 200 mesh. A four-acid digest was used followed by ICP-MS and also AAS for samples greater than

20% Fe and 15% Zn.

Criteria	JORC Code explanation	Commentary
		 Core samples from the 1995 drilling were sent to Chemex Labs Ltd of Vancouver, B.C., Canada. Samples were crushed, split and a portion pulversied to minus 150 mesh followed by reverse Aqua-Regia digest finished by Atomic Absorption Spectrometry (AAS). Core samples from the 1996 and 1997 drilling were sent to Cominco Ltd. Laboratory in Rexdale, Ontario, Canada. Samples were crushed, split and a portion pulversied to minus 150 mesh followed by reverse Aqua-Regia digest finished by AAS.
		 The core samples taken in 2007 by Ironbark were sent to ALS Chemex in Vancouver, B.C., Canada. The samples were crushed, split and a portion pulverised to 75μm, followed by a four acid digest and an AAS technique.
		 The core samples taken in 2008 - 2011 by Ironbark were sent to ALS Chemex in Ojebyn, Sweden. The samples were crushed, split and a portion pulverised to 75μm, followed by a four acid digest and an Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) finish.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 All drilling at the Citronen Project has been standard tube diamond drilling, of either BQ, NQ or HQ diameter. In areas with overburden (glacial till) either a tri-cone roller bit or shoe bit was used to drill down to competent rock. Overburden material was discarded. Most holes were vertical and therefore nor oriented. The few drilled at an angle were oriented using a Reflex tool.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Recovered drill core was measured every 3m run and any core loss was recorded. Core recoveries were excellent throughout the project and the need for triple tube drilling was not required. All core was checked & measured by a geologist and rod counts carried out by drillers. Information from the diamond drilling does not suggest that there is a correlation between recoveries and grade. Diamond drill core from the Citronen deposit has a very high recovery.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All drill holes were logged for a combination of geological and geotechnical attributes to a level of detail to support a Mineral Resource estimation. Logging is both qualitative and semi-quantitative in nature; all drill core was photographed. The total length of all recovered drill core was logged in detail.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- 	 Of 7,395 samples, 6,421 are half-core (87%), 968 are quarter-core (13%) and six samples are whole core samples. All core was sawn with a core-saw. All drilling conducted at Citronen was diamond drilling. All samples were crushed, split and pulversied at a laboratory. The sample preparation is industry standard for the fine-grained nature of this

Sedimentary-Exhalative (SEDEX) mineralisation

sampling stages to maximise representivity of

Criteria	JORC Code explanation	Commentary
	 samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 style. Laboratory certified standards and duplicates were used alternatively every 10 samples as a quality control measure. One duplicate per twenty samples was taken. The sample sizes are appropriate to the finegrained mineralisation of this SEDEX mineralisation style.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The assay methods used are considered appropriate and near total digestion. A Niton XL3t hand-held XRF analyser was used to determine the appropriate core intervals to send for laboratory assay. Each reading was 30 seconds long, taken each 5cm along the drill core. Duplicate samples and laboratory certified standards have been used alternatively every ten samples. All samples have returned results within an acceptable range.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Ravensgate Consultants conducted a verification procedure on the Citronen database during the resource estimation process. Several drill holes have been twinned and have shown comparable results including; Holes CF08-153 & CF08-153A (both vertical holes) were drilled 9m horizontally apart at surface with an elevation difference of 12cm. CF08-153 returned 9.1m @ 5.16% Zn from 14.0m and CF08-153A returned 9.0m @ 5.92% Zn from 14.0m. Holes CF10-245A and CF10-245B (both vertical holes) were drilled 1 metre apart at surface. The drill holes intersected 12.2m and 13.7m of overburden (glacial till) respectively and intersected the Hangingwall Debris Flow Unit at 175.5m and 174.5m depth respectively. Primary data was either collected as paperlogs, or entered into a database program or Excel spreadsheet. Paper logs were later transferred to a digital database. Data was verified and checked by senior Ironbark staff and by external consultants Expedio, Ravensgate & Mining Plus. The Database was stored as Excel spreadsheets and a Microsoft Access Database. There has been no adjustment to the assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 There has been no adjustment to the assay data. All drill holes prior to 2011 were surveyed using a DGPS which has an accuracy of <1m. 2011 holes were picked up by handheld GPS which has proven to have an accuracy of approximately 5m. Downhole surveys were conducted on all angled drill holes using REFLEX (industry standard) equipment. The Grid System used for all location data points at Citronen is UTM WGS 84 Zone 26.
		 Ironbark purchased a Digital Elevation Model, produced from satellite imagery, for the Citronen Region that has an accuracy of approximately 2.5m.

Criteria	JORC Code explanation	Commentary
and distribution	 Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 the Beach Zone and Discovery Zone 30-100m, in the Esrum Zone >150m. The data spacing and distribution is sufficient to determine geological and grade continuity. A composite length of 1m was selected after analysis of the raw sample lengths for use in resource calculations.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The orientation of the drilling is approximately perpendicular to the strike and dip of the mineralisation and therefore should not be biased. Angled drill holes provided a check against mineralisation width in vertical holes. There are no known biases caused by the orientation of the drill holes.
Sample security	The measures taken to ensure sample security.	 Drill core was kept on site and sample dispatch was overseen by the site manager. Samples were transported by charter plane to Svalbard (Norway), then air freighted to the laboratory by a local logistics company.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	Ravensgate reviewed original laboratory assay files and compared them with the database. No errors were found.

Citronen Rock Chip Sampling JORC Code, 2012 Edition – Table 1 report Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 All samples are rock chip samples taken during 1993 field work conducted by Platinova A/S. Sampling is carried out under QAQC procedures as per industry standards. Samples were sent to Bondar Clegg Inchcape Testing Services of Ottawa, Ontario, Canada.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, 	No drilling conducted.

Cr	riteria	JORC Code explanation	Commentary
		etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	
	rill sample covery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	No drilling conducted.
	ogging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	No logging conducted on surface samples.
te an pri	ub-sampling echniques nd sample reparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All samples were crushed, split and pulverised at the laboratory. Then a HCL:HNO3 (3:1) acid digest was used followed by Atomic Absorption. This method is considered appropriate for the sample and mineralisation type.
as an Iai	uality of ssay data nd boratory ssts	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The assay methods used are considered appropriate and near total digestion. No standards or blank samples were used for the rock chip analysis.
of	erification f sampling nd assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Data has been reviewed by independent and company geologists. Sample location points were recorded by hand onto base maps. There has been no adjustment to the assay data.

Criteria	JORC Code explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Samples were recorded by hand onto base maps and locations digitized into UTM co-ordinates.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Samples taken at random locations and the data has not been used to estimate a mineral resource.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Data reported are surface samples with no orientation information.
Sample security	The measures taken to ensure sample security.	Samples were kept on site and air freighted to the laboratory in Canada.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 Rock chip sample results have been reviewed by independent and company geologists.
Section :	2 Reporting of Exploration Results	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Citronen Fjord Deposit is located wholly within Exploitation Licence 2016/30 which is 100% owned by Ironbark Zinc Limited. The licence lies within the Northeast Greenland National Park. A 2% royalty is payable to vendors. The Licence was granted in December 2016 for a period of 30 years.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The deposit was previously explored by Platinova A/S between 1993 and 1997 which included the rock chip sampling presented in this report and drill holes with prefix CF93-97.
Geology	 Deposit type, geological setting and style of mineralisation. 	The Citronen Fjord deposit lies within the Palaeozoic Franklinian Basin, a sedimentary basin which extends across Northern Greenland and into Canada. The deposit lies within Ordovician

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Citronen Fjord Deposit is located wholly within Exploitation Licence 2016/30 which is 100% owned by Ironbark Zinc Limited. The licence lies within the Northeast Greenland National Park. A 2% royalty is payable to vendors. The Licence was granted in December 2016 for a period of 30 years.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The deposit was previously explored by Platinova A/S between 1993 and 1997 which included the rock chip sampling presented in this report and drill holes with prefix CF93-97.
Geology	 Deposit type, geological setting and style of mineralisation. 	The Citronen Fjord deposit lies within the Palaeozoic Franklinian Basin, a sedimentary basin which extends across Northern Greenland and into Canada. The deposit lies within Ordovician deep water argillaceous rocks, interbedded with carbonate debris flows sourced from the carbonate platform to the south. Base metal mineralisation at Citronen is primarily contained within the Amundsen Land Group mudstones. Three main stratigraphic horizons of mineralisation were identified by Platinova A/S. Known sulphide and zinc mineralisation occurs over an area of 12km in strike (identified to date). The main sulphides present are pyrite, sphalerite

Criteria	JORC Code explanation	Commentary
		and galena. Three types of sulphide mineralisation are present: mound-like masses, interbedded sulphides that form laminae and beds within the mudstones and cross-cutting epigenetic mineralisation that is primarily found in the carbonate debris flows.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Refer to Annexure 1 & 2.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 All reported assays for the drilling have been length weighted. No metal equivalents have been reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	The mineralisation is interpreted to be flat-lying to gently dipping and drill holes have been angled (either vertical or at 60 degrees) to intercept the mineralisation as close to perpendicular as possible, therefore resulting in true widths of mineralisation.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to Figures 1A to 1E.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All results have been reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical	Geological mapping, geotechnical and metallurgical studies have been conducted and are included in the Feasibility Study for the

Criteria	JORC Code explanation	Commentary
5	survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Project. The Feasibility Study Updated was released on 12 September 2017. A maiden ore reserve for the project was released on the 14 September 2020 and updated mine plan on 7 September 2020.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 A positive feasibility study report for the Citronen Project was released to the ASX on 29 April 2013 and an application for an Exploitation (Mining) Licence was granted in December 2016. An update to the Feasibility Study was released on 12 September 2017. The project is being developed to become an operating mine and as the deposit is open in every direction. Further exploration (drilling & geophysical surveys) will be conducted in the future.

