

High-grade Gold Results from Reedy South RC Drilling

HIGHLIGHTS

- ❖ Maiden RC drilling program (~4,500m) commenced at Reedy South in mid-November 2020. 38 out of 43 holes for ~3,000m have been completed, with 5 deeper RC holes remaining.
- ❖ Of the 11 holes assayed so far, significant results include:
 - o **7m @ 3.16 g/t Au** from 53m (RSRC010
 - o **11m @ 2.29 g/t Au** from 21m (RSRC007)
 - 8m @ 1.06 g/t Au from 48m and 16m @ 1.74 g/t Au 72m (RSRC003)
 - o **7m @ 1.5 g/t Au** from 48m (RSRC004)
- ❖ Results are consistent with the grade and thickness of historical drilling at the King Cole prospect, located in the northern part of the project.
- ❖ Assay results from 27 holes are currently pending.
- Drilling of the remaining 5 holes, which aims to extend mineralisation at depth at both King Cole and Pegasus, to commence in the coming weeks.

White Cliff Minerals Limited (**White Cliff** or the **Company**) is pleased to provide an update on our maiden reverse circulation (**RC**) drilling program at the Company's 100% owned Reedy South Gold Project (the **Project**) near Cue, Western Australia. The ~4,500m RC program commenced in mid-November 2020, with ~3,000m (38 of 43 holes) completed prior to the Christmas shutdown period. The RC rig will be remobilising at Reedy South towards the end of January to complete the deeper holes which will be targeting extensions to the mineral resource estimate (**MRE**) area.¹

Assay results have been received from 11 of the 38 holes drilled to date, covering the northern end of the King Cole prospect (**Figure 1**). The Company expects to receive the balance of the assay results from the completed holes in coming weeks.

Technical director Ed Mead commented, "The assay results received so far confirm the mineralised grade and thickness of historical drilling at the King Cole prospect which was part of the maiden MRE at Reedy South. Results from a further 27 completed holes are expected to further connect King Cole down to the Pegasus

wcminerals.com.au

¹ Refer ASX announcement 29 October 2020 for additional details

Prospect, with deeper drilling in January proving up interpreted extensions to mineralisation and the October 2020 MRE. The Emu South/Triton underground mine operated by Westgold is less than 600m from our northern tenement boundary, and along strike on the RSZ, with known resources down to 500m vertical. I see significant potential to continue to advance and grow our Cue assets."

King Cole and Pegasus Prospects, Reedy South

The King Cole prospect is at the northern end of M20/446, close to the tenement boundary with ASX-listed Westgold Resources Ltd (and ~600m from the South Emu pit), and sits along the Reedy Shear Zone (**RSZ**). The RSZ is a localised disconformable contact between two greenstone groups. Anastomosing structures develop within the RSZ that focus fluid migration and gold mineralisation. Strong potassic-silicic-pyritic alteration is associated with gold mineralisation and localised within the footwall and hanging wall contacts of the ~20m wide subvertical RSZ.

The Pegasus prospect, ~400m south west of King Cole, also sits along the RSZ and has been subject to historic underground workings. At Pegasus, gold mineralisation has been defined to ~70m depth and along 600m+ of strike length.

Maiden RC Drilling Program

The Company's maiden RC drilling program at the Reedy South Gold Project commenced in mid-November 2020. A total of 3,537m of a ~4,500m was completed prior to the Christmas shut-down period. The program consists of shallower (~60-80m) infill drill holes aimed at increasing resource confidence and testing strike extensions, and a series of deeper holes to target mineralisation at depth. Historical drilling, which was incorporated into the Company's maiden MRE (refer announcement 29 October 2020), averaged 60m in depth.

The Company has received assay results from 11 of the 38 completed holes, primarily around the King Cole prospect, with significant results including:

- o 7m @ 3.16 g/t Au from 53m (RSRC010
- o **11m @ 2.29 g/t Au** from 21m (RSRC007)
- 8m @ 1.06 q/t Au from 48m and 16m @ 1.74 q/t Au 72m (RSRC003)
- 7m @ 1.5 g/t Au from 48m (RSRC004)

