ZABEL NICKEL MINERAL RESOURCE UPDATE AT MT EDWARDS

HIGHLIGHTS

23 December 2020

ASX ANNOUNCEMENT

- Zabel deposit Mineral Resource increases in tonnes and grade, with the estimate now 351,000 tonnes at 1.9% nickel for 6,800 tonnes of contained nickel
- Global Mt Edwards project Mineral Resources increased to 8.74 million tonnes at 1.7% nickel for 147,000 tonnes of contained nickel

Neometals Ltd (ASX: NMT) ("Neometals" or "the Company") is pleased to announce an updated estimate for the nickel sulphide Mineral Resource at its Zabel deposit ("Zabel"). Zabel forms part of the Mt Edwards Project located in a province of historic nickel sulphide mines surrounding Widgiemooltha. Using historical and new assay data, the reinterpreted Mineral Resource estimate at Zabel has increased in tonnes and grade, with contained nickel now at 6,800 tonnes.

Mineral Resource Classification	Cut-off Ni%	Tonnes	Ni %	Ni tonnes
Indicated	1	296,000	1.9	5,600
	1.5	185,000	2.3	4,200
	2	117,000	2.6	3,000
Inferred	1	55,000	2.1	1,200
	1.5	45,000	2.3	1,000
	2	38,000	2.4	900
TOTAL	1	351,000	1.9	6,800
	1.5	230,000	2.3	5,200
	2	155,000	2.6	3,900

Table 1 – Zabel Indicated and Inferred Mineral Resource Estimate at various nickel grade cut-offs

Reverse circulation ("**RC**") drilling was undertaken at Zabel in June 2019. The RC drilling has intercepted massive nickel sulphide, with **11 metres @ 2.6% nickel including 4 metres @ 6.3% nickel** from 108 metres down drill-hole (*for full details refer to ASX announcement entitled "Mt Edwards Nickel - Drill Results" released on 5 August 2019*). This was the first nickel exploration drilling at Zabel since 2007.

The re-estimation of the Zabel Mineral Resource is a continuation of a major review of the Mt Edwards project undertaken by Neometals since mid-2019, which has included an audit of the drill database and the historical exploration and mining literature.

A future work program is planned for Zabel that will include reverse circulation drilling ("**RC**") and diamond core drilling ("**DD**") to further assess the extents of mineralisation and improve the understanding of the metallurgical characteristics to pave the way for mining studies. Off hole conductor plates interpreted from DHEM surveys adjacent to the known mineralisation will also be tested with a view to increase the scale of the Zabel deposit.

ACN 099 116 361 Level 1, 1292 Hay Street West Perth WA 6005 Locked Bag 8 West Perth WA 6872 T: +61 8 9322 1182 F: +61 8 9321 0556 Nm

eometals

All the right elements

Background

Neometals acquired the Mt Edwards project in the first half of 2018 and immediately began exploring for nickel and lithium. The Company is targeting new discoveries at Mt Edwards while reviewing and enhancing existing Mineral Resources. The Company holds mining tenements with a large land holding of more than 300km² across the Widgiemooltha Dome, a well-recognised nickel sulphide mining province.

Updating of the Mineral Resource estimate at the Zabel deposit has expanded the global Mt Edwards Project Mineral Resources to 8.74 million tonnes at 1.7% nickel for 147,000 tonnes of contained nickel across 11 deposits.

	Indicated Inferred			TOTAL Mineral Resources			
Deposit	Tonne (kt)	Nickel (%)	Tonne (kt)	Nickel (%)	Tonne (kt)	Nickel (%)	Nickel Tonnes
Widgie 3 ²			625	1.5	625	1.5	9,160
Gillett ⁵			1,306	1.7	1,306	1.7	22,500
Widgie Townsite ²	2,193	1.9			2,193	1.9	40,720
Munda ³			320	2.2	320	2.2	7,140
Mt Edwards 26N ²			575	1.4	575	1.4	8,210
132N ⁶	34	2.9	426	1.9	460	2.0	9,050
Cooke ¹			150	1.3	150	1.3	1,950
Armstrong ⁴	526	2.1	107	2.0	633	2.1	13,200
McEwen ¹			1,070	1.3	1,070	1.3	13,380
McEwen Hangingwall ¹			1,060	1.4	1,060	1.4	14,840
Zabel	296	1.9	55	2.1	351	1.9	6,800
TOTAL	3,049	1.9	5,694	1.6	8,743	1.7	147,000