Annexure 1: Citronen Project Drill Hole Collar Locations & Significant Intercepts

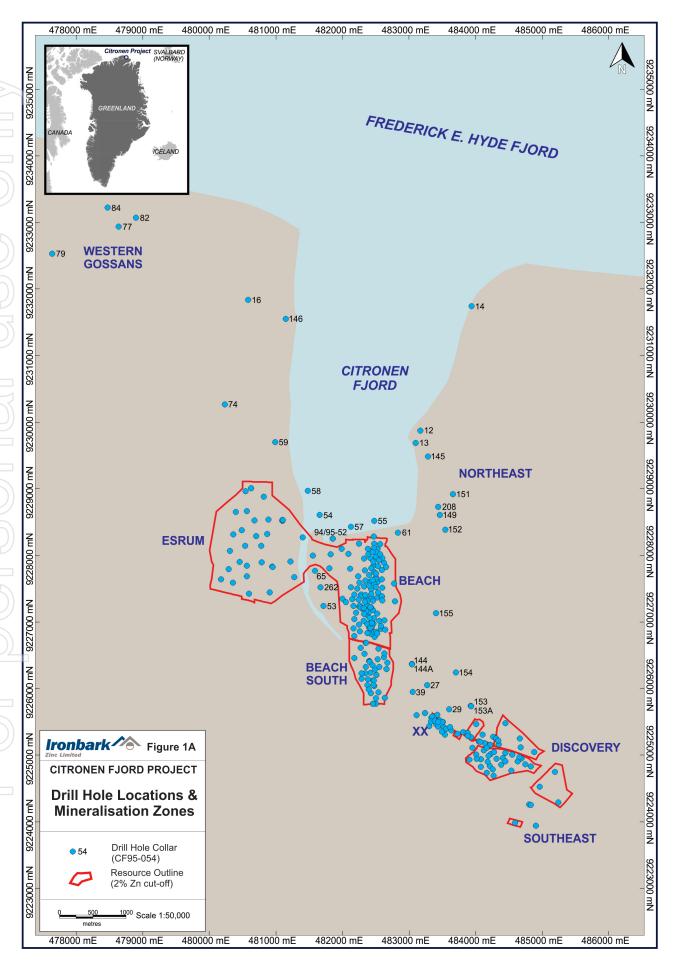
/	HoleID	Zone	Easting	Northing	RL	Azi	Dip	EOH (m)	From (m)	To (m)	Width (m)	Zn%	Pb%
	CF93-01	D	484447	9225037	161.40	360	-90	9.10	5.18	7.92	2.74	3.96	0.22
	CF93-01A	D	484447	9225037	161.40	360	-90	78.30	4.90	30.60	25.70	3.49	0.73
						•			57.80	68.10	10.30	3.42	0.66
1	CF93-02	D	484124	9225070	101.40	360	-90	78.00	6.70	32.10	25.40	2.07	0.40
\	CF93-03	D	484180	9224900	80.92	22	-60	100.30	11.90	35.20	23.30	4.01	0.85
				incl	uding				12.40	15.93	3.53	7.62	2.55
	CF93-04	D	484260	9224788	87.26	360	-90	75.90	28.80	30.40	1.60	2.50	0.80
	CF93-05	D	484009	9225466	145.98	360	-90	91.40	55.57	63.95	8.38	4.28	0.35
	CF93-06	D	483881	9225332	115.30	360	-90	91.10	52.30	53.40	1.10	5.40	0.23
	CF93-07	D	484658	9224970	200.88	360	-90	91.10	9.44	30.52	21.08	2.75	0.43
\	CF93-08	D	484341	9225218	170.20	360	-90	91.10	3.62	14.00	10.38	4.65	1.47
					uding				3.62	6.92	3.30	9.49	3.81
	CF93-08A	D	484341	9225218	170.20	360	-90	18.50		Ineff	ective depth	1	
)	CF93-09	XX	483240	9225629	90.31	360	-90	101.40		Ineff	ective depth	1	
	CF93-10B	В	482519	9227127	9.68	360	-90	227.70	80.43	88.51	8.08	5.07	0.29
					uding				83.57	86.23	2.66	10.93	0.46
1	CF93-11	В	482319	9227206	12.68	360	-90	166.80	92.13	97.18	5.05	3.19	0.29
1	CF94-09	XX	483240	9225629	90.31	360	-90	116.00	56.00	57.00	1.00	1.11	0.08
	CF94-12	NE	483170	9229870	8.14	360	-90	200.00			NSI		
	CF94-13	NE	483100	9229690	5.78	360	-90	182.30	67.00	69.00	2.00	2.00	0.02
	CF94-14	NE	483940	9231740	10.00	360	-90	140.00			NSI	•	
	CF94-15	В	482376	9226832	28.81	360	-90	149.00	99.20	110.80	11.60	2.13	0.22
)	CF94-15B	В	482376	9226832	28.89	360	-90	221.00	103.60	111.30	7.70	2.03	0.21
,	CF94-16	NW	480580	9231840	122.50	360	-90	191.00	67.00	68.00	1.00	0.80	0.04
	CF94-17	В	481803	9227808	3.06	360	-90	284.00	166.00	168.50	2.50	2.32	0.16
	CF94-18	В	482176	9227044	44.89	360	-90	194.00	178.20	178.80	0.60	9.70	0.24
1	CF94-19	В	482050	9227299	25.12	360	-90	215.00	201.10	205.10	4.00	1.80	0.13
	CF94-20	D	484450	9225477	278.85	360	-90	106.00	55.00	59.60	4.60	2.26	0.38
)	CF94-21	В	482226	9227502	6.95	360	-90	194.00	109.00	118.60	9.60	3.07	0.33
	CF94-22	D	484662	9225249	267.76	360	-90	191.00	103.50	105.40	1.90	1.95	0.12
)	CF94-23	В	482533	9227447	7.99	360	-90	206.00	99.00	114.85	15.85	5.07	0.56
_					uding				112.05	114.85	2.80	17.91	1.22
	CF94-24	D	484881	9225045	268.85	360	-90	178.00	130.00	133.00	3.00	1.68	0.23
	CF94-25	D	484536	9224767	134.18	360	-90	86.00	462.00	474.05	NSI	1.00	0.16
	CF94-26	В	482789	9227309	18.53	360	-90	209.00	163.00	174.85	11.85	1.93	0.16
	CF94-27	BS	483271	9226053	61.28	360	-90	212.00	173.00	176.00	3.00	1.60	0.39
	CF94-28	В	482774	9227579	15.60	360	-90	179.00	137.00	138.00	1.00	0.62	0.04
	CF94-29	D	483604	9225688	81.36	360	-90	122.00	58.00	65.00	7.00	2.26	0.09
1	CF94-30	E	481098	9228520	91.99	360	-90	212.00	210.00	211.00	1.00	1.12	0.07
4	CF94-31	В	482400	9227704	5.32	360	-90	221.00	124.80	134.05	9.25	5.37	0.51
	CEO 4 33	В	402644	0226002	14.03	260	00	222.40	196.20	91.00	6.00	4.40	0.56
	CF94-32 CF94-33	В	482641 482118	9226883	14.82 6.23	360 360	-90 -90	222.40	88.40		2.60	3.77 1.97	0.14
	CF94-33 CF94-34	BS	482118 482542	922/802	31.20	360	-90 -90	308.00	181.60 215.00	204.00	22.40 1.80	2.50	0.21
										234.55			
	CF94-35 CF94-36	В	482654	9227828	4.47	360	-90 -90	272.00 401.00	230.00		4.55	4.41	0.35
	CF94-36 CF94-37	BS B	482553	9226327	51.01	360 360	-90 -90	257.00	284.00	293.10	9.10	3.40	0.42
			482326		3.04				191.00	210.00	19.00		0.62
	CF94-38	BS	482176	9226461	48.61	360	-90	365.00	337.00	340.00	3.00	2.45	0.23