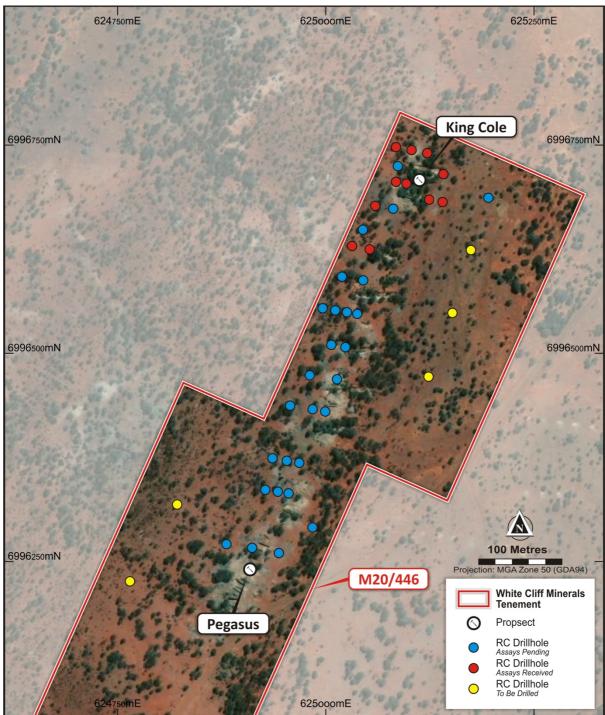


Figure 1: Location of recent RC drilling at the Reedy South Gold Project

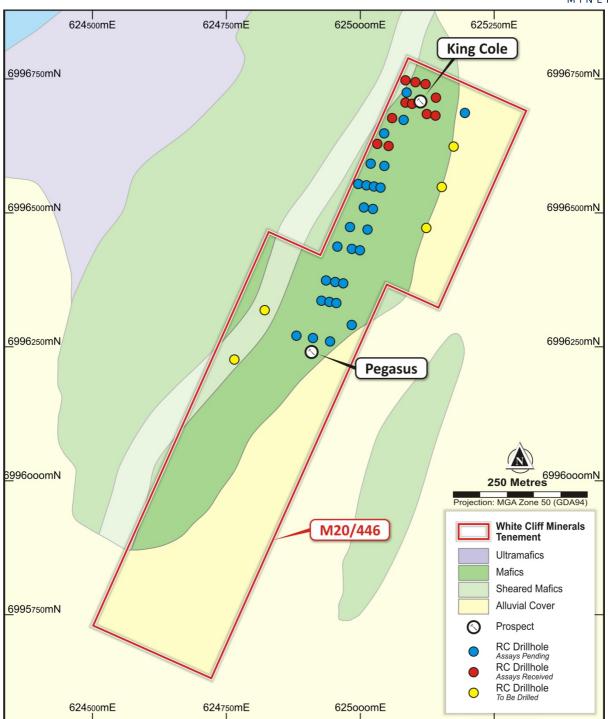


Figure 2: King Cole prospect, drillhole locations over geology

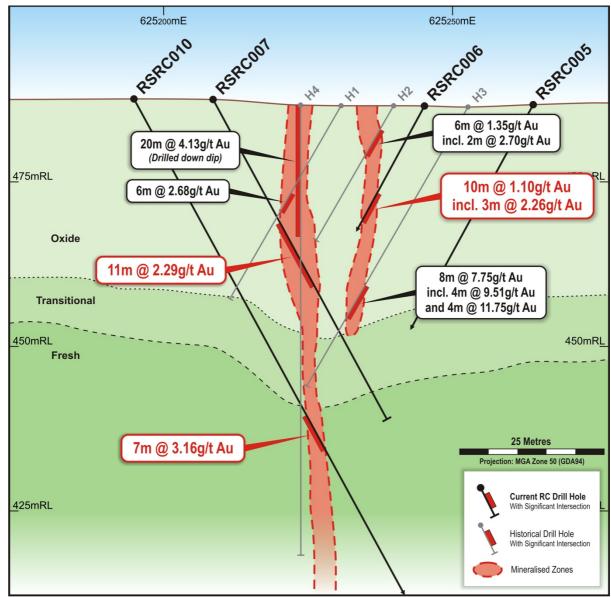


Figure 3: King Cole prospect oblique sections

Overview of Reedy South

The Project covers 272km² of the highly prospective Cue goldfields, centred on the southern portion of the prolific Reedy Shear Zone, within the Meekatharra-Wydgee greenstone belt.

The Project comprises one granted mining lease (M20/446) covering the historic underground workings of Pegasus and King Cole, a granted exploration and prospecting license (E20/938 & P20/2289) and four exploration license applications (E20/969, E20/971, E20/972 & E20/974). The Project is situated 40km north of Cue, via the Great Northern Highway and is 80km south of Meekatharra.

This announcement has been approved by the Board of White Cliff Minerals Limited.

Further Information:

Dan Smith Nicholas Ong
Director Director & Company Secretary
+61 8 9486 4036 +61 8 9486 4036

Competent Persons Statement

The Information in this report that relates to exploration results, mineral resources or ore reserves is based on information compiled by Mr Edward Mead, who is a Member of the Australian Institute of Mining and Metallurgy. Mr Mead is a director of the company. Mr Mead has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the `Australian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves' (the JORC Code). Mr Mead consents to the inclusion of this information in the form and context in which it appears in this report.

