

ASX/TSX code: PRU

Capital structure as at 20 Jan 2021. Ordinary shares:

1,226,456,870 Performance rights: 24,362,273

Directors:

Mr Sean Harvey Non-Executive Chairman Mr Jeff Quartermaine Managing Director & CEO Ms Elissa Brown Non-Executive Director Mr Dan Lougher Non-Executive Director Mr John McGloin Non-Executive Director Mr David Ransom Non-Executive Director

Registered Office:

Level 2 437 Roberts Road Subiaco WA 6008 Telephone: +61 8 6144 1700 Email: IR@perseusmining.com Website: www.perseusmining.com

Contacts: For clarification of details, contact:

Jeff Quartermaine - Managing Director & CEO by email at jeff.quartermaine@perseusmining.com

Nathan Ryan - *Media Relations* on +61 4 20 582 887 or by email at nathan.ryan@nwrcommunications.com.au

EXECUTIVE SUMMARY

Perseus's gold mining operations continue to perform well.

• Edikan, Sissingué and Yaouré gold mines all contributed to Perseus maintaining its record of consistently strong operating performances this quarter:

Performance Indicator	Unit	December 2020 Quarter	December 2020 Half Year	2020 Calendar Year
Gold recovered ¹	Ounces	68,614	137,386	260,045
Gold poured ¹	Ounces	65,657	133,717	257,592
Production Cost ²	US\$/ounce	915	868	871
All-In Site Cost ("AISC") ²	US\$/ounce	1,036	1,000	1,002
Gold sales	Ounces	66,644	127,085	265,127
Average sales price	US\$/ounce	1,687	1,643	1,579
Notional Cashflow	US\$ million	44.6	88.3	150.0

1. Includes gold from Yaouré.

- 2. Excludes Yaouré's AISC until declaration of Commercial Production.
- Half Year gold production of 137,386 ounces was up 12% on the June 2020 Half Year, and close to the top end of the production guidance range of 125,500 -139,000 ounces. At US\$1,000 per ounce, AISCs were slightly lower than the June Half Year and within the guided AISC range of US\$940 - US\$1,025 per ounce.
- At 68,614 ounces, quarterly gold production was in line with last quarter's production while AISCs increased by 7% to US\$1,036 per ounce.
- Quarterly gold sales increased 10% and the average realised gold price increased 6% to US\$1,687 per ounce, generating quarterly and half year notional cashflows from operations of US\$44.6 million and US\$88.3 million, respectively.
- Perseus has set gold production and AISC market guidance for the June 2021 Half Year at 175,000 to 190,000 ounces at an AISC of US\$950 to US\$1,150 per ounce. (refer to *Table 8* for detail)

Yaouré mine development completed ahead of time and budget.

- First gold was successfully poured at Yaouré on 17 December 2020, ahead of the stretch target for the event. Commissioning is in progress and Commercial Production is expected to be declared when all completion tests are satisfied.
- Perseus has paid US\$237 million to suppliers of goods and services to date. Final development costs are expected to fall below the budget of US\$265 million.
- With the successful development and ramp up of Yaouré, Perseus will be on track to achieve its goal of producing more than 500,000 ounces of gold per year at a margin of not less than US\$400 per ounce.

Balance Sheet strength maintained by strong operating cash flows.

• Available cash and bullion on hand of US\$118.1 million at quarter end. Debt has been reduced by US\$20 million to US\$130 million giving a net debt position during the quarter of US\$11.9 million, US\$9.3 million more than at the end of last quarter.

Encouraging organic growth opportunities emerging.

• Organic growth opportunities are being investigated on existing licence areas, particularly at Bagoé near Sissingué and on the Yaouré mining lease and are expected to deliver incremental growth in Mineral Resources and Ore Reserves.

GOLD MINING OPERATIONS

Notwithstanding challenges associated with the COVID-19 pandemic, Perseus's three operating gold mines, Edikan in Ghana, Sissingué and more recently, Yaouré in Côte d'Ivoire, performed well in the December 2020 quarter, producing a combined total of 68,614 ounces of gold, in line with the 68,772 ounces produced in the prior quarter.

The Group's combined AISC¹ of US\$1,036 per ounce of gold produced during the quarter was 7% above the AISC for the previous quarter and continued to include costs associated with measures to ensure business continuity during the COVID-19 crisis.

Gold sales totalled 66,644 ounces, 6,203 ounces or 10% more than last quarter at a weighted average realised gold price of US\$1,687 per ounce, US\$92 per ounce or 6% more than in the September 2020 quarter.

Perseus's average cash margin for the quarter was US\$651 per ounce, approximately US\$20 per ounce more than during the September 2020 quarter, resulting in notional cashflow from operations of US\$44.6 million, slightly higher than that generated in the prior period.

Gold production and AISCs for the December 2020 Half Year of 137,386 ounces at US\$1,000 per ounce¹ compared favourably to the guided production and cost ranges of 125,500 – 139,000 ounces at an AISC of US\$940 – 1,025 per ounce.

Notional cashflow from Group operations of US\$88.3 million during the December 2020 Half Year, was 39% or approximately US\$25.0 million more than in the June 2020 Half Year, due to an 8% increase in the realised gold price and 12% higher period on period gold production.

. Note that costs associated with 2,687 ounces of gold production at Yaouré are not included in the Group's combined ASIC as they have been capitalised and will continue to be capitalised until Commercial Production has been declared (See below).

Sissingué Gold Mine, Côte d'Ivoire

During the December 2020 quarter, Sissingué produced 26,822 ounces of gold at a production cost of US\$588 per ounce and an AISC of US\$701 per ounce. The weighted average sales price of the 26,818 ounces of gold sold during the quarter was US\$1,795 per ounce, giving rise to a cash margin of US\$1,094 per ounce. Notional cashflow generated from operations amounted to US\$29.3 million for the quarter, an increase of 3.5% on the prior quarter. **Table 2** below summarises the key technical and financial parameters achieved at Sissingué during the December 2020 quarter, as well as in prior periods.

Gold production for the quarter was 8% less than in the September 2020 quarter. The total of 294,883 dry metric tonnes of ore milled during the quarter was 20% less than in the prior quarter, reflecting a decrease in run time from 95% to 90%, (the result of issues associated with a mill reline early in the quarter) and a 19% lower throughput rate reflecting a planned increase in the proportion of fresh ore milled. The gold recovery rate at 95%, was up from 93% in the prior quarter, and this together with the increased head grade of ore treated (2.98g/t compared to 2.62g/t) served to partially offset the impact of reduced quantity of processed ore.

Unit production costs for the quarter at US\$588 per ounce were 19% higher than in the prior period largely due to 8% lower gold production, and higher mining, processing and G&A costs. Unit mining costs at US\$5.61 per tonne moved were 6% lower than in the previous period due largely to an increase in the tonnes of material mined as the wet season ended.

Processing costs at US\$20.70 per tonne were higher than the prior period reflecting a 20% decrease in tonnes of ore processed resulting from lower throughput rates due to the hardness of ore delivered to the mill and higher maintenance costs associated with issues arising from a mill reline early in the quarter. G&A costs (US\$1.23 million per month) were also marginally higher than in the prior quarter due to costs associated with COVID-19, including additional transport costs, meals, accommodation, and incentive payments.

AISCs at US\$701 per ounce were 20% higher than the unusually low AISC of US\$588 per ounce recorded in the prior period. As noted, production costs were 19% higher than the prior period and sustaining capital was higher (US\$29 per ounce compared to US\$7 per ounce) as costs of the final tailings dam lift were brought to account. Royalties were marginally lower at US\$84 per ounce compared to US\$88 per ounce in the prior quarter, reflecting the timing of gold sales.

Table 2: Sissingué Quarterly Performance Statistics

Table 2: Sissingué Qu Parameter	Unit	March 2020 Quarter	June 2020 Quarter	September 2020 Quarter	December 2020 Quarter	December 2020 Half Year	2020 Calendar Year
Gold Production & Sale	25	Quarter	Quarter	Quarter	Quarter		rear
Total material mined	tonnes	1,831,615	1,334,070	913,816	1,064,834	1,978,650	5,144,335
Total ore mined	tonnes	466,994	367,102	457,462	390,075	847,537	1,681,633
Average ore grade	g/t gold	1.75	2.25	2.38	2.47	2.42	2.20
Strip ratio	t:t	2.9	2.6	1.0	1.7	1.3	2.1
)							
Ore milled	Tonnes	370,060	314,468	370,396	294,883	665,279	1,349,807
Milled head grade	g/t gold	1.76	2.42	2.62	2.98	2.78	2.41
Gold recovery	%	95.2	95.8	93.4	95.1	94.2	94.9
Gold produced	ounces	19,964	23,395	29,087	26,822	55,909	99,268
Gold sales ¹	ounces	21,790	26,859	20,298	26,818	47,116	95,765
Average sales price	US\$/ounce	1,454	1,575	1,562	1,795	1,695	1,606
Unit Costs							
Mining cost	US\$/t mined	3.59	4.68	5.99	5.61	5.78	4.72
Processing cost	US\$/t milled	12.03	17.05	15.25	20.70	17.67	15.98
G & A cost	US\$M/month	0.89	1.02	1.08	1.23	1.15	1.05
1							
All-In Site Cost							
Production cost	US\$/ounce	685	626	493	588	539	589
Royalties	US\$/ounce	<u>66</u>	<u>75</u>	<u>88</u>	<u>84</u>	<u>86</u>	<u>79</u>
Sub-total	US\$/ounce	751	701	581	672	625	668
Sustaining capital	US\$/ounce	<u>30</u>	<u>33</u>	<u>7</u>	<u>29</u>	<u>18</u>	<u>24</u>
Total All-In Site Cost	US\$/ounce	781	734	588	701	643	692
Cash Margin	US\$/ounce	673	841	974	1,094	1,052	927
Notional Cash Flow	US\$M	13.4	19.7	28.3	29.3	58.8	92.0
Site Exploration Cost	US\$M	0.61	1.41	0.43	2.09 ²	2.52 ²	3.80 ²

1. Gold sales are recognised in Perseus's accounts when gold is delivered to the customer from Perseus's metal account.

2. Includes costs associated with exploration of the Bagoé project deposits.

Mineral Resource model to mill reconciliation

The reconciliation of processed ore tonnes, grade and contained ounces relative to the Mineral Resource block model on which mine plans are based (Refer to **Table 3** below) has shown relatively high month to month variations as mining progresses through the highest-grade section of the Sissingué orebody. During the last 3 months 14% more ore tonnes at 11% lower grade have been produced compared to the Mineral Resource model. Over each of the last six- and twelve-month periods, Sissingué has produced tonnes of ore at a grade that is close to that predicted in the Mineral Resource model, and well within industry standard expectations.

Table 3:	Sissingué	Block	Model	to Mi	ll Reconci	liation	Statistics:
----------	-----------	-------	-------	-------	------------	---------	-------------

Parameter	Block Model to Mill Correlation Factor				
	3 Months	6 Months	1 Year		
Tonnes of Ore	1.14	1.09	1.01		
Head Grade	0.89	0.98	0.97		
Contained Gold	1.01	1.08	0.97		

Mining Licence for Fimbiasso satellite deposit

During the quarter, Perseus continued discussions with the Ivorian Ministry of Mines and Geology regarding the granting of an Exploitation Permit to mine the Ore Reserves at Fimbiasso, a satellite deposit located outside of the existing Exploitation Permit area but within trucking distance of the Sissingué mill. The Ivorian Council of Ministers (CIM) considered the matter in October 2020 and resolved that a Decree granting the Exploitation Permit for the Fimbiasso deposit would be drafted and submitted for approval.

Unfortunately, the proposed Decree was not finalised prior to the Presidential elections that took place in Côte d'Ivoire on 31 October 2020. Perseus has received assurances that this matter will be promptly addressed early in the life of the new government and while encouraged by that advice, we await evidence of firm progress.

Under Sissingué's current Life of Mine Plan, Fimbiasso ore is scheduled to be mined and hauled to the Sissingué mill for processing towards the end of the September 2021 quarter. In anticipation of the Fimbiasso Exploitation Permit being granted, work on the upgrade of the public road between Sissingué and Fimbiasso has commenced and will continue during the March 2021 quarter.

Feasibility Study for development of the Véronique, Antoinette and Juliette satellite deposits

Prior to the end of the quarter, Perseus completed Resource definition drilling programmes at each of the Véronique, Antoinette and Juliette deposits located on the Bagoé exploration licence, was acquired when Perseus merged with Exore Resources in the September 2020 quarter. These deposits are located within trucking distance of the Sissingué mill and if mining proves feasible and is permitted, ore from these deposits could potentially provide sufficient mill feed to materially extend the life of the Sissingué operation.

By the end of the quarter, all Resource definition drill samples had been despatched for assaying and the full set of drill results are due to be received in the March 2021 quarter, when an updated Mineral Resource estimate will be prepared.

At the same time as the Resource definition drilling was undertaken, Perseus collected ore samples to test metallurgical properties. A geotechnical site investigation was also completed, and samples dispatched for testing. Perseus will use the data gathered from both programmes to assess the Ore Reserve potential of the deposits following the estimation of Mineral Resources.

Environmental consultants, CECAF, also worked on data collection required for the preparation of an Environmental and Social Impact Assessment (ESIA), during the quarter. The ESIA along with the proposed mine plan, will form part of a formal Definitive Feasibility Study (DFS) for developing the Véronique, Antoinette and Juliette deposits. This DFS is currently scheduled to be completed by the end of the March 2021 quarter but completion will be a determined by the speed with which assay results are made available by the assay laboratories. Once complete, the DFS will be submitted to the Ivorian government authorities, along with an application for an Exploitation Permit covering the Bagoé exploration licence area.

Edikan Gold Mine, Ghana

Operating performance at Edikan during the December 2020 quarter was generally in line with the prior quarter and reasonably in line with expectations.

During the quarter, Perseus produced 39,105 ounces of gold at Edikan, 1.5% less than the prior quarter, at a production cost of US\$1,139 per ounce and an AISC of US\$1,266 per ounce. Gold sales totalled 39,826 ounces, less than 1% below the prior quarter, at a weighted average realised gold price of US\$1,614 per ounce or US\$3 more per ounce than the prior quarter, giving rise to a cash margin of US\$348 per ounce. Notional cashflow generated from Edikan during the quarter was US\$13.6 million. *Table 4* below summarises the key technical and financial results achieved at Edikan during the quarter as well as in prior periods.

During the quarter, Edikan sought to optimise gold production by subtly adjusting the blend of ores included in its mill feed. As a result of decreasing the proportion of softer, higher grade Bokitsi ore in the mill feed, throughput rates decreased by 4% and head grade decreased by 2% but did result in improved gold recovery rates (increase of 3% to 76.5%) and when combined with a slight increase of run time from 90% to 91%, gold production of 39,105 ounces, was within 1.5% of the amount produced during the prior quarter. The last of the Bokitsi ore was fed to the mill in early January 2021, and improvements in gold recovery rates and production are forecast for the March and June 2021 quarters.

Production costs per ounce for the quarter at US\$1,139 per ounce were 7% higher than the prior period reflecting a combination of 1.5% less gold production and slightly higher mining, processing costs and G&A costs.

Unit mining costs at US\$3.09 per tonne were the same as unit mining costs in the prior period, but with 3% more tonnes mined this meant that total mining costs were slightly higher and when coupled with fewer ounces of gold recovered, impacted production costs per ounce. Unit processing costs at \$10.04 per tonne were 12% higher than the prior period's US\$8.97 per tonne. Tonnes of ore milled were down nearly 3% due to increased ore hardness as noted above, but the unit cost increase resulted mainly from the cost of major maintenance works carried out on the crusher and the low-profile feeder during the quarter. Some of these works had been deferred from previous periods due to lack of availability of maintenance crews brought about by restrictions to site access associated with the COVID-19 crisis. G&A costs at US\$1.59 per month were also slightly higher than the US\$1.56 per month incurred in the September quarter. December quarter G&A costs continued to include costs associated with measures taken to combat COVID-19, including additional transport costs, meals, housing and incentive payments.

The quarterly AISC at US\$1,266 per ounce was up 2.1% or US\$26 per ounce more than in the prior period mainly due to slightly lower gold production and higher production costs as described above, offset by lower sustaining capital costs.

Table 4: Edikan Quarterly Performance Statistics	Table 4:	Edikan	Quarterly	Performance	Statistics:
---	----------	--------	-----------	-------------	-------------

Parameter	Unit	March 2020 Quarter	June 2020 Quarter	September 2020 Quarter	December 2020 Quarter	December 2020 Half Year	2020 Calendar Year
Gold Production & Sale	es						
Total material mined	Tonnes	6,359,926	6,161,900	7,148,510	7,385,771	14,534,282	27,056,108
Total ore mined	Tonnes	1,234,412	1,276,734	975,988	892,351	1,868,339	4,379,485
Average ore grade	g/t gold	1.28	1.27	1.29	1.05	1.17	1.24
Strip ratio	t:t	4.2	3.8	6.3	7.3	6.8	5.2
Ore milled	Tonnes	1,764,679	1,601,118	1,733,723	1,688,426	3,422,149	6,787,946
Milled head grade	g/t gold	1.08	1.06	0.96	0.94	0.95	1.01
Gold recovery	%	61.1	75.9	73.9	76.5	75.2	71.7
Gold produced	ounces	38,019	41,281	39 <i>,</i> 685	39,105	78,790	158,090
Gold sales ¹	ounces	38,225	51,168	40,143	39,826	79,969	169,36
Average sales price	US\$/ounce	1,512	1,528	1,611	1,614	1,612	1,56
Unit Costs							
Mining cost	US\$/t mined	3.24	3.08	3.09	3.09	3.09	3.1
Processing cost	US\$/t milled	8.75	8.43	8.97	10.04	9.50	9.0
G & A cost	US\$M/month	1.79	1.63	1.56	1.59	1.57	1.6
All-In Site Costs							
Production cost	US\$/ounce	1,090	906	1,065	1,139	1,102	1,04
Royalties	US\$/ounce	<u>102</u>	<u>104</u>	<u>111</u>	<u>111</u>	<u>111</u>	<u>10</u>
Sub-total	US\$/ounce	1,192	1,010	1,176	1,250	1,213	1,15
Sustaining capital	US\$/ounce	<u>50</u>	<u>39</u>	<u>64</u>	<u>16</u>	<u>40</u>	<u>4</u>
Total All-In Site Cost	US\$/ounce	1,242	1,049	1,240	1,266	1,253	1,19
Cash Margin	US\$/ounce	270	479	371	348	359	37
Notional Cash Flow	US\$M	10.3	19.8	14.7	13.6	28.3	58.
Site Exploration Cost	US\$M	0.55	0.65	0.67	1.17	1.83	3.0

Notes: Gold sales are recognised in Perseus's accounts when gold is delivered to the customer from Perseus's metal account

Mineral Resource model to mill reconciliation

A review of the reconciliation of processed tonnes and grade of ore relative to the Mineral Resource block model on which the Edikan mine plans are based, showed that reconciliations in the past three months have been negative in terms of contained metal mainly due to lower grade. The performance is driven by the AG pit, which during the quarter was in the process of cutting back the northern part of the pit from surface. Typically, this resulted in similar tonnes at significantly lower grade in the past, and this trend continued, largely due to the reduced precision in identifying exactly where first ore is intercepted. The overall position for the last 6 and 12 months shows very good reconciliation on ounce production with slightly more tonnes at slightly lower grade than predicted as shown below in *Table 5*.

Table 5: Edikan Block Model to Mill Reconciliation Statistics:

Parameter	Block Model to Mill Correlation Factor				
	3 Months	6 Months	12 months		
Tonnes of Ore	0.98	1.05	1.06		
Head Grade	0.94	0.95	0.95		
Contained Gold	0.91	1.00	1.01		

Esuajah South (ESS) Underground Development Project

Perseus temporarily deferred the planned start of implementation of the Esuajah South Underground development project during the quarter, pending confirmation of several critical parameters that could materially influence the economics of the development project.

Offers of underground mining services from several mining contractors have been carefully analysed during the quarter and modifications proposed to draft contracts to take account of current local labour hire requirements in Ghana. Perseus will select a preferred mining contractor as soon as possible. The design of the box-cut, portal and decline were modified to reflect an improved understanding of the weathering profile of the Esuajah South deposit. Perseus completed infill Mineral Resource drilling by mid-October 2020 and an updated Mineral Resource estimate was completed late in the quarter. Final mining and capital costs were updated and will be used to update the Esuajah South Ore Reserve estimate and Definitive Feasibility Study (DFS) in the March 2021 quarter. Following completion of the DFS, Perseus will decide on the best way forward for the project, based on all available relevant information.

Yaouré Gold Mine, Côte d'Ivoire

Yaouré Project Development

During the quarter, the development of the Yaouré mine and associated infrastructure progressed at pace and Perseus achieved the following key milestones:

- 03 November 2020 Practical completion of the Tailings Storage Facility.
- 12 November 2020 First ore to the Crusher.
- 22 November 2020 Yaouré substation first energised with 90KV power.
- 27 November 2020 Permanent power supply made available to Yaouré substation.
- 27 November 2020 First ore to the mill.
- 17 December 2020 First gold pour.

By 31 December 2020, construction of the processing plant and associated infrastructure was virtually complete and in early January 2021, Practical Completion was achieved. By the end of the quarter, approximately 5.12 million man-hours had been worked in developing Yaouré and during this time, only 1 Lost Time Injury was recorded – a very creditable safety record. At the peak of construction, approximately 1,800 people were employed on the site, approximately 88% of whom were Ivorian nationals and 12% expatriates. Of the Ivorian nationals, approximately 66% were recruited from the surrounding community.

Throughout the entire period of construction, only 3 positive COVID-19 tests were recorded by employees of Perseus and its contractors. In all cases, the infected workers were promptly transported to Abidjan for specialist medical treatment and all returned to site when treatment was complete as evidenced by negative test results.

The financial status of the Yaouré development as at 31 December 2020, is as shown below in Table 6. Perseus expects to pay the balance of money outstanding to various suppliers of goods and services during the March 2021 quarter. The final cost of development is expected to be less than the budget of US\$265 million.

	Development	Forecast Final	Commitme	nts Entered	Expenses	Incurred	Cash	paid
	Budget	Cost	Amount	% ¹	Amount	%1	Amount	% ¹
ר ז	US\$265.0 M	US\$265.0 M	US\$257.7 M	97	US\$256.3 M	97	US\$ 236.7 M	89

Table 6: Yaouré Development Project - Financial Status

Note: 1. Represents percentage of Development Budget

Yaouré Operations

Human Resources

During the quarter, Perseus successfully advanced recruitment of its operating team for Yaouré under the leadership of General Manager, Merlin Thomas, the inaugural General Manager of Perseus's very successful Sissingué Gold Mine. By year end, recruitment of Yaouré's workforce was nearly complete, comprising 228 direct Perseus employees and a further 388 people employed by various contractors. Of Perseus's direct employees, 93% are Ivorian nationals, many of whom come from surrounding villages, and only 7% are expatriates. Perseus has designed and is implementing a range of training programmes that cover key operating roles and focuses on upgrading of skills as well as familiarisation with Perseus's policies, procedures and protocols required for a large mining and processing operation.

Community Relations

Finalisation of land compensation has moved slower than Perseus expected during the quarter and the Commercial Court of Côte d'Ivoire will now resolve an outstanding dispute with a small number of landowners on land compensation rates. The government of Côte d'Ivoire joined the legal action as an interested party during the quarter and the matter is now expected to be resolved in the first half of 2021. In the meantime, Perseus has been granted full access to the site pending finalisation of the land compensation rates. Compensation for crops, both in relation to construction activities and recent exploration programmes is close to finalisation pending the provision of identification and bank details by a small group of farmers.

Mining

Perseus's mining contractor, EPSA Internacionale (EPSA), continued to progressively ramp up its mining operations during the quarter by building up its mining fleet to full capacity, establishing administration and maintenance facilities, recruiting and training employees and commencing mining in the CMA and ROM SE pits. Mining operations are proceeding very well focussing on mining oxide ore from decommissioned heap leach pads (ROM SE pit) and waste removal from the CMA pit. At the end of the quarter, total material movements were tracking approximately 26% ahead of targets, generating the possibility of earlier than planned access to significantly higher grade, fresh ore from the CMA pit in the June 2021 quarter.