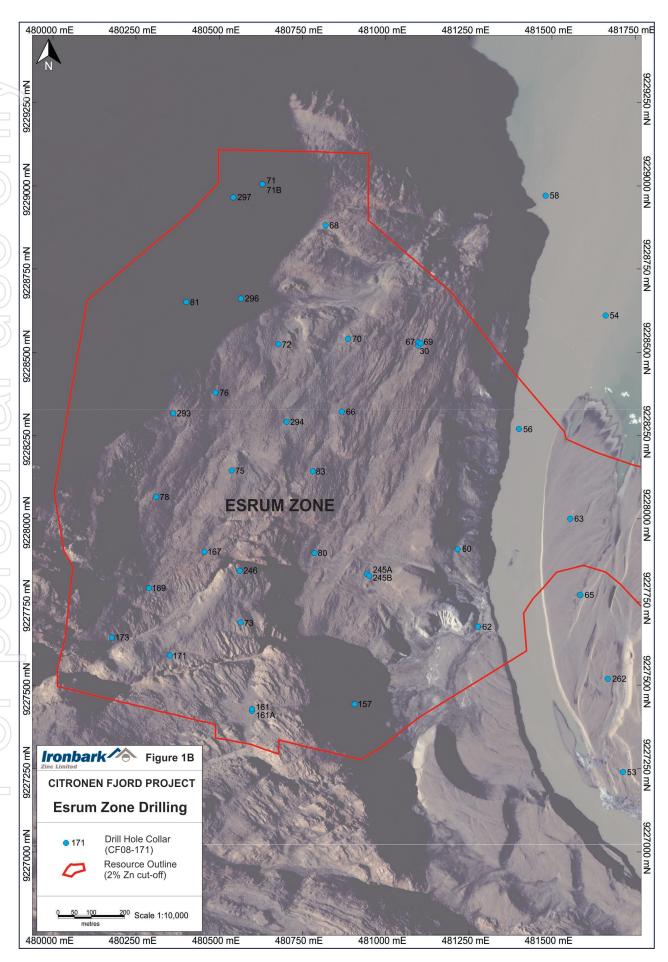
	HoleID	Zone	Easting	Northing	RL	Azi	Dip	EOH (m)	From (m)	To (m)	Width (m)	Zn%	Pb%
	CF94-39	BS	483057	9225948	46.26	360	-90	275.00	122.00	123.00	1.00	1.14	0.05
	CF94-40	В	482589	9227640	6.07	360	-90	240.50	207.50	221.00	13.50	3.09	0.31
	CF94-41	XX	483113	9225600	66.44	360	-90	230.00	165.00	166.00	1.00	2.78	0.09
		В	482466	9227907	3.77	360	-90	272.00	141.00	146.00	5.00	7.77	0.39
	CF94-42								184.00	198.00	14.00	4.90	0.75
				incl	uding				186.50	193.50	7.00	7.31	1.27
	CF94-43	XX	483514	9225427	92.82	360	-90	227.00	93.25	103.00	9.75	7.69	0.18
	CF94-44	В	482091	9228025	1.83	360	-90	245.00	176.00	185.00	9.00	3.80	0.31
			1		uding		ı		180.50	183.75	3.25	8.17	0.60
a b	CF94-45	XX	483303	9225435	91.41	360	-90	287.00			NSI		
(())	CF94-46	XX	483538	9225309	90.85	109	-61	197.00			NSI	T	
	CF94-47	В	482234	9227685	5.82	360	-90	220.00	102.50	106.10	3.60	4.53	0.52
$(\mathcal{C}/\mathcal{O})$	CF94-48	XX	483426	9225608	102.57	360	-90	158.00	70.80	74.60	3.80	2.23	0.22
00		В	482400	9227546	6.34	360	-90	218.00	105.00	126.15	21.15	4.95	0.47
	CF94-49			incli	uding				116.90	124.15	7.25	9.10	1.02
			402247	0220470	4.00	260	00	245.00	177.85	189.00	11.15	4.25	0.21
		В	482247	9228178	1.00	360	-90	245.00	172.55	195.20	22.65	2.63	0.17
	CF94-50			incii	uding				174.05	178.12	4.07	6.69	0.28
	CF04 F1	D.	402566	0220172	1.00	200	00	200.00	210.00	223.00	13.00	2.45	0.61
(())	CF94-51 CF94-52	B B	482566 481853	9228172 9228254	1.00 -0.72	360 360	-90 -90	286.00	153.00	157.30	4.30 ective depth	4.99	0.30
70	CF94-52 CF94-53	В	481713	9227240	11.33	360	-90 -90	141.00 263.00	239.50	240.60	1.10	2.00	0.09
	CF94-33 CF95-52	В	481853	9227240	-0.69	360	-90	258.00	192.10	192.66	0.56	3.72	1.25
	CF95-54	E	481660	9228610	0.00	360	-90	413.00	288.80	291.25	2.45	5.13	0.38
	CF95-55	В	482477	9228519	0.00	360	-90	416.00	345.65	345.90	0.25	1.28	0.38
	CF95-56	E	481400	9228270	1.00	360	-90	326.00	183.35	186.00	2.65	2.45	0.14
26	CF95-57	В	482125	9228428	1.00	360	-90	365.00	260.15	261.35	1.20	2.80	0.19
(U/J)	CF95-58	E	481480	9228970	1.00	360	-90	356.00	253.90	254.75	0.85	1.55	0.14
	CF95-59	NW	480990	9229700	30.37	360	-90	338.00	274.10	274.65	0.55	2.00	0.16
	CF95-60	E	481217	9227909	28.00	360	-90	238.00	173.00	181.30	8.30	1.51	0.24
a	CF95-61	В	482836	9228340	0.98	360	-90	356.00	248.52	249.27	0.75	7.60	0.47
	CF95-62	E	481278	9227676	4.83	360	-90	233.00	177.00	183.50	6.50	4.12	0.58
	CF95-63	В	481554	9228000	2.11	360	-90	188.00	128.80	131.00	2.20	3.97	0.47
	CF95-64	В	481825	9228016	0.71	360	-90	223.00	172.80	174.00	1.20	2.51	0.39
	CF95-65	В	481585	9227771	0.93	360	-90	212.00	168.00	168.00	1.00	0.99	0.12
7	CF95-66	Е	480868	9228322	112.32	360	-90	393.50	263.62	267.02	3.40	2.68	0.53
	CF95-67	Е	481101	9228529	92.33	360	-90	437.00	278.00	306.60	28.60	2.95	0.63
	CF95-68	Е	480819	9228882	171.76	360	-90	467.00	426.22	426.85	0.63	3.94	0.15
	CF95-69	Е	481103	9228528	92.01	112	-57	384.50	302.90	321.50	18.60	1.85	0.51
	CF95-70	Е	480887	9228541	132.29	360	-90	390.00	293.00	298.90	5.90	2.63	0.62
	CF95-71	Е	480630	9229005	232.95	360	-90	317.00		Ineff	ective depth	1	ı
	CF95-71B	E	480630	9229005	232.95	360	-90	469.50			NSI		
	CF95-72	Е	480678	9228524	156.42	360	-90	425.00	355.30	366.80	11.50	4.82	0.44
	CF95-73	E	480564	9227688	131.96	360	-90	507.50	443.00	476.17	33.17	2.01	0.40
	CF95-74	NW	480233	9230269	231.63	360	-90	513.50	466.00	467.00	1.00	0.77	0.05
	CF95-75	Е	480537	9228146	152.72	360	-90	442.00	383.00	399.05	16.05	5.19	0.55
				incl	uding				390.00	395.15	5.15	7.59	0.61
	CF95-76	Е	480488	9228379	187.25	360	-90	449.50	404.80	424.60	19.80	3.74	0.49
	CF95-77	WG	478640	9232940	165.69	360	-90	201.00	145.00	148.00	3.00	1.28	0.10
	CF95-78	Е	480311	9228067	188.29	360	-90	494.00	451.90	462.54	10.64	4.34	0.29