Forward Looking Information

This announcement contains forward looking statements concerning the Company. Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory restrictions, including environmental regulation and liability and potential title disputes. Forward looking statements in this announcement are based on the Company's beliefs, opinions and estimates of the Company as of the dates the forward-looking statements are made, and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments. Although management believes that the assumptions made by the Company and the expectations represented by such information are reasonable, there can be no assurance that the forward- looking information will prove to be accurate. Forward-looking information involves known and unknown risks, uncertainties, and other factors which may cause the actual results, performance or achievements of the Company to be materially different from any anticipated future results, performance or achievements expressed or implied by such forward-looking information. Such factors include, among others, the actual market price of commodities, the actual results of future exploration, changes in project parameters as plans continue to be evaluated, as well as those factors disclosed in the Company's publicly filed announcements. Readers should not place undue reliance on forward-looking information.

The Company does not undertake to update any forward-looking information, except in accordance with applicable securities laws. No representation, warranty or undertaking, express or implied, is given or made by the Company that the occurrence of the events expressed or implied in any forward-looking statements in this announcement will actually occur.

Table 1: Drilling Collars

Hole_ID	Hole_Type	East (m)	North (m)	RL (m)	Dip	Azimuth	Depth (m)
RSRC001	RC	625122	6996740	487	-60	100	60
RSRC002	RC	625103	6996744	487	-60	100	96
RSRC003	RC	625084	6996748	488	-60	100	120
RSRC004	RC	625141	6996715	487	-60	280	80
RSRC005	RC	625140	6996682	486	-60	280	100
RSRC006	RC	625124	6996685	486	-60	280	40
RSRC007	RC	625097	6996704	486	-60	100	60
RSRC008	RC	625053	6996625	484	-60	100	50
RSRC009	RC	625032	6996629	485	-60	100	120
RSRC010	RC	625084	6996706	486	-60	100	96
RSRC011	RC	625060	6996677	485	-60	100	120
RSRC012	RC	625081	6996674	485	-60	100	85
RSRC013	RC	625087	6996725	488	-60	100	120
RSRC014	RC	625045	6996588	484	-60	100	45
RSRC015	RC	625019	6996592	485	-60	100	100
RSRC016	RC	625045	6996648	485	-60	100	96
RSRC017	RC	625038	6996547	484	-60	100	60
RSRC018	RC	625011	6996552	484	-60	100	100
RSRC019	RC	625025	6996549	484	-60	100	75
RSRC020	RC	624996	6996554	483	-60	100	100
RSRC021	RC	625007	6996510	483	-60	100	100
RSRC022	RC	625024	6996507	483	-60	100	70
RSRC023	RC	625013	6996469	482	-60	100	80
RSRC024	RC	624981	6996474	481	-60	100	120
RSRC025	RC	624999	6996430	481	-60	100	66
RSRC026	RC	624984	6996433	481	-60	100	100
RSRC027	RC	624957	6996437	482	-60	100	120
RSRC028	RC	624968	6996369	480	-60	100	60
RSRC029	RC	624953	6996371	480	-60	100	100
RSRC030	RC	624936	6996374	480	-60	100	120
RSRC031	RC	624955	6996332	480	-60	100	70
RSRC032	RC	624927	6996336	479	-60	100	120
RSRC033	RC	624984	6996291	479	-60	280	100
RSRC034	RC	624942	6996334	480	-60	100	100
RSRC035	RC	624944	6996260	479	-60	280	60
RSRC036	RC	624912	6996267	479	-60	100	78
RSRC037	RC	624881	6996271	478	-60	100	130
RSRC038	RC	625195	6996687	487	-60	280	220

Table 2: Assay Data from RC drilling at the Reedy South Gold Project

Hole_ID	From	То	Au (g/t)
RSRC001	0	1	0.29
RSRC001	1	2	0.25
RSRC001	2	3	0.26
RSRC001	3	4	0.26
RSRC001	4	5	0.41
RSRC001	5	6	0.09
RSRC001	6	7	0.05
RSRC001	7	8	0.10
RSRC001	8	9	0.20
RSRC001	9	10	0.44
RSRC001	10	11	0.32
RSRC001	11	12	0.11
RSRC001	12	13	0.36
RSRC001	13	14	0.13
RSRC001	14	15	0.07
RSRC001	15	16	0.13
RSRC001	16	17	0.13
RSRC001	17	18	0.01
RSRC001	1	19	0.03
	18		
RSRC001	19	20	0.01
RSRC001	20	21	0.01
RSRC001	21	22	0.01
RSRC001	22	23	0.01
RSRC001	23	24	0.01
RSRC001	24	25	0.07
RSRC001	25	26	0.09
RSRC001	26	30	0.03
RSRC001	30	34	0.01
RSRC001	34	38	0.01
RSRC001	38	42	0.01
RSRC001	42	46	0.02
RSRC001	46	50	0.02
RSRC002	0	4	0.03
RSRC002	4	8	0.01
RSRC002	8	12	0.31
RSRC002	12	16	0.71
RSRC002	16	20	0.12
RSRC002	20	24	0.37
RSRC002	24	28	0.15
RSRC002	28	32	0.10
RSRC002	32	33	0.18
RSRC002	33	34	0.08
RSRC002	34	35	0.12
RSRC002	35	36	0.04
RSRC002	36	37	0.10
RSRC002	37	38	0.14
RSRC002	38	39	0.17
RSRC002	39	40	0.06
RSRC002	40	41	0.21
RSRC002	41	42	0.03
RSRC002	42	43	0.07
RSRC002	43	44	0.05
RSRC002	44	45	0.05
RSRC002	45	46	0.02
RSRC002	46	47	0.02
RSRC002	47	48	0.02
RSRC002	48	49	0.01
RSRC002	49	50	0.01
RSRC002	50	51	0.01
RSRC002	51	52	0.01
K3KCUU2	21	JZ	0.03