Processing

Dry commissioning of various processing facility systems started in October 2020 and in November 2020, many of these systems were fully commissioned using power generated by backup generators. On 12 November 2020, first ore was crushed and stacked on the crushed ore stockpile or COS. After a short hiatus related to travel restrictions imposed around the time of the Ivorian Presidential election, the nearby Kossou substation that distributes power from the nearby Kossou hydro-electric dam was connected to the Yaouré substation on 22 November 2020. On 27 November 2020, a permanent, renewable, 90KV power supply was provided to Yaouré and all systems were able to be fully energised enabling Perseus to start producing gold.

On 17 December 2020, Perseus successfully completed its first gold pour at Yaouré. This important milestone was achieved nearly 5 weeks ahead of schedule, consistent with Perseus's "stretch target" of pouring first gold in December 2020. Shortly after the first gold pour, commissioning activities were suspended due to water damage to the SAG Mill's variable speed drive transformer, caused by a very heavy rain event. In response to this commissioning setback, the plant flow sheet was reconfigured to enable the soft oxide ore that is being used for commissioning purposes, to be processed using the SAG mill only as opposed to a combination of a SAG mill and a ball mill. The latter is required for processing harder fresh ore which will become available for processing in the June 2021 quarter.

Ore processing and commissioning successfully recommenced on 3 January 2021 and will continue using the SAG mill only configuration until a replacement VSD transformer is delivered and installed, most likely very early in the June 2021 quarter ahead of delivery of fresh ore from the CMA pit to the mill. By the end of the December 2020 quarter, and after 311 hours of SAG mill run time, the key technical parameters shown below in Table 7, had been achieved at the Yaouré operation.

Table 7: Yaouré Quarterly Performance Statistics:

	Parameter	Unit	September 2020 Quarter	December 2020 Quarter	December 2020 Half Year	2020 Calendar Year
	Fulumeter		Quuiter	quarter	nuŋ reur	, cui
))	Gold Production & Sales	•				
	Total material mined	Tonnes	121,069	6,328,371	6,449,440	6,449,440
	Total ore mined	Tonnes	1,353	126,795	128,148	128,148
	Average ore grade	g/t gold	0.52	0.78	0.78	0.78
)	Strip ratio	t:t	88.5	48.9	49.3	49.3
)						
J	Ore milled	Tonnes	-	122,545	122,545	122,545
7	Milled head grade	g/t gold	-	1.01	1.01	1.01
J	Gold recovery	%	-	67.7	67.7	67.7
	Gold produced	ounces	-	2,687	2,687	2,687
	Gold sales ¹	ounces	-	-	-	-
3	Average sales price	US\$/ounce	-	-	-	-
J						
	Site Exploration Cost	US\$M	2.99	2.09	5.08	11.65

Operational Ramp up and Declaration of Commercial Production

Full commissioning and ramp up of the processing facility is currently in progress at Yaouré. The original commissioning plan contemplated commissioning and declaration of Commercial Production based on performance achieved while processing oxide ore. Perseus successfully employed this approach at the Sissingué Gold Mine. With the possibility of earlier than planned access to harder fresh ore from the CMA pit, declaration of Commercial Production may be deferred until completion tests using both oxide and fresh ore have been satisfied. A final decision will be taken on this matter during the March 2021 quarter, during which the first shipment of gold will take place.

All costs incurred during commissioning up to the date on which Commercial Production is declared, will be capitalised in accordance with international financial reporting standards (IFRS). AISCs and unit mining and processing costs will be published thereafter.

Revised Life of Mine Plan

Perseus published an inaugural Life of Mine Plan for the Yaouré Gold Mine in October 2017 when results of its Definitive Feasibility Study were released to the market and later confirmed assumed cost parameters with the release of its Front-End Engineering and Design Study in October 2018. Since that date, significant additional technical and commercial work has been conducted in relation to the Yaouré mine. This includes exploration, grade control drilling and re-optimisation of mine plans as well as execution of firm contracts for the supply of goods and services and recruitment of an operating team. Taking all of the above into account, along with the expected speed of ramp up of the mill and actual performance by the mining contractor, an updated Life of Mine Plan is being prepared and subject to the timely receipt of assay results from our contracted assay laboratory, is scheduled to be released prior to the end of the March 2021 quarter.

It should be noted that this version of the mine plan will not include extensions to the mine plan to accommodate proposed underground mining operations from the bottom of the CMA pit. In coming periods, extensive exploration drilling will be undertaken based on the results of a recently completed 3D seismic survey of the area and the results from these programmes will inform the next update of Yaouré's LOMP that will most likely be published in 2022.

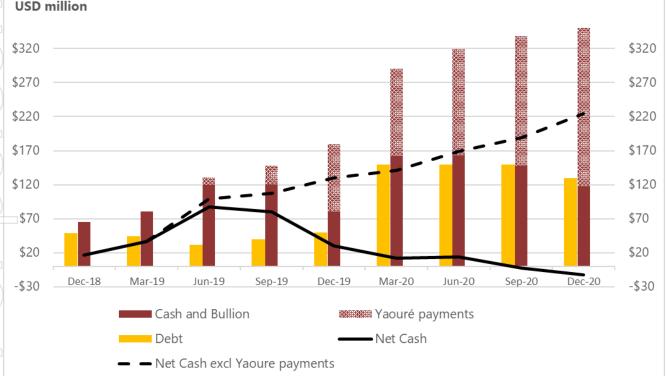
Perseus Group Production and Cost Guidance – June 2021 Half Year

Production and cost guidance for the June 2021 Half Year and the 2021 Full Financial Year remains unchanged as follows:

Table 8: Production and Cost Guidance:

Table 8: Production and	cost culturice.	December 2020 Half	June 2021	2021
Parameter	Unit	Year	Half Year	Financial Year
		(Actual)	(Forecast)	(Forecast)
Edikan Gold Mine				
Gold production	'000 Ounces	78,790	87,500 – 95,000	166,290 – 173,790
All-In Site Cost (AISC)	US\$/ounce	1,253	1,000 – 1,200	1,115-1,225
Sissingué Gold Mine				
Gold production	'000 Ounces	55,909	39,500 – 43,000	95,409 – 98,909
All-In Site Cost (AISC)	US\$/ounce	643	650 - 725	646-677
Yaouré Gold Mine				
Gold production	'000 Ounces	2,687	48,000 – 52,000	50,687 – 54,687
All-In Site Cost (AISC)	US\$/ounce	-	1,100 – 1,300	1,100-1,300
Perseus Group				
Gold production	'000 Ounces	137,386	175,000 – 190,000	312,386 – 327,386
All-In Site Cost (AISC)	US\$/ounce	1,000	950 -1,150	970 – 1,067

GROUP FINANCIAL POSITION

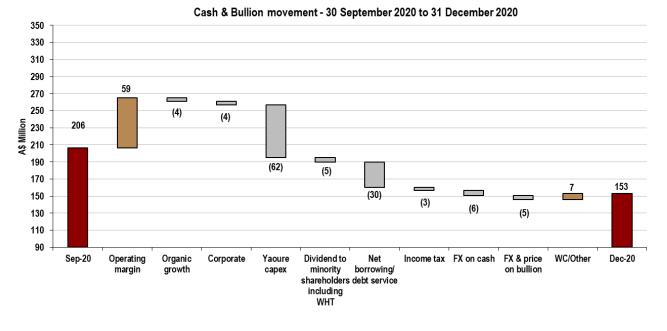

(Unaudited) Cashflow and Balance Sheet

Perseus achieved another strong quarter of cash flow generation and maintained balance sheet strength notwithstanding ongoing investment in the development of the Yaouré Gold Mine, organic growth initiatives, payment of a maiden dividend to Sissingué's minority shareholders (including associated with-holding tax (WHT)) and the retirement of corporate debt.

Based on the spot gold price of US\$1,888 per ounce and a A\$:US\$ exchange rate of 0.7707 on 31 December 2020, the total value of cash and bullion on hand at the end of the quarter was A\$153.2 million, (US\$118.1 million) including cash of A\$120.5 million (US\$92.9 million) and 13,350 ounces of bullion on hand, valued at A\$32.7 million (US\$25.2 million). This equated to a decrease of US\$29.3 million in cash and bullion or A\$53.3 million in AUD terms.

In December 2020, Perseus paid US\$20 million to reduce outstanding debt under its revolving corporate cash advance facility. Total amount outstanding is now US\$130 million, and as expenditure on the Yaouré development project nears completion, further debt reductions are planned that will also decrease financing costs.

As a result of the above, Perseus's net debt position at the end of the quarter was US\$11.9 million (Refer to *Figure 1* below) which was US\$9.3 million more than the position at the end of the September 2020 quarter, largely the result of capital expenditure of US\$62.1 million on the development of the Yaouré Gold Mine during the period.


Figure 1: Quarterly balance of cash and bullion, interest-bearing liabilities and net cash and bullion

The overall movement in cash and bullion during the quarter as shown below in *Figure 2* takes account of the positive operating margins from both the Edikan (A\$18.6 million) and Sissingué (A\$40.1 million) operations, working capital inflow (A\$7.5 million), Australian and West African corporate costs (A\$3.6 million), exploration (A\$4.4 million), debt repayment and debt service (A\$29.8 million), Yaouré development (A\$62.1 million), foreign exchange loss on cash and bullion (A\$10.9 million), maiden dividend payment to minority shareholders including WHT, (A\$5.4 million) and Ghana income tax instalment (A\$3.3 million).

On 31 December 2020, Perseus's working capital totalled A\$172.0 million, a decrease of A\$62.3 million relative to the 30 September 2020 balance (A\$234.3 million), largely the result of the US\$29 million decrease in cash and bullion on hand during the period, strengthening of the AUD against the USD and the US\$20 million debt repayment.

Gold Price Hedging

At the end of the quarter, Perseus held gold forward sales contracts for 210,289 ounces of gold at a weighted average sales price of US\$1,470 per ounce. These hedges are designated for delivery progressively over the period up to 30 June 2022. Perseus also held spot deferred sales contracts for a further 100,145 ounces of gold at a weighted average sales price of US\$1,618 per ounce. Combining both sets of sales contracts, Perseus's total hedged position at the end of the quarter was 310,434 ounces at a weighted average sales price of US\$1,517 per ounce.

Perseus's hedge position has decreased by 143 ounces since the end of the September 2020 quarter. As a result of our policy of replacing lower priced hedges with higher priced hedges when possible, the weighted average sales price of the hedge book increased by US\$36 per ounce or 2.4% during the quarter.

Hedging contracts currently provide downside price protection to approximately 20% of Perseus's currently forecast gold production for the next three years, leaving 80% of forecast production potentially exposed to movements (both up and down) in the gold price.

BUSINESS GROWTH

With the commissioning and progressive ramp up of Perseus's third gold mine, Yaouré, generally running to plan and in the process, establishing the means for Perseus to achieve its goal of producing more than 500,000 ounces of gold per year by 2022, the Company's focus has now moved to maintaining this level of production consistently into the future, and also incrementally increasing the Company's Mineral Resources and Ore Reserves by either organic or inorganic means.

In the short to medium term, Perseus's main focus is to replace mining depletion through organic growth. To achieve this, the emphasis over the next 6 months will be placed on the incremental addition of Mineral Resources and Ore Reserves from near mine deposits that are currently the subject of exploration and or feasibility studies.

At Yaouré, Perseus completed initial resource drilling at the CMA South, Govisou, Angovia 2 and Sayikro deposits, all of which are within 10km of the new processing plant. Resource potential will be assessed at CMA South, Govisou and Angovia 2 in the March 2021 quarter. Depending on results, further drilling will be completed and, if successful, Resources and Reserves could be added to inventory before the end of the June 2021 quarter.

At Sissingué, Perseus completed drilling at the Antoinette, Véronique and Juliette deposits located on the Bagoé exploration permit. A DFS for the development of these deposits is scheduled to be completed by the end of the March 2021 quarter, with the expectation that the additional Mineral Resources and Ore Reserves could materially extend the forecast mine life of the Sissingué operation.

At Edikan, Perseus completed a drilling program at Esuajah South to convert a modest amount of Inferred Resource to Ore Reserve, thereby improving project viability of the proposed underground development project. Drilling was also completed at Mampong South and evaluation of resource potential and the requirements for further drilling to potentially convert Resources to an Ore Reserve will be assessed in the March 2021 quarter with the aim of implementing programmes needed to achieve this outcome, in the June 2021 quarter.

Beyond the June 2021 quarter, Perseus has identified several large targets for potential conversion to Mineral Resources and possibly Ore Reserves. The preferred targets for organic growth at Yaouré include the CMA Underground and other targets established from the initial interpretation from the 3D seismic survey that has recently been completed on the site. At Edikan, subject to gaining access for drilling, a drill program is planned at the Breman prospect on the Agyakusu permit, where significant mineralisation has been identified on surface in artisanal mine workings. At Sissingué, further potential to add Mineral Resources and Ore Reserves from the Bagoé area will also be followed up.

In addition to pursuing near mine organic growth, the medium to longer-term growth strategy also involves identifying new exploration opportunities in Ghana and Côte d'Ivoire, as well as elsewhere in West Africa and potentially beyond. A team has been established to identify prospective areas which in some cases, have little or no exploration history, as well as identifying areas that are largely underexplored. The potential at the Dompoase and DML permits in Ghana and the Minignan area in Côte d'Ivoire are the first results of the implementation of this grass roots exploration strategy.

Potential business growth opportunities involving either mergers or acquisitions are also regularly assessed by Perseus's technical and commercial teams. Given the challenges of implementing value accretive M&A and applying strict financial discipline in assessing opportunities in the currently strong gold price environment, the Company does not rely on this activity for delivering growth, preferring instead to focus on near mine and early exploration growth strategies. It should however be noted that in the last five years, Perseus has executed two strategic acquisitions in the form of Amara Mining plc that yielded the Yaouré Project, and more recently Exore Resource Limited, the owner of the Bagoé Project. Both acquisitions have added materially to the value of Perseus and are indicative of the Company's capacity to successfully transact when the right M&A situation presents.

Recent progress with the implementation of our organic business growth strategy is as follows:

Exploration

Group Exploration Expenditure

Expenditure on exploration activities throughout West Africa during the periods ending 31 December 2020 was as follows:

Table 9: Exploration Expenditure as at December 2020 Quarter

Region	Unit	December 2020 Quarter	December 2020 Half Year	2020 Calendar Year
Ghana	US\$ million	1.16	1.83	3.03
Côte d'Ivoire				
Sissingué	US\$ million	1.35	1.78	3.81
Yaouré	US\$ million	2.09	5.08	11.65
<u>Regional</u>	US\$ million	<u>0.01</u>	<u>-0.05</u>	<u>1.27</u>
Sub-total	US\$ million	3.45	6.81	16.73
Total West Africa	US\$ million	4.61	8.65	19.76

Côte d'Ivoire

Yaouré Exploration & Exploitation Permits

Exploration activities on the Yaouré permits during the quarter included air core ("AC") drilling at Allekran and Degbezere, and reverse circulation ("RC") drilling at CMA South Extension, Angovia 2 and Govisou (*Appendix A – Figure 2*). Processing and interpretation of data from the recently completed 2D and 3D seismic surveys over the CMA deposit and environs was completed and preparations for an airborne gravity survey commenced.

AC drilling at Allekran and Degbezere was undertaken to follow up strong gold-in-auger anomalies, with 3,316 metres drilled at Allekran in 66 holes and 7,622 metres drilled in 150 holes. The drilling at Allekran recorded sporadic gold hits that generally confirms previous interpretations of a series of northerly trending structures developed primarily in basalts. Further drilling is required to better define these structures. Better intercepts from the Allekran AC drilling are tabulated below:

Table 10: Allekran AC Drilling - Significant Intersections

BHID	From	То	Gold Intercept
YAC1825	28	32	4m @ 1.35 g/t
YAC1848	0	4	4m @ 4.10 g/t
YAC1857	4	8	4m @ 4.66 g/t
YAC1925	36	40	4m @ 1.06 g/t

Results from the Degbezere AC drilling remain pending.

Infill RC drilling was completed at the CMA South Extension, Angovia 2 and Govisou prospects to better define mineralisation in these areas preparatory to resource estimations. At CMA South Extended 18 holes were drilled for 2,699 metres, with a further 14 holes for 1,127 metres drilled at Govisou and 107 holes drilled at Angovia 2 for 7,412 metres. Drilling at CMA South Extended returned results consistent with previous drilling, confirming consistent mineralisation over approximately 5 metre widths for a 750-metre strike length. Better intersections are tabulated below:

The drilling at Govisou returned significant intersections as tabulated in **Table 12** below. The geometry of these clustered intercepts on a single section suggests a steeply plunging pipe-like body may be present (**Appendix A – Figures 3 & 4**)

Complete results for the Yaouré drilling discussed above, including remaining assays for Sayikro drilling not reported last quarter, are presented in *Appendix A – Table 2*.

Table 11: CMA South Extended – Significant Intersections

BHID	From	То	Gold Intercept
YRC1426	51	58	7m @ 1.07 g/t
YRC1427	15	19	4m @ 1.21 g/t
YRC1428	95	103	8m @ 1.01 g/t
YRC1430	136	143	7m @ 1.16 g/t
YRC1431	167	173	6m @ 2.06 g/t
YRC1432	82	88	6m @ 2.18 g/t
YRC1433	121	126	5m @ 2.88 g/t
YRC1434	70	80	10m @ 1.30 g/t
YRC1439	106	108	2m @ 3.02 g/t
YRC1439	131	137	6m @ 1.21 g/t
YRC1440	60	70	10m @ 2.63 g/t
YRC1442	79	83	4m @ 1.89 g/t
YRC1443	10	20	10m @ 1.16 g/t
YRC1443	56	64	8m @ 1.01 g/t
YRC1445	62	70	8m @ 1.30 g/t
YRC1447	34	40	6m @ 1.25 g/t
YRC1448	2	8	6m @ 0.99 g/t
YRC1449	40	42	2m @ 2.62 g/t

Table 12: Govisou RC Drilling - Significant Intersections

BHID	From	То	Gold Intercept
YRC1454	0	5	5m @ 1.36 g/t
YRC1457	55	80	25m @ 3.33 g/t
YRC1458	28	80	52m @ 3.02 g/t
YRC1459	9	72	63m @ 2.35 g/t
YRC1460	20	42	22m @ 2.58 g/t

Processing and interpretation of data from the Yaouré 2D & 3D seismic program was substantially completed during the quarter, with further geological features emerging with potentially significant implications for gold mineralisation (*Appendix A – Figure 5*). Planning is underway for a first phase of drilling to test the best of these targets, particularly those at relatively shallow depth that have not seen previous drilling.

Bagoé Exploration Permit

Resource definition drilling was undertaken at the Antoinette, Véronique and Juliette prospects on the recently acquired Bagoé permit (*Appendix A – Figure 1*). A total of 18,665 metres was drilled in 52 AC, 252 RC and 6 diamond drilling ("DD") holes, plus nine geotechnical and exploratory water bores. By quarter end, results had been received from most of the Véronique holes, with better results tabulated below:

Table 13: Veronique	e – Significant Int	ersections	
BHID	From	То	Gold Intercept
BDAC001682	43	48	5m @ 13.6 g/t
BDAC001695	25	34	9m @ 6.22 g/t
BDRC0362	3	18	15m @ 4.81 g/t
BDRC0366	37	40	3m @ 34.9 g/t
BDRC0370	21	24	3m @ 23.3 g/t
BDRC0386	13	21	8m @ 7.03 g/t
BDRC0412	17	19	2m @ 25.2 g/t
BDRC0434	10	13	3m @ 34.2 g/t

Table 13: Véronique – Significant Intersections

Drilling generally confirmed previous results, with strong mineralisation defined over a core zone of approximately 440 metres over widths of 3 to 9 metres (*Appendix A – Figures 6 & 7*). Assays from the drilling at Juliette and Antoinette remain pending; however, strong mineralisation was intersected at the expected depths at both prospects, confirming the continuity of the two zones as outlined by previous wide-spaced drilling. Complete results for the Bagoé drilling discussed above are presented in *Appendix A – Table 3*.

Sissingué Exploitation Permit

Exploration at Sissingué during the quarter involved AC drilling at the Kakolo prospect near Kanakono and RC and DD at the Tiana prospect (*Appendix A – Figure 1*).

At the Kakolo prospect, 4,293 metres were drilled in 80 AC holes targeting extensive artisanal workings and gold-in-soil anomalism. Assays received to date have not been encouraging, with no significant intercepts recorded, although assays remain pending for the remaining 28 holes.

At the Tiana prospect, located 3 kilometres southwest of the previously drilled Cashew Farm prospect, diamond drillhole TNDD0001, designed to twin a previously reported two metre intersection of 3,297 grams per tonne gold in TNRC0028, was completed at 250 metres. Unfortunately, TNDD0001 failed to live up to expectations, averaging only 0.69 grams per tonne over a 20-metre interval of altered and quartz-veined sediments broadly equivalent to the TNRC0028 intersection.

Full details of the Kakolo and Tiana drilling, including all assays received to date, are provided in Appendix A - Table 1.

Ghana

Exploration activities at Edikan during the quarter focused on RC drilling at the Mampong South target on the Nanankaw ML (*Appendix A – Figure 8*), with a single RC hole drilled at the Dadieso NE prospect on the Dadieso PL.

At Mampong South, a total of 2,704 metres was drilled in 22 RC holes. The drilling targeted shallower, up-dip parts of the mineralised pod defined by RC-DD drilling reported in the September quarter. The pod lies within the granite dyke system that hosts the AG-Gap and Fobinso deposits as well as the Mampong deposit, the latter lying approximately 1.5km to the NE. As with the previous drilling, felsic dykes were intersected in most holes, but were mostly thinner than those intersected at depth and appear to reflect an upward anastomosing geometry. Several holes contained appreciable pyrite and arsenopyrite mineralisation accompanied by quartz veining, returning the significant intersections tabulated below and shown in *Appendix A – Figure 9*:

One 153 metre RC hole was drilled at the Dadieso NE prospect to infill a gap in previous drilling. The hole, DKRC111 returned a best intercept of only 2 metres grading 1.74 grams per tonne. No further drilling is planned at Dadieso NE.

Complete results for the Mampong South (summarised below in *Table 14*) and Dadieso NE drilling programs discussed above are presented in *Appendix A – Table 4*.

Agyakusu Option

Negotiations continued unsuccessfully with the local community and farmers to allow first-pass RC drilling over the Breman granite prospect on the Agyakusu permit. Discussions will be revived in the New Year. The permit was covered by the airborne EM-magnetic-radiometric survey completed late in the quarter, data from which are yet to be received.

Agyakusu-DML Option

First-pass soil sampling was completed on the Agyakusu-DML (Dompoase) property with the collection of 1,733 soil samples along the main structural/intrusive corridor extending SW from the Breman prospect on the adjoining Agyakusu permit. Results received define a strong gold-in-soil anomaly coincident with the interpreted corridor with several occurrences of mineralised felsic intrusives identified. The current 320 metre by 40 metre sample grid will be infilled at closer line spacings to better define the anomalous trend prior to AC drilling.

The DML property was also covered by the EM-magnetic-radiometric survey noted above.

Domenase Option

Planning commenced for a first-pass soil sampling program covering the main structural/intrusive corridors on this property. The airborne survey noted above also extended over the Domenase permit, with the results of the combined survey to be integrated with previously flown coverage of the Edikan permits to provide a district-wide picture of the lithostructural setting of gold mineralisation around Ayanfuri.