Table 2 – A revised Zabel brings the Mt Edwards Project Nickel Mineral Resources total nickel tonnes to 147,000

Mineral Resources quoted using a 1% Ni block cut-off grade, except Munda at 1.5% Ni. Small discrepancies may occur due to rounding Note 1. refer announcement on the ASX: NMT 19 April 2018 titled Mt Edwards JORC Code Mineral Resource 48,200 Nickel Tonnes Note 2. refer announcement on the ASX: NMT 25 June 2018 titled Mt Edwards Project Mineral Resource Over 120,000 Nickel Tonnes Note 3. refer announcement on the ASX: NMT 13 November 2019 titled Additional Nickel Mineral Resource at Mt Edwards Note 4. refer announcement on the ASX: NMT 16 April 2020 titled 60% Increase in Armstrong Mineral Resource Note 5. refer announcement on the ASX: NMT 26 May 2020 titled Increase in Mt Edwards Nickel Mineral Resource Note 6. refer announcement on the ASX: NMT 5 October 2020 titled 132N Nickel Mineral Resource and exploration update at Mt Edwards

Table 3 – Zabel Nickel Mineral Resources table for nickel and other elements at various nickel grade cut-offs

Ni cut-off grade %	Tonnes	Ni%	Fe ₂ O ₃ %	Cu ppm	MgO %	As ppm	Co ppm	S %	Nickel tonnes
1% Nickel cut-off	351,000	1.9	21.9	2,690	12.9	513	594	6.0	6,800
1.5% Nickel cut-off	230,000	2.3	24.0	3,301	12.4	581	712	7.0	5,200
2% Nickel cut-off	155,000	2.6	25.2	3,845	12.5	567	796	7.7	3,900

Mineral Resource Estimation

The Zabel Mineral Resource was estimated by Richard Maddocks from Auralia Mining Consultants. The Mineral Resource estimate for the Zabel Deposit of 351,000 tonnes at 1.9% nickel for 6,800 nickel tonnes is reported in accordance with the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' prepared by the Joint Ore Reserves Committee of The Australasian Institute of Mining and Metallurgy, Australian Institute of Geoscientists and Minerals Council of Australia (JORC Code) and follows a detailed interrogation and review of the available data, including the earlier reported Mineral Resource estimates by the previous holders of the tenement.

A summary of information relevant to the Zabel Mineral Resource estimate at the Mt Edwards Project is provided in these appendices attached to this announcement:

Appendix 1. Table 1 as per the JORC Code Guidelines (2012) Appendix 2. Drill holes used in the Zabel Mineral Resource block model Appendix 3. Significant and Mineralised Nickel Drill Intersections at Zabel

Location

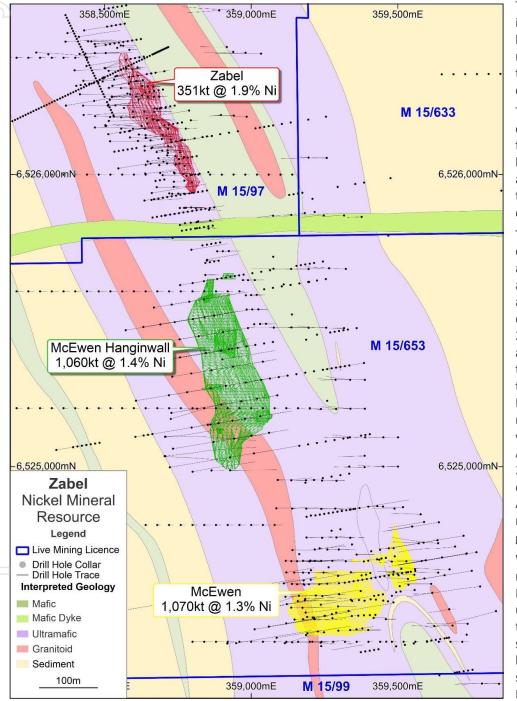

The Zabel nickel deposit is located on mining lease M15/97, approximately 13km north-east of the Widgiemooltha Roadhouse (50km from Kambalda). Access from the Coolgardie to Esperance Highway is via well-established roads used for previous mining and exploration in the area. There has been no mining in the immediate vicinity of the Zabel Mineral Resource, and geological knowledge has been sought by drill sample logging and surface mapping combined with interpretations of geophysical surveys. The Zabel Mineral Resource is located at the northern end of a line of eleven nickel deposits at the Mt Edwards Project.