Hole_ID	From	To	Au (g/t)
RSRC002	52	56	0.03
RSRC002	56	60	0.01
RSRC002	60	64	0.01
RSRC002	64	68	0.03
RSRC002	68	72	0.03
RSRC002	72	76	0.03
RSRC002	76	80	0.10
RSRC002	80	84	0.10
	84		
RSRC002 RSRC002	88	88 92	0.05 0.02
	92	96	
RSRC002			0.02
RSRC003	0	4	0.00
RSRC003	4	8	0.01
RSRC003	8	12	0.01
RSRC003	12	16	0.03
RSRC003	16	20	0.02
RSRC003	20	24	0.02
RSRC003	24	28	0.03
RSRC003	28	32	0.03
RSRC003	32	36	0.01
RSRC003	36	40	0.04
RSRC003	40	44	0.01
RSRC003	44	48	0.01
RSRC003	48	52	1.18
RSRC003	52	56	0.95
RSRC003	56	60	0.11
RSRC003	60	64	0.07
RSRC003	64	68	0.10
RSRC003	68	72	0.02
RSRC003	72	76	2.15
RSRC003	76	80	0.25
RSRC003	80	84	4.07
RSRC003	84	88	0.49
RSRC003	88	92	0.05
RSRC003	92	96	0.05
RSRC003	96	100	0.07
RSRC003	100	104	0.05
RSRC003	104	108	0.06
RSRC003	108	112	0.01
RSRC003	112	116	0.03
RSRC003	116	120	0.01
RSRC004	0	4	0.09
RSRC004	4	8	0.05
RSRC004	8	12	LNR
RSRC004	12	16	0.03
RSRC004	16	20	0.02
RSRC004	20	24	0.03
RSRC004 RSRC004	24	28	0.03
RSRC004 RSRC004	28	32	0.10
RSRC004 RSRC004	32	33	0.00
RSRC004 RSRC004	33	33	0.00
	33	35	0.00
RSRC004			
RSRC004	35	36	0.03
RSRC004	36	37	0.11
RSRC004	37	38	0.86
RSRC004	38	39	1.79
RSRC004	39	40	0.10
RSRC004	40	41	2.73
RSRC004	41	42	2.52
RSRC004	42	43	1.85
RSRC004	43	44	0.66
RSRC004	44	45	0.26

Hole_ID	From	То	Au (g/t)
RSRC004	45	46	0.18
RSRC004	46	47	0.10
RSRC004	47	48	0.37
RSRC004	48	49	0.05
RSRC004	49	50	0.07
RSRC004	50	51	0.09
RSRC004	51	52	0.09
RSRC004			
	52	56	0.02
RSRC004	56	60	0.05
RSRC004	60	64	0.11
RSRC004	64	68	0.06
RSRC004	68	72	0.01
RSRC004	72	76	0.01
RSRC004	76	80	0.03
RSRC005	0	4	0.03
RSRC005	4	8	0.01
RSRC005	8	12	0.01
RSRC005	12	16	0.08
RSRC005	16	20	0.43
RSRC005	20	24	0.07
RSRC005	24	28	0.65
RSRC005	28	32	0.63
RSRC005	32	36	0.02
RSRC005	36	40	0.07
RSRC005	40	44	0.02
	44	48	0.04
RSRC005 RSRC005	48	52	
	52		0.03
RSRC005		56	0.46
RSRC005	56	57	1.18
RSRC005	57	58	1.32
RSRC005	58	59	2.21
RSRC005	59	60	1.91
RSRC005	60	61	1.09
RSRC005	61	62	0.06
RSRC005	62	63	0.06
RSRC005	63	64	0.52
RSRC005	64	65	0.34
RSRC005	65	66	1.05
RSRC005	66	67	0.21
RSRC005	67	68	0.14
RSRC005	68	69	0.35
RSRC005	69	70	0.66
RSRC005	70	71	0.69
RSRC005	71	72	0.72
RSRC005	72	73	0.18
RSRC005	73	74	0.03
RSRC005	74	75	0.04
RSRC005	75	76	0.05
	76	77	0.03
RSRC005	77		
RSRC005		78	0.06
RSRC005	78	79	0.06
RSRC005	79	80	0.61
RSRC005	80	84	0.09
RSRC005	84	88	0.03
RSRC005	88	92	0.04
RSRC005	92	96	0.00
RSRC005	96	100	0.03
RSRC006	0	4	0.09
RSRC006	4	8	0.03
RSRC006	8	12	0.03
RSRC006	12	16	0.05
RSRC006	16	20	0.92