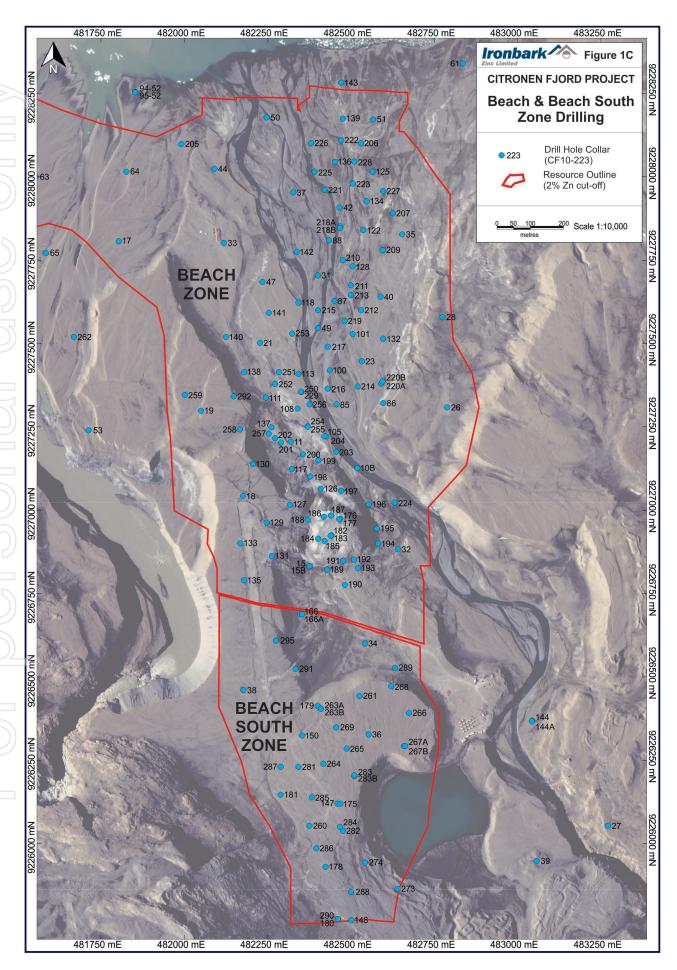
HoleID	Zone	Easting	Northing	RL	Azi	Dip	EOH (m)	From (m)	To (m)	Width (m)	Zn%	Pb%
CF95-79	WG	477640	9232530	326.11	360	-90	437.00	250.92	253.15	2.23	2.06	0.08
CF95-80	E	480786	9227897	77.47	360	-90	329.00	280.57	285.20	4.63	3.97	0.45
CF95-81	E	480401	9228652	219.49	360	-90	509.00	459.00	460.13	1.13	2.59	0.25
CF95-82	WG	478900	9233070	120.01	360	-90	288.00	184.50	186.50	2.00	4.43	0.03
CF95-83	E	480782	9228143	116.21	360	-90	379.00	261.20	270.00	8.80	3.44	0.86
								333.98	340.45	6.47	4.08	0.26
CF95-84	WG	478470	9233220	140.00	360	-90	258.00	226.00	227.00	1.00	2.36	0.10
CF95-85	В	482456	9227318	8.72	360	-90	203.00	85.15	100.75	15.60	3.19	0.33
				uding				108.00	111.00	3.00	12.58	1.28
CF95-86	В	482597	9227321	9.90	360	-90	320.00	152.50	165.75	13.25	2.20	0.27
	В	482450	9227628	5.60	360	-90	219.00	128.46	137.10	8.64	6.57	0.56
CF96-87			incl	uding				128.46	131.26	2.80	13.90	1.12
		1				1		177.97	192.00	14.03	3.38	0.27
	В	482434	9227809	4.40	360	-90	259.00	131.60	137.22	5.62	6.76	1.62
CF96-88								178.28	195.00	16.72	4.00	0.84
0.00			incl	uding				185.07	189.74	4.67	5.66	0.58
				I				219.00	229.00	10.00	1.94	0.74
CF96-89	D	483910	9224933	67.93	360	-90	219.60	218.00	218.50	0.50	7.47	0.28
CF96-90	D	484318	9224948	123.16	360	-90	230.00	31.00	53.60	22.60	3.24	0.72
								37.80	44.00	6.20	5.35	1.18
CF96-91	D	484280	9225048	125.87	360	-90	92.00	16.00	20.00	4.00	2.52	4.31
CF96-92	D	484264	9225274	159.40	360	-90	65.30	10.00		NSI	0.50	
CF96-93	D	484073	9225199	113.29	360	-90	100.00	18.20	38.00	19.80	9.58	0.04
CF96-94	D	484193	9224993	105.87	260	00	93.00	82.00 5.50	87.00	5.00	7.18	0.02
			9223985		360	-90			39.00	33.50	2.87	
CF96-95 CF96-96	SE XX	484593 483435		96.82 81.18	360 360	-90 -90	250.00	95.55 57.95	97.30	1.75 32.05	14.00 8.87	0.30 0.12
CF90-90	**	463433	9225501		300	-90	155.00	68.20	76.75	8.55	19.02	0.12
CF96-97	XX	483732	9225321	uding 119.61	360	-90	125.00	67.00	77.65	10.65	10.50	1.10
CI 30-37	^^	463732	9223321	119.01	300	-30	123.00	74.29	75.79	1.50	24.00	0.18
CF96-98	D	483880	9225286	107.41	360	-90	141.00	40.00	43.02	3.02	9.55	0.33
CF96-99	XX	483613	9225422	48.08	360	-90	103.50	40.00	75.02	NSI	3.33	0.55
CI 30-33	В	482436	9227419	7.57	360	-90	179.00	93.95	103.90	9.95	5.09	0.68
		402430		uding	300	30	173.00	101.65	103.90	2.25	14.93	1.14
CF96-100								105.70	114.80	9.10	3.13	0.51
Ci 30-100								159.00	179.00	20.00	2.52	0.30
			incl	uding				172.00	174.00	2.00	4.63	0.39
	В	482505	9227529	7.07	360	-90	212.70	108.00	115.00	7.00	3.52	0.53
								119.00	126.00	7.00	10.22	0.53
CF96-101			incl	uding				121.65	125.00	3.35	19.17	0.95
								181.00	191.37	10.37	5.26	0.28
CF96-102	XX	483352	9225584	104.50	360	-90	119.00	96.00	98.00	2.00	5.09	0.07
CF96-103	XX	483332	9225508	76.39	360	-90	131.00			NSI	<u> </u>	
CF96-104	XX	483557	9225399	92.33	115	-60	131.00			NSI		
CF96-105	В	482420	9227222	10.03	360	-90	99.00	71.80	86.02	14.22	4.29	0.38
		1	incl	uding	<u> </u>	1		74.28	79.25	4.97	6.65	0.43
CF96-106	XX	483496	9225351	92.90	360	-90	170.00			NSI	<u> </u>	
CF96-107	XX	483505	9225500	82.46	360	-90	119.00	48.80	50.15	1.35	2.20	0.06
CF96-108	В	482340	9227304	9.59	360	-90	125.00	80.65	102.55	21.90	6.68	2.81
			incl	uding				90.52	98.85	8.33	10.66	4.01