Table 14: Mampong South RC Drilling - Significant Intersections

BHID		From	То	Gold Intercept
MPRC234		72	74	2m @ 3.02g/t
MPRC236		16	18	2m @ 6.57g/t
MPRC236		106	112	6m @ 6.73g/t
i	including	106	108	2m @ 18.89g/t
MPRC237		146	150	4m @ 38.28g/t
i	including	148	150	2m @ 75.87g/t
MPRC239		30	41	11m @ 1.90g/t
i	including	35	36	1m @ 6.82g/t
	and	39	40	1m @ 9.33g/t
MPRC239		71	72	1m @ 4.77g/t
MPRC239		98	100	2m @9.03g/t
MPRC240		67	70	3m @1.66g/t
MPRC240		100	101	1m @ 6.80g/t
MPRC243		150	154	4m @ 1.67g/t
i	including	150	151	1m @ 4.71g/t
MPRC243		160	161	1m @ 10.67g/t
MPRC245		15	24	9m @ 1.04g/t
i	including	15	16	1m @ 4.62g/t
MPRC246		109	114	5m @ 1.24g/t
MPRC247		90	94	4m @ 2.37g/t
i	including	90	91	1m @ 6.07g/t
MPRC248		68	69	1m @ 24.20g/t
MPRC248		125	130	5m @ 3.57g/t
MPRC256		63	95	32m @ 1.68g/t
i	including	65	69	4m @ 6.7g/t

PROGRAM FOR THE MARCH 2021 QUARTER

GOLD MINING OPERATIONS

Edikan

- Produce gold at an all-in site cost in line with the recently published Life of Mine Plan (LOMP).
- Continue planning and implementing Continuous Improvement initiatives aimed at increasing gold production and reducing AISC.

Sissingué

- Produce gold at a total all-in site cost in line with LOMP.
- Continue planning and implementing Continuous Improvement initiatives aimed at increasing gold production and reducing AISC.
- Continue work on licencing mining of the Fimbiasso, Véronique, Antoinette and Juliette satellite deposits.

Yaouré

- Complete ramp up of the Yaouré processing facility, and achieve milestones related to completion tests and declaring
 of Commercia Production.
- Produce gold at a total all-in site cost in line with forecasts.
- Prepare and publish an updated LOMP for the Yaouré Gold Mine.
- Complete land, and crop compensation payments to affected land holders and farmers.

BUSINESS GROWTH

Edikan

- Continue preparations for commencing underground operations at Esuajah South, pending to a decision to proceed with development of the project.
- Commence drilling at the Breman prospect on the Agyakusu permit.
- Commence soil sampling and mapping on the recently optioned Dompoase permit.
- Complete assessment of the potential of the Mampong South deposit for further drilling.

Sissingué

- Complete DFS for the Antoinette, Véronique and Juliette deposits at Bagoé and potentially convert to Ore Reserve.
- Complete exploration drilling at Tiana and Kakolo.
- Continue the soil sampling at Minignan.

Yaouré

- Complete the assessment of the CMA South, Govisou and Angovia 2 deposits to determine drilling and studies. required to potentially convert to Ore Reserves.
- Identify and prioritise potential drilling targets from the 3D seismic survey.

Other

Continue to review both potential "bolt on" acquisition and merger opportunities to assess potential for continued corporate growth and value creation.

This market announcement was authorised for release by the Board.

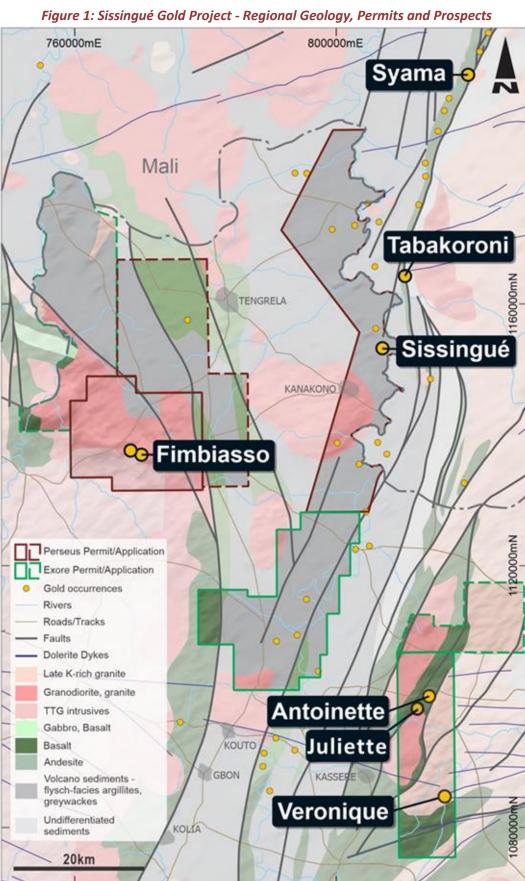
To discuss any aspect of this announcement, please contact:

Managing Director & CEO:	Jeff Quartermaine at telephone +61 8 6144 1700 or email jeff.quartermaine@perseusmining.com;
Media Relations:	Nathan Ryan at telephone +61 4 20 582 887 or email nathan.ryan@nwrcommunications.com.au (Melbourne)

Competent Person Statement:

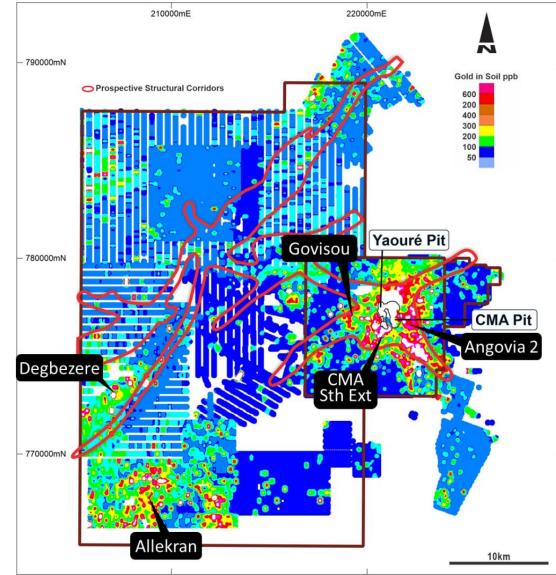
All production targets for Edikan, Sissingué and Yaouré referred to in this report are underpinned by estimated Ore Reserves which have been prepared by competent persons in accordance with the requirements of the JORC Code. The information in this report that relates to Esuajah North Mineral Resources estimate was first reported by the Company in compliance with the JORC Code 2012 and NI43-101 in a market announcement entitled "Perseus Mining Updates Mineral Resources & Ore Reserves" released on 29 August 2018. The information in this report that relates to the Mineral Resource and Ore Reserve estimates for the Bokitsi South and AFG Gap deposits at the EGM was first reported by the Company in compliance with the JORC Code 2012 and NI43-101 in a market announcement released on 26 August 2020. The information in this report that relates to the Mineral Resource and Ore Reserve estimates for the other EGM deposits (Fetish and Esuajah South Underground) was first reported by the Company in compliance with the JORC Code 2012 and NI43-101 in a market announcement released on 20 February 2020 and was updated for depletion until 30 June 2020 in a market announcement released on 26 February 2020 and was updated for depletion until 30 June 2020 in a market announcement released on 26 August 2020. The company confirms that it is not aware of any new information or data that materially affect the information in those market releases and that all material assumptions underpinning those estimates and the production targets, or the forecast financial information derived therefrom, continue to apply and have not materially changed. The Company further confirms that material assumptions underpinning the estimates of Ore Reserves described in "Technical Report — Central Ashanti Gold Project, Ghana" dated 30 May 2011 continue to apply.

The information in this report that relates to Mineral Resources and Ore Reserves for Sissingué was first reported by the Company in compliance with the JORC Code 2012 and NI43-101 in a market announcement released on 29 October 2018 and includes an update for depletion as at 30 June 2020. The information in this report that relates to Mineral Resources and Ore Reserves for the Fimbiasso East and West deposits, previously Bélé East and West respectively, was first reported by the Company in compliance with the JORC Code 2012 and NI43-101 in a market announcement released on 26 August 2020. The Company confirms that material assumptions underpinning the estimates of Mineral Resources and Ore Reserves described in those market announcements. The Company confirms that it is not aware of any new information or data that materially affect the information in these market releases and that all material assumptions underpinning those estimates and the production targets, or the forecast financial information derived therefrom, continue to apply and have not materially changed. The Company further confirms that material assumptions underpinning the estimates of Ore Reserves described in "Technical Report — Sissingué Gold Project, Côte d'Ivoire" dated 29 May 2015 continue to apply.


The information in this report in relation to Yaouré Mineral Resource and Ore Reserve estimates was first reported by the Company in compliance with the JORC Code 2012 and NI43-101 in a market announcement on 28 August 2019. The Company confirms that all material assumptions underpinning those estimates and the production targets, or the forecast financial information derived therefrom, in that market release continue to apply and have not materially changed. The Company further confirms that material assumptions underpinning the estimates of Ore Reserves described in "Technical Report — Yaouré Gold Project, Côte d'Ivoire" dated 18 December 2017 continue to apply.

The information in this report and the attachments that relates to exploration drilling results is based on, and fairly represents, information and supporting documentation prepared by Dr Douglas Jones, a Competent Person who is a Chartered Professional Geologist. Dr Jones is the Group General Manager Exploration of the Company. Dr Jones has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves''') and to qualify as a "Qualified Person" under National Instrument 43-101 – Standards of Disclosure for Mineral Projects ("NI 43-101"). Dr Jones consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

Caution Regarding Forward Looking Information:


This report contains forward-looking information which is based on the assumptions, estimates, analysis and opinions of management made in light of its experience and its perception of trends, current conditions and expected developments, as well as other factors that management of the Company believes to be relevant and reasonable in the circumstances at the date that such statements are made, but which may prove to be incorrect. Assumptions have been made by the Company regarding, among other things: the price of gold, continuing commercial production at the Edikan Gold Mine and the Sissingué Gold Mine without any major disruption due to the COVID-19 pandemic or otherwise, development of a mine at Yaouré, the receipt of required governmental approvals, the accuracy of capital and operating cost estimates, the ability of the Company to operate in a safe, efficient and effective manner and the ability of the Company to obtain financing as and when required and on reasonable terms. Readers are cautioned that the foregoing list is not exhaustive of all factors and assumptions which may have been used by the Company. Although management believes that the assumptions made by the Company and the expectations represented by such information are reasonable, there can be no assurance that the forward-looking information will prove to be accurate. Forward-looking information involves known and unknown risks, uncertainties, and other factors which may cause the actual results, performance or achievements of the Company to be materially different from any anticipated future results, performance or achievements expressed or implied by such forward-looking information. Such factors include, among others, the actual market price of gold, the actual results of current exploration, the actual results of future exploration, changes in project parameters as plans continue to be evaluated, as well as those factors disclosed in the Company's publicly filed documents. The Company believes that the assumptions and expectations reflected in the forward-looking information are reasonable. Assumptions have been made regarding, among other things, the Company's ability to carry on its exploration and development activities, the timely receipt of required approvals, the price of gold, the ability of the Company to operate in a safe, efficient and effective manner and the ability of the Company to obtain financing as and when required and on reasonable terms. Readers should not place undue reliance on forward-looking information. Perseus does not undertake to update any forward-looking information, except in accordance with applicable securities laws.

APPENDIX A – EXPLORATION PROJECTS

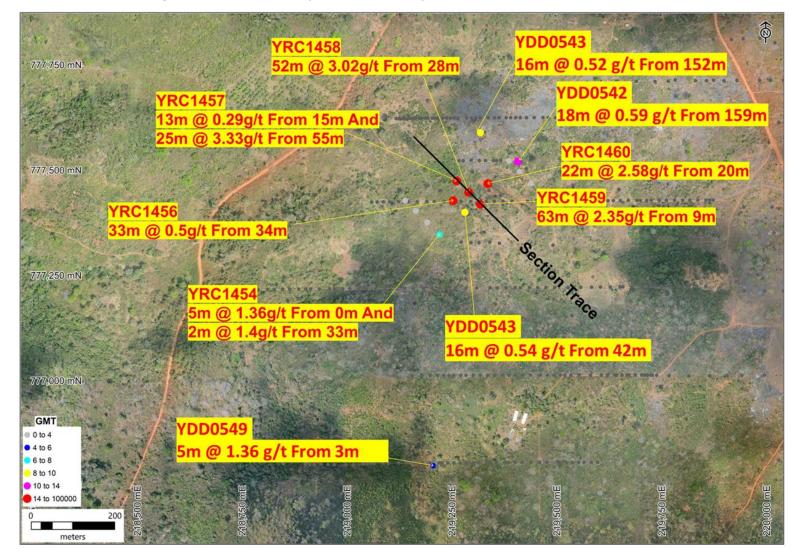


Figure 2: Yaouré Gold Project – Exploration Targets - December 2020 Quarter

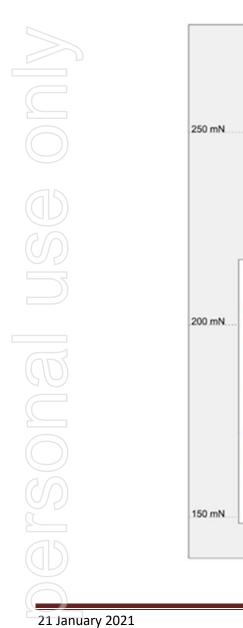


Figure 3: Yaouré Gold Project - Govisou Prospect - December 2020 Quarter results.

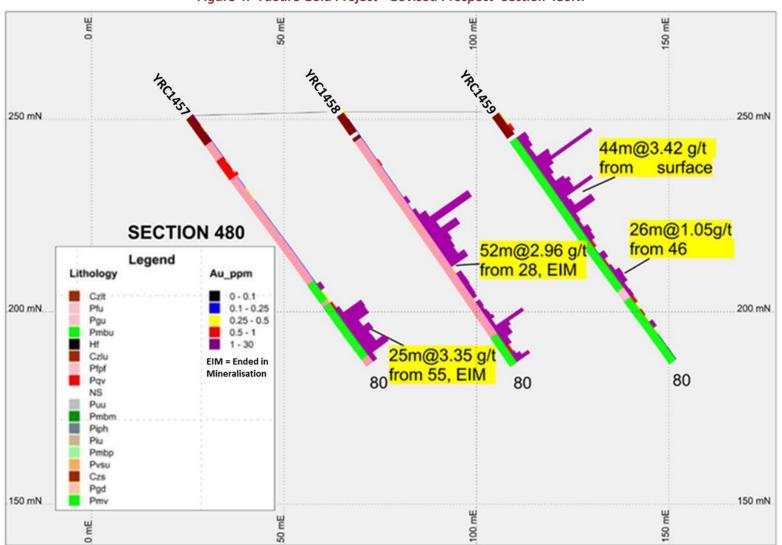


Figure 4: Yaouré Gold Project - Govisou Prospect -Section 480N.

Figure 5: Yaouré Gold Project – 3D Seismic Image with key structural features and drill coverage indicated.

21 January 2021

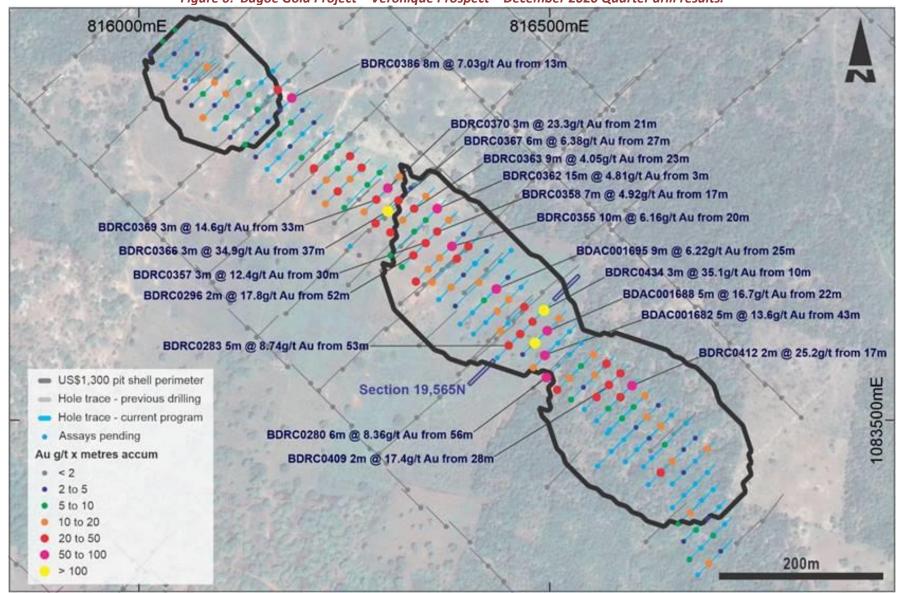
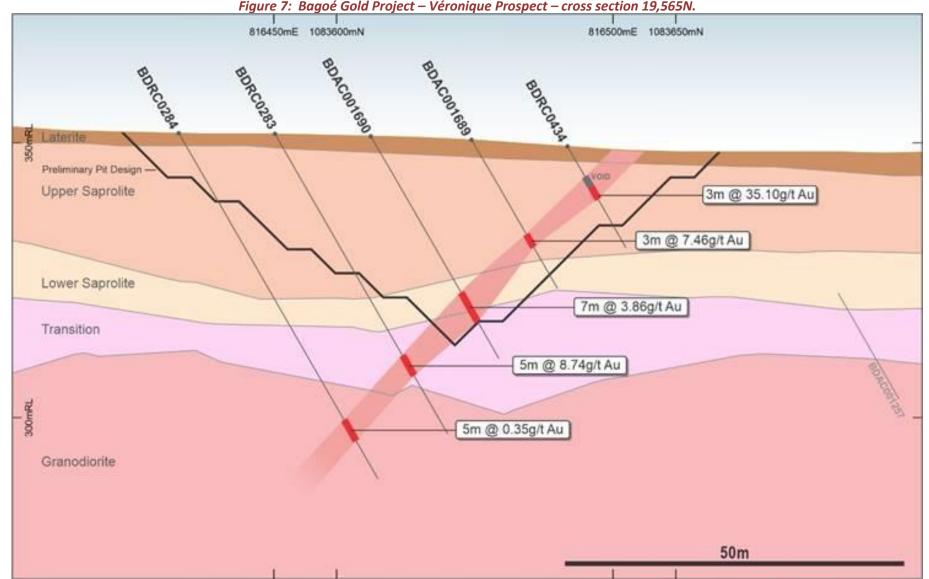
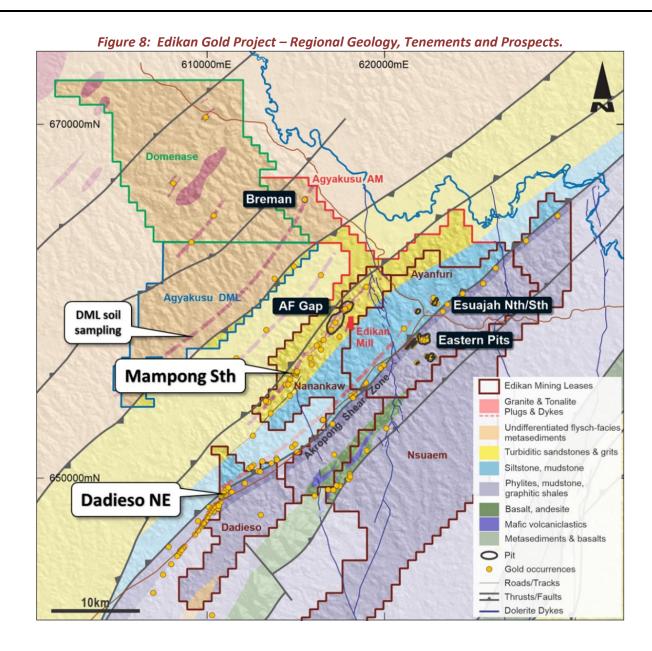



Figure 6: Bagoé Gold Project – Véronique Prospect – December 2020 Quarter drill results.



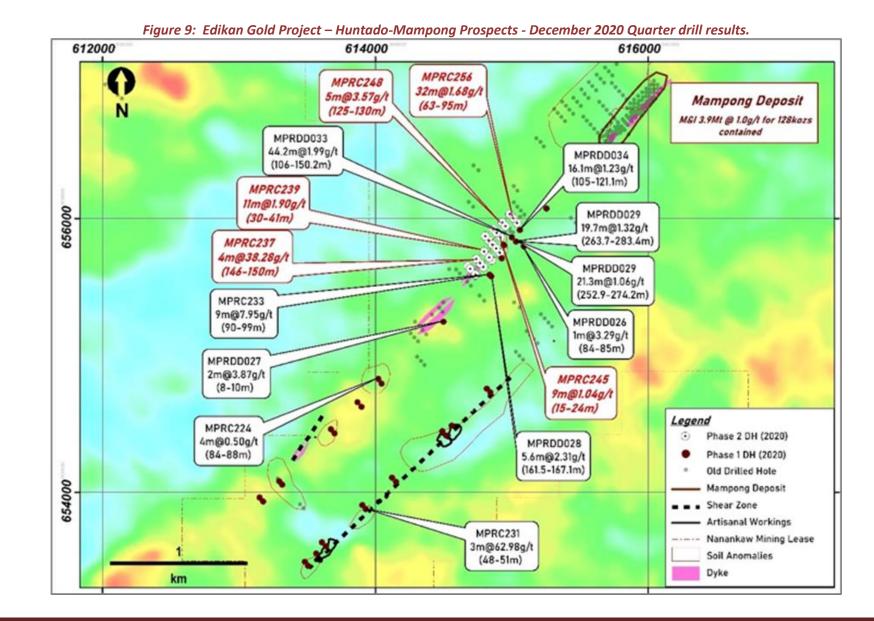


Table 1: Kakolo (K) & Tiana (TN) drill holes and significant assays:

Hala ID	East	North	Drill Tuno	Azimuth	Din	Donth	No of complex	Erom	To	Midth	Grade
Hole ID	East (mE)	North (mN)	Drill Type	Azimuth (°)	Dip (°)	Depth (m)	No of samples	From (m)	То (m)	Width (m)	(g/t)
Kakolo	(1112)	(11114)		()		((, , , , , , , , , , , , , , , , , ,		(111)	(111)	(111)	(9/1)
KAC0652	805407	1144602	AC	40	-55	41	NSI				
KAC0653	805427	1144618	AC	40	-55	42	NSI				
KAC0654	805446	1144629	AC	40	-55	38	NSI				
KAC0655	805465	1144649	AC	40	-55	54	NSI				
KAC0656	805496	1144672	AC	40	-55	50	NSI				
KAC0657	805517	1144684	AC	40	-55	42	NSI				
KAC0658	805537	1144705	AC	40	-55	36	NSI				
KAC0659	805556	11447015	AC	40	-55	66	NSI				
KAC0660	805205	1144436	AC	40	-55	64	NSI				
KAC0661	805235	1144458	AC	40	-55	65	NSI				
KAC0662	805261	1144481	AC	40	-55	65	NSI				
KAC0663	805289	1144504	AC	40	-55	65	1	12	16	4	0.6
KAC0664	805316	1144527	AC	40	-55	71	NSI				
KAC0665	805346	1144554	AC	40	-55	65	NSI				
KAC0666	805371	1144578	AC	40	-55	53	NSI				
KAC0667	805584	1144741	AC	40	-55	65	NSI				
KAC0668	805607	1144763	AC	40	-55	71	NSI				
KAC0669	805637	1144787	AC	40	-55	69	NSI				
KAC0670	805670	1144809	AC	40	-55	71	NSI				
KAC0671	805698	1144836	AC	40	-55	65	NSI				
KAC0672	805733	1144858	AC	40	-55	59	NSI				
KAC0673	805762	1144881	AC	40	-55	59	NSI				
KAC0674	805798	1144902	AC	40	-55	47	NSI				
KAC0675	805814	1144922	AC	40	-55	29	NSI				
KAC0676	805835	1144933	AC	40	-55	18	NSI				
КАС0677	805843	1144943	AC	40	-55	29	NSI				
KAC0678	805858	1144958	AC	40	-55	33	NSI				
KAC0679	805873	1144970	AC	40	-55	35	NSI				
KAC0680	805893	1144992	AC	40	-55	52	NSI				
KAC0681	805932	1145010	AC	40	-55	51	NSI				
KAC0682	805972	1145049	AC	40	-55	53	NSI				
KAC0683	805995	1145065	AC	40	-55	53	NSI				
KAC0684	806012	1145082	AC	40	-55	50	NSI				
KAC0685	805995	1144263	AC	40	-55	16	NSI				
KAC0686	806022	1144257	AC	40	-55	53	NSI				
KAC0687	806055	1144313	AC	40	-55	53	NSI				
KAC0688	806092	1144353	AC	40	-55	51	NSI				
KAC0689	806125	1144353	AC	40	-55	58	NSI				
KAC0689	806125	1144378	AC	40	-55	53	NSI				
KAC0691	806196	1144423	AC	40	-55	71	NSI				