		•	MINE
Hole_ID	From	То	Au (g/t)
RSRC006	20	21	0.16
RSRC006	21	22	0.02
RSRC006	22	23	0.01
RSRC006	23	24	0.01
RSRC006	24	25	0.05
RSRC006	25	26	0.06
RSRC006	26	27	0.03
RSRC006	27	28	0.06
RSRC006	28	29	0.24
RSRC006	29	30	0.22
RSRC006	30	31	0.54
RSRC006	31	32	2.52
RSRC006	32	33	1.84
RSRC006	33	34	2.43
RSRC006	34	35	0.23
RSRC006	35	36	0.13
RSRC006	36	37	0.18
RSRC006	37	38	0.59
RSRC006	38	39	1.76
RSRC006	39	40	0.39
RSRC007	0	1	0.85
RSRC007	1	2	0.83
	2	3	
RSRC007	3		0.2
RSRC007	4	5	0.13
RSRC007			0.07
RSRC007	5	6	0.06
RSRC007	6	7	0.09
RSRC007	7	8	0.04
RSRC007	8	9	0.11
RSRC007	9	10	0.08
RSRC007	10	11	0.19
RSRC007	11	12	0.66
RSRC007	12	13	0.12
RSRC007	13	14	0.11
RSRC007	14	15	0.11
RSRC007	15	16	1.54
RSRC007	16	17	0.2
RSRC007	17	18	0.26
RSRC007	18	19	0.19
RSRC007	19	20	0.14
RSRC007	20	21	0.12
RSRC007	21	22	0.95
RSRC007	22	23	0.67
RSRC007	23	24	1.17
RSRC007	24	25	0.45
RSRC007	25	26	0.43
RSRC007	26	27	6.99
RSRC007	27	28	1.95
RSRC007	28	29	3.36
RSRC007	29	30	2.99
RSRC007	30	31	3.48
RSRC007	31	32	2.78
RSRC007	32	33	0.18
RSRC007	33	34	0.07
RSRC007	34	35	0.10
RSRC007	35	36	0.05
RSRC007	36	37	0.07
RSRC007	37	38	0.08
RSRC007	38	39	0.04
RSRC007	39	40	0.01
RSRC007	40	44	0.03
RSRC007	44	48	0.01
N3KCUU/	1 44	40	0.01

		•	MINE
Hole_ID	From	То	Au (g/t)
RSRC007	48	52	0.08
RSRC007	52	55	0.09
RSRC008	0	4	0.04
RSRC008	4	8	0.02
RSRC008	8	12	0.02
RSRC008	12	16	0.01
RSRC008	16	17	0.03
RSRC008	17	18	0.01
RSRC008	18	19	0.10
RSRC008	19	20	0.35
RSRC008	20	21	0.09
RSRC008	21	22	0.24
RSRC008	22	23	0.71
RSRC008	23	24	0.27
RSRC008	24	25	0.24
RSRC008	25	26	0.11
RSRC008	26	27	0.05
RSRC008	27	28	0.03
RSRC008	28	29	0.06
RSRC008	29	30	0.00
	30	31	
RSRC008			0.05
RSRC008	31	32	0.01
RSRC008	32	33	0.02
RSRC008	33	34	0.05
RSRC008	34	35	0.02
RSRC008	35	36	0.03
RSRC008	36	37	0.17
RSRC008	37	38	0.14
RSRC008	38	39	0.05
RSRC008	39	40	0.27
RSRC008	40	41	0.10
RSRC008	41	42	0.35
RSRC008	42	46	0.19
RSRC008	46	50	0.04
RSRC009	0	4	0.02
RSRC009	4	8	0.01
RSRC009	8	12	0.01
RSRC009	12	16	0.01
RSRC009	16	20	0.02
RSRC009	20	24	0.01
RSRC009	24	28	0.01
RSRC009	28	32	0.05
RSRC009	32	36	0.02
RSRC009	36	40	0.01
RSRC009	40	44	0.00
RSRC009	44	48	0.01
RSRC009	48	52	0.02
RSRC009	52	56	0.02
RSRC009	56	60	0.01
RSRC009	60	64	0.04
RSRC009	64	68	0.01
RSRC009 RSRC009	68	72	0.01
	72	76	
RSRC009 RSRC009	76	80	0.04 0.22
		81	0.22
RSRC009	80		
RSRC009	81	82	0.05
RSRC009	82	83	0.03
RSRC009	83	84	0.04
RSRC009	84	85	0.04
RSRC009	85	86	0.15
RSRC009	86	87	0.48
RSRC009	87	88	2.07