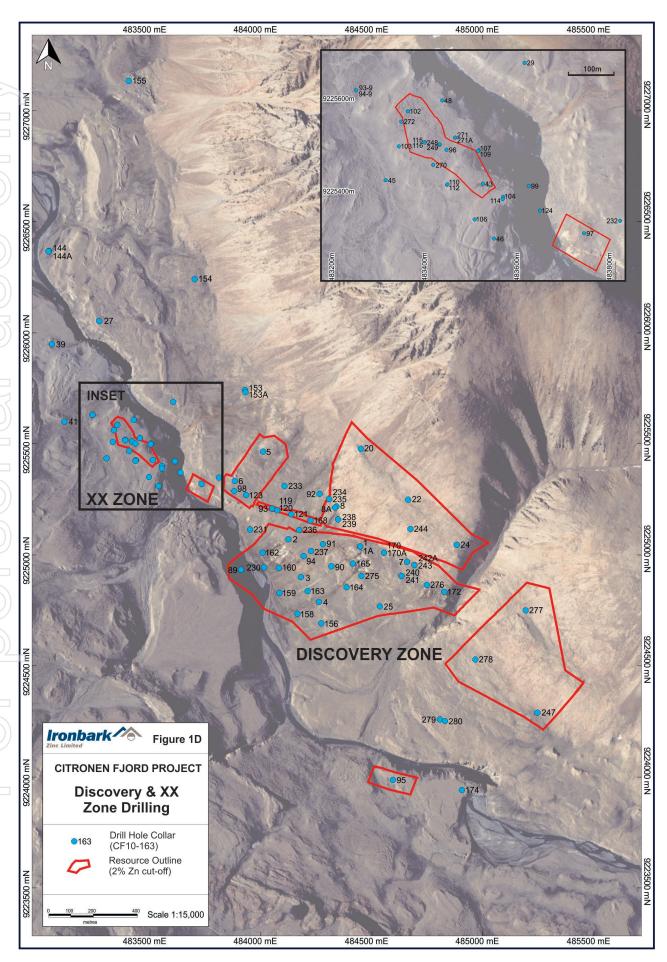
HoleID	Zone	Easting	Northing	RL	Azi	Dip	EOH (m)	From (m)	To (m)	Width (m)	Zn%	Pb%
CF96-109	XX	483503	9225498	82.77	230	-62	146.00	138.00	139.00	1.00	4.71	0.16
CF96-110	XX	483437	9225426	84.90	40	-60	137.00	110.00	118.33	8.33	4.51	2.12
CF96-111	В	482244	9227337	9.21	360	-90	173.00	92.15	109.90	17.75	2.11	0.33
CF96-112	XX	483437	9225426	115.35	40	-45	130.00	101.00	102.00	1.00	3.11	0.05
CF96-113	В	482342	9227409	8.57	360	-90	134.00	94.05	117.00	22.95	3.86	0.65
				uding	1	1		98.68	101.32	2.64	10.79	0.99
CF96-114	XX	483557	9225394	91.92	198	-77	143.00	07.45	00.10	NSI		0.00
CF96-115	XX	483388	9225517	78.92	18	-73	127.00	87.45	93.10	5.65	5.63	0.02
CF96-116	XX	483388	9225516	78.81	360	-90	125.00	86.28	95.45	9.17	4.42	0.16
CF96-117	В	482322 482342	9227123 9227623	22.04 6.68	360 360	-90	110.00 233.00	84.00 113.73	88.28 117.70	4.28 3.97	7.91	0.64 1.11
CF96-118 CF96-119	В D	484051	9225207	110.92	360	-90 -90	77.00	26.25	43.05	16.80	9.18 6.23	0.02
Ci 30-113		484031		uding	300	-30	77.00	35.52	38.95	3.43	14.04	0.02
	D	484051	9225207	110.83	360	-90	146.00	28.08	46.00	17.92	4.97	0.03
CF96-120		404031		uding	300	30	140.00	35.39	39.55	4.16	8.36	0.03
Ci 30-120								105.10	106.60	1.50	6.45	14.00
CF96-121	D	484136	9225183	118.28	360	-90	125.00	108.28	111.80	3.52	6.25	0.49
	В	482537	9227840	4.07	360	-90	278.00	143.00	151.06	8.06	6.75	0.34
CF96-122					<u> </u>			197.16	212.00	14.84	3.19	0.43
			incl	uding				208.77	211.33	2.56	10.14	1.00
CF96-123	D	483933	9225268	140.44	195	-75	150.00	71.00	75.00	4.00	4.58	0.37
CF96-124	XX	483637	9225369	52.34	360	-90	109.00			NSI	ı	ı
CF96-125	В	482565	9228015	2.70	360	-90	260.00	160.82	162.02	1.20	8.80	0.36
CF96-126	В	482409	9227064	24.69	360	-90	89.00	76.85	81.95	5.10	4.55	0.89
CF96-127	В	482317	9227016	44.35	360	-90	155.00	136.14	139.24	3.10	7.50	0.58
CF96-128	В	482505	9227732	4.93	360	-90	227.00	133.00	140.80	7.80	9.37	0.50
			incl	uding	T	1		139.13	140.80	1.67	22.72	0.92
CF97-129	В	482246	9226963	44.61	360	-90	179.00	151.08	156.1	5.02	4.83	0.68
				1	T			160.72	162.90	2.18	10.50	3.87
CF97-130	В	482206	9227138	41.80	60	-75	158.00	125.00	130.20	5.20	4.02	0.25
CF97-131	В	482262	9226862	45.73	360	-90	236.00	144.82	149.45	4.63	2.77	0.49
CF97-132	В В	482597	9227515	7.24	360	-90	170.00	169.00	170.00	1.00 4.00	4.24	0.98
CF97-133	В	482167 482546	9226901 9227927	47.33 3.53	360 360	-90 -90	215.00 264.00	172.00 149.00	176.00 157.13	8.13	3.78 5.23	0.18
CF07.134		402340		uding	300	-30	204.00	153.65	156.31	2.66	11.06	0.55
CF97-134			men	uumg				210.13	217.81	7.68	4.42	0.84
CF97-135	В	482180	9226790	47.07	85	-85	203.00	154.66	158.00	3.34	3.02	0.25
CF97-136	В	482453	9228045	2.71	360	-90	279.00	148.50	153.74	5.24	7.73	0.35
CF97-137	В	482261	9227248	14.11	264	-75	149.00	98.30	104.32	6.02	7.38	0.39
				uding				99.24	101.00	1.76	15.61	0.73
	В	482179	9227414	9.55	360	-90	130.00	92.15	99.66	7.51	5.57	0.88
CF97-138			incl	uding	<u> </u>			93.80	95.80	2.00	11.96	1.52
								102.25	108.81	6.56	5.83	0.39
CF97-139	В	482475	9228174	1.51	360	-90	179.00	147.60	158.30	10.70	7.29	0.33
			incl	uding	<u> </u>	1		147.60	150.10	2.50	17.10	0.67
CF97-140	В	482125	9227519	8.38	360	-90	229.30	185.50	193.00	7.50	2.63	0.35
CF97-141	В	482253	9227592	6.54	360	-90	213.65	98.00	104.44	6.44	4.84	0.96
CF97-142	В	482337	9227775	4.60	360	-90	245.00	131.90	133.05	1.15	21.50	2.60
CF97-143	В	482470	9228283	1.00	360	-90	266.00	235.68	237.11	1.43	4.00	0.10
CF08-144	BS	483044	9226369	20.30	360	-90	251.00	206.25	208.20	1.95	3.18	0.21

	HoleID	Zone	Easting	Northing	RL	Azi	Dip	EOH (m)	From (m)	To (m)	Width (m)	Zn%	Pb%
	CF08- 144A	BS	483043	9226366	20.30	360	-90	47.50		Ineff	ective depth	1	
	CF08-145	NE	483282	9229486	13.87	360	-90	459.00	373.72	375.70	1.98	6.95	0.38
	CF08-146	NW	481150	9231550	16.52	360	-90	359.00	108.00	109.20	1.20	4.37	0.40
	CF08-147	BS	482459	9226119	54.97	360	-90	422.30	276.05	286.45	10.40	3.61	0.59
	CF08-148	BS	482501	9225770	61.12	60	-60	404.00	296.00	303.80	7.80	2.13	0.20
	CF08-149	NE	483464	9228605	44.04	360	-90	468.00	317.35	323.90	6.55	7.67	0.39
			I	incl	uding				317.35	320.80	3.45	10.78	0.40
	CF08-150	BS	482353	9226324	50.65	360	-90	451.00	334.60	342.20	7.60	4.56	0.59
	CF08-151	NE	483663	9228919	83.40	360	-90	351.00	22.75	23.45	0.70	2.39	0.01
	CF08-152	NE	483548	9228388	48.69	360	-90	338.00	306.00	308.00	2.00	3.56	0.43
	CF08-153	D	483928	9225742	123.81	360	-90	116.40	14.00	23.10	9.10	5.16	0.12
	CF08-	D	483930	9225733	123.93	360	-90	194.40	14.00	23.00	9.00	5.92	0.03
	153A			incl	uding				15.00	18.00	3.00	8.97	0.04
	CF08-154	D	483702	9226240	95.96	360	-90	262.70	110.00	113.00	3.00	1.32	0.08
	CF08-155	В	483403	9227135	77.48	360	-90	267.00	117.00	123.00	6.00	2.83	0.10
	CF08-156	D	484272	9224692	80.29	360	-90	257.40	24.00	29.60	5.60	1.16	0.18
	CF08-157	E	480907	9227444	37.09	360	-90	365.00	338.90	341.40	2.50	2.15	0.27
	CF08-158	D	484165	9224735	65.45	360	-90	53.00	26.20	29.30	3.10	1.71	0.17
(T)	CF08-159	D	484082	9224828	58.47	360	-90	48.40	29.00	32.00	3.00	2.29	0.18
	CF08-160	D	484079	9224937	63.40	360	-90	44.00	4.90	24.45	19.55	3.47	0.70
				incl	uding				11.70	16.00	4.30	7.51	0.53
	CF08-161	E	480598	9227423	132.85	360	-90	332.00		Ineff	ective depth	1	
	CF08- 161A	E	480598	9227423	132.86	360	-90	449.00	430.70	431.30	0.60	5.63	0.07
	CF08-162	D	484006	9225010	60.12	360	-90	44.40	29.35	40.10	10.75	4.50	0.52
	CF08-163	D	484211	9224835	81.02	360	-90	47.40	22.00	31.00	9.00	2.02	0.36
	CF08-164	D	484387	9224854	117.63	360	-90	45.10	38.80	39.80	1.00	3.11	0.27
	CF08-165	D	484413	9224960	147.61	360	-90	46.00	2.50	10.40	7.90	5.63	3.46
				incl	uding				2.50	4.30	1.80	8.82	11.85
	CF08-166	BS	482348	9226689	31.55	360	-90	228.60			NSI		ı
	CF08- 166A	BS	482354	9226689	31.55	360	-90	80.00			NSI		
	CF08-167	E	480455	9227901	148.32	360	-90	440.00	394.60	409.25	14.65	3.81	0.27
	CF08-168	D	484222	9225154	128.47	360	-90	109.50	70.07	71.72	1.65	3.28	0.02
	CF08-169	Е	480290	9227792	168.37	360	-90	485.00	483.35	485.00	1.65	3.56	1.23
	CF08-170	D	484553	9225008	175.67	360	-90	18.00		Ineff	ective depth	1	
	CF08- 170A	D	484553	9225008	175.73	360	-90	97.00	17.90	37.00	19.10	4.35	0.84
	CF08-171	E	480351	9227590	148.41	360	-90	579.40	528.40	548.55	20.15	1.87	0.30
	CF08-172	D	484827	9224833	205.21	360	-90	209.90	205.05	207.50	2.45	0.91	0.10
	CF08-173	Е	480178	9227644	175.93	360	-90	605.00	546.85	554.50	7.65	2.25	0.58
	CF08-174	SE	484905	9223940	105.00	20	-89	236.00	98.20	98.70	0.50	0.96	0.02
	CF08-175	BS	482468	9226119	55.12	90	-60	423.63	267.52	281.81	14.29	3.64	0.45
				incl	uding				272.50	280.03	7.53	4.63	0.40
	CF08-176	В	482467	9226974	38.97	90	-65	92.00	88.60	92.00	3.40	7.49	0.83
	CF08-177	В	482465	9226973	38.96	90	-80	128.00	89.35	102.28	12.93	4.49	0.55
	CF08-178	BS	482424	9225931	57.43	360	-90	409.00	376.30	380.00	3.70	7.21	0.79
	CF08-179	BS	482400	9226413	48.68	15	-75	310.55	293.00	299.37	6.37	3.71	0.68
	CF08-180	BS	482461	9225774	60.05	360	-90	255.00		Ineff	ective depth	1	
	CF08-181	BS	482289	9226147	52.63	360	-90	396.00	391.00	394.00	3.00	4.02	0.09
	CF09-182	В	482441	9226925	39.83	360	-90	114.00	93.75	98.00	4.25	11.07	0.86