	KA 60600	005225	111111	10	40		70	NG		1	I	I
	KAC0692	806236	1144446	AC		-55						
	KAC0693	806277	1144485	AC	40	-55	58		0	1	1	0.3
	KAC0694	806041	1145109	AC	40	-55	53		0	4	4	0.3
	KAC0695	806077	1145136	AC	40	-55	57	NSIINSII104104NSIIINSIII2088NSIII2088NSIIINSIIINSIIINSIIINSIIINSIIIAssays PendingIIAssays Pending				
	KAC0696	806101	1145170	AC	40	-55	61					
	KAC0697	806128	1145210	AC	40	-55	69					
	KAC0698	806147	1145245	AC	40	-55	71		0	8	8	0.34
	KAC0699	806172	1145274	AC	40	-55	74	NSI				
	KAC0700	806198	1145317	AC	40	-55	55	NSI				
	KAC0701	806230	1145354	AC	40	-55	51	NSI				
	KAC0702	806252	1145385	AC	40	-55	63	NSI				
	КАС0703	806268	1145431	AC	40	-55	58	1	0	4	4	0.21
	КАС0704	806286	1145456	AC	40	-55	57	Assays Pending				
	КАС0705	806307	1145480	AC	40	-55	61	Assays Pending				
	КАС0706	806325	1145508	AC	40	-55	59	Assays Pending				
	KAC0707	806346	1145535	AC	40	-55	67	Assays Pending				
	KAC0708	805933	1144351	AC	40	-55	54	Assays Pending				
	KAC0709	805938	1144391	AC	40	-55	55	Assays Pending				
	KAC0710	805953	1144414	AC	40	-55	65	Assays Pending				
	KAC0711	805996	1144420	AC	40	-55	56	Assays Pending				
	KAC0712	806019	1144440	AC	40	-55	41	Assays Pending				
	KAC0713	806037	1144452	AC	40	-55	36	Assays Pending				
	KAC0714	806059	1144462	AC	40	-55	37					
	KAC0715	806067	1144482	AC	40	-55	37					
	KAC0716	806077	1144501	AC	40	-55	40					
	KAC0717	806094	1144527	AC	40	-55	40	1				
	KAC0718	806115	1144536	AC	40	-55	33	, ,				
	KAC0719	806127	1144558	AC	40	-55	50	, ,				
	KAC0720	806227	1144271	AC	40	-55	58					
	KAC0721	806250	1144295	AC	40	-55	59					
ľ	KAC0721	806268	1144233	AC	40	-55	63	· · · · · · · · · · · · · · · · · · ·				
	KAC0722	806293	1144347	AC	40	-55	65					
	KAC0723	806318	1144347	AC	40	-55	65					
				AC	40		59	, j				
	KAC0725	806343	1144400			-55						
	KAC0726	806363	1144426	AC	40	-55	58					
	KAC0727	806382	1144453	AC	40	-55	56	, j				
	KAC0728	806410	1144482	AC	40	-55	65					
	KAC0729	807123	1144417	AC	40	-55	48					
	KAC0730	807146	1144436	AC	40	-55	47	Assays Pending				
ŀ	KAC0731	807168	1144451	AC	40	-55	41	Assays Pending				L
	Tiana	1										1
	TNDD0001	800113	1135383	DD	250	-50	260.8	22	127.6	147.9	20.3	0.69
	TNRC0032	800151	1135449	RC	250	-55	156	Assays Pending				

Table 2: Yaouré drill holes and significant intercepts:

Hole ID	East	North	Drill Type	Azimuth	Dip	Depth	No of samples	From	То	Width	Grade
	(mE)	(mN)		(°)	(°)	(m)		(m)	(m)	(m)	(g/t)
Sayikro (holes drilled in p	previous q	uarter, resul	ts newly re	ported)							
YRC1418	219838	775500	RC	270	-60	150	2	72	76	4	0.41
YRC1418	219838	775500	RC	270	-60	150	1	82	84	2	0.64
YRC1418	219838	775500	RC	270	-60	150	1	118	120	2	0.29
YRC1419	219763	775490	RC	270	-60	150	1	90	92	2	0.57
YRC1419	219763	775490	RC	270	-60	150	1	104	106	2	0.25
YRC1419	219763	775490	RC	270	-60	150	1	117	119	2	0.22
YRC1420	220111	776003	RC	270	-60	150	1	42	44	2	0.71
YRC1421	220204	775996	RC	270	-60	162	2	51	53	2	0.33
YRC1421	220204	775996	RC	270	-60	162	1	81	83	2	0.26
YRC1421	220204	775996	RC	270	-60	162	7	100	113	13	0.21
YRC1421	220204	775996	RC	270	-60	162	1	118	120	2	0.23
YRC1422	219984	776050	RC	270	-60	150	2	134	137	3	1.19
YRC1423	219904	776042	RC	270	-60	120	2	65	67	2	0.93
YRC1424	220052	776020	RC	270	-60	136	1	51	53	2	0.26
YRC1424	220052	776020	RC	270	-60	136	11	56	70	14	0.79
YRC1424	220052	776020	RC	270	-60	136	1	79	81	2	0.25
YRC1424	220052	776020	RC	270	-60	136	7	90	102	12	0.52
YRC1424	220052	776020	RC	270	-60	136	1	118	120	2	0.53
YRC1424	220052	776020	RC	270	-60	136	2	124	128	4	0.21
YRC1425	219849	776002	RC	270	-60	150	2	16	20	4	1.8
Allekran											
YAC1783	210730	769600	AC	270	-60	50	NSI				
YAC1784	210705	769600	AC	270	-60	50	NSI				
YAC1785	210680	769600	AC	270	-60	50	NSI				
YAC1786	210655	769600	AC	270	-60	53	NSI				
YAC1787	210630	769600	AC	270	-60	50	NSI				
YAC1788	210604	769600	AC	270	-60	50	NSI				
YAC1789	210579	769600	AC	270	-60	50	NSI				
YAC1790	210554	769600	AC	270	-60	50	NSI				
YAC1791	210529	769600	AC	270	-60	50	NSI				
YAC1792	210504	769609	AC	270	-60	54	NSI				
YAC1793	210477	769603	AC	270	-60	50	NSI				
YAC1794	210452	769600	AC	270	-60	50	NSI				
YAC1795	210427	769596	AC	270	-60	50	NSI				
YAC1796	210402	769596	AC	270	-60	50	NSI				
YAC1797	210377	769595	AC	270	-60	50	NSI				
YAC1798	210352	769595	AC	270	-60	50	NSI				
YAC1799	210327	769608	AC	270	-60	50	NSI				
YAC1800	210302	769630	AC	270	-60	50	NSI				
YAC1801	210277	769628	AC	270	-60	50	NSI				

	YAC1802	210252	769626	AC	270	-60	50	NSI				
	YAC1803	210227	769614	AC	270	-60	50	NSI				
	YAC1804	210202	769600	AC	270	-60	50	NSI				
	YAC1805	210177	769591	AC	270	-60	50	NSI				
	YAC1806	210152	769592	AC	270	-60	50	NSI				
	YAC1807	210122	769596	AC	270	-60	50	NSI				
	YAC1808	210097	769606	AC	270	-60	48	NSI				
	YAC1809	210076	769619	AC	270	-60	54	NSI				
7	YAC1810	210627	769999	AC	270	-60	50	NSI				
10	YAC1811	210602	770000	AC	270	-60	50	NSI				
	YAC1812	210577	770000	AC	270	-60	50	NSI				
7	YAC1813	210552	770001	AC	270	-60	50	NSI				
\int	YAC1814	210527	777000	AC	270	-60	50	NSI				
4	YAC1815	210502	769999	AC	270	-60	50	NSI				
	YAC1816	210477	769999	AC	270	-60	50	NSI				
	YAC1817	210452	770004	AC	270	-60	50	NSI				
	YAC1818	210427	770003	AC	270	-60	50	NSI				
	YAC1819	210402	770014	AC	270	-60	50	1	24	28	4	0.61
Y	YAC1820	209325	768863	AC	270	-60	40	NSI				
	YAC1821	209305	768870	AC	270	-60	50	NSI				
	YAC1822	209251	768912	AC	270	-60	43	NSI				
	YAC1823	209230	768929	AC	270	-60	50	NSI				
	YAC1824	209205	768942	AC	270	-60	31	NSI				
6	YAC1825	209190	768949	AC	270	-60	39	1	28	32	4	1.35
12	YAC1826	209165	768977	AC	270	-60	50	1	36	40	4	0.27
	YAC1827	209110	768989	AC	270	-60	50	NSI				
14	YAC1828	209085	768992	AC	270	-60	50	NSI				
Y	YAC1829	209060	768988	AC	270	-60	47	NSI				
	YAC1830	208902	768857	AC	270	-60	50	NSI				
_/	YAC1831	208877	768854	AC	270	-60	53	NSI				
	YAC1832	208851	768855	AC	270	-60	49	1	47	49	2	0.23
	YAC1833	208827	768855	AC	270	-60	54	1	4	8	4	0.34
	YAC1833	208827	768855	AC	270	-60	54	1	28	32	4	0.28
	YAC1833	208827	768855	AC	270	-60	54	1	36	40	4	0.61
	YAC1834	208802	768859	AC	270	-60	50	NSI				
	YAC1835	208777	768857	AC	270	-60	48	NSI				
	YAC1836	208752	768855	AC	270	-60	48	NSI				
	YAC1837	209506	769211	AC	270	-60	33	1	31	33	2	0.34
[YAC1838	209490	769211	AC	270	-60	50	NSI				
Γ	YAC1839	209490	769211	AC	270	-60	35	NSI				
Γ	YAC1840	209364	769191	AC	270	-60	47	NSI				
Γ	YAC1841	209341	769200	AC	270	-60	50	NSI				
Γ	YAC1842	209316	769199	AC	270	-60	50	1	8	12	4	0.23
ſ	YAC1843	209291	769195	AC	270	-60	50	NSI				

					1							
	YAC1844	209266	769203	AC	270	-60	50	NSI				
	YAC1845	209241	769201	AC	270	-60	50	NSI				
\geq	YAC1846	209216	769200	AC	270	-60	47	NSI				
-	YAC1847	209193	769200	AC	270	-60	50	NSI				
	YAC1848	209168	769200	AC	270	-60	50	1	0	4	4	4.1
	YAC1849	209143	769200	AC	270	-60	50	NSI				
_	YAC1850	209118	769204	AC	270	-60	41	1	12	16	4	0.3
	YAC1851	209098	769200	AC	270	-60	39	NSI				
2	YAC1852	209079	769200	AC	270	-60	54	NSI				
	YAC1853	209052	769197	AC	270	-60	51	NSI				
5	YAC1854	209027	769200	AC	270	-60	49	1	4	8	4	0.3
2	YAC1854	209027	769200	AC	270	-60	49	1	36	40	4	0.3
\int	YAC1855	209003	769200	AC	270	-60	50	1	44	48	4	0.3
E	YAC1856	210059	769648	AC	270	-60	54	NSI				
	YAC1857	210364	770004	AC	270	-60	45	1	4	8	4	4.66
	YAC1858	210342	769981	AC	270	-60	48	NSI				
	YAC1859	210306	769961	AC	270	-60	36	NSI				
	YAC1860	210288	769960	AC	270	-60	45	NSI				
U	YAC1861	210266	769960	AC	270	-60	46	NSI				
	YAC1862	210243	769958	AC	270	-60	50	NSI				
_	YAC1863	210218	769959	AC	270	-60	46	NSI				
-	YAC1864	210195	769960	AC	270	-60	38	NSI				
	YAC1865	210176	769962	AC	270	-60	50	NSI				
6	YAC1866	210151	769956	AC	270	-60	50	NSI				
1	YAC1867	210126	769961	AC	270	-60	50	NSI				
	YAC1868	210101	769972	AC	270	-60	50	NSI				
15	YAC1869	210076	769982	AC	270	-60	50	NSI				
L	YAC1870	210051	769988	AC	270	-60	50	NSI				
\leq	YAC1871	210026	769990	AC	270	-60	50	NSI				
	YAC1872	210001	769990	AC	270	-60	50	NSI				
	YAC1873	209976	769997	AC	270	-60	50	NSI				
	YAC1874	209951	770006	AC	270	-60	50	NSI				
	YAC1875	209926	770006	AC	270	-60	50	NSI				
	YAC1876	209640	769268	AC	270	-60	50	NSI				
-	YAC1877	209615	769273	AC	270	-60	50	NSI				
	YAC1878	209590	769276	AC	270	-60	50	NSI				
	YAC1879	209565	769278	AC	270	-60	52	1	32	36	4	0.8
	YAC1880	210006	769659	AC	270	-60	50	1	12	16	4	0.21
	YAC1880	209981	769657	AC	270	-60	50	NSI				
	YAC1882	209956	769659	AC	270	-60	50	NSI				
	YAC1883	209930	769639	AC	270	-60	50	1	16	20	4	0.31
	YAC1885	209931	769631	AC	270	-60	50	1	8	12	4	0.52
	YAC1885	209906	769617	AC	270	-60	50	I NSI			•	
												\vdash
	YAC1886	209881	769605	AC	270	-60	50	NSI				

YAC1887	209881	769604	AC	270	-60	50	NSI		1		
YAC1888	209881	769598	AC	270	-60	50	1	8	12	4	0.62
YAC1889	209781	769598	AC	270	-60	50	Assays Pending				
YAC1890	209756	769601	AC	270	-60	50	Assays Pending				
YAC1891	209726	769595	AC	270	-60	50	Assays Pending				
YAC1892	209701	769602	AC	270	-60	50	Assays Pending				
YAC1893	209676	769601	AC	270	-60	50	Assays Pending				
YAC1894	209651	769600	AC	270	-60	50	Assays Pending				
YAC1895	209626	769595	AC	270	-60	50	Assays Pending				
YAC1896	209601	769597	AC	270	-60	50	Assays Pending				
YAC1897	209576	769600	AC	270	-60	50	Assays Pending				
YAC1898	209551	769601	AC	270	-60	50	Assays Pending				
YAC1899	209526	769600	AC	270	-60	50	Assays Pending				
YAC1900	209501	769598	AC	270	-60	50	Assays Pending				
YAC1901	209476	769597	AC	270	-60	50	Assays Pending				
YAC1902	209717	770001	AC	270	-60	50	Assays Pending				
YAC1903	209692	769997	AC	270	-60	50	Assays Pending				
YAC1904	209667	769996	AC	270	-60	49	Assays Pending				
YAC1905	209642	770004	AC	270	-60	50	Assays Pending				
YAC1906	209617	770006	AC	270	-60	50	Assays Pending				
YAC1907	209592	770004	AC	270	-60	50	Assays Pending				
YAC1908	209567	770006	AC	270	-60	50	Assays Pending				
YAC1909	209915	769802	AC	270	-60	50	Assays Pending				
YAC1910	209890	769803	AC	270	-60	50	Assays Pending				
YAC1911	209865	769802	AC	270	-60	50	Assays Pending				
YAC1912	209840	769798	AC	270	-60	54	Assays Pending				
YAC1913	209813	769799	AC	270	-60	50	Assays Pending				
YAC1914	209788	769799	AC	270	-60	47	Assays Pending				
YAC1915	209765	769797	AC	270	-60	50	Assays Pending				
YAC1916	209740	769798	AC	270	-60	47	Assays Pending				
YAC1917	209717	769800	AC	270	-60	39	Assays Pending				
YAC1918	209182	769540	AC	270	-60	50	Assays Pending				
YAC1919	209157	769542	AC	270	-60	50	NSI				
YAC1920	209132	769538	AC	270	-60	50	NSI				
YAC1921	209107	769526	AC	270	-60	50	NSI				
YAC1922	209069	769600	AC	270	-60	50	NSI				
YAC1923	209044	769603	AC	270	-60	50	NSI				
YAC1924	209291	769998	AC	270	-60	50	NSI				
YAC1925	209266	769999	AC	270	-60	50	1	36	40	4	1.06
YAC1926	209241	770001	AC	270	-60	50	NSI				
YAC1927	209216	769999	AC	270	-60	50	1	40	44	4	0.37
YAC1928	209191	770002	AC	270	-60	50	NSI				
YAC1929	209166	769999	AC	270	-60	50	NSI				
YAC1930	209141	769999	AC	270	-60	50	NSI				

YAC1931 YAC1932 YAC1933 YAC1934 YAC1935	209116 209091 209066 209041	770006 770005	AC AC	270	-60	50	NSI				
YAC1933 YAC1934	209066		AC	270							
YAC1934				270	-60	50	1	0	4	4	0.9
	209041	770000	AC	270	-60	50	NSI				
YAC1935	200011	770007	AC	270	-60	50	NSI				
	209016	770007	AC	270	-60	50	NSI				
YAC1936	208991	770008	AC	270	-60	54	NSI				
YAC1937	208965	770005	AC	270	-60	60	NSI				
CMA South Extension											
YRC1426	221257	776425	RC	325	-55	125	1	14	16	2	0.27
YRC1426	221257	776425	RC	325	-55	125	4	51	58	7	1.07
YRC1426	221257	776425	RC	325	-55	125	5	63	70	7	0.27
YRC1426	221257	776425	RC	325	-55	125	6	74	84	10	0.32
YRC1426	221257	776425	RC	325	-55	125	1	95	97	2	0.31
YRC1427	221286	776385	RC	325	-55	164	3	15	19	4	1.21
YRC1427	221286	776385	RC	325	-55	164	2	27	30	3	0.4
YRC1427	221286	776385	RC	325	-55	164	1	52	54	2	0.69
YRC1427	221286	776385	RC	325	-55	164	1	62	64	2	0.44
YRC1427	221286	776385	RC	325	-55	164	4	98	105	7	0.69
YRC1428	221235	776287	RC	325	-55	184	4	49	53	4	0.74
YRC1428	221235	776287	RC	325	-55	184	8	95	103	8	1.01
YRC1428	221235	776287	RC	325	-55	184	5	137	146	9	0.21
YRC1428	221235	776287	RC	325	-55	184	2	155	159	4	0.28
YRC1429	212200	776337	RC	325	-55	144	1	69	71	2	0.28
YRC1429	212200	776337	RC	325	-55	144	1	77	79	2	0.35
YRC1429	212200	776337	RC	325	-55	144	11	99	118	19	0.56
YRC1429	212200	776337	RC	325	-55	144	3	124	130	6	0.25
YRC1429	212200	776337	RC	325	-55	144	5	134	144	10	0.93
YRC1430	221141	776249	RC	325	-55	152	7	73	82	9	0.42
YRC1430	221141	776249	RC	325	-55	152	1	85	87	2	0.3
YRC1430	221141	776249	RC	325	-55	152	4	136	143	7	1.16
YRC1430	221141	776249	RC	325	-55	152	4	147	152	5	0.34
YRC1431	221169	776205	RC	325	-55	186	1	84	86	2	0.25
YRC1431	221169	776205	RC	325	-55	186	3	91	94	3	0.39
YRC1431	221169	776205	RC	325	-55	186	3	167	173	6	2.06
YRC1432	221090	776151	RC	325	-55	147	1	5	7	2	0.2
YRC1432	221090	776151	RC	325	-55	147	3	36	40	4	0.78
YRC1432	221090	776151	RC	325	-55	147	1	74	76	2	0.3
YRC1432	221090	776151	RC	325	-55	147	6	82	88	6	2.18
YRC1433	221124	776098	RC	325	-55	193	4	121	126	5	2.88
YRC1433	221124	776098	RC	325	-55	193	2	132	135	3	0.52
YRC1433	221124	776098	RC	325	-55	193	1	163	165	2	0.64
YRC1433	221124	776098	RC	325	-55	193	1	170	172	2	0.31
YRC1434	221008	776091	RC	325	-55	155	2	33	37	4	0.56
YRC1434	221008	776091	RC	325	-55	155	1	60	62	2	0.51

	YRC1434	221008	776091	RC	325	-55	155	9	70	80	10	1.3
	YRC1434	221008	776091	RC	325	-55	155	7	105	117	12	0.27
_	YRC1434	221008	776091	RC	325	-55	155	3	120	123	3	0.26
-	YRC1434	221008	776091	RC	325	-55	155	3	133	138	5	0.29
	YRC1434	221008	776091	RC	325	-55	155	2	149	152	3	0.59
	YRC1439	209881	776040	RC	325	-55	191	1	0	2	2	0.4
	YRC1439	209881	776040	RC	325	-55	191	1	63	65	2	0.36
	YRC1439	209881	776040	RC	325	-55	191	2	106	108	2	3.02
	YRC1439	209881	776040	RC	325	-55	191	4	116	120	4	0.64
	YRC1439	209881	776040	RC	325	-55	191	5	131	137	6	1.21
5	YRC1439	209881	776040	RC	325	-55	191	1	162	164	2	0.32
2	YRC1440	220921	776033	RC	325	-55	172	3	13	16	3	0.43
\int	YRC1440	220921	776033	RC	325	-55	172	10	60	70	10	2.63
4	YRC1441	220955	775981	RC	325	-55	216	2	81	83	2	1.52
	YRC1441	220955	775981	RC	325	-55	216	1	93	95	2	0.29
	YRC1441	220955	775981	RC	325	-55	216	3	101	104	3	1.13
	YRC1441	220955	775981	RC	325	-55	216	1	126	128	2	0.21
	YRC1441	220955	775981	RC	325	-55	216	1	186	188	2	0.23
Ų	YRC1441	220955	775981	RC	325	-55	216	1	198	200	2	0.43
	YRC1441	220955	775981	RC	325	-55	216	1	204	206	2	0.42
	YRC1442	220855	775960	RC	325	-55	167	11	21	34	13	0.46
7	YRC1442	220855	775960	RC	325	-55	167	2	49	52	3	0.23
	YRC1442	220855	775960	RC	325	-55	167	4	79	83	4	1.89
	YRC1442	220855	775960	RC	325	-55	167	1	90	92	2	0.21
	YRC1442	220855	775960	RC	325	-55	167	1	121	123	2	0.77
	YRC1442	220855	775960	RC	325	-55	167	1	142	144	2	0.21
5	YRC1443	220821	776005	RC	325	-55	129	8	10	20	10	1.16
	YRC1443	220821	776005	RC	325	-55	129	6	56	64	8	1.01
7	YRC1443	220821	776005	RC	325	-55	129	2	104	106	2	1.25
_	YRC1443	220821	776005	RC	325	-55	129	1	120	122	2	0.29
	YRC1444	220729	775966	RC	325	-55	119	2	28	32	4	0.51
	YRC1444	220729	775966	RC	325	-55	119	8	42	50	8	0.83
	YRC1444	220729	775966	RC	325	-55	119	1	60	62	2	0.21
_	YRC1445	220760	775921	RC	325	-55	154	1	10	12	2	0.52
	YRC1445	220760	775921	RC	325	-55	154	4	17	22	5	0.66
_	YRC1445	220760	775921	RC	325	-55	154	7	62	70	8	1.3
	YRC1445	220760	775921	RC	325	-55	154	1	82	84	2	0.65
	YRC1445	220760	775921	RC	325	-55	154	1	107	109	2	0.39
	YRC1445	220760	775921	RC	325	-55	154	4	136	144	8	0.31
	YRC1446	220676	775866	RC	325	-55	156	3	38	42	4	0.42
	YRC1446	220676	775866	RC	325	-55	156	4	56	60	4	0.81
	YRC1447	220643	775913	RC	325	-55	113	4	0	8	8	0.21
	YRC1447	220643	775913	RC	325	-55	113	6	34	40	6	1.25
	YRC1447	220643	775913	RC	325	-55	113	1	44	46	2	0.48