			MINE
Hole_ID	From	То	Au (g/t)
RSRC009	88	89	0.12
RSRC009	89	90	0.09
RSRC009	90	91	0.14
RSRC009	91	92	0.08
RSRC009	92	93	0.37
RSRC009	93	94	0.90
RSRC009	94	95	1.8
RSRC009	95	96	0.32
RSRC009	96	97	1.38
RSRC009	97	98	1.12
RSRC009	98	99	0.08
RSRC009	99	100	0.04
RSRC009	100	101	0.19
RSRC009	101	102	0.28
RSRC009	102	103	0.11
RSRC009	103	104	0.42
RSRC009	104	105	0.31
RSRC009	105	106	0.09
RSRC009	106	107	0.06
RSRC009	107	108	0.08
	107	109	0.08
RSRC009 RSRC009	109	110	0.17
	•		
RSRC009	110	111	0.05
RSRC009	111	112	0.02
RSRC009	112	113	0.03
RSRC009	113	114	0.06
RSRC009	114	115	0.01
RSRC009	115	116	0.02
RSRC009	116	117	0.01
RSRC009	117	118	0.01
RSRC009	118	119	0.29
RSRC009	119	120	0.18
RSRC010	0	4	0.03
RSRC010	4	8	0.01
RSRC010	8	12	0.01
RSRC010	12	13	0.00
RSRC010	13	14	0.00
RSRC010	14	15	0.01
RSRC010	15	16	0.01
RSRC010	16	17	0.01
RSRC010	17	18	0.00
RSRC010	18	19	0.06
RSRC010	19	20	0.57
RSRC010	20	21	0.37
RSRC010	21	22	0.31
RSRC010	22	23	0.60
RSRC010	23	24	0.09
RSRC010	24	25	0.29
RSRC010	25	26	0.09
RSRC010	26	27	0.08
RSRC010	27	28	0.05
RSRC010	28	29	0.07
RSRC010	29	30	0.43
RSRC010	30	31	0.43
RSRC010	31	32	0.03
RSRC010	32	33	0.03
RSRC010 RSRC010	33	34	0.02
RSRC010	34	35	0.01
	35	36	
RSRC010	•		0.05
RSRC010	36	37	0.03
RSRC010	37	38	0.01
RSRC010	38	39	0.02

			MINE
Hole_ID	From	То	Au (g/t)
RSRC010	39	40	0.02
RSRC010	40	41	0.03
RSRC010	41	42	0.02
RSRC010	42	43	0.02
RSRC010	43	44	0.28
RSRC010	44 45	45	0.36
RSRC010	45	46 47	0.17
RSRC010 RSRC010	47	48	0.04 0.05
RSRC010 RSRC010	48	49	0.62
RSRC010	49	50	0.09
RSRC010	50	51	0.01
RSRC010	51	52	0.04
RSRC010	52	53	0.09
RSRC010	53	54	2.37
RSRC010	54	55	12.3
RSRC010	55	56	2.88
RSRC010	56	57	0.61
RSRC010	57	58	2.01
RSRC010	58	59	0.62
RSRC010	59	60	1.35
RSRC010	60	64	0.06
RSRC010	64	68	0.06
RSRC010	68	72	0.24
RSRC010	72	76	0.06
RSRC010	76	80	0.04
RSRC010	80	84	0.03
RSRC010	84	88	0.13
RSRC010	88	92	0.10
RSRC010	92	96	0.04
RSRC011	0	4	0.02
RSRC011	4	8	0.02
RSRC011	8	12	0.01
RSRC011	12	16	0.01
RSRC011	16	20	0.02
RSRC011	20	24	0.01
RSRC011	24	28	0.03
RSRC011	28	32	0.03
RSRC011	32	36	0.03
RSRC011	36	40	0.02
RSRC011	40	44	0.20
RSRC011	44	48 52	0.31 0.23
RSRC011 RSRC011	52	53	0.23
RSRC011 RSRC011	53	54	0.03
RSRC011	54	55	0.02
RSRC011	55	56	0.06
RSRC011	56	57	0.03
RSRC011	57	58	0.06
RSRC011	58	59	0.05
RSRC011	59	60	0.10
RSRC011	60	61	0.46
RSRC011	61	62	0.28
RSRC011	62	63	0.08
RSRC011	63	64	0.09
RSRC011	64	65	0.11
RSRC011	65	66	0.09
RSRC011	66	67	0.03
RSRC011	67	68	0.03
RSRC011	68	69	0.06
RSRC011	69	70	0.38
RSRC011	70	71	0.03