Figure 1 - *Mt Edwards Project tenure over geology, with the Zabel Mining Lease M15/97 location, shown with other Mineral Resources. Neometals holds 100% nickel rights for all live tenements shown above.*

Geology and Geological Interpretation

Nickel sulphide mineralisation in the region is predominantly associated with the basal contact of the komatiitic ultramafic with the underlying Mt Edwards Basalt. The mineralisation is found within embayments in the komatiite-basalt contact interpreted to be thermal erosion channels caused by the flow of hot ultramafic lava. Sheet flow facies zones flanking and gradational to channel facies are thinner, texturally and chemically well-differentiated and less magnesian than channel flow facies.

The Zabel Mineral Resource is a nickel sulphide deposit hosted within ultramafic material just on and above the basalt-ultramafic contact.

The sequence of ultramafic over basalt has been tightly folded to form an anticline, known as the Mt Edwards anticline. The fold hinge trends at 320 to 340 degrees.

The Zabel deposit is located on the western limb of the anticline and is closely associated with the McEwen and McEwen Hangingwall deposits to the south. Figure 2 shows the relative location and geology surrounding these deposits, with Zabel to the north in red, McEwen Hangingwall in green in the middle, and McEwen in yellow at the southern end. A 3D block diagram in Figure 3 illustrates the relationship of these deposits and Armstrong to the south the folded relative to geology.

While of the most mineralisation for Zabel and McEwen is on or near the ultramafic-basalt contact. disseminated nickel the sulphide mineralisation is higher in the ultramafic **McEwen** sequence at Hangingwall.

Figure 2 - Geology and tenure around Zabel and the nearby McEwen and McEwen Hangingwall deposits

Figures 4 to 6 illustrate the geological interpretation and mineralisation of Zabel in plan, long section, and cross section.

Nickel Mineralisation

The mineralisation styles range from weakly disseminated to very strong matrix sulphide mineralisation. Much of the mineralisation is disseminated with zones of matrix and massive sulphide.

Generally, the disseminated sulphide runs between 0.6 and 2% nickel with the matrix style mineralisation grading up to 3% nickel. Above 3% nickel represents a more massive style of mineralisation. Drilling at Zabel has intersected massive sulphide zones with samples rich in pyrrhotite and pentlandite grading up to 9% nickel. Zabel is dominated by basal contact and footwall stringer mineralised zone.

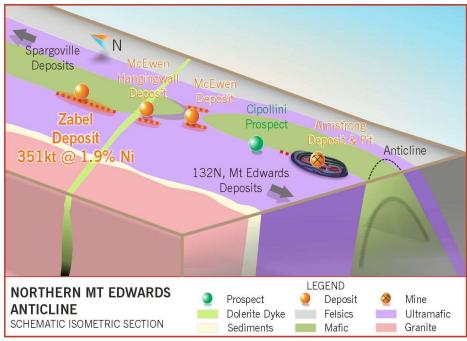
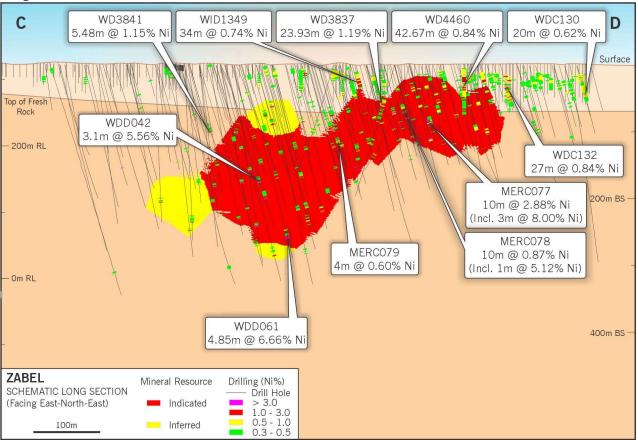



Figure 3 – A 3D block diagram of Zabel on the western limb of the Widgiemooltha Anticline

Figure 4 – Long Section wireframe of the Zabel Mineral Resource with related significant nickel drill intercepts. The Indicated portion of the Mineral Resource is coloured red, with the Inferred portion coloured yellow.