	YRC1447	220643	775913	RC	325	-55	113	5	82	89	7	0.24
	YRC1448	220569	775860	RC	325	-55	108	3	2	8	6	0.99
_	YRC1448	220569	775860	RC	325	-55	108	3	25	29	4	0.3
-	YRC1448	220569	775860	RC	325	-55	108	3	43	49	6	0.38
	YRC1449	220602	775837	RC	325	-55	47	3	0	4	4	0.38
	YRC1449	220602	775837	RC	325	-55	47	3	11	15	4	0.34
	YRC1449	220602	775837	RC	325	-55	47	2	40	42	2	2.62
	YRC1450	220602	775843	RC	325	-55	150	1	0	4	4	0.46
2	YRC1450	220602	775843	RC	325	-55	150	1	14	16	2	0.31
1.5	YRC1450	220602	775843	RC	325	-55	150	4	55	59	4	0.27
5	YRC1450	220602	775843	RC	325	-55	150	1	89	91	2	0.28
7	Govisou											
\bigcap	YRC1435	212366	777546	RC	135	-55	87	1	37	39	2	0.21
5	YRC1436	219395	777513	RC	135	-55	80	4	0	8	8	0.26
	YRC1436	219395	777513	RC	135	-55	80	2	23	27	4	0.28
	YRC1436	219395	777513	RC	135	-55	80	3	53	59	6	0.35
	YRC1436	219395	777513	RC	135	-55	80	1	72	74	2	0.3
	YRC1436	219395	777513	RC	135	-55	80	1	78	80	2	0.88
U	YRC1437	219420	777487	RC	135	-55	80	2	0	4	4	0.37
	YRC1437	219420	777487	RC	135	-55	80	1	8	10	2	0.26
	YRC1438	209881	777459	RC	135	-55	80	3	1	7	6	0.29
7	YRC1438	209881	777459	RC	135	-55	80	1	51	53	2	0.25
_	YRC1451	219147	777420	RC	135	-55	80	1	2	4	2	0.22
6	YRC1451	219147	777420	RC	135	-55	80	1	52	54	2	0.25
1	YRC1451	219147	777420	RC	135	-55	80	2	62	66	4	0.4
	YRC1452	219172	777395	RC	135	-55	80	2	4	8	4	0.45
15	YRC1453	219199	777368	RC	135	-55	80	3	0	6	6	0.25
L	YRC1453	219199	777368	RC	135	-55	80	1	56	58	2	0.2
7	YRC1453	219199	777368	RC	135	-55	80	2	62	64	2	0.65
_	YRC1454	219228	777339	RC	135	-55	80	2	0	5	5	1.36
	YRC1454	219228	777339	RC	135	-55	80	1	19	21	2	0.22
_	YRC1454	219228	777339	RC	135	-55	80	1	33	35	2	1.4
-	YRC1455	219289	777391	RC	135	-55	80	9	42	58	16	0.54
	YRC1455	219289	777391	RC	135	-55	80	1	70	72	2	0.71
	YRC1456	219261	777419	RC	135	-55	80	2	0	4	4	0.31
	YRC1456	219261	777419	RC	135	-55	80	3	10	15	5	0.24
	YRC1456	219261	777419	RC	135	-55	80	17	34	67	33	0.5
	YRC1457	219270	777466	RC	135	-55	80	3	2	8	6	0.24
	YRC1457	219270	777466	RC	135	-55	80	9	15	28	13	0.29
	YRC1457	219270	777466	RC	135	-55	80	1	32	34	2	0.21
	YRC1457	219270	777466	RC	135	-55	80	1	45	47	2	0.21
	YRC1457	219270	777466	RC	135	-55	80	13	55	80	25	3.33
	YRC1458	219298	777439	RC	135	-55	80	1	0	3	3	0.32
	YRC1458	219298	777439	RC	135	-55	80	1	10	12	2	0.22

	YRC1458	219298	777439	RC	135	-55	80	3	16	22	6	0.32
	YRC1458	219298	777439	RC	135	-55	80	32	28	80	52	3.02
_	YRC1459	219326	777410	RC	135	-55	80	3	0	7	7	0.53
7	YRC1459	219326	777410	RC	135	-55	80	36	9	72	63	2.35
	YRC1459	219326	777410	RC	135	-55	80	1	76	78	2	0.23
	YRC1460	219344	777459	RC	135	-55	80	7	2	16	14	0.83
	YRC1460	219344	777459	RC	135	-55	80	11	20	42	22	2.58
	YRC1460	219344	777459	RC	135	-55	80	1	48	50	2	0.72
7	YRC1460	219344	777459	RC	135	-55	80	1	58	60	2	0.25
	YRC1460	219344	777459	RC	135	-55	80	2	70	74	4	0.41
	Angovia 2											
2	YRC1461	221607	776242.484	RC	0	-55	48	Assays Pending				
\int	YRC1462	221607	776264.461	RC	0	-55	54	Assays Pending				
4	YRC1463	221632	776240.54	RC	0	-55	54	Assays Pending				
	YRC1464	221632	776263.662	RC	0	-55	54	Assays Pending				
	YRC1465	221632	776287.457	RC	0	-55	60	Assays Pending				
_	YRC1466	221657	776238.197	RC	0	-55	54	Assays Pending				
_	YRC1467	221657	776262.51	RC	0	-55	54	Assays Pending				
U	YRC1468	221657	776286.645	RC	0	-55	60	Assays Pending				
	YRC1469	221657	776308.919	RC	0	-55	60	Assays Pending				
_	YRC1470	221682	776235.66	RC	0	-55	48	Assays Pending				
	YRC1471	221682	776259.503	RC	0	-55	60	Assays Pending				
_	YRC1472	221682	776282.639	RC	0	-55	66	Assays Pending				
6	YRC1473	221682	776306.863	RC	0	-55	66	Assays Pending				
E	YRC1474	221707	776232.964	RC	0	-55	66	Assays Pending				
	YRC1475	221707	776254.746	RC	0	-55	96	Assays Pending				
ς	YRC1476	221707	776279.309	RC	0	-55	96	Assays Pending				
2	YRC1477	221707	776303.599	RC	0	-55	96	Assays Pending				
	YRC1478	221757	776230.862	RC	0	-55	66	Assays Pending				
_	YRC1479	221757	776251.566	RC	0	-55	114	Assays Pending				
	YRC1480	221757	776275.158	RC	0	-55	117	Assays Pending				
_	YRC1481	221757	776297.266	RC	0	-55	120	Assays Pending				
	YRC1482	221757	776320.168	RC	0	-55	102	Assays Pending				
_	YRC1483	221757	776343.266	RC	0	-55	90	Assays Pending				
	YRC1484	221757	776363.584	RC	0	-55	84	Assays Pending				
_	YRC1485	221757	776385.741	RC	0	-55	78	Assays Pending				
	YRC1486	221807	776253.379	RC	0	-55	84	Assays Pending				
	YRC1487	221807	776274.59	RC	0	-55	90	Assays Pending				
	YRC1488	221807	776296.031	RC	0	-55	96	Assays Pending				
	YRC1489	221807	776318.001	RC	0	-55	90	Assays Pending				
	YRC1490	221807	776341.234	RC	0	-55	84	Assays Pending				
	YRC1491	221857	776227.274	RC	0	-55	60	Assays Pending				
	YRC1492	221857	776250.109	RC	0	-55	66	Assays Pending				
	YRC1493	221857	776271.586	RC	0	-55	72	Assays Pending				
						I						

	VD01404	224057	776204 452	DC.	0		70	Assess Developed	1	1	1	
	YRC1494	221857	776294.153	RC	0	-55	78	Assays Pending		+		
	YRC1495	221857	776316.928	RC	0	-55	78	Assays Pending		╉		
\geq	YRC1496	221857	776339.458	RC	0	-55	84	Assays Pending		+		
	YRC1497	221857	776362.839	RC	0	-55	90	Assays Pending		+		
_	YRC1498	221907	776205.154	RC	0	-55	61	Assays Pending		╉		
_	YRC1499	221907 221907	776226.578	RC	0	-55	68	Assays Pending		+		
	YRC1500		776249.117	RC	0	-55	66	Assays Pending		+		
_	YRC1501	221907	776271.895	RC	0	-55	72	Assays Pending		+		
	YRC1502	221907	776292.859	RC	0	-55	66	Assays Pending		+		
15	YRC1503	221907	776317.267	RC	0	-55	66	Assays Pending		+		
L	YRC1504	221907	776340.098	RC	0	-55	72	Assays Pending		╉		
7	YRC1505	221957	776226.578	RC	0	-55	54	Assays Pending		╉		
/ E	YRC1506	221957	776249.762	RC	0	-55	54	Assays Pending		+		
	YRC1507	221957	776269.984	RC	0	-55	54	Assays Pending		+		
	YRC1508	221957	776324	RC	0	-90	36	Assays Pending		╉		
	YRC1509	221957	776289.956	RC	0	-55	60	Assays Pending		+		
	YRC1510	222007	776499.191	RC	0	-55	42	Assays Pending		+		
\Box	YRC1511	222007	776475.105	RC	0	-55	42	Assays Pending		+		
9	YRC1512	222007	776449.034	RC	0	-55	42	Assays Pending		+		
	YRC1513	222007	776423.5	RC	0	-55	42	Assays Pending		+		
	YRC1514	222007	776394.526	RC	0	-55	48	Assays Pending		+		
	YRC1515	222007	776364.413	RC	0	-55	60	Assays Pending		+		
\geq	YRC1516	221957	776424.849	RC	0	-55	48	Assays Pending		+		
\square	YRC1517	221957	776397.252	RC	0	-55	54	Assays Pending		+		
E	YRC1518	221957	776374.499	RC	0	-55	54	Assays Pending		╉		
1.5	YRC1519	221957	776374.027	RC	0	-90	54	Assays Pending		╉		
	YRC1520	222007	776261	RC	0	-90	36	Assays Pending		+		
Z	YRC1521	222007	776286	RC	0	-90	42	Assays Pending		+		
	YRC1522	222007	776310.918	RC	0	-90	54	Assays Pending		╉		
_	YRC1523	222007	776337.966	RC	0	-55	60	Assays Pending		+		
	YRC1524	222007	776336	RC	0	-90	60	Assays Pending		+		
	YRC1525	221907	776430	RC	0	-90	60	Assays Pending		+		
	YRC1526	221907	776405	RC	180	-60	72	Assays Pending		╉		
=	YRC1527	221907	776405	RC	0	-90	78	Assays Pending		+		
	YRC1528	224857	776436	RC	180	-60	78	Assays Pending		+		
_	YRC1529	221857	776436	RC	0	-90	66	Assays Pending		+		
	YRC1530	221757	776431	RC	0	-90	66	Assays Pending		╉		
	YRC1531	221807	776406	RC	0	-90	78	Assays Pending		+		
	YRC1532	221807	776381	RC	0	-90	60	Assays Pending	_	+		
	YRC1533	221607	776296	RC	0	-90	54	Assays Pending		+		
	YRC1534	221607	776321	RC	0	-90	66	Assays Pending		+		
	YRC1535	221607	776346	RC	0	-90	72	Assays Pending		+		
	YRC1536	221607	776371	RC	0	-90	84	Assays Pending		+		
	YRC1537	221607	776396	RC	0	-90	83	Assays Pending				

	VD 04 500	224 622	776424427	50	•		60			1 1
	YRC1538	221632	776424.137	RC	0	-90	60	Assays Pending		
	YRC1539	221632	776449.139	RC	0	-90	54	Assays Pending		
\geq	YRC1540	221632	776398.934	RC	0	-90	68	Assays Pending		
	YRC1541	221657	776449.139	RC	0	-90	60	Assays Pending		
	YRC1542	221657	776424.137	RC	0	-90	66	Assays Pending		
	YRC1543	221657	776398.934	RC	0	-90	72	Assays Pending		
	YRC1544	221657	776374.134	RC	0	-90	72	Assays Pending		
	YRC1545	221632	776374.134	RC	0	-90	72	Assays Pending		
	YRC1546	221682	776391	RC	0	-90	72	Assays Pending		
15	YRC1547	221682	776416	RC	0	-90	72	Assays Pending		
4	YRC1548	221707	776416	RC	0	-90	72	Assays Pending		
6	YRC1549	221707	776366	RC	0	-90	66	Assays Pending		
12	YRC1550	221682	776366	RC	0	-90	72	Assays Pending		
	YRC1551	221657	776351	RC	0	-90	72	Assays Pending		
	YRC1552	221682	776341	RC	0	-90	60	Assays Pending		
	YRC1553	221632	776349.132	RC	0	-90	72	Assays Pending		
	YRC1554	221707	776391	RC	0	-90	72	Assays Pending		
\square	YRC1555	221707	776327.113	RC	0	-55	72	Assays Pending		
9	YRC1556	221632	776324.132	RC	0	-90	60	Assays Pending		
	YRC1557	221957	776349.011	RC	0	-90	54	Assays Pending		
	Degbezere				070					
	YAC1938	207046	771205	AC	270	-60	50	Assays Pending		
2	YAC1939	207021	771206	AC	270	-60	50	Assays Pending		
\bigcap	YAC1940	206996	771207	AC	270	-60	50	Assays Pending		
Ч	YAC1941	206971	771210	AC	270	-60	54	Assays Pending		
11	YAC1942	206944	771218	AC	270	-60	50	Assays Pending		
$\left \right\rangle$	YAC1943	206919	771216	AC	270	-60	50	Assays Pending		
\leq	YAC1944	206894	771201	AC	270	-60	50	Assays Pending		
	YAC1945	206869	771198	AC	270	-60	50	Assays Pending		
	YAC1946	206844	771197	AC	270	-60	50	Assays Pending		
	YAC1947	206819	771196	AC	270	-60	50	Assays Pending		
	YAC1948	206794	771201	AC	270 270	-60 -60	50 50	Assays Pending		
	YAC1949 YAC1950	206769 206744	771207 771203	AC AC	270	-60	50	Assays Pending Assays Pending		
	YAC1950	206744	771193	AC	270	-60	47	Assays Pending		
	YAC1951	206694	771193	AC	270	-60	50	Assays Pending		
	YAC1953	206669	771193	AC	270	-60	50	Assays Pending		
	YAC1954	206644	771204	AC	270	-60	50	Assays Pending		
	YAC1955	206644	771204	AC	270	-60	54	Assays Pending		
	YAC1955	206592	771216	AC	270	-60	60	Assays Pending		
	YAC1957	206562	771210	AC	270	-60	63	Assays Pending		
	YAC1958	206582	771258	AC	270	-60	54	Assays Pending		
	YAC1959	206504	771256	AC	270	-60	54	Assays Pending		
	YAC1955	206477	771230	AC	270	-60	54	Assays Pending		
	1701300	200477	//1242		270	-00	54	Assuys renality		

I								I	1	1	і I
	YAC1961	206450	771217	AC	270	-60	50	Assays Pending	_		
	YAC1962	206425	771205	AC	270	-60	51	Assays Pending	_		
\geq	YAC1963	206400	771200	AC	270	-60	50	Assays Pending	_		
	YAC1964	206375	771200	AC	270	-60	45	Assays Pending	_		
	YAC1965	206353	771200	AC	270	-60	48	Assays Pending	_		
	YAC1966	206329	771200	AC	270	-60	54	Assays Pending	_		
	YAC1967	206302	771200	AC	270	-60	50	Assays Pending	_		
	YAC1968	206277	771200	AC	270	-60	50	Assays Pending			
	YAC1969	206252	771200	AC	270	-60	50	Assays Pending	_		
14	YAC1970	206227	771204	AC	270	-60	50	Assays Pending	_		
Ц	YAC1971	206202	771203	AC	270	-60	50	Assays Pending	_		
6	YAC1972	206177	771202	AC	270	-60	43	Assays Pending	_		
12	YAC1973	206156	771202	AC	270	-60	50	Assays Pending	_		$\left - \right $
	YAC1974	206131	771200	AC	270	-60	50	Assays Pending			\vdash
	YAC1975	206106	771197	AC	270	-60	50	Assays Pending			\vdash
-	YAC1976	206106	771197	AC	270	-60	50	Assays Pending	_		\vdash
	YAC1977	206081	771190	AC	270	-60	50	Assays Pending	_		
	YAC1978	206056	771186	AC	270	-60	50	Assays Pending	_		
Y	YAC1979	206006	771188	AC	270	-60	45	Assays Pending	_		
	YAC1980	205984	771195	AC	270	-60	50	Assays Pending	_		
	YAC1981	205959	771204	AC	270	-60	66	Assays Pending			
	YAC1982	205897	771203	AC	270	-60	50	Assays Pending			
1	YAC1983	205872	771200	AC	270	-60	50	Assays Pending			
7	YAC1984	205847	771200	AC	270	-60	50	Assays Pending			
12	YAC1985	205822	771201	AC	270	-60	50	Assays Pending	_		
	YAC1986	205797	771200	AC	270	-60	50	Assays Pending			
15	YAC1987	205773	771199	AC	270	-60	50	Assays Pending			
y	YAC1988	205748	771202	AC	270	-60	50	Assays Pending			
	YAC1989	205722	771200	AC	270	-60	50	Assays Pending			
\leq	YAC1990	205697	771204	AC	270	-60	50	Assays Pending			
	YAC1991	205672	771203	AC	270	-60	50	Assays Pending			
	YAC1992	205647	771202	AC	270	-60	50	Assays Pending			
	YAC1993	205622	771199	AC	270	-60	50	Assays Pending			
_	YAC1994	205597	771197	AC	270	-60	50	Assays Pending			
	YAC1995	205572	771201	AC	270	-60	50	Assays Pending			
	YAC1996	205547	771200	AC	270	-60	12	Assays Pending			
	YAC1997	205497	771223	AC	270	-60	50	Assays Pending			
	YAC1998	205471	771233	AC	270	-60	41	Assays Pending			
	YAC1999	205446	771240	AC	270	-60	50	Assays Pending			
	YAC2000	205420	771247	AC	270	-60	50	Assays Pending			
	YAC2001	205395	771249	AC	270	-60	50	Assays Pending			
	YAC2002	208463	771200	AC	270	-60	50	Assays Pending			
	YAC2003	208438	771200	AC	270	-60	44	Assays Pending			
	YAC2004	208416	771197	AC	270	-60	50	Assays Pending			

YAC2005 208301 771203 A.C. 270 6.0 50 Assays Pending I I YAC2006 208316 771200 A.C. 270 -60 50 Assays Pending I I I YAC2008 208316 771200 A.C. 270 -60 50 Assays Pending I I I YAC2009 208216 771200 A.C. 270 -60 50 Assays Pending I	ĺ						i 1			1	1		
VAC2007 20841 771200 AC 270 460 50 Assays Pending I I VAC208 208316 771200 AC 270 40 50 Assays Pending I I I VAC200 208291 771200 AC 270 40 50 Assays Pending I <th></th> <th></th> <th></th> <th></th> <th></th> <th>270</th> <th></th> <th>50</th> <th></th> <th></th> <th></th> <th></th> <th></th>						270		50					
YAC2008 208316 771200 A.C. 270 60 50 Assays Pending Image: Constraint of the constraint		YAC2006		771201	AC	270	-60	50	Assays Pending				
VAC2009 208291 771200 A.C. 270 60 50 Assays Pending Image: Constraint of the constraint	\geq	YAC2007	208341	771200	AC	270	-60	50	Assays Pending				
YAC2010 208266 771201 AC 270 60 50 Assays Rending Image: Constraint of the constraint o						270		50	Assays Pending				
YAC2011 208241 771205 AC 270 60 50 Assays Pending Image: Constraint of the start		YAC2009		771200		270	-60		Assays Pending				
YAC2012 208216 771200 AC 270 40 50 Assays Pending Image: Constraint of the second		YAC2010	208266	771201		270	-60	50	Assays Pending				
YAC2013 208176 771178 AC 270 60 50 Assays Pending Image: Constraint of the start		YAC2011	208241	771205	AC	270		50	Assays Pending				
VAC2014 208151 771166 AC 270 -60 50 Assays Pending Image: Constraint of the constand te		YAC2012	208216	771200	AC	270	-60	50	Assays Pending				
YAC2015 208126 771149 AC 270 -60 50 Assays Pending Image: Constraint of the start of the		YAC2013	208176	771178	AC	270	-60	50	Assays Pending				
YAC2016 208101 771136 AC 270 -60 50 Assays Pending Image: Constraint of the start of the	10	YAC2014	208151	771166	AC	270	-60	50	Assays Pending				
VAC2017 208076 771126 AC 270 -60 50 Assays Pending Image: Constraint of the start of the		YAC2015	208126	771149	AC	270	-60	50	Assays Pending				
VAC2018 208051 771120 AC 270 -60 50 Assays Pending Image: Constraint of the start of the		YAC2016	208101	771136	AC	270	-60	50	Assays Pending				
YAC2019 208025 771120 AC 270 -60 50 Assays Pending Image: Constraint of the start of the	/_	YAC2017	208076	771126	AC	270	-60	50	Assays Pending				
YAC2020 208001 771130 AC 270 -60 50 Assays Pending Image: Constraint of the start of the	7	YAC2018	208051	771120	AC	270	-60	50	Assays Pending				
YAC2021 207976 771136 AC 270 60 50 Assays Pending Image: Constraint of the second		YAC2019	208026	771120	AC	270	-60	50	Assays Pending				
YAC2022 207951 771148 AC 270 60 50 Assays Pending Image: Constraint of the start of the		YAC2020	208001	771130	AC	270	-60	50	Assays Pending				
YAC2023 207926 771155 AC 270 -60 51 Assays Pending YAC2024 207901 771185 AC 270 -60 66 Assays Pending		YAC2021	207976	771136	AC	270	-60	50	Assays Pending				
YAC2024 207901 771185 AC 270 -60 66 Assays Pending Image: Constraint of the start of the		YAC2022	207951	771148	AC	270	-60	50	Assays Pending				
YAC2025 207865 771196 AC 270 -60 50 Assays Pending Image: Constraint of the start of the	L	YAC2023	207926	771155	AC	270	-60	51	Assays Pending				
YAC2026 207840 771200 AC 270 -60 50 Assays Pending Image: Constraint of the start of the		YAC2024	207901	771185	AC	270	-60	66	Assays Pending				
YAC2027 207815 771200 AC 270 -60 50 Assays Pending Image: constraint of the start of the		YAC2025	207865	771196	AC	270	-60	50	Assays Pending				
YAC2028 207790 771200 AC 270 -60 50 Assays Pending Image: Constraint of the start of the		YAC2026	207840	771200	AC	270	-60	50	Assays Pending				
YAC2029 207765 771204 AC 270 -60 54 Assays Pending Image: Marcon Sector YAC2030 207736 771214 AC 270 -60 50 Assays Pending Image: Marcon Sector YAC2031 207694 771226 AC 270 -60 50 Assays Pending Image: Marcon Sector YAC2032 207669 771230 AC 270 -60 50 Assays Pending Image: Marcon Sector YAC2033 207645 771226 AC 270 -60 50 Assays Pending Image: Marcon Sector YAC2034 207620 771217 AC 270 -60 50 Assays Pending Image: Marcon Sector YAC2035 207595 771217 AC 270 -60 50 Assays Pending Image: Marcon Sector YAC2036 207570 771206 AC 270 -60 50 Assays Pending Image: Marcon Sector Image: Mar		YAC2027	207815	771200	AC	270	-60	50	Assays Pending				
YAC2030207736771214AC270-6050Assays PendingYAC2031207649771226AC270-6050Assays Pending	6	YAC2028	207790	771200	AC	270	-60	50	Assays Pending				
VAC2031 207694 771226 AC 270 -60 50 Assays Pending Image: constraint of the start of the	12	YAC2029	207765	771204	AC	270	-60	54	Assays Pending				
YAC2032 207669 771230 AC 270 -60 50 Assays Pending Image: Constraint of the start of the		YAC2030	207736	771214	AC	270	-60	50	Assays Pending				
YAC2033 207645 771226 AC 270 -60 50 Assays Pending Image: Marcine State YAC2034 207620 771217 AC 270 -60 50 Assays Pending Image: Marcine State Image: Marcine State <t< th=""><th>15</th><th>YAC2031</th><th>207694</th><th>771226</th><th>AC</th><th>270</th><th>-60</th><th>50</th><th>Assays Pending</th><th></th><th></th><th></th><th></th></t<>	15	YAC2031	207694	771226	AC	270	-60	50	Assays Pending				
YAC2034 207620 771217 AC 270 -60 50 Assays Pending Image: Constraint of the start of the	2	YAC2032	207669	771230	AC	270	-60	50	Assays Pending				
YAC2035 207595 771212 AC 270 -60 50 Assays Pending Image: Marcing instants instant instants instants instants instants ins		YAC2033	207645	771226	AC	270	-60	50	Assays Pending				
YAC2036 207570 771206 AC 270 -60 50 Assays Pending Image: Marcine State YAC2037 207945 771207 AC 270 -60 50 Assays Pending Image: Marcine State Image: MarcineState <td< th=""><th></th><th>YAC2034</th><th>207620</th><th>771217</th><th>AC</th><th>270</th><th>-60</th><th>50</th><th>Assays Pending</th><th></th><th></th><th></th><th></th></td<>		YAC2034	207620	771217	AC	270	-60	50	Assays Pending				
YAC2037 207945 771207 AC 270 -60 50 Assays Pending Image: Constraint of the system of the		YAC2035	207595	771212	AC	270	-60	50	Assays Pending				
YAC2038 207540 771202 AC 270 -60 50 Assays Pending Image: Marcine State YAC2039 207495 771202 AC 270 -60 50 Assays Pending Image: Marcine State Addition State Image: Marcine State Imar		YAC2036	207570	771206	AC	270	-60	50	Assays Pending				
YAC2039 207495 771202 AC 270 -60 50 Assays Pending Image: Constraint of the start of the		YAC2037	207945	771207	AC	270	-60	50	Assays Pending				
YAC2040 207470 771200 AC 270 -60 50 Assays Pending Image: Marcine State YAC2041 207445 771200 AC 270 -60 50 Assays Pending Image: Marcine State Image: MarcineState <td< th=""><th></th><th>YAC2038</th><th>207540</th><th>771202</th><th>AC</th><th>270</th><th>-60</th><th>50</th><th>Assays Pending</th><th></th><th></th><th></th><th></th></td<>		YAC2038	207540	771202	AC	270	-60	50	Assays Pending				
YAC2041 207445 771200 AC 270 -60 50 Assays Pending Image: Constraint of the start of the		YAC2039	207495	771202	AC	270	-60	50	Assays Pending				
YAC2042 207420 771204 AC 270 -60 50 Assays Pending Image: Constraint of the start of the		YAC2040	207470	771200	AC	270	-60	50	Assays Pending				
YAC2043 207395 771201 AC 270 -60 50 Assays Pending Image: Constraint of the state of the		YAC2041	207445	771200	AC	270	-60	50	Assays Pending				
YAC2044 207370 771205 AC 270 -60 50 Assays Pending Image: Constraint of the state of the		YAC2042	207420	771204	AC	270	-60	50	Assays Pending				
YAC2045 207345 771202 AC 270 -60 50 Assays Pending Image: Constraint of the state of the		YAC2043	207395	771201	AC	270	-60	50	Assays Pending				
YAC2046 207320 771201 AC 270 -60 50 Assays Pending Image: Constraint of the second secon		YAC2044	207370	771205	AC	270	-60	50	Assays Pending				
YAC2047 207295 771200 AC 270 -60 50 Assays Pending Image: Control of the second s		YAC2045	207345	771202	AC	270	-60	50	Assays Pending				
		YAC2046	207320	771201	AC	270	-60	50	Assays Pending				
YAC2048 207271 771201 AC 270 -60 50 Assays Pending		YAC2047	207295	771200	AC	270	-60	50	Assays Pending				
		YAC2048	207271	771201	AC	270	-60	50	Assays Pending				