Hole_ID	From	То	Au (g/t)
RSRC011	71	72	0.11
RSRC011	72	73	0.03
RSRC011	73	74	0.02
RSRC011	74	75	0.17
RSRC011	75	76	1.16
RSRC011	76	77	0.11
RSRC011	77	78	0.01
RSRC011	78	79	0.02
RSRC011	79	80	0.06
RSRC011	80	84	0.07
RSRC011	84	88	0.05
RSRC011	88	92	0.04
RSRC011	92	96	0.04
RSRC011	96	100	0.08
RSRC011	100	104	0.03
RSRC011	104	108	0.09
RSRC011	108	112	0.03
RSRC011	112	116	0.08
RSRC011	116	120	0.18

APPENDIX 1.

<u></u> →			
		oles are provided to ensure compliance with the JORC Code (2012 edy South Project.	Edition) requirements for the reporting of Exploration
Section	1: Sampling	Techniques and Data	
	(Criteria in this se	ection applies to all succeeding sections)	
Criteria		JORC Code explanation	Commentary
Samplii	ng techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handland VPE instruments at 1). These exemples	Every metre drilled was sampled at the drill rig us rig mounted static cone splitter to collect 2 – 3kg samples.
		handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	4m composites through the geologically determined an incomposite through the geologically determined an incomposite through the coarse reject satisfies a collected in standard green bags, which remain a drill site.
		Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Standard reference material, sample duplicates automatically collected at 25m sample intervals from cone splitter
			Where a duplicate, produced from the cone sp wasn't sampled due to it being in a non-minera zone, a 4m composite field duplicate was obtained the pipe/spear method from the sample reject bag. method maintained a ~25m duplicate and star insertion rate throughout the entire program.
		Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	A combination of 1m split for geologically identification mineralised zones and 4m composite samples geologically identified waste zones were sent to laboratory for crushing, splitting and analysis. Analysis was undertaken by ALS laboratories (Pert gold assay by 50g fire assay.
Drilling	techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic etc) and details (e.g. core diameter, triple of standard tube, depth of diamond tails, face-sampling bit or other type, whether core is orientated and if so, by what method, etc).	89mm.
			RSRC0038 was completed by reverse circulation di techniques using a standard 5.5 inch (143mm) diar bit. A face sampling down hole hammer was used a times.
Drill sa	mple recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Drill recovery was routinely recorded via estimation the comparative percentage of the volume of the sample recovers by the company geologist. The sample recovers deemed adequate for representative assays.
		Measures taken to maximise sample recovery and ensure representative nature of the samples.	A qualitative estimate of sample weight was undert to ensure consistency of sample size and to mosample recoveries at the time of drilling

	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Drill sample recovery and quality is considered to be adequate for the drilling technique employed.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All holes have been geologically logged for lithology, mineralisation and weathering. A brief description of each drilling sample was recorded and a permanent record has been collected and stored in chip trays for reference.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Lithology codes have been interpreted by a geologist for consistency across the project.

	Criteria	JORC Code explanation	Commentary
		The total length and percentage of the relevant intersections logged.	Veining and mineralisation noted in lithological logs
ᄼ	Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	A sub sample from the RC drill rig of approximately 2-4kg was taken from the sample splitter off the cyclone. For holes drilled by Homestake, Murchison Mining and
		If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	St Barbara samples were pulverised to 85% passing 75 microns. From this a 50g charge was taken for fire assay with AAS finish. These assaying techniques are
		For all sample types, the nature, quality and appropriateness of the sample preparation technique.	considered appropriate for this style of mineralisation.
		Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	No QAQC data is available for prior drilling campaigns by Wakefield.
		Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second- half sampling.	The use of fire assay with 50g charge for all RC drilling provides a level of confidence in the assay database. The sampling and assaying in considered representative of the in-situ material.
		Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample size of 2-4 kilograms is appropriate and representative of the grain size and mineralisation style of the deposit.
	Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	ALS (Perth) were used for all analysis of drill samples submitted by Artemis. The laboratory techniques below are for all samples submitted to ALS and are considered appropriate for the style of mineralisation defined within the Carlow Castle Project area: Samples above 3Kg riffle split. Pulverise to 95% passing 75 microns 50-gram Fire Assay (Au-AA26) with ICP finish - Au. 4 Acid Digest ICP-AES Finish (ME-ICP61) – Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, TI, U, V, W, Zn. Ore Grade 4 Acid Digest ICP-AES Finish (ME-OG62) Standards were used for external laboratory checks by WCN. Duplicates were used for external laboratory checks by WCN.
		For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	
		Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	