The nickel mineralisation is poddy and structurally modified. The thickest, highest grade material tends to be associated with serpentinite hanging wall although most of the ultramafic is completely altered to talc carbonate with minor tremolite. Zabel tends to be of high tenor with massive nickel sulphide averaging around 6.5% nickel.

Modelling

The mineralisation conforms to a Kambalda style komatiite flow hosted deposit, with post depositional structural modification. Geology logs were used to construct a basal surface to the ultramafic unit. This surface is the contact between the ultramafic and the underlying mafic basalts. The higher-grade nickel mineralisation accumulates at or near this contact.

A single mineralised domain was modelled based on elevated nickel grades and proximity to the basal surface at the mafic-ultramafic contact. While there was no defined cut-off grade used in modelling the domain generally boundaries were based on a minimum of 0.5 - 0.8% nickel. There were however several lower grade intersections and samples that were included to maintain continuity of the mineralisation.

A top of fresh rock surface was modelled from the logging codes in drill holes. There is a small component of the Zabel Mineral Resource within the weathered zone. At a 1% nickel cut-off the Mineral Resource is comprised of 313,700 tonnes at 2.0% nickel in the fresh rock, and 37,400 tonnes at 1.24% nickel in the weathered and transitional rock. This top of fresh rock surface and its relatively small influence on the Mineral Resource is shown in Figure 4.

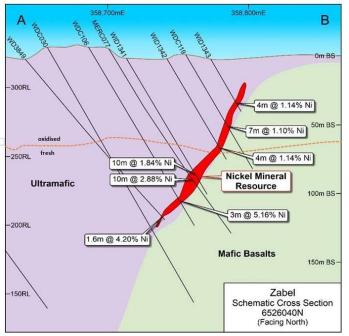


Figure 6 - Cross Section at 6,526,040mN

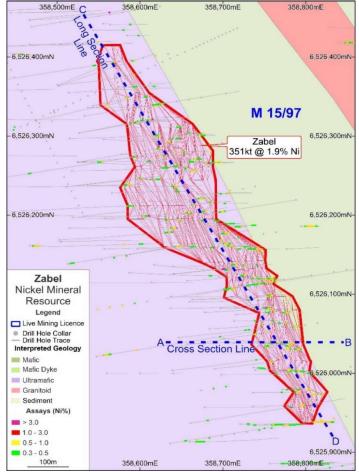


Figure 5 – Plan of the Zabel Nickel Mineral Resource with section lines

Mineral Resource Classification

The majority of the Zabel Mineral Resource has been classified as Indicated. The Zabel deposit is well drilled providing very good continuity of geology and grade. A comparative analysis between older drilling campaigns (INCO and WMC, 1968 to 1999) and more recent drill programs (Titan and Neometals, 2003 to 2019) with solid QAQC sampling provides confidence in the veracity of the sampling and assaying of the older drilling campaigns.

Classification is generally based on drill spacing and the number of drill holes and samples used for each block estimate. A minimum of 10 samples and 4 drillholes was generally used to define Indicated Mineral Resources. Figure 7 shows a Long Section of the Zabel deposit coloured by classification, with most of the Mineral Resource classified as Indicated, with some areas on the extremities of the mineralised shape classified as Inferred.

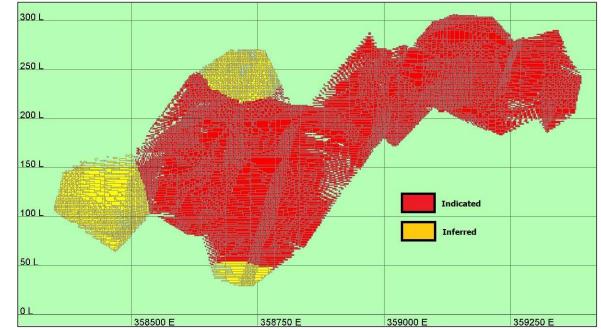


Figure 7 - Long-section of Zabel showing Mineral Resource Classification

Drilling Techniques and Details

The drill database used in the Mineral Resource estimate is comprised of samples from diamond core drilling and RC drilling across several exploration campaigns from 1968 to 2019. INCO carried out drilling on the prospect in 1968-1971 and called it the 384N project, while WMC conducted drilling campaigns between 1980 and 1999.