	YAC2049	207246	771201	AC	270	-60	50	Assays Pending	
	YAC2050	207221	771202	AC	270	-60	50	Assays Pending	
/	YAC2051	207196	771203	AC	270	-60	50	Assays Pending	
	YAC2052	207171	771200	AC	270	-60	50	Assays Pending	
	YAC2053	207146	771200	AC	270	-60	50	Assays Pending	
	YAC2054	207116	771200	AC	270	-60	50	Assays Pending	
	YAC2055	207091	771200	AC	270	-60	50	Assays Pending	
	YAC2056	207066	771200	AC	270	-60	50	Assays Pending	
	YAC2057	207739	771597	AC	270	-60	50	Assays Pending	
11	YAC2058	207714	771595	AC	270	-60	50	Assays Pending	
$\left[\right]$	YAC2059	207689	771596	AC	270	-60	50	Assays Pending	
Σ	YAC2060	207664	771590	AC	270	-60	50	Assays Pending	
\int	YAC2061	207639	771600	AC	270	-60	66	Assays Pending	
4	YAC2062	207614	771600	AC	270	-60	69	Assays Pending	
	YAC2063	207581	771601	AC	270	-60	56	Assays Pending	
	YAC2064	207547	771617	AC	270	-60	56	Assays Pending	
	YAC2065	207519	771617	AC	270	-60	50	Assays Pending	
	YAC2066	207487	771614	AC	270	-60	50	Assays Pending	
L	YAC2067	207462	771607	AC	270	-60	50	Assays Pending	
	YAC2068	207437	771607	AC	270	-60	50	Assays Pending	
	YAC2069	207412	771610	AC	270	-60	50	Assays Pending	
1	YAC2070	207387	771612	AC	270	-60	50	Assays Pending	
1	YAC2071	207362	771601	AC	270	-60	50	Assays Pending	
6	YAC2072	207337	771600	AC	270	-60	56	Assays Pending	
1	YAC2073	207306	771603	AC	270	-60	50	Assays Pending	
	YAC2074	207281	771607	AC	270	-60	50	Assays Pending	
15	YAC2075	207256	771608	AC	270	-60	50	Assays Pending	
	1)								

Table 3: Bagoé drill holes and significant intercepts.

	Hole ID	East (mE)	North (mN)	Drill Type	Azimuth (°)	Dip (°)	Depth (m)	No of samples	From (m)	То (m)	Width (m)	Grade (g/t)
\geq	BDAC001678	816538	1083594	AC	45	-60	25	NSI	(,	(,	(,	(9/ -/
	BDAC001679	816524	1083580	AC	45	-60	42	NSI				
	BDAC001680	816524	1083608	AC	45	-60	25	NSI				
	BDAC001681	816510	1083594	AC	45	-60	36	NSI				
	BDAC001682	816494	1083579	AC	45	-60	54	5	43	48	5	13.6
2	incl							3	43	46	3	22.2
	BDAC001683	816538	1083566	AC	45	-60	42	3	24	27	3	2.89
15	BDAC001684	816553	1083580	AC	45	-60	25	3	4	7	3	4.68
2	BDAC001685	816555	1083555	AC	45	-60	42	6	24	30	6	1.57
ŕ	BDAC001686	816569	1083569	AC	45	-60	25	4	12	16	4	5.43
E	BDAC001687	816482	1083594	AC	45	-60	54	3	39	42	3	3.26
	BDAC001688	816497	1083609	AC	45	-60	36	5	22	27	5	16.7
-	incl							1	24	25	1	75.6
	BDAC001689	816479	1083620	AC	45	-60	36	3	23	26	3	7.46
	BDAC001690	816464	1083605	AC	45	-60	54	7	38	45	7	2.15
Γ	BDAC001691	816469	1083638	AC	45	-60	30	4	18	22	4	7.04
2	BDAC001692	816436	1083633	AC	45	-60	54	2	37	39	2	3.77
	BDAC001693	816450	1083647	AC	45	-60	36	2	24	26	2	5.43
	BDAC001694	816420	1083646	AC	45	-60	54	5	42	47	5	1.71
	BDAC001695	816435	1083660	AC	45	-60	36	9	25	34	9	6.22
\leq	BDRC0266	816541	1083540	RC	45	-60	60	NSI				
\int	BDRC0267	816526	1083525	RC	45	-60	78	NSI				
Ľ	BDRC0268	816524	1083551	RC	45	-60	60	2	41	43	2	4.47
	BDRC0269	816509	1083537	RC	45	-60	73	9	55	64	9	2.46
15	BDRC0270	816496	1083552	RC	45	-60	60	abandoned				
2	BDRC0271	816557	1083528	RC	45	-60	60	1	45	46	1	31.6
	BDRC0272	816571	1083514	RC	45	-60	66	2	47	49	2	4.87
_	BDRC0273	816588	1083502	RC	45	-60	66	3	47	50	3	2.53
	BDRC0274	816605	1083491	RC	45	-60	66	NSI				
	BDRC0275	816621	1083478	RC	45	-60	66	NSI				
	BDRC0276	816640	1083470	RC	45	-60	60	3	46	49	3	2.86
2	BDRC0277	816649	1083450	RC	45	-60	64	3	46	49	3	3.59
	BDRC0278	816663	1083436	RC	45	-60	66	NSI				
	BDRC0279	816663	1083408	RC	45	-60	66	NSI				
	BDRC0280	816496	1083552	RC	45	-60	72	6	56	62	6	8.36
	incl							2	57	59	2	18.6
	BDRC0281	816480	1083564	RC	45	-60	72	9	58	67	9	1.69
	BDRC0282	816467	1083580	RC	45	-60	72	NSI				
	BDRC0283	816450	1083591	RC	45	-60	72	5	53	58	5	2.15
	BDRC0284	816436	1083576	RC	45	-60	84	NSI				
	BDRC0285	816440	1083609	RC	45	-60	66	7	46	53	7	2.00
	BDRC0286	816422	1083619	RC	45	-60	72	NSI				
	BDRC0287	816407	1083605	RC	45	-60	84	NSI				

1	DDD00000	016406	1002624	D.C	45	60	70	NSI				
ŀ	BDRC0288	816406	1083631	RC	45	-60	72	NSI				
ŀ	BDRC0289	816391	1083617	RC	45	-60	84	NSI				
\geq	BDRC0290	816385	1083639	RC	45	-60	78	-	53	57	4	4.90
	BDRC0291	816380	1083662	RC	45	-60	72	4 abandoned	55	57	4	4.90
-	BDRC0292	816365	1083647	RC	45	-60	72		60	62	2	4.77
	BDRC0293 and	816357	1083668	RC	45	-60	80	2 2	70	72	2	4.57
	BDRC0294	816352	1083684	RC	45	-60	72	3	60	63	3	4.09
	BDRC0294	816337	1083669	RC	45	-60	80	1	69	70	1	14.3
	and	010557	1005005	ne	45	00	00	2	76	78	2	5.71
10	BDRC0296	816334	1083701	RC	45	-60	70	1	52	53	1	5.22
D	and			-			-	2	58	60	2	17.8
3	BDRC0297	816320	1083687	RC	45	-60	80	NSI				
\square	BDRC0298	816306	1083701	RC	45	-60	80	NSI				
4	BDRC0299	816306	1083729	RC	45	-60	65	2	52	54	2	15.2
	incl							1	52	53	1	27.6
	BDRC0300	816288	1083740	RC	45	-60	65	4	37	41	4	9.95
	incl							1	38	39	1	32.7
	BDRC0301	816274	1083754	RC	45	-60	65	2	48	50	2	4.79
U	BDRC0302	816250	1083759	RC	45	-60	66	NSI				
\forall	BDRC0303	816242	1083779	RC	45	-60	60	6	47	53	6	3.19
	BDRC0304	816227	1083764	RC	45	-60	80	7	63	70	7	1.19
	BDRC0305	816213	1083778	RC	45	-60	65	NSI				
	BDRC0306	816228	1083793	RC	45	-60	65	2	21	23	2	5.32
	and							6	37	43	6	1.28
Ŋ	BDRC0307	816213	1083807	RC	45	-60	65	3	18	21	3	6.34
4	incl							1	18	19	1	17.5
11	and							2	44	46	2	3.24
D	BDRC0308	816198	1083820	RC	45	-60	65	5 NSI	39	44	5	1.32
3	BDRC0309	816170	1083792	RC	45	-60	65	NSI				
	BDRC0310	816184	1083834	RC	45	-60	65	assays pending				
-	BDRC0311	816170	1083820	RC	45	-60	80	assays pending				
-	BDRC0312	816156	1083806	RC	45	-60	65	assays pending				
_	BDRC0313	816680	1083311	RC	45	-60	84	assays pending				
	BDRC0314	816157	1083835	RC	45	-60	80	assays pending				
2	BDRC0315	816365	1083647	RC	45	-60	86	assays pending				
-	BDRC0316	816575	1083462	RC	45	-60	102	assays pending				
	BDRC0317	816620	1083421	RC	45	-60	102	assays pending				
-	BDRC0318	816614	1083443	RC	45	-60	96	assays pending				
-	BDRC0319	816592	1083449	RC	45	-60	102	assays pending				
-	BDRC0320	816590	1083476	RC	45	-60	84	assays pending				
-	BDRC0321	816557	1083499	RC	45	-60	84	assays pending				
┝	BDRC0322	816573	1083488	RC	45	-60	84	assays pending				
┢	BDRC0323	816542	1083513	RC	45	-60	78 04	assays pending				
┢	BDRC0324	816606	1083464	RC	45	-60	84 25	NSI				
┢	BDRC0346	816449	1083674	RC	45	-60	25		2/	26	2	6.22
L	BDRC0347	816414	1083668	RC	45	-60	48	2	34	36	2	6.22

	1	1				1			1	1	1	
	BDRC0348	816440	1083694	RC	45	-60	18	NSI				
	BDRC0349	816395	1083677	RC	45	-60	54	NSI				
\geq	BDRC0350	816409	1083691	RC	45	-60	36	1	21	22	1	5.13
	BDRC0351	816423	1083706	RC	45	-60	25	NSI				
	BDRC0352	816387	1083697	RC	45	-60	50	7	27	34	7	4.49
	BDRC0353	816401	1083712	RC	45	-60	35	4	12	16	4	7.66
	incl							1	13	14	1	21.4
	BDRC0354	816366	1083698	RC	45	-60	55	1	41	42	1	13.0
	BDRC0355	816381	1083712	RC	45	-60	42	10	20 20	30 22	10 2	6.16 11.7
	incl also incl							2 1	20	22	1	25.9
5	BDRC0356	816395	1083727	RC	45	-60	30	NSI	24	25	-	23.5
4	BDRC0357	816349	1083727	RC	45	-60	55	3	30	33	3	12.4
\bigcap	incl	810349	1083710	ĸĊ	45	-00	55	3 1	31	32	1	33.2
1	BDRC0358	816363	1083730	RC	45	-60	42	7	17	24	7	4.92
	BDRC0359	816377	1083744	RC	45	-60	30	5	0	5	5	1.98
	and	5100//	2000, 44					1	13	14	1	7.73
	BDRC0360	816335	1083730	RC	45	-60	55	1	35	36	1	5.83
	BDRC0361	816349	1083744	RC	45	-60	42	NSI				
\square	BDRC0362	816363	1083758	RC	45	-60	30	15	3	18	15	4.81
9	incl							1	6	7	1	33.1
	also incl							1	12	13	1	25.5
	BDRC0363	816335	1083758	RC	45	-60	40	9	23	32	9	4.05
	BDRC0364	816349	1083773	RC	45	-60	30	8	11	19	8	1.17
	BDRC0365	816321	1083744	RC	45	-60	50	2	40	42	2	7.47
\bigcap	BDRC0366	816303	1083755	RC	45	-60	50	3	37	40	3	34.9
1	incl							1	38	39	1	102.5
_	BDRC0367	816316	1083768	RC	45	-60	40	6	27	33	6	6.38
5	incl							1	32	33	1	22.2
2	BDRC0368	816331	1083783	RC	45	-60	30	NSI				
	BDRC0369	816289	1083769	RC	45	-60	45	3	33	36	3	14.6
_	Lincl							1	34	35	1	41.4
	BDRC0370	816303	1083783	RC	45	-60	30	3	21 23	24 24	3	23.3 67.2
	incl	046047	4000707		45	60	20	1	7	11	1	2.65
	BDRC0371	816317	1083797	RC	45	-60	20	4	19	23	4	1.20
_	BDRC0372	816293	1083802	RC	45	-60	25	4	28	23	4	7.18
	BDRC0373	816278	1083787	RC	45	-60	40	1	33	35	2	3.60
	BDRC0374	816257	1083794	RC	45	-60	45	2	12	19	7	3.00
	BDRC0375	816271	1083808	RC	45	-60	30	7	31	32	1	5.32
	BDRC0376	816242	1083807	RC	45	-60	45	1	9	20	11	2.48
	BDRC0377 incl	816257	1083822	RC	45	-60	30	11 3	9 16	20 19	3	2.48 7.30
	BDRC0378	816228	1083821	RC	45	-60	45	3 NSI	10		, j	,
	BDRC0378	816228	1083835	RC	45 45	-60	45 30	2	16	18	2	4.07
	BDRC0379	816227	1083849	RC	45	-60	30	NSI			_	
	BDRC0380	816227	1083849	RC	45 45	-60	30 45	NSI				
								NSI				
	BDRC0382	816213	1083863	RC	45	-60	30	1451				

	_				_	_			_	_	_	
	BDRC0383	816185	1083863	RC	45	-60	45	8	13	21	8	1.24
	BDRC0384	816199	1083878	RC	45	-60	30	NSI				
	BDRC0385	816172	1083878	RC	45	-60	45	NSI				
\geq	BDRC0386	816186	1083893	RC	45	-60	30	7	13	21	8	7.03
	incl							1	20	21	1	47.2
	BDRC0387	816169	1083903	RC	45	-60	35	1	14	15	1	20.0
	BDRC0388	816149	1083912	RC	45	-60	45	NSI				
	BDRC0389	816120	1083883	RC	45	-60	40	NSI				
\square	BDRC0390	816106	1083869	RC	45	-60	50	4	35	39	4	2.41
	BDRC0391	816121	1083912	RC	45	-60	25	NSI				
75	BDRC0392	816106	1083898	RC	45	-60	42	4	21	25	4	2.01
L	BDRC0393	816092	1083884	RC	45	-60	54	NSI				
\bigcap	BDRC0394	816106	1083926	RC	45	-60	30	NSI				
/ 2	BDRC0395	816092	1083912	RC	45	-60	50	8	13	21	8	1.46
	BDRC0396	816078	1083898	RC	45	-60	60	2	28	30	2	2.89
	BDRC0397	816057	1083905	RC	45	-60	50	NSI				
	BDRC0398	816043	1083919	RC	45	-60	50	NSI				
	BDRC0399	816028	1083933	RC	45	-60	50	NSI				
	BDRC0400	816014	1083947	RC	45	-60	50	NSI				
C	BDRC0401	816029	1083962	RC	45	-60	40	NSI				
	BDRC0402	816044	1083976	RC	45	-60	30	NSI				
	BDRC0403	816043	1083947	RC	45	-60	40	NSI				
	BDRC0404	816057	1083962	RC	45	-60	30	NSI				
\square	BDRC0405	816071	1083947	RC	45	-60	30	NSI				
\bigcap	BDRC0406	816083	1083931	RC	45	-60	30	4	10	14	4	2.77
/ [BDRC0407	816057	1083933	RC	45	-60	40	NSI				
	BDRC0408	816163	1083926	RC	45	-60	30	NSI				
75	BDRC0409	816572	1083543	RC	45	-60	42	2	28	30	2	17.4
L	BDRC0410	816586	1083557	RC	45	-60	25	2	14	16	2	13.7
1	incl							1	14	15	1	26.7
_	BDRC0411	816586	1083528	RC	45	-60	42	2	32	34	2	7.74
	BDRC0412	816600	1083542	RC	45	-60	25	2	17 18	19 19	2	25.2 49.8
	incl	046646	4002520	D C	45	60	25	1	18	19	1	13.2
	BDRC0413	816616	1083530	RC	45	-60	25	1	32	35	3	2.87
	BDRC0414	816602	1083516	RC	45	-60	42	3 NSI	52	35	5	2.07
	BDRC0415 BDRC0416	816632	1083518 1083504	RC	45	-60	25 45	1	34	35	1	15.1
		816618		RC	45	-60		I NSI	54	35	-	15.1
	BDRC0417	816648	1083506	RC	45	-60	25	3	34	37	3	4.14
	BDRC0418	816635	1083493	RC	45	-60	42	3 NSI	54	57	5	7.17
	BDRC0419	816666	1083496	RC	45 45	-60 -60	25 25	NSI				
	BDRC0420	816677	1083478	RC					22	24	2	6.27
	BDRC0421	816692	1083465	RC	45 45	-60	25 25	2 NSI	~~~	27	-	5.27
	BDRC0422 BDRC0423	816692 816677	1083436 1083422	RC RC	45 45	-60 -60	42	NSI				
	BDRC0423 BDRC0424	816663	1083422	RC	45 45	-60	42	3	31	34	3	1.43
								3 NSI			Ŭ	
	BDRC0425	816677	1083450	RC	45	-60	45	1951				

	BDRC0426	816685	1083402	RC	45	-60	39	NSI				
	BDRC0427	816699	1083415	RC	45	-60	25	NSI				
	BDRC0428	816706	1083394	RC	45	-60	25	NSI				
\geq	BDRC0429	816692	1083380	RC	45	-60	42	NSI				
	BDRC0430	816713	1083373	RC	45	-60	25	NSI				
	BDRC0431	816699	1083359	RC	45	-60	42	2	10	12	2	3.72
	BDRC0432	816708	1083340	RC	45	-60	42	NSI				
	BDRC0433	816511	1083624	RC	45	-60	25	6	14	20	6	2.15
	BDRC0434	816493	1083634	RC	45	-60	25	3	10	13	3	34.2
	incl							1	10	11	1	104.0
75	BDRC0435	816465	1083662	RC	45	-60	25	NSI				
	BDRC0436	816092	1083855	RC	45	-60	60	NSI				
\bigcap	BDRC0437	816078	1083869	RC	45	-60	60	1	12	13	1	18.4
12	BDRC0438	816064	1083884	RC	45	-60	60	NSI				
_	BDRC0439	816134	1083897	RC	45	-60	60	NSI				
	BDRC0440	816144	1083879	RC	45	-60	65	2	16	18	2	2.83
	BDRC0441	816111	1083845	RC	45	-60	66	NSI				
	BDRC0442	816129	1083836	RC	45	-60	65	8	46	54	8	1.05
	BDRC0443	816157	1083864	RC	45	-60	60	NSI				
U	BDRC0444	816142	1083821	RC	45	-60	65	NSI				
_	BDRC0445	816171	1083849	RC	45	-60	66	4	27	31	4	1.42
	BDRC0446	816143	1083850	RC	45	-60	72	NSI				
	BDRC0447	816671	1083387	RC	45	-60	66	8	7	15	8	1.33
	BDRC0448	816678	1083366	RC	45	-60	66	5	18	23	5	1.56
\bigcap	BDRC0449	816684	1083344	RC	45	-60	66	NSI				
12	BDRC0450	816694	1083325	RC	45	-60	66	3	30	33	3	5.58
	BDRC0451	816670	1083330	RC	45	-60	84	3	44	47	3	2.09
75	BDRC0452	816663	1083352	RC	45	-60	84	NSI				
IJ	BDRC0453	816656	1083373	RC	45	-60	84	assays pending				
	BDRC0454	816649	1083393	RC	45	-60	84	assays pending				
	BDRC0455	816649	1083422	RC	45	-60	84	assays pending				
	BDRC0456	816635	1083436	RC	45	-60	84	9	64	73	9	2.14
	and							2	82	84	2	3.34
	BDRC0457	816606	1083464	RC	45	-60	72	assays pending				
	BDRC0520	816566	1083565	RC	45	-60	28	assays pending				
	BDRC0521	816478	1083591	RC	45	-60	54	assays pending				

Table 4: Edikan drill holes and significant intercepts.