	HoleID	Zone	Easting	Northing	RL	Azi	Dip	EOH (m)	From (m)	To (m)	Width (m)	Zn%	Pb%
	CF09-183	В	482439	9226923	40.10	100	-70	117.00	94.55	99.00	4.45	11.29	1.17
	CF09-184	В	482402	9226915	39.13	360	-90	117.00	102.00	105.00	3.00	6.60	0.51
	CF09-185	В	482421	9226908	39.55	180	-70	120.00	98.30	105.00	6.70	8.27	0.92
	CF09-186	В	482418	9226981	38.66	360	-90	120.00	99.00	113.00	14.00	4.48	0.61
	CF09-187	В	482440	9226985	38.81	30	-70	129.00	111.00	117.00	6.00	7.46	0.67
	CF09-188	В	482371	9226972	36.76	360	-90	129.00	102.50	109.00	6.50	4.46	0.32
	CF09-189	В	482429	9226822	28.43	360	-90	105.00	89.50	96.50	7.00	3.46	0.33
	CF09-190	В	482482	9226776	28.40	360	-90	117.00	89.20	99.00	9.80	2.28	0.32
	CF09-191	В	482476	9226849	27.57	360	-90	105.00	76.50	82.80	6.30	7.66	0.76
	CF09-192	В	482508	9226853	26.56	30	-70	84.00	66.50	71.00	4.50	5.70	0.63
	CF09-193	В	482521	9226827	27.20	360	-90	78.00	58.40	71.00	12.60	4.95	0.73
	CF09-194	В	482581	9226900	16.58	360	-90	61.50	42.00	47.00	5.00	3.69	0.33
	CF09-195	В	482577	9226945	15.77	270	-70	72.00	43.00	49.00	6.00	3.84	0.42
	CF09-196	В	482553	9227018	11.13	360	-90	66.50	22.10	26.00	3.90	2.92	0.22
	CF09-197	В	482470	9227058	23.01	360	-90	87.00	49.50	57.00	7.50	4.20	0.58
	CF09-198	В	482378	9227102	21.82	360	-90	99.00	77.00	80.10	3.10	7.87	0.63
	CF09-199	В	482402	9227150	15.30	360	-90	102.00	75.00	81.50	6.50	3.70	0.20
	CF09-200	В	482357	9227167	15.10	360	-90	102.00	82.85	85.85	3.00	7.66	0.51
	CF09-201	B B	482290	9227203	14.50	180	-70	114.00	89.00	93.00	4.00	9.38	0.59
(())	CF09-202	В	482272	9227216	14.06 uding	220	-70	117.00	96.00 96.00	102.00 99.00	6.00 3.00	7.57 12.10	0.41 0.65
	CF09-203	В	482455	9227175	10.23	360	-90	90.00	59.10	61.40	2.30	5.32	0.03
	CF09-204	В	482425	9227221	9.83	360	-90	99.00	76.05	77.70	1.65	4.20	0.30
	CF10-205	В	481991	9228098	0.25	360	-90	198.00	165.50	167.50	2.00	3.27	0.21
	CF10-206	В	482530	9228100	1.95	360	-90	240.00	157.00	164.00	7.00	5.40	0.27
	CF10-207	В	482625	9227890	3.78	360	-90	195.25			NSI		
20	CF10-208	NE	483435	9228730	26.56	360	-90	339.70			NSI		
	CF10-209	В	482595	9227780	4.98	360	-90	171.00			NSI		
	CF10-210	В	482475	9227750	4.98	360	-90	159.00	130.00	135.00	5.00	11.67	0.53
	CF10-211	В	482500	9227675	5.62	360	-90	228.00	132.00	137.50	5.50	14.05	0.70
						<u>I</u>			192.00	201.00	9.00	5.74	0.36
	CF10-212	В	482530	9227600	6.81	360	-90	231.00	198.00	203.00	5.00	4.02	2.62
		В	482500	9227645	6.00	360	-90	219.00	130.50	137.50	7.00	11.56	0.55
	CF10-213			incl	uding	II.			133.50	137.00	3.50	18.97	0.85
									191.50	199.00	7.50	5.51	0.42
	CF10-214	В	482520	9227370	8.00	360	-90	125.05	96.00	109.00	13.00	6.63	0.70
				incli	uding				102.00	105.00	3.00	18.83	1.58
	CF10-215	В	482400	9227600	6.16	360	-90	222.00	121.50	132.00	10.50	8.86	0.65
					uding				122.00	127.00	5.00	13.49	0.74
Пп	CF10-216	В	482430	9227365	8.18	265	-77	194.70	89.00	102.00	13.00	4.80	0.47
					uding	1	1		96.00	99.00	4.00	13.41	0.74
	CF10-217	В	482430	9227490	6.82	360	-90	147.00	107.00	121.50	14.50	6.12	0.66
	0540	-	402450		uding	262		60.00	113.00	116.00	3.00	11.52	1.20
	CF10- 218A	В	482468	9227852	4.15	360	-90	69.00		Ineff	ective depth	1	
		В	482466	9227846	4.19	360	-90	261.00	134.50	142.00	7.50	4.67	0.31
	CF10- 218B			incl	uding				134.50	137.50	3.00	8.08	0.43
	2100								184.00	194.00	10.00	4.28	0.56
	CF10-219	В	482480	9227568	6.00	270	-72	59.00		Ineff	ective depth	1	
	CF10- 220A	В	482590	9227380	7.57	270	-80	33.00		Ineff	ective depth	1	


HeleID	7000	Faction	Nouthing	DI	A =:	Din	ЕОН	From	To (m)	Width	7-0/	Pb%
HoleID	Zone	Easting	Northing	RL	Azi	Dip	(m)	(m)	10 (m)	(m)	Zn%	PD%
CF10- 220B	В	482594	9227386	8.56	270	-80	218.10	169.25	172.85	3.60	4.05	0.29
	В	482420	9227960	3.09	360	-90	258.00	131.00	139.00	8.00	5.12	0.25
0540 004			incl	uding				137.00	139.00	2.00	12.39	0.56
CF10-221								184.00	196.50	12.50	5.41	0.81
								233.00	249.50	16.50	2.93	0.35
CF10-222	В	482470	9228110	2.00	360	-90	279.00	155.00	158.00	3.00	10.14	0.42
								260.60	264.70	4.10	6.17	0.29
CF10-223	В	482505	9227980	3.00	360	-90	272.40	145.00	153.00	8.00	5.64	0.22
			incl	uding				151.00	153.00	2.00	12.33	0.37
CF10-224	В	482631	9227022	11.22	360	-90	59.00		Ineff	ective depth	า	
CF10-225	В	482390	9228015	2.74	360	-90	258.00	186.55	195.00	8.45	4.05	0.55
								237.00	243.00	6.00	4.25	0.30
CF10-226	В	482380	9228100	1.90	360	-90	162.80		Ineff	ective depth	1	
CF10-227	В	482597	9227957	3.35	360	-90	276.00	225.40	230.50	5.10	6.78	0.90
CF10-228	В	482510	9228046	2.70	360	-90	246.00	149.00	157.00	8.00	7.56	2.72
		1		uding		1		154.50	157.00	2.50	13.99	0.52
CF10-229	В	482352	9227354	9.14	360	-90	184.20	97.00	115.50	18.50	4.73	0.69
CF10-230	D	484013	9224943	56.79	360	-90	57.00	21.40	24.50	3.10	3.33	0.61
CF10-231	D	483951	9225113	60.88	90	-70	65.00			NSI		
CF10-232	XX	483811	9225347	102.64	180	-70	122.00			NSI		
CF10-233	D	484105	9225309	135.87	360	-90	128.00			NSI		
CF10-234	D	484307	9225252	167.13	360	-90	71.00			NSI		
CF10-235	D	484307	9225252	167.09	45	-70	65.00			NSI		
CF10-236	D	484171	9225111	114.20	10	-70	89.15	7.00	24.00	NSI	4.00	0.40
CF10-237	D	484226	9225017	113.78	360	-90	44.00	7.00	24.00	17.00	1.99	0.48
CF10-238	D	494240	9225160	156.45	304		47.00	28.00 10.20	40.00 11.20	12.00	2.56 3.16	0.65
CF10-256	D	484349	9223100	156.45	304	70.8	47.00	10.20	11.20	1.00	3.10	1.81
CF10-239	D	484348	9225160	156.46	350	-70	44.00	6.00	7.00	1.00	3.23	0.47
CF10-240	D	484632	9224904	188.53	360	-90	71.00	2.70	13.00	10.30	4.42	0.79
								4.30	8.00	3.70	7.49	0.85
CF10-241	D	484632	9224904	188.55	135	-70	92.00	3.70	19.00	15.30	3.72	0.63
CF10-	D	484690	9224952	207.81	44	-70	50.65	10.50	29.00	18.50	4.11	1.22
242A CF10-243	D	484690	9224952	207.74	360	-90	39.70	11.20	31.00	19.80	4.04	0.73
CF10-244	D	484674	9225115	246.83	360	-90	63.00			ective depth		
CF10-	E	480944	9227833	56.31	360	-90	188.00			ective depth		
245A											1	
CF10- 245B	E	480951	9227829	55.78	360	-90	302.00	241.00	243.00	2.00	7.41	0.44
CF10-246	E	480561	9227844	140.50	360	-90	440.00	378.00	405.50	27.50	2.82	0.77
			incl	uding				400.50	402.50	2.00	10.37	2.80
CF10-247	SE	485246	9224288	167.96	225	-70	285.00	241.50	242.00	0.50	5.39	-
CF10-248	XX	483418	9225510	79.72	360	-90	122.00	92.00	97.00	5.00	5.06	0.16
	XX	483418	9225510	79.75	45	-70	122.40	58.30	60.30	2.00	20.71	0.10
CF10-249								69.50	98.00	28.50	12.84	0.07
		· · · · · · ·		uding		1 -		69.50	84.50	15.00	20.23	0.03
CF10-250	В	482349	9227356	8.99	360	-90	126.00	87.30	106.00	18.70	4.36	0.97
05(0.5=:		40000:		uding	6.55		40-0-	98.30	103.15	4.85	6.76	2.23
CF10-251	В	482284	9227415	8.38	360	-90	165.00	90.00	112.00	22.00	3.21	0.33
			incl	uding				93.50	67.00	3.50	6.12	0.55