The majority of drilling was carried out by WMC in the period 1997-1998. No details on the drilling and sampling techniques used by INCO and WMC have been found. Titan undertook a significant amount of RC and Diamond drilling between 2003 and 2007, and much of the diamond core has been used for high quality logging and density analysis.

Information from 42,016 metres of Diamond Core, Air Core and RC drilling across 535 drill holes are within the Zabel area located within mining lease M15/97. While all information is used in the local geological interpretation, not all of these holes are mineralised nor were they all used or influence the Mineral Resource Estimate for Zabel.

Table 4 shows the history of drilling and sampling in the Zabel area.

Company	Hole Type	Year	No Holes	Meters
INCO	Diamond Core	1968-71	21	5,034
	RC		178	7,313
WMC	Diamond Core	1980-99	38	6,652
	RC		216	8,140
	Air core		3	113
Titan	Diamond Core	2003-07	36	7,955
	RC		40	6,299
Neometals	RC	2019	3	510
Total	Diamond Core		95	19,641
	RC		437	22,262
	Air core		3	113
Grand Total	ALL	1968-2019	535	42,016

Nm

QAQC

Most of the QAQC results were sourced from the Titan Resources annual exploration report for 2003-2004. The report indicated that no significant or material discrepancies were identified by the QAQC sampling and analysis for field duplicates in the drilling and sampling. No standards or blanks were reported by Titan.

It is not known what, if any, QAQC procedures were carried out by operators INCO and WMC before 1999. Analysis of the recent compared to historical data shows reasonable correlation between all drilling companies and types, which provides confidence in the use of the historic data.

Neometals drilled three holes into Zabel in 2019. A suite of field duplicates and three standards were included. The standards all performed well with assay results returned within adequate limits.

Based on these conclusions the competent person, Mr Maddocks, considers the historic and recent drill and sample data at Zabel to be valid for use in the Mineral Resource estimation.

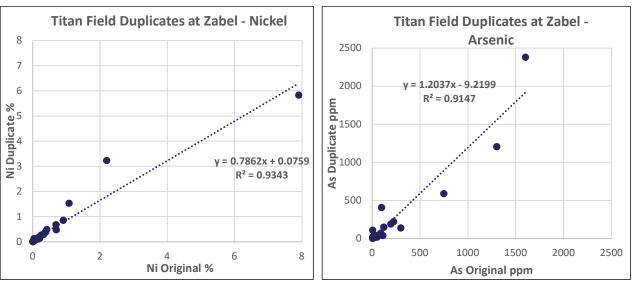
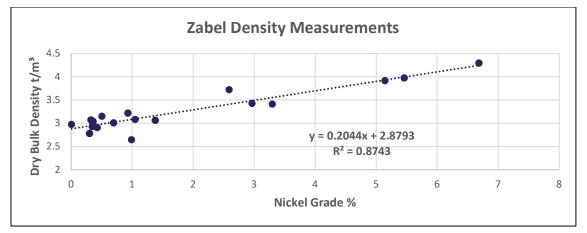



Figure 8 – Field Duplicate results for Ni and As from Titan Resources drilling at Zabel

Bulk Density

There are 69 density measurements within the Zabel mineralised domain taken from core drilled by Titan Resources. These are taken from 19 different drill holes. Measurements were by the water immersion method and assayed for multiple elements including Nickel.

From the data a scatter plot and regression formula was created; **Bulk Density (t/m3) = 0.2044 x Ni % + 2.8793.** This formula was used to estimate density into the modelled domains. As the calculation is reliant on nickel grade only and ignores contributions from other elements (e.g. copper and iron), it has only been applied to blocks within the modelled mineralised domains.

Variography

Variography was done for all 7 modelled elements, with the data used confined to the nickel enriched mineralised zone. The variograms generally are aligned along strike but exhibit slightly varying dips and plunges.