	Hole_ID	East	North	Drill Type	Azimuth	Dip	Depth	No of Samples	From	То	Width	Au g/t
		(mE)	(mN)		(°)	(°)	m					
	MPRC234	22562.7	12985.97	RC	138	-55	120	1	72	74	2	3.02
	MPRC236	22403.45	13024.98	RC	138	-55	156	1	16	18	2	6.57
	MPRC236	22403.45	13024.98	RC	138	-55	156	1	29	30	1	1.58
	MPRC236	22403.45	13024.98	RC	138	-55	156	1	36	37	1	3.03
_	MPRC236	22403.45	13024.98	RC	138	-55	156	1	48	50	2	0.5
ลเ	MPRC236	22403.45	13024.98	RC	138	-55	156	3	106	112	6	6.73
IJ	MPRC237	22404.12	13067.01	RC	138	-55	168	2	146	150	4	38.28
	MPRC237	22404.12	13067.01	RC	138	-55	168	1	166	168	2	0.55
IJ	MPRC239	22482.69	13069.91	RC	138	-55	165	11	30	41	11	1.9
	MPRC239	22482.69	13069.91	RC	138	-55	165	1	71	72	1	4.77
_	MPRC239	22482.69	13069.91	RC	138	-55	165	1	98	100	2	9.03
	MPRC239	22482.69	13069.91	RC	138	-55	165	2	162	165	3	1.29
	MPRC240	22561.89	13106.68	RC	138	-55	118	3	67	70	3	1.66
	MPRC240	22561.89	13106.68	RC	138	-55	118	1	91	92	1	1.81
U	MPRC240	22561.89	13106.68	RC	138	-55	118	1	100	101	1	6.8
	MPRC241	22322.63	13066.59	RC	138	-55	165	1	15	16	1	0.7
	MPRC241	22322.63	13066.59	RC	138	-55	165	1	17	18	1	0.59
	MPRC241	22322.63	13066.59	RC	138	-55	165	1	39	40	1	0.94
	MPRC241	22322.63	13066.59	RC	138	-55	165	1	45	46	1	1
$\int \int$	MPRC241	22322.63	13066.59	RC	138	-55	165	4	75	79	4	0.68
シロ	MPRC241	22322.63	13066.59	RC	138	-55	165	1	89	90	1	0.51
	MPRC241	22322.63	13066.59	RC	138	-55	165	1	99	100	1	0.52
15	MPRC241	22322.63	13066.59	RC	138	-55	165	6	108	114	6	0.54
	MPRC241	22322.63	13066.59	RC	138	-55	165	1	148	150	2	0.71
	MPRC242	22322.16	13042.91	RC	138	-55	120	6	40	47	7	0.61
	MPRC242	22322.16	13042.91	RC	138	-55	120	2	67	69	2	1.03
	MPRC243	22563.67	13148.02	RC	138	-55	163	2	122	124	2	1.68
	MPRC243	22563.67	13148.02	RC	138	-55	163	1	134	135	1	2.32
	MPRC243	22563.67	13148.02	RC	138	-55	163	5	140	145	5	0.73
$ \ge$	MPRC243	22563.67	13148.02	RC	138	-55	163	4	150	154	4	1.67
1	MPRC243	22563.67	13148.02	RC	138	-55	163	1	160	161	1	10.67
	MPRC244	22562.11	13067.75	RC	138	-55	60	1	36	37	1	0.51
	MPRC245	22640.48	13067.33	RC	138	-55	60	1	6	8	2	1.43
	MPRC245	22640.48	13067.33	RC	138	-55	60	9	15	24	9	1.04
	MPRC245	22640.48	13067.33	RC	138	-55	60	1	37	38	1	1.96
	MPRC246	22641.18	13144.45	RC	138	-55	156	5	109	114	5	1.24
	MPRC246	22641.18	13144.45	RC	138	-55	156	1	151	152	1	0.56
	MPRC247	22642.12	13109.99	RC	138	-55	110	1	4	6	2	0.74
	MPRC247	22642.12	13109.99	RC	138	-55	110	4	90	94	4	2.37
	MPRC247	22642.12	13109.99	RC	138	-55	110	1	101	102	1	0.55

	MPRC247	22642.12	13109.99	RC	138	-55	110	1	105	106	1	0.91
	MPRC248	22722.1	13139.89	RC	138	-55	160	1	68	69	1	24.2
	MPRC248	22722.1	13139.89	RC	138	-55	160	5	109	114	5	0.84
\geq	MPRC248	22722.1	13139.89	RC	138	-55	160	5	125	130	5	3.57
	MPRC248	22722.1	13139.89	RC	138	-55	160	1	137	138	1	1.66
	MPRC248	22722.1	13139.89	RC	138	-55	160	1	151	153	2	0.58
	MPRC248	22722.1	13139.89	RC	138	-55	160	4	153	157	4	1.17
	MPRC249	22722.92	13104.16	RC	138	-55	112	1	46	48	2	0.98
	MPRC249	22722.92	13104.16	RC	138	-55	112	1	63	64	1	1.2
	MPRC249	22722.92	13104.16	RC	138	-55	112	3	69	72	3	1.31
15	MPRC249	22722.92	13104.16	RC	138	-55	112	1	91	92	1	0.53
<u>1</u> 1	MPRC250	22481.04	12986.55	RC	138	-55	90	1	72	74	2	0.91
$\int \int$	MPRC251	22481.79	13011.78	RC	138	-55	120	4	11	15	4	1.48
	MPRC251	22481.79	13011.78	RC	138	-55	120	1	102	103	1	0.87
	MPRC251	22481.79	13011.78	RC	138	-55	120	2	116	118	2	8.42
	MPRC252	22563.43	13027.39	RC	138	-55	126	1	6	8	2	2.26
	MPRC252	22563.43	13027.39	RC	138	-55	126	1	14	16	2	0.67
	MPRC253	22563.36	13008.46	RC	138	-55	135	1	110	111	1	0.58
U	MPRC254	22803.32	13149.02	RC	138	-55	114	1	102	104	2	0.52
	MPRC255	22801.63	13065.05	RC	138	-55	60	1	4	6	2	0.81
	MPRC256	22083.24	13107.62	RC	138	-55	102	32	63	95	32	1.68
	DKRC111	211.78	-7618.54	RC	308	-60	153	1	28	30	2	1.74
	DKRC111	211.78	-7618.54	RC	308	-60	153	2	72	76	4	0.77
6	DKRC111	211.78	-7618.54	RC	308	-60	153	2	90	94	4	0.61

APPENDIX A – JORC TABLE 1

JORC Code, 2012 Edition – Table 1 Section 1 Sampling Techniques and Data – Côte d'Ivoire

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Reverse Circulation (RC) drill holes were routinely sampled a 1m intervals down the hole. RC samples were collected at the drill rig by riffle splitting drill spoils to collect a nominal 1 2 kg sub sample and composited into 2m samples for assay. Air Core (AC) drill holes were routinely sampled at 1m intervals down the hole. AC samples were collected at the drill rig by riffle splitting drill spoils to collect a nominal 2-3 kg sub. Half-core from Diamond core drilling (DD) were taken systematically from the 'right' hand side; 1.5 m in oxide and transition, 1 m in fresh Routine standard reference material, sample blanks, and sample duplicates were routinely inserted/collected in the sample sequence. RC, AC and DD samples were submitted to Bureau Veritas Cote d'Ivoire for preparation and analysis by 50g Fire Assay.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	 All RC holes were completed by reverse circulation (RC) drilling techniques with a hole diameter of 5.5 inch and a fac sampling down hole hammer. Air Core drilling was completed with a 3.5 inch hammer. Diamond drilling used HQ diameter in weathered, and NQ in fresh rock. All drill core was oriented using a Reflex EX Trac tool.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Riffle split samples were weighed to monitor sample recovery Diamond core recovery was measured. Recoveries in fresh rock average 98% No apparent relation has been observed between sample recovery and grade
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 All drill samples were geologically logged by Company Geologists. Geological logging recorded rock types, the abundance of quartz and sulphides and degree of weathering using a standardized logging system. Small samples of coarse and sieved RC drill material were affixed to "chip boards" to aid geological logging and for future reference. Sieved and washed AC materials were kept in chip boxes for future reference

Sub-sampling	• If core, whether cut or sawn and whether quarter, half or	All RC and AC samples were riffle split at the drill rig.
techniques and	• If core, whether cut of sawn and whether quarter, half of all core taken.	 All RC and AC samples were time split at the drilling. Samples were obtained dry.
sample preparation	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	 Routine field sample duplicates were taken to evaluate representivity of samples with the results stored in the
Quality of assay data and laboratory tests	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, 	 master drill database for reference. At the Bureau Veritas laboratory, samples were weighed, dried and crushed to -2mm in a jaw crusher. A 1.5kg split of the crushed sample was subsequently pulverised in a ring mill to achieve a nominal particle size of 85% passing 75um. Sample sizes and laboratory preparation techniques are considered to be appropriate for this stage of gold exploration. Analysis for gold was undertaken at Bureau Veritas Cote d'Ivoire lab by 50g Fire Assay with AAS finish to a lower detection limit of 0.01ppm. Fire assay is considered a total assay technique. No geophysical tools or other non-assay instruments were used in the analyses reported.
	etc. • Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 QAQC samples nominally Blanks at 1 in 50 Certified standards at 1 in 25 Field duplicates of RC samples at 1 in 50 Review of standard reference material, sample blanks and duplicates suggest there are no significant analytical bias or preparation errors in the reported analyses. Internal laboratory QAQC checks are reported by the laboratory and routine review of the laboratory QAQC suggests the laboratory is performing within acceptable limits.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Drill hole data is captured by Company geologists at the drill rig and manually entered into a digital database. The digital data is verified and validated by the Company's database Manager before loading into a master drill hole database on a regularly backed-up server. Reported drill hole intercepts are compiled by the Company's Group Exploration Manager. Twin holes were not drilled to verify results. There were no adjustments to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collars were set out in UTM grid_Zone30N for Yaouré. Drill hole collars were positioned using handheld GPS, accurate to +/- 2-3m in the horizontal. Drill holes were routinely surveyed for down hole deviation using the Flexit tool. DD holes were surveyed at 12m and then every 30m. RC holes were surveyed at 9m and at end of the hole. AC holes were not surveyed downhole. Locational accuracy at collar and down the drill hole is considered appropriate for this early stage of exploration.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 All reported RC and DD holes were drilled on 40m to 80m spaced SW-NE orientated drill sections with hole spacing on sections at 40m. Reported AC holes were drilled heel-to-toe on nominal 160m-spaced fences. The reported drilling has not been used to estimate any mineral resources or reserves. Prior to assaying, 1m RC sub-samples have been composited by weight to form 2m composites samples. AC samples were assayed for each meter.

Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Exploration is at an early stage and the true orientation of mineralisation has not yet been confirmed.
Sample security	• The measures taken to ensure sample security.	 Samples were stored in a fenced compound within the Company's accommodation camp in Tengréla or at secured Yaouré site offices prior to sample collection and road transport to the laboratory of Bureau Veritas in Abidjan or MSA Lab in Yamoussoukro.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 The Company's sampling techniques employed in Ivory Coast were last reviewed in a site visit to the Tengréla Gold Project by Snowden mining consultants in December 2016.

JORC Code, 2012 Edition – Table 1 Section 1 Sampling Techniques and Data – Edikan

Criteria	JORC Code Explanation	Commentary
Sampling rechniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Drill holes have been drilled as Reverse Circulation (RC) and diamond core (DD) RC samples were taken at 1m intervals, of which a nominal 2-3kg sub-sample was obtain by riffle splitter. Two consecutive samples were combined obtain 2m composites DD samples were cut in halves and one half submitted for assaying, the other half stored in the core box for reference. Sample intervals varied between 0.5m and 1.5m. Routine standard reference material, sample blanks and sample duplicates were routinely inserted/collected in the sample sequence. Samples were submitted to Intertek Laboratories in Tarkwa/Ghana for preparation and analysis by 50g Fire Assay.
Drilling techniques	• Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 RC have been drilled using a 5.25" diameter face- sampling hammer DD holes were drilled with HQ diameter in weathered material, and NQ diameter in fresh rock
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Riffle split samples were weighed to monitor sample recovery No apparent relation has been observed between sample recovery and grade

Logging

- Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.
- The total length and percentage of the relevant intersections logged.
- All drill samples were geologically logged by Company geologists. Drill holes were logged in full
- Geological logging recorded rock types, the abundance of quartz and sulphides and degree of weathering using a standardized logging system
- Small samples of coarse and sieved RC drill material were preserved in 'chip trays' to aid geological logging and for future reference
- Whole core is photographed wet and dry prior to cutting

Section 2 Reporting of Exploration Results - Yaouré

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Reported RC, AC and DD results from the Sayikro are within the Yaouré exploitation permit (tenement PE50) The Yaouré exploitation permit has an expiry date of 23 April 2030. The permit is held by Perseus's subsidiary Perseus Mining Yaouré SA in which the government of Côte d'Ivoire holds a 10% free carried interest. The Government of Côte d'Ivoire is entitled to a royalty on production as follows: Spot price per ounce - London PIM Fix Royalty Rate Less than or equal to US\$1000 Higher than US\$1000 and less than or equal to US\$1300 Higher than US\$1600 and less than or equal to US\$1600 Higher than US\$1600 and less than or equal to US\$2000 Higher than US\$1600 and less than or equal to US\$2000 The Allekran prospect lies within the Yaouré West Permis de Recherches (tenement PR615). The Yaouré West PR has an expiry date of 29 September 2022 The permit is held by Perseus's subsidiary Perseus Mining Yaouré SA in which the government of Côte d'Ivoire holds a 10% free carried interest. The reported exploration areas have no known exploration-specific environmental liabilities.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	No previous drilling has been conducted on the Sayikro prospect or at Allekran.
Geology	• Deposit type, geological setting and style of mineralisation.	 The Sayikro and Allekran prospects are underlain by mafic volcanics intruded by granodiorite bodies. Mineralisation occurs as disseminations of py-apy in the granodiorite and in qtz-carbonate veins in both the intrusives and basalts. The three deep holes into the CMA thrust were designed to identify the structure at depth.

Drill hole	A summary of all information material to the understanding of the evaluation results including a	Reported results are summarised in Table 3 within the attached appaulsoment
Information	understanding of the exploration results including a tabulation of the following information for all Material drill holes:	attached announcement.The drill holes reported in this announcement have the following parameters:
	\circ easting and northing of the drill hole collar	 Grid co-ordinates are UTM WGS84_30N.
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	 Collar elevation is defined as height above sea level in metres (RL)
	 dip and azimuth of the hole down hole length and interception depth hole length 	 Dip is the inclination of the hole from the horizontal. Azimuth is reported in WGS 84_29N degrees as the direction toward which the hole is drilled.
	 If the exclusion of this information is justified on the basis that the information is not Material and this 	• Down hole length of the hole is the distance from the surface to the end of the hole, as measured along the drill trace
	exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	• Intersection depth is the distance down the hole as measured along the drill trace.
	explain why this is the case.	• Intersection width is the down hole distance of an intersection as measured along the drill trace
		• Hole length is the distance from the surface to the end of the hole, as measured along the drill trace.
		• Previously reported drilling results have not been repeated in this announcement.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade 	 A minimum cut-off grade of 0.3 g/t Au is applied to the reported intervals.
	truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	 Intervals of Internal dilution (<0.3 g/t Au) within a reported interval cannot exceed 2m.
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of	No grade top cut has been applied.
	low-grade results, the procedure used for such	 Samples have been weighted by length of sample interval
	aggregation should be stated and some typical examples of such aggregations should be shown in detail.	 No metal equivalent reporting is used or applied.
	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between	 These relationships are particularly important in the reporting of Exploration Results. 	 The reported results are from early stage exploration drilling; the orientation of geological structures is currently not known
mineralisation widths and	 If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	 with certainty (other than the CMA). Results are reported as down hole length, true width is unknown.
intercept lengths	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Drill hole plans are shown in Figures 5 & 6 in Appendix A. Significant assay results are tabulated in body text of this announcement
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Results have been comprehensively reported in this announcement. All drill holes completed, including holes with no significant gold intersections, are reported in Table 3 of Appendix A.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	There is no other exploration data which is considered material to the results reported in this announcement

Further work	• The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	• Further drilling is warranted at Sayikro to assess the gold within both the mafic volcanics and the granodiorite, and to define the strike length of the intersected mineralisation.
	 Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Results from Akakro & Govisou are be assessed to determine whether further drilling is warranted. Grade-control drilling is planned for Angovia 2 to quantify a potential oxide resource.
		 The CMA Deeps holes will be used for future down-hole seismic measurements.

Section 2 Reporting of Exploration Results – Sissingué and Mahalé

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Reported AC results from Mahalé relate to exploration permit PR259, currently under application for an Exploitation Permit. The Permit is held by Perseus's 100% owned subsidiary Occidental Gold SARL Reported AC results from Sissingué relate to Exploitation Permit PE39, valid until 8 August 2022. Perseus holds an 86% interest in PE39 through the Company's wholly owned subsidiary Perseus Mining Côte d'Ivoire SA. The government of Côte d'Ivoire holds a 10% free carried interest in the property and the remaining 4% interest is held by local joint venture partner Société Minière de Côte d'Ivoire (SOMICI). The Government of Côte d'Ivoire is entitled to a royalty on production as follows: Spot price per ounce - London PM Fix Rate Less than or equal to US\$1000 3% Higher than US\$1000 and less than or equal to US\$1300 Higher than US\$1600 and less than or equal to US\$1600 Higher than US\$2000 The Solow of Sissingué, Franco Nevada are entitled to a 0.5% royalty on production and Ivorian partners are entitled to a royalty of US\$0.80 per ounce. The Mahalé and Sissingué areas have no known exploration- specific environmental liabilities.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Historical exploration over the Mahalé and Sissingué permits is limited to regional lag sampling by Randgold Resources during the 1990's. This work identified a number of target areas, including the areas reported on in this ASX announcement.
Geology	Deposit type, geological setting and style of mineralisation.	 The Mahalé area is largely underlain by mafic volcanics and granites/syenites. Gold mineralisation is related to altered syeno-granite and basalt in contact with the marginal parts of the intrusive, with associated pyrite + magnetite ± quartz veining. The Sissingué area is dominated by clastic basinal meta-sediments intruded by major felsic (granodioritic) and minor mafic intrusions.

		• Gold mineralisation occurs predominantly in quartz veins within altered metasediments (sericite-carbonate + pyrite ± arsenopyrite), often at and/or close to the contacts with plug-like felsic intrusions.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Reported results are summarised in Tables 1 & 2 within the attached announcement. The drill holes reported in this announcement have the following parameters: Grid co-ordinates are UTM WGS84_29N. Collar elevation is defined as height above sea level in metres (RL) Dip is the inclination of the hole from the horizontal. Azimuth is reported in WGS 84_29N degrees as the direction toward which the hole is drilled. Down hole length of the hole is the distance from the surface to the end of the hole, as measured along the drill trace Intersection depth is the distance down the hole as measured along the drill trace. Hole length is the distance from the surface to the end of the hole, as measured along the drill trace. Hole length is the distance from the surface to the end of the normal the drill trace. Previously reported drilling results (pre-2018) have not been repeated in this announcement.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 A minimum cut-off grade of 0.3 g/t Au is applied to the reported intervals. Intervals of Internal dilution (<0.3 g/t Au) within a reported interval cannot exceed 2m. No grade top cut has been applied. Samples have been weighted by length of sample interval No metal equivalent reporting is used or applied.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 The reported results are from early stage exploration drilling; the orientation of geological structure is currently not known with certainty. Results are reported as down hole length, true width is unknown.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Significant assay results are tabulated in the body text of this announcement. A plan and section from the Tiana prospect are provided in Figures 2 & 3 in Appendix A.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Results have been comprehensively reported in this announcement. All drill holes completed, including holes with no significant gold intersections, are reported in Tables 1 & 2 in Appendix A.

Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Since 2013, the Sissingué area has been intensely mined by local artisanal workers. The upper 8-10 vertical metres should be considered depleted and/or severely disturbed. The Mahalé permit is largely devoid of artisanal workings. There is no other exploration data which is considered material to the results reported in this announcement.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further drilling is warranted to test the strike extensions of the identified zones of mineralisation at Tiana and Kakolo. No further drilling is being contemplated at Fimbiasso West.

APPENDIX A – JORC TABLE 1 – Bagoé

JORC 2012 Table 1 – Section 1 sampling techniques and data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	• Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Air core drilling (AC) used a 105mm face-sampling blade bit. Reverse Circulation drilling (RC) used a 135mm face sampling hammer. Samples from both AC and RC holes were collected at 1m intervals. Each sample was manually riffle split to produce a subsample of approximately 3kg.
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	
	 Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	Air core drilling (AC) used a 105mm face-sampling blade bit. Reverse Circulation drilling (RC) drilling used a 135mm face sampling hammer.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Sample condition (dry, damp, wet) and a qualitative description of sample quality (high, moderate, low) were logged.
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	The weight of each entire recovered sample was recorded. Reject samples have been retained at site in
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	"sample farms". The relationship between sample recoveries and gold grades has yet to be investigated.
Logging	• Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All holes were field logged by Perseus geologists. Weathering, oxidation, lithology, alteration and veining information were recorded. Reference samples were stored in chip trays and all chip trays photographed.
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	All drill holes were logged in full.
	The total length and percentage of the	

Criteria	JORC Code explanation	Commentary
	relevant intersections logged.	
Sub-sampling techniques and sample	 If core, whether cut or sawn and whether quarter, half or all core taken. 	Each sample was manually riffle split to produce a 2-3kg subsample.
preparation	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	Subsamples were transported to Perseus's sample preparation laboratory at Yaouré Gold Mine where they were weighed as received, dried, weighed aft drying (to determine moisture content), crushed to
	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	2mm, then a riffle split portion of approximately 1k was pulverised to approximately 90% passing 75 µm. The pulverised product was then dumped on
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	rubber mat, rolled and approximately 300g selected by multiple dips of a spatula and packaged in a kr paper packet.
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance 	Sample grind size was monitored by screening 1:100 samples. Duplicate field split samples were collected for each
	results for field duplicate/second-half sampling.	1:20 samples. Duplicate pulp samples were created for each 1:2
	 Whether sample sizes are appropriate to the grain size of the material being sampled. 	samples.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	Samples were assayed by Bureau Veritas Abidjar using 50g fire assay with AAS finish for gold only. The technique is considered a measure of total gold.
	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the 	Assay accuracy and reliability were monitored by insertion of blanks at 1:20 samples and reference standards (CRMs) at 1:20 samples.
	analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	The performances of blanks and standards were monitored as assay results were received.
	 Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	The commercial laboratory's internal QAQC includes the use of certified reference materials as pulp replicates.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. 	Intervals of significant gold grades were compared to logging of quartz veining, alteration and mineralisation and chip tray photographs.
	The use of twinned holes.Documentation of primary data, data entry	Assays were plotted on cross-sections to check the significant intercepts conform to the expected locations of mineralisation and make geometric
	procedures, data verification, data storage (physical and electronic) protocols.	sense. Five diamond core holes have been drilled at
	 Discuss any adjustment to assay data. 	Véronique and six at Antoinette to twin RC holes previously drilled by Exore Resources. Assays fro the twin holes are yet to be received.
		Hand-written records of sample intervals and sample numbers, and geological and sample qual logs are keyed into spreadsheet files which are th imported into an aQuire® database supervised by Perseus's database administrator.
		Validation checks are undertaken to ensure intern consistency of sample intervals and logged hole depths and down-hole surveys are sense checked
		Assay values that were below detection limit (0.01g/t Au) were adjusted to equal half of the detection limit value (0.005g/t Au).
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and 	Ground surveys of drill hole collars are presently incomplete. The locations provided in the announcement derive from hand-held GPS reading

Criteria	JORC Code explanation	Commentary
	other locations used in Mineral Resource estimation. • Specification of the grid system used.	which are expected to be reliable to +/- 2m in X-Y. Coordinates are stated in WGS84 Zone 29N UTM grid.
	Quality and adequacy of topographic control.	All holes have been down-hole surveyed at approximately 30 depth increments using a Reflex digital compass instrument.
		Drone photogrammetric surveys have recently been undertaken over the Antoinette, Juliette and Véronique areas but results are yet to be received. An interim topographic surface has been created using +/- 1m spot height data from the Shuttle Radar Topography Mission at approximately 30m x 30m spacing and drill hole collars "pinned" to that surface.
Data spacing and	Data spacing for reporting of Exploration Results.	Recent drilling at Véronique has infilled drill spacing to nominal 20m x 20m in plan view.
distribution	• Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The announcement does not include information concerning resource estimates. The question concerning sample compositing is not relevant.
1	 Whether sample compositing has been applied. 	
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Véronique mineralization strikes NW and dips at approximately 45 degrees toward the SW. In holes drilled at -60 degrees dip toward 045 degrees azimuth, true widths are approximately equal to down-hole intercept lengths. No orientation-based sampling bias has been identified in the data.
Sample security	The measures taken to ensure sample security.	Chain of custody was managed by Perseus. Perseus employees retained custody of subsamples from drill sites through transport to the Yaouré sample preparation laboratory, through that facility and then transport of subsample pulps to the commercial laboratory in Abidjan.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No independent review of sampling techniques and data has been undertaken.