	Criteria	JORC Code explanation	Commentary
	Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Several drilling campaigns have been conducted at South Reedy since 1984. These campaigns with subsequent infill drilling provide verification of the significant intersections as they have been repeated along strike at distances as close as 10m.
		The use of twinned holes.	No twinned holes were drilled but several holes are in close proximity to each other illustrating continuity of mineralisation.
		Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Electronic data capture, storage and transfer as .csv. Routine QC checks performed by contractor and independent geophysical consultant. Data were found to be of high quality and in accordance with contract
			specifications. Laboratory standards and blank samples were inserted at regular intervals and some duplicate samples were taken for QC checks.
7		Discuss any adjustment to assay data.	No adjustments were made to assay data.
	ocation of data oints	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	A Garmin GPSMap62 hand-held GPS was used to define the location of the drill hole collars. Standard practice is for the GPS to be left at the site of the collar
		Specification of the grid system used.	for a period of 5 minutes to obtain a steady reading. Collar locations are considered to be accurate to within
		Quality and adequacy of topographic control.	5m. Hole collars will be picked up by licensed surveyors on completion of the drilling. GDA94 Zone 51 co-ordinates.

	Criteria	JORC Code explanation	Commentary
	Data spacing and distribution	Data spacing for reporting of Exploration Results.	Collar information or the reported holes is provided. Rockchip samples were randomly collected and were appropriate given the objectives of the program.
))		Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Intercepts given are downhole widths with the true widths not determined.
		Whether sample compositing has been applied.	Single metre sampling used within mineralised zones.
	Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Drill holes have generally been drilled perpendicular to the general strike and dip of the orebody. Holes in this announcement have been collared with lease boundary restrictions so have interested the ore-zone at an oblique angle.
		If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	
	Sample security	The measures taken to ensure sample security.	Sample security measures for historical drilling are unknown. The chain of custody is managed by the supervising geologist who places calico sample bags in polyweave sacks. Up to 10 calico sample bags are placed in each sack. Each sack is clearly labelled with: O WhiteCliff Minerals Ltd

Criteria	JORC Code explanation	Commentary
5		 Address of laboratory Sample range Samples were delivered by Whitecliff personnel to the transport company in Cue
		The transport company then delivers the samples directly to the ALS laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	QA/QC data from the metallurgical testwork provides a high confidence in the recent RC drilling's assay data.
		Historical data has been extensively reviewed.
		Data is validated upon up-loading into the master database. Any validation issues identified are investigated prior to reporting of results.

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	South Reedy is located on M20/446, registered in the name of Harley Sears (50%) and Wakeford Holdings (50%). White Cliff Minerals Ltd has purchased the tenement from the registered holders as announced to the ASX on 8 October 2020. There are no known impediments to the future exploration or mining of this deposit.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in thearea.	Minimum expenditure requirement of \$10,000 per annum has been met for the current reporting period
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historical exploration has been conducted by Homestake Australia Ltd, St Barbara Ltd, Wakeford Holdings and Murchison Mining Pty Ltd. A total of 117 RC holes for 7,182m has been drilled. Data was compiled from WAMEX reports.
Geology	Deposit type, geological setting and style of mineralisation.	Mineralisation in the Mining Lease is hosted by the Reedy Shear Zone (RSZ) localised by a disconformable contact between two greenstone groups. Anastomosing structures develop within the RSZ focusing fluid migration and Au mineralisation. Strong potassic-silicic-pyritic alteration is associated with gold mineralisation localised within the footwal and hanging contacts of the 20m wide sub-vertica RSZ. Linear zones of more intense deformation appear to be important in the localisation of gold mineralisation within ultramafic zones often adjacent to mineralisation. Minor bucky quartz veining intrudes the shear and appears to run parallel to the shear zone.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole collar • elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	A summary of all exploration drilling and sampling is contained in tabulated data within this announcement.
	 dip and azimuth of the hole down hole length and interception depth hole length. 	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated.	Intersections have been calculated generally using a 1g/t cut off and internal waste of up to 2m thickness with total intercepts greater than1g/t. No upper cut off has been applied to intersections or samples.

		MINERALS
Criteria	JORC Code explanation	Commentary
D	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Only relevant elements (gold) are reported here. However, the samples underwent multi element assay as industry standard.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values are being used.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Reported intersection widths are generally greater than true widths by about 20% however this does vary within the deposit. Holes have generally been drilled perpendicular to strike. The orebody is sub-vertical with most holes drilled at -60° from horizontal.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	Location maps and drill cross sections are included in the body of this announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The reporting of exploration results is considered balanced by the competent person. The locations of the drill holes are included in this release.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	The Company's technical consultants are continuing to review available historical data, and WAMEX data over all WCN contolled tenements in the RSZ area.
Further work	The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Following the delivery of the maiden MRE, and the maiden drill program, additional drilling is planned to infill the deposit to either grow the resource or upgrade the resource category and also to extend the deposit along strike and at depth.