	HoleID	Zone	Easting	Northing	RL	Azi	Dip	EOH (m)	From (m)	To (m)	Width (m)	Zn%	Pb%
	CF10-252	В	482272	9227379	8.31	360	-90	198.20	91.50	115.50	24.00	2.84	0.30
		В	482323	9227530	7.70	360	-90	240.00	103.20	109.00	5.80	7.49	0.55
	CF10-253								166.00	179.00	13.00	3.07	0.22
			T		uding		1		169.50	175.00	5.50	5.27	0.71
		В	482370	9227251	9.88	360	-90	165.00	70.00	92.00	22.00	3.45	0.80
	CF10-254				uding				71.00	74.00	3.00	5.38	1.17
	CF10-255	В	482370	9227251	9.90	216	-70	180.00	87.00 77.40	92.00 90.00	4.00 12.60	4.64 5.35	1.62 0.58
	Ci 10-255	ь	402370		uding	210	-70	180.00	84.00	88.00	4.00	9.67	1.07
	CF10-256	В	482375	9227317	9.48	360	-90	165.00	80.00	104.50	24.50	6.44	2.00
a	0. 10 200	В	102070	3227327	including		30	100.00	94.00	104.00	10.00	10.80	3.41
	CF10-257	В	482253	9227230	14.12	240	-70	185.00	101.00	107.00	6.00	6.17	0.29
20	CF10-258	В	482167	9227242	26.22	360	-90	211.50	119.85	123.35	3.50	3.84	0.23
	CF10-259	В	482001	9227346	23.54	360	-90	51.00		Ineff	ective depth	1	
	CF10-260	BS	482375	9226053	54.56	360	-90	362.00	347.00	350.00	3.00	4.38	0.30
	CF10-261	BS	482526	9226443	49.12	360	-90	326.00	313.30	318.00	4.70	5.28	0.26
	CF10-262	В	481668	9227519	5.78	360	-90	27.00		Ineff	ective depth	1	
	CF10-	BS	482410	9226405	49.15	360	-90	52.00		Ineff	ective depth	ı	
	263A CF10- 263B	BS	482410	9226405	49.16	360	-90	336.00	303.50	314.00	10.50	3.68	0.83
60	CF10-264	BS	482417	9226239	52.53	360	-90	372.00	312.40	320.00	7.60	4.72	1.05
	CF10-265	BS	482487	9226285	51.67	360	-90	373.20	307.00	312.50	5.50	6.89	1.04
	CF10-266	BS	482673	9226392	49.56	360	-90	297.00	259.50	260.25	12.10	4.38	0.61
	CF10- 267A	BS	482659	9226292	51.42	360	-90	55.00		Ineffe	ective depth		
	CF10- 267B	BS	482662	9226293	51.35	360	-90	282.00			NSI		
(()/)	CF10-268	BS	482621	9226472	48.38	360	-90	63.00		Ineffe	ective depth		
	CF10-269	BS	482455	9226349	50.54	360	-90	327.00	296.00	308.00	12.00	2.50	0.61
	CF10-270	XX	483406	9225468	81.69	52	-70	134.00	100.50	105.60	5.10	3.82	0.23
<u>as</u>	CF10-271	XX	483454	9225527	78.98	225	-70	39.00		Ineffe	ective depth		
	CF10-	XX	483454	9225527	78.98	225	-75	137.00	61.00	95.00	34.00	9.09	0.39
	271A							including	61.00	81.00	20.00	14.10	0.24
	CF10-272	XX	483338	9225562	74.40	200	-75	152.00	119.50	121.00	1.50	3.69	0.14
	CF10-273	BS	482640	9225864	50.94	360	-90	358.25	266.00	267.50	1.50	5.74	0.46
(7	CF10-274	BS	482541	9225943	49.59	360	-90	326.00	300.00	303.00	3.00	3.48	0.20
	CF10-275	D	484451	9224906	146.92	360	-90	90.00	55.60	59.60	4.00	1.94	0.82
	CF10-276	D	484748	9224863	201.00	360	-90	104.00	3.80	19.00	15.20	2.21	0.35
	CF10-277	SE	485192	9224749	288.01	360	-90	260.00	237.00	252.50	15.50	2.23	0.40
Пп	CF10-278	SE	484966	9224528	180.22	360	-90	278.00	222.00	225.00	3.00	1.91	0.17
	CF10-279	SE	484806	9224258	115.19	360	-90	24.00			ective depth		
	CF10-280	SE	484829	9224251	118.32	360	-90	300.00	160.75	163.00	2.25	2.73	0.61
	CF10-281	BS	482342	9226231	52.30	360	-90	282.00			ective depth		
	CF10-282	BS	482476	9226038	54.99	360	-90	242.00	158.00	159.00	1.00	1.89	0.13
	CF10-283	BS	482509	9226202	53.26	360	-90	170.00			ective depth		
	CF10- 283B	BS	482510	9226205	53.24	360	-90	279.00	245.00	255.55	10.55	4.13	0.57
	CF10-284	BS	482467	9226050	55.35	360	-90	323.00	297.00	304.50	7.50	3.10	0.51
	CF10-285	BS	482383	9226139	53.76	360	-90	330.00	304.20	309.00	4.80	5.20	0.45
	CF10-286	BS	482396	9225986	56.52	360	-90	397.70	369.00	370.00	1.00	5.39	0.49


HoleID	Zone	Easting	Northing	RL	Azi	Dip	EOH (m)	From (m)	To (m)	Width (m)	Zn%	Pb%
CF10-287	BS	482289	9226230	51.24	360	-90	385.00	356.50	359.00	2.50	3.40	1.45
CF10-288	BS	482500	9225855	62.00	360	-90	347.50	327.50	340.50	13.00	1.51	0.11
CF10-289	BS	482632	9226526	33.46	225	-80	295.60	258.65	266.50	7.85	2.40	0.41
CF11-290	BS	482460	9225774	47.00	85.7	- 80.3	383.30	338.50	343.50	5.00	3.23	0.23
CF11-291	BS	482333	9226524	49.00	360	-90	303.00	283.50	288.05	4.55	7.10	0.59
							including	283.50	285.00	1.50	16.39	1.22
CF11-292	В	482147	9227342	43.00	360	-90	140.00	114.00	121.70	7.70	7.01	0.51
CF11-293	E	480361	9228317	206.27	360	-90	497.00	448.00	460.10	12.10	2.87	0.20
CF11-294	E	480702	9228292	138.25	290	- 84.2	401.00	349.30	358.80	9.50	5.27	0.90
		'					including	349.30	353.00	3.70	10.26	-
CF11-295	BS	482275	9226610	51.00	54.2	- 72.7	314.00	297.00	304.75	7.75	3.05	0.19
CF11-296	E	480566	9228662	178.78	187	-89	460.00	404.35	416.70	12.35	3.08	0.27
CF11-297	E	480542	9228966	231.25	360	-90	545.00	503.90	504.55	0.65	5.42	0.25
Hole Prefix CF93- CF94-	Holes dr	illed in 1993 illed in 1994		Zone E B	Esrum Beach			Co-ordina	ates: UTM Zor	ne 26N WGS	84	
CF95-		illed in 1995		BS	Beach So							
CF96- CF97-		illed in 1996 illed in 1997		D XX	Discover XX Zone	-						
CF08-		illed in 2008		SE	Southea							
CF09-		illed in 2009		NE	Northea							
CF10-		illed in 2010		WG	Western		S					
CF-11		illed in 2011										
NSI	No Signi	ficant Intercept										