JORC 2012 Table 1 – Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	Antoinette, Véronique and Juliette gold deposits form part of the Bagoé Gold Project comprising Permit de Recherche (PR) 321 covering 271.3 sq km. The permit was granted 29 October 2014 and was recently renewed for the first time to 28 October 2021. Further renewals are permitted. PR321 is held 100% by Aspire Nord Côte d'Ivoire sarl, a wholly owned subsidiary of Perseus Mining Limited. The Government of the Côte d'Ivoire retains the right to take up 10% non-contributing beneficial ownership of any portion of the PR that is converted to an exploitation permit.

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	Previous exploration was carried out by Apollo Consolidated Ltd from October 2014 to June 2018. Exploration activities included soil sampling and auge air core, RC and diamond drilling.
		Previous exploration was carried out by Exore Resources Limited between July 2018 and July 2020. Exploration activities included air core, RC and diamond drilling.
		Data arising from work by Apollo and Exore are available to Perseus and are considered generally reliable.
Geology	 Deposit type, geological setting and style of mineralisation. 	The Bagoé Gold Project is located in the West African Craton and covers Palaeoproterozoic (Birimian) rocks of the southern extension of the Syama Greenstone Belt and the western margin of the Senoufo Greenstone Belt. Gold deposits at Bagoé are of the orogenic, greenstone-hosted type and probably lie within the Senoufo belt.
		Antoinette gold deposit is hosted by a fine-graine siliceous and, in places, carbonaceous metasedime unit within a sequence of felsic volcaniclastic rocks a porphyritic dioritic dykes. Mineralisation is subvertic extends over about 650m strike, with individual lens generally about 10m wide though in places lens combine to form widths of up to 25m. Weather extends to 50-60m depth.
		Juliette gold deposit is located 3.5km SW of Antoine and is hosted by the extension of the Antoine sequence/structure. Mineralisation is subvertion extends over about 300m strike and generat comprises a single lens 4-10m wide. Weather extends to 30-40m depth.
		Véronique gold deposit is located 16km SSE Antoinette. Mineralisation extends over 900m str and s generally comprises a single NW-striking qua vein 1-2m thick that dips at 45 degrees to the SW. T vein is hosted by an extensive granodiorite sto Alteration selvages extending 2-3m either side of vein result, in places, in 6-8m true thickness mineralisation. Weathering extends to 50-60m depth
Drill hole information	A summary of all information material to the understanding of the exploration	A complete listing of results of all recent drill holes at Véronique deposit is provided in the announcement.
	results including a tabulation of the following information for all Material drill holes:	The table includes hole locations, dips and azimuths and total depths.
	easting and northing of the drill hole collar	Details are not provided for other drill holes discusse in the announcement, for which assays are not yet available.
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	
	• dip and azimuth of the hole	
	• down hole length and interception depth	
	hole length	
	 If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the 	

Criteria	JORC Code explanation	Commentary
	Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and 	Significant intercepts are those exceeding 5g/t x metre using a 0.5g/t cut-off, 2m maximum included waste an no top cut. Short lengths of high grade that materially affect aggregate results are reported separately as "included intercepts. Metal equivalents are not reported.
	 Indertenging of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting 	
Relationship	of metal equivalent values should be clearly stated.	Véranique mineralization dins et enprevimetaly 45
between mineralisation widths and intercept	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation 	Véronique mineralization dips at approximately 45 degrees. In holes drilled at -60 degrees dip, true widths are approximately equal to down-hole intercept lengths.
lengths	with respect to the drill hole angle is known, its nature should be reported.	
// 	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g.'down hole length, true width not known'). 	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	A drill hole location map and representative cross- section are included in the announcement.
Balanced Reporting	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	Ground surveys of drill hole collars are presently incomplete. The locations provided in the announcement derive from hand-held GPS. Coordinates are stated in WGS84 Zone 29N UTM gric
)	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	A complete listing of results of all recent drill holes at Véronique deposit, including those with no significant intercepts, is provided in the announcement. Details are not provided for other drilling discussed in the announcement, for which assays are not yet available
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 The results of exploration by previous operators of the Bagoé project have been the subject of announcements by those operators. Metallurgical test work by previous operator Exore Resources Limited has confirmed that: oxide and transition mineralisation at Antoinette is amenable to gold extraction by cyanide leaching with gold recoveries of 94 to 97%. Primary mineralization at Antoinette is partially refractory, with preliminary test work indicating cyanide leach gold recoveries of about 50%. No cyanide leach tests have been undertaken on
		 Véronique oxide and transition mineralization Gold recoveries are expected to approximate 90%. Cyanide leach tests on samples of Véronique

Criteria	JORC Code explanation	Commentary
		primary mineralization indicate gold recoveries of 88-90%.
		No metallurgical test work has been undertaken on Juliette mineralisation. Given the deposit's similarity that Antoinette, it is expected that primary mineralisation is partially refractory.
		There are no known deleterious or contaminating substances associated with any of the deposits that might imperil their exploitation.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large- scale step- out drilling).	Perseus intends to use the results of drilling conducted during the December 2020 quarter to update the estimates of resources at Véronique and Antoinette deposits and produce a maiden resource estimate fo the Juliette deposit.
	 Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Exploration by previous operators has located other occurrences of gold mineralization within the Bagoé Gold Project that Perseus intends to pursue.
JORC Code	APPENDIX A – JORC TA	
JORC Code	APPENDIX A – JORC TA e, 2012 Edition – Table 1 Section 1 Samp JORC Code Explanation	
Criteria	e, 2012 Edition – Table 1 Section 1 Samp JORC Code Explanation	ling Techniques and Data Commentary
	e, 2012 Edition – Table 1 Section 1 Samp JORC Code Explanation • Nature and quality of sampling (e.g. cut channels,	Iing Techniques and Data Commentary • Drill holes have been drilled as Reverse Circulation (RC) and
Criteria Sampling	e, 2012 Edition – Table 1 Section 1 Samp JORC Code Explanation • Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard	Iing Techniques and Data Commentary • Drill holes have been drilled as Reverse Circulation (RC) and diamond core (DD)
Criteria Sampling	e, 2012 Edition – Table 1 Section 1 Samp JORC Code Explanation • Nature and quality of sampling (e.g. cut channels,	Iing Techniques and Data Commentary • Drill holes have been drilled as Reverse Circulation (RC) and
Criteria Sampling	e, 2012 Edition – Table 1 Section 1 Samp JORC Code Explanation • Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under	Ing Techniques and Data Commentary • Drill holes have been drilled as Reverse Circulation (RC) and diamond core (DD) • RC samples were taken at 1m intervals, of which a nominal
Criteria Sampling	e, 2012 Edition – Table 1 Section 1 Samp JORC Code Explanation • Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or	 Ing Techniques and Data Commentary Drill holes have been drilled as Reverse Circulation (RC) and diamond core (DD) RC samples were taken at 1m intervals, of which a nominal 2-3kg sub-sample was obtain by riffle splitter. Two
Criteria Sampling	 e, 2012 Edition – Table 1 Section 1 Samp JORC Code Explanation Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample 	 Ing Techniques and Data Commentary Drill holes have been drilled as Reverse Circulation (RC) and diamond core (DD) RC samples were taken at 1m intervals, of which a nominal 2-3kg sub-sample was obtain by riffle splitter. Two consecutive samples were combined to obtain 2m composites DD samples were cut in halves and one half submitted for
Criteria Sampling	 e, 2012 Edition – Table 1 Section 1 Samp JORC Code Explanation Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any 	 Ing Techniques and Data Commentary Drill holes have been drilled as Reverse Circulation (RC) and diamond core (DD) RC samples were taken at 1m intervals, of which a nominal 2-3kg sub-sample was obtain by riffle splitter. Two consecutive samples were combined to obtain 2m composites DD samples were cut in halves and one half submitted for assaying, the other half stored in the core box for
Criteria Sampling	 e, 2012 Edition – Table 1 Section 1 Samp JORC Code Explanation Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	 Ing Techniques and Data Commentary Drill holes have been drilled as Reverse Circulation (RC) and diamond core (DD) RC samples were taken at 1m intervals, of which a nominal 2-3kg sub-sample was obtain by riffle splitter. Two consecutive samples were combined to obtain 2m composites DD samples were cut in halves and one half submitted for assaying, the other half stored in the core box for reference. Sample intervals varied between 0.5m and 1.5m
Criteria Sampling	 e, 2012 Edition – Table 1 Section 1 Samp JORC Code Explanation Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are 	 Ing Techniques and Data Commentary Drill holes have been drilled as Reverse Circulation (RC) and diamond core (DD) RC samples were taken at 1m intervals, of which a nominal 2-3kg sub-sample was obtain by riffle splitter. Two consecutive samples were combined to obtain 2m composites DD samples were cut in halves and one half submitted for assaying, the other half stored in the core box for reference. Sample intervals varied between 0.5m and 1.5m Routine standard reference material, sample blanks, and
Criteria Sampling	 e, 2012 Edition – Table 1 Section 1 Samp JORC Code Explanation Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. 	 Ing Techniques and Data Commentary Drill holes have been drilled as Reverse Circulation (RC) and diamond core (DD) RC samples were taken at 1m intervals, of which a nominal 2-3kg sub-sample was obtain by riffle splitter. Two consecutive samples were combined to obtain 2m composites DD samples were cut in halves and one half submitted for assaying, the other half stored in the core box for reference. Sample intervals varied between 0.5m and 1.5m. Routine standard reference material, sample blanks, and sample duplicates were routinely inserted/collected in the
Criteria Sampling	 e, 2012 Edition – Table 1 Section 1 Samp JORC Code Explanation Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are 	 Ing Techniques and Data Commentary Drill holes have been drilled as Reverse Circulation (RC) and diamond core (DD) RC samples were taken at 1m intervals, of which a nominal 2-3kg sub-sample was obtain by riffle splitter. Two consecutive samples were combined to obtain 2m composites DD samples were cut in halves and one half submitted for assaying, the other half stored in the core box for reference. Sample intervals varied between 0.5m and 1.5m. Routine standard reference material, sample blanks, and
Criteria Sampling	 e, 2012 Edition – Table 1 Section 1 Samp JORC Code Explanation Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done 	 Ing Techniques and Data Commentary Drill holes have been drilled as Reverse Circulation (RC) and diamond core (DD) RC samples were taken at 1m intervals, of which a nominal 2-3kg sub-sample was obtain by riffle splitter. Two consecutive samples were combined to obtain 2m composites DD samples were cut in halves and one half submitted for assaying, the other half stored in the core box for reference. Sample intervals varied between 0.5m and 1.5m Routine standard reference material, sample blanks, and sample duplicates were routinely inserted/collected in the sample sequence.
Criteria Sampling	 e, 2012 Edition – Table 1 Section 1 Samp JORC Code Explanation Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation 	 Ing Techniques and Data Commentary Drill holes have been drilled as Reverse Circulation (RC) and diamond core (DD) RC samples were taken at 1m intervals, of which a nominal 2-3kg sub-sample was obtain by riffle splitter. Two consecutive samples were combined to obtain 2m composites DD samples were cut in halves and one half submitted for assaying, the other half stored in the core box for reference. Sample intervals varied between 0.5m and 1.5m. Routine standard reference material, sample blanks, and sample duplicates were routinely inserted/collected in the sample sequence. Samples were submitted to Intertek Laboratories in
Criteria Sampling	 e, 2012 Edition – Table 1 Section 1 Samp JORC Code Explanation Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such 	 Ing Techniques and Data Commentary Drill holes have been drilled as Reverse Circulation (RC) and diamond core (DD) RC samples were taken at 1m intervals, of which a nominal 2-3kg sub-sample was obtain by riffle splitter. Two consecutive samples were combined to obtain 2m composites DD samples were cut in halves and one half submitted for assaying, the other half stored in the core box for reference. Sample intervals varied between 0.5m and 1.5m. Routine standard reference material, sample blanks, and sample duplicates were routinely inserted/collected in the sample sequence. Samples were submitted to Intertek Laboratories in Tarkwa/Ghana for preparation and analysis by 50g Fire
Criteria Sampling	 e, 2012 Edition – Table 1 Section 1 Samp JORC Code Explanation Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent 	 Ing Techniques and Data Commentary Drill holes have been drilled as Reverse Circulation (RC) and diamond core (DD) RC samples were taken at 1m intervals, of which a nominal 2-3kg sub-sample was obtain by riffle splitter. Two consecutive samples were combined to obtain 2m composites DD samples were cut in halves and one half submitted for assaying, the other half stored in the core box for reference. Sample intervals varied between 0.5m and 1.5m. Routine standard reference material, sample blanks, and sample duplicates were routinely inserted/collected in the sample sequence. Samples were submitted to Intertek Laboratories in Tarkwa/Ghana for preparation and analysis by 50g Fire
Criteria Sampling	 e, 2012 Edition – Table 1 Section 1 Samp JORC Code Explanation Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or 	 Ing Techniques and Data Commentary Drill holes have been drilled as Reverse Circulation (RC) and diamond core (DD) RC samples were taken at 1m intervals, of which a nominal 2-3kg sub-sample was obtain by riffle splitter. Two consecutive samples were combined to obtain 2m composites DD samples were cut in halves and one half submitted for assaying, the other half stored in the core box for reference. Sample intervals varied between 0.5m and 1.5m. Routine standard reference material, sample blanks, and sample duplicates were routinely inserted/collected in the sample sequence. Samples were submitted to Intertek Laboratories in Tarkwa/Ghana for preparation and analysis by 50g Fire
Criteria Sampling	 e, 2012 Edition – Table 1 Section 1 Samp JORC Code Explanation Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may 	 Ing Techniques and Data Commentary Drill holes have been drilled as Reverse Circulation (RC) and diamond core (DD) RC samples were taken at 1m intervals, of which a nominal 2-3kg sub-sample was obtain by riffle splitter. Two consecutive samples were combined to obtain 2m composites DD samples were cut in halves and one half submitted for assaying, the other half stored in the core box for reference. Sample intervals varied between 0.5m and 1.5m. Routine standard reference material, sample blanks, and sample duplicates were routinely inserted/collected in the sample sequence. Samples were submitted to Intertek Laboratories in Tarkwa/Ghana for preparation and analysis by 50g Fire
Criteria Sampling	 e, 2012 Edition – Table 1 Section 1 Samp JORC Code Explanation Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. (e.g. 	 Ing Techniques and Data Commentary Drill holes have been drilled as Reverse Circulation (RC) and diamond core (DD) RC samples were taken at 1m intervals, of which a nominal 2-3kg sub-sample was obtain by riffle splitter. Two consecutive samples were combined to obtain 2m composites DD samples were cut in halves and one half submitted for assaying, the other half stored in the core box for reference. Sample intervals varied between 0.5m and 1.5m. Routine standard reference material, sample blanks, and sample duplicates were routinely inserted/collected in the sample sequence. Samples were submitted to Intertek Laboratories in Tarkwa/Ghana for preparation and analysis by 50g Fire
Criteria Sampling	 e, 2012 Edition – Table 1 Section 1 Samp JORC Code Explanation Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may 	 Ing Techniques and Data Commentary Drill holes have been drilled as Reverse Circulation (RC) and diamond core (DD) RC samples were taken at 1m intervals, of which a nominal 2-3kg sub-sample was obtain by riffle splitter. Two consecutive samples were combined to obtain 2m composites DD samples were cut in halves and one half submitted for assaying, the other half stored in the core box for reference. Sample intervals varied between 0.5m and 1.5m. Routine standard reference material, sample blanks, and sample duplicates were routinely inserted/collected in the sample sequence. Samples were submitted to Intertek Laboratories in Tarkwa/Ghana for preparation and analysis by 50g Fire
Criteria Sampling	 e, 2012 Edition – Table 1 Section 1 Samp JORC Code Explanation Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. (e.g. submarine nodules) may warrant disclosure of detailed information. (e.g. submarine nodules) may warrant disclosure of detailed information. (e.g. submarine nodules) may warrant disclosure of detailed information. (e.g. submarine nodules) may warrant disclosure of detailed information. (e.g. submarine nodules) may warrant disclosure of detailed information. (e.g. submarine nodules) may warrant disclosure of detailed information. (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Ing Techniques and Data Commentary Drill holes have been drilled as Reverse Circulation (RC) and diamond core (DD) RC samples were taken at 1m intervals, of which a nominal 2-3kg sub-sample was obtain by riffle splitter. Two consecutive samples were combined to obtain 2m composites DD samples were cut in halves and one half submitted for assaying, the other half stored in the core box for reference. Sample intervals varied between 0.5m and 1.5m. Routine standard reference material, sample blanks, and sample duplicates were routinely inserted/collected in the sample sequence. Samples were submitted to Intertek Laboratories in Tarkwa/Ghana for preparation and analysis by 50g Fire

APPENDIX A – JORC TABLE 1 – Edikan

JORC Code, 2012 Edition – Table 1 Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Drill holes have been drilled as Reverse Circulation (RC) and diamond core (DD) RC samples were taken at 1m intervals, of which a nominal 2-3kg sub-sample was obtain by riffle splitter. Two consecutive samples were combined to obtain 2m composites DD samples were cut in halves and one half submitted for assaying, the other half stored in the core box for reference. Sample intervals varied between 0.5m and 1.5m. Routine standard reference material, sample blanks, and sample duplicates were routinely inserted/collected in the sample sequence. Samples were submitted to Intertek Laboratories in Tarkwa/Ghana for preparation and analysis by 50g Fire Assay.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, 	 RC have been drilled using a 5.25" diameter face-sampling hammer DD holes were drilled with HQ diameter in weathered material, and NQ diameter in fresh rock
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Riffle split samples were weighed to monitor sample recovery No apparent relation has been observed between sample recovery and grade

Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 All drill samples were geologically logged by Company geologists. Drill holes were logged in full Geological logging recorded rock types, the abundance of quartz and sulphides and degree of weathering using a standardized logging system Small samples of coarse and sieved RC drill material were preserved in 'chip trays' to aid geological logging and for future reference Whole core is photographed wet and dry prior to cutting
 Sub- sampling techniques and sample preparation 	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All RC samples were riffle split at the drill rig Samples were obtained dry Routine field sample duplicates were taken to evaluate representivity of samples with the results stored in the master drill database for reference At Intertek Laboratories, samples were weighed, dried and crushed to -2mm in a jaw crusher. A 1.5kg split of the crushed sample was subsequently pulverised in a ring mill to achieve a nominal particle size of 85% passing 75um. Sample sizes and laboratory preparation techniques are considered to be appropriate for this stage of gold exploration.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Analysis for gold was undertaken at Intertek Laboratories in Tarkwa/Ghana by 50g Fire Assay with AAS finish to a lower detection limit of 0.01ppm. Fire assay is considered a total assay technique. No geophysical tools or other non-assay instruments were used in the analyses reported. QAQC samples nominally Blanks at 1 in 50 Certified standards at 1 in 25 Field duplicates of RC samples at 1 in 50 Review of standard reference material, sample blanks and duplicates suggest there are no significant analytical bias or preparation errors in the reported analyses. Internal laboratory QAQC checks are reported by the laboratory and routine review of the laboratory QAQC suggests the laboratory is performing within acceptable limits.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Drill hole data is captured by Company geologists at the drill rig and manually entered into a digital database. The digital data is verified and validated by the Company's Data Base Manager before loading into a master drill hole database using acQuire data management software. The data is stored on a regularly backed-up server. Reported drill hole intercepts are compiled by the Company's Group Exploration Manager. Twin holes were not drilled to verify results. There were no adjustments to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collars were set out in UTM grid_WGS84 Zone30N Drill hole collars were positioned using hand held GPS, accurate to +/- 2-3m in the horizontal Upon completion of the hole, the collar was accurately surveyed by the Company's surveyor using DGPS Downhole survey has been carried out by the drill contractor using a Reflex multi-shot tool. Measurements were taken nominally at 12m depth, at 30m depth and from there on every 30m

Section 2 Reporting of Exploration Results – Edikan (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The reported results are from the Ayanfuri Mining Lease, permit ML6/15. The Ayanfuri Mining Lease is located in the Central Region of Ghana and is owned by Perseus Mining (Ghana) Limited, a 90% owned subsidiary of Perseus Mining Limited, with the remaining 10% owned by the Government of Ghana. The Ayanfuri ML is in good standing and valid through to 30 December 2024. The Huntado & Mampong areas have no known exploration-specific environmental liabilities.
Exploration done by other oarties	• Acknowledgment and appraisal of exploration by other parties.	 Historical exploration and mining was conducted on the property from the early 1990s up to 2001 by Cluff Mining (Ghana) Ltd and Ashanti Goldfields Corp. The past exploration was successful and resulted in multiple discoveries leading to mining. The mineralisation reported in this announcement has seer limited previous drilling by Perseus, and the reported program has focussed on areas either under-drilled or not previously drilled.
Geology	Deposit type, geological setting, and style of mineralisation.	 The Ayanfuri Mining Lease is situated within the Paleoproterozoic Birimian terrane of Southern Ghana, being located in the Kumasi Basin sedimentary group approximately 5 to 8 kilometres west of the Ashanti Greenstone Belt. The Huntado-Mampong prospect is an intrusive-hosted Orogenic gold deposit. The host rocks are a series of granite- granodiorite dykes and gold mineralisation is associated with stockwork quartz veining plus up to 3% disseminated pyrite and arsenopyrite. The dimensions of the mineralised dykes are currently unknown and the subject of ongoing exploration. The Dadieso mineralisation is a shear-hosted system in metasediments, with a dense quartz vein system but relatively low sulphide contents. Unusually for this style of mineralisation in the Edikan district there is a relatively low carbonaceous component.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and northing of the drill hole collar. Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar. Dip and azimuth of the hole. Downhole length and interception depth. Hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Drill holes are displayed on a plan. Drill intercepts together with hole collar locations, orientations and total depths are listed in Appendix A-Table 4. The Competent Person is satisfied that the results presented are representative of drilling results to date.

Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 The drill intercepts presented have been consistently calculated as length-weighted average grades. Short, high-grade intervals that significantly affect the average grade of aggregate intercepts are included in the table of intercepts. A minimum cut-off grade of 0.4 g/t Au is applied to the reported intervals. Maximum internal dilution is 2m within a reported interval. No grade top cut-off has been applied. No metal equivalent reporting is used or applied
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the downhole lengths are reported, there should be a clear statement to this effect (e.g. 'downhole length, true width not known'). 	 As currently understood, the mineralised dykes dip subvertically and strike NE. Drilling was inclined at -60 deg to the SE or NW. True thicknesses of drill intercepts are therefore approximately 70 to 80% of the down-hole length. Results are reported as down hole length.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 A drill hole location plan is included in the report. All significant results are tabulated in the body of the report, with complete drill hole details and results compiled in Appendix A, Table 4.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All drill holes drilled in this program are plotted on Figure 8 in Appendix A
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 There are no other exploration data that are considered material to the results reported in this announcement. Intercepts are presented in conjunction with comments that describe the context of the intercepts. The Competent Person is satisfied that the results presented are representative of drilling results to date.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The work reported herein comprises initial exploration drilling of mineralised dykes, with follow-up drilling planned to investigate strike and depth extensions. Drilling results may form the basis for future estimation of Mineral Resources and Mineral Reserves (if warranted).