Hole Prefix		Zone	
CF93-	Holes drilled in 1993	E	Esrum
CF94-	Holes drilled in 1994	В	Beach
CF95-	Holes drilled in 1995	BS	Beach South
CF96-	Holes drilled in 1996	D	Discovery
CF97-	Holes drilled in 1997	XX	XX Zone
CF08-	Holes drilled in 2008	SE	Southeast
CF09-	Holes drilled in 2009	NE	Northeast
CF10-	Holes drilled in 2010	WG	Western Gossans
CF-11	Holes drilled in 2011		

Annexure 2: Citronen Project Rock Chip Sample Locations and Results

Sample ID	East	North	Cu %	Pb %	Zn %	Zn+Pb %
F060901	483634	9225410	0.001	0.005	0.049	0.054
F061001	479161	9233281	0.001	0.421	0.043	0.502
F061001	478252	9233281	0.003	0.562	0.081	0.645
F072601	482855	9232362	0.002	0.200	0.450	0.650
F072701	481563	9225260	0.010		0.430	0.060
F072701 F073001	483485	9227150	NS	0.020 0.010	0.490	0.500
F073001 F080101	480800	9226050	-1.000	0.010	0.490	0.080
	484033		0.000	0.030		3.584
GD052007		9225638			3.220	0.355
GD052008 GD052009	484033	9225638 9233007	0.001	0.043	0.312	
GD052009 GD052111	480551 479124		0.003	0.017 0.207	0.030 0.185	0.046 0.391
GD052111	479124	9233296 9233195	0.002	0.207	0.183	0.391
						0.292
GD052316	483618	9225393	0.004	0.045 0.053	0.840	0.885
GD052321	483618 483618	9225393	0.007		0.299	
GD052322			0.001	1.610	6.890	8.500
GD052323 GD052425	483618	9225393	0.003	0.337	5.460	5.797
	479080	9232900	0.002	0.027	0.017	0.044
GD052426	479105	9233100	0.002	0.062	0.008	0.070
GD052427	479110	9233195	0.001	0.090	0.018	0.108
GD052428	479112	9233200	0.003	0.141	0.232	0.373
GD052430 GD052431	479115 479115	9233220	0.002	0.160 0.081	0.018	0.177 0.110
GD052431 GD052534	483618	9225393 9225393	0.002	0.081	0.030	0.110
GD052535	483618	9225393	0.001	0.053	2.850	2.918
GD052536	483618	9225393	0.012	0.008	4.940	5.072
GD052537	483618	9225393	0.005	0.132	10.080	10.228
GD052537	483618	9225393	0.003	0.148	4.760	5.078
GD052538	483618	9225393	0.002	0.060	0.507	0.568
GD052539	483680	9225335	0.004	0.034	0.866	0.901
GD052641	483680	9225315	0.004	0.066	0.489	0.555
GD052642	483680	9225315	0.003	0.116	1.670	1.786
GD052643	483680	9225315	0.002	0.115	3.410	3.525
GD052644	483680	9225315	0.002	0.175	3.120	3.295
GD052645	483680	9225315	0.002	0.195	2.180	2.375
GD052646	483680	9225315	0.001	0.018	0.179	0.196
GD052647	483680	9225315	0.006	0.054	0.594	0.648
GD052047 GD053148	484316	9228819	0.002	2.330	8.880	11.210
GD053149	484316	9228819	0.002	0.237	5.050	5.287
GD060251	484530	922990	0.001	0.086	0.839	0.926
GD94-020701	484780	9227050	NS	15.710	18.180	33.890
GD94-020702	484520	9227410	NS	0.030	4.220	4.250
GD94-020703	484400	9227330	NS	1.950	3.490	5.440
GD94-050701	480090	9224500	NS	0.040	1.640	1.680
GD94-060702	477326	9229597	NS	1.030	6.220	7.250
GD94-060703	479420	9230150	NS	11.130	18.840	29.970
GD94-070702	478580	9230970	NS	0.030	0.200	0.230
3537 070702	-,,0500	1 3230370	143	5.050	5.200	0.230

Sample ID	East	North	Cu %	Pb %	Zn %	Zn+Pb %
GD94-070703	479475	9230128	NS	0.110	0.130	0.240
GD94-070704	479475	9230128	NS	0.050	4.390	4.440
GD94-070705	479475	9230128	NS	0.010	0.220	0.230
GD94-070706	479475	9230128	NS	0.050	13.470	13.520
GD94-070708	479485	9230008	NS	0.840	13.280	14.120
GD94-100602	480300	9230365	NS	0.060	0.740	0.800
GD94-110602	478786	9232841	NS	0.020	0.000	0.020
GD94-110604	478871	9233020	NS	0.100	0.000	0.100
GD94-130603	480658	9232664	NS	0.050	0.000	0.050
GD94-130604	480658	9232664	NS	0.020	0.000	0.020
GD94-190601	479929	9233268	NS	0.020	0.000	0.020
GD94-200602	484190	9231455	NS	0.000	0.000	0.000
GD94-200603	484150	9231938	NS	0.090	0.820	0.910
GD94-220607	484900	9228620	NS	0.000	1.170	1.170
GD94-240607	484273	9228924	NS	0.030	9.070	9.100
GD94-250601	484924	9228217	NS	0.540	10.040	10.580
KK94-062501	484887	9228611	NS	0.000	0.970	0.970
KK94-062502	484887	9228611	NS	0.000	1.040	1.040
KK94-062503	484887	9228611	NS	0.000	0.310	0.310
KK94-062504	484812	9228524	NS	0.030	1.360	1.390
KK94-062505	484251	9228913	NS	0.000	0.070	0.070
KK94-062506	484251	9228913	NS	0.020	0.090	0.110
S051901	483420	9225675	0.001	0.126	0.061	0.188
S051902	484170	9225000	0.001	6.420	13.100	19.520
S052101	480320	9233330	0.001	0.135	0.014	0.149
S052102	479950	9233410	0.001	0.205	0.043	0.248
S052201	484810	9223950	0.001	0.013	0.003	0.015
S052301	484530	9224900	0.000	0.278	1.700	1.978
S052302	484530	9224900	0.000	0.201	2.020	2.221
S052303	484530	9224900	0.000	3.690	18.000	21.690
S052304	484530	9224900	0.000	2.550	3.010	5.560
S053101	484460	9228760	0.002	0.000	7.660	7.660
S060201	484510	9229830	0.001	0.090	1.810	1.900
S060501	481545	9225900	0.001	0.004	0.013	0.016
Z060902	484279	9225879	0.526	3.510	0.003	3.513
Z072604	485000	9224000	-1.000	0.060	0.450	0.510
Z080105	478361	9232060	-1.000	0.070	0.120	0.190
Z080109	478930	9233010	0.010	0.190	0.030	0.220
Z080111	479040	9233225	0.010	0.380	2.680	3.060
Z080113	480020	9233395	-1.000	0.190	0.030	0.220
Z081501	476543	9234420	0.010	0.390	8.500	8.890
Z081502	476837	9234337	-1.000	0.000	0.030	0.030
Z081503	476837	9234337	-1.000	0.000	0.080	0.080
Z081703	484895	9228595	-1.000	1.240	0.190	1.430
Z082005	484593	9229913	-1.000	0.050	2.950	3.000
Z082008	483800	9229080	-1.000	0.510	1.680	2.190
Z090201	483620	9225400	0.010	0.150	0.700	0.850

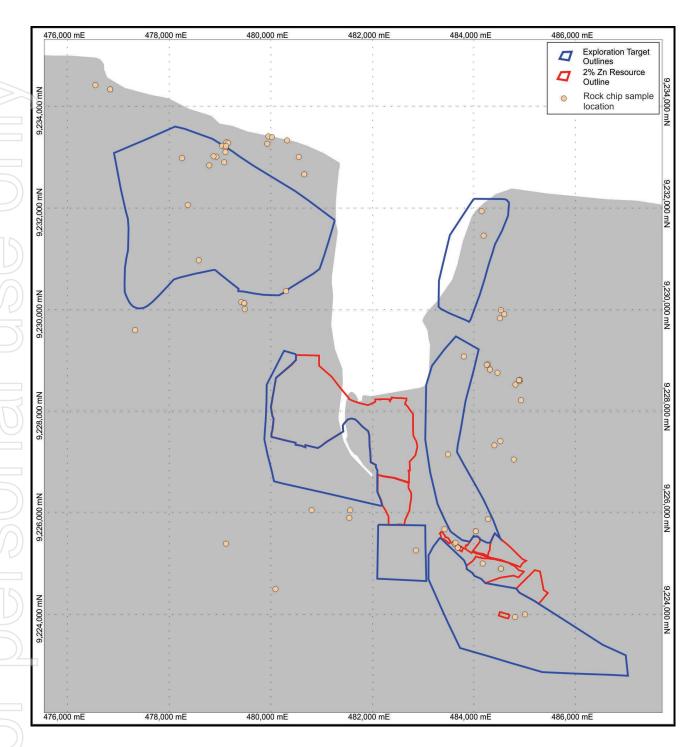


Figure 1E: Citronen Fjord Rock Chip Sample Locations