	Element	Nugget Co	Sill C ₁	Sill C ₂	Azimuth	Plunge	Dip	Major ₁	Semi₁	Minor ₁	Major₂	Semi₂	Minor₂
1	Nickel	0.05	0.46	0.49	160	0	-60	50	15	1	140	50	2
	Arsenic	0.1	0.45	0.45	144	26	-56	90	30	1	200	50	4
	Cobalt	0.05	0.475	0.475	137	34	-53	40	25	1	80	40	2
	Copper	0.05	0.475	0.475	157	9	-70	40	40	1	80	70	5
	Fe₂O₃	0.1	0.45	0.45	157	9	-70	40	30	1	80	50	4
	MgO	0.05	0.475	0.475	137	34	-53	40	40	2	80	100	4
	Sulphur	0.05	0.475	0.475	153	19	-69	30	20	1	80	40	3

Table 5 – Variography details for each element estimated at Zabel

Grade Estimation

Nickel, arsenic, cobalt, copper, Fe_2O_3 , MgO and Sulphur were estimated in two passes using ordinary kriging. The first pass search extents were based on the range indicated by variogram models. The second pass was based on a proportionate increase in search extent to ensure all blocks were informed with grades of the estimated element. Not all samples nor all drill holes have been assayed for all of the modelled elements. With the data density being somewhat variable the search extents for each element have been varied to reflect and accommodate these changes.

Variable	Pass	Major	Semi major	Minor	min holes	min samps	max samps	disc x	disc y	disc z
ni_ok	1	140	50	10	4	10	35	2	5	2
ni_ok	2	280	100	20	2	5	35	2	5	2
as	1	90	30	10	2	5	35	2	5	2
as	2	300	75	20	2	5	35	2	5	2
со	1	40	25	10	2	5	35	2	5	2
со	2	120	60	20	2	5	35	2	5	2
cu	1	40	40	10	2	5	35	2	5	2
cu	2	120	105	20	2	5	35	2	5	2
Fe ₂ O ₃	1	40	30	10	2	5	35	2	5	2
Fe ₂ O ₃	2	225	130	20	2	5	35	2	5	2
MgO	1	40	40	10	2	5	35	2	5	2
MgO	2	160	200	20	2	5	35	2	5	2
s	1	30	20	10	2	5	35	2	5	2
s	2	220	100	20	2	5	35	2	5	2
ni_id	1	280	100	20	2	5	35	2	5	2

Table 6 – Zabel Mineral Resource Model Grade estimation details

Each variable has a slightly different dominant dip, as shown in table 6. Grades have been estimated into a parent block with a size of 10m east x 25m north x 10 m RL, nominally based on half the nominal drill spacing for the deposit. A sub-block size of 1.25m east, 1.25m north and 1.25m RL was used to accurately model the narrow mineralised horizon.

Element	Bearing	Plunge	Dip
Nickel	165	0	-60
Arsenic	165	26	-56
Cobalt	165	34	-53
Copper	165	9	-70
Fe ₂ O ₃	165	9	-70
MgO	165	34	-53
S	165	19	-69

Table 7 - Search directions for each element estimated at Zabel

Top Cuts

Top cuts have been applied to some of the modelled variables based on cumulative log frequency graphs and coefficients of variation (CV). Top cuts have been applied to nickel, copper and arsenic.

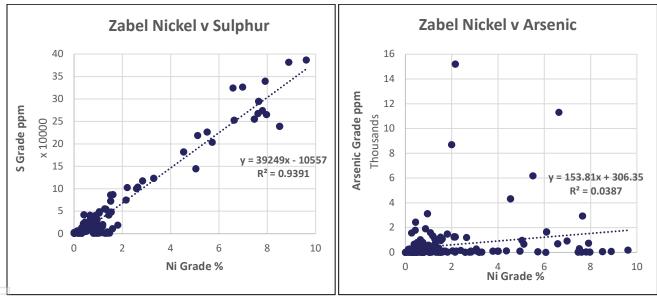

Table 8 - Top Cuts applied									
Variable	Cut	Uncut mean	Cut Mean	Uncut CV	Cut CV				
Ni	6%	1.56	1.47	1.20	1.07				
Cu	10,000 ppm	3,692	2,128	4.91	1.24				
As	10,000 ppm	571	537	2.87	2.55				

Table 8 shows the impact of the application of top cuts to some of the variables. Arsenic (As) displays a high co-efficient of variation (CV) which remains high after the application of a 10,000ppm top cut. The distribution of arsenic is complex and is thought to be influenced by later structural impacts. Given the deleterious impact of arsenic on processing it is prudent to ensure that elevated arsenic is highlighted in the model.

Correlation

An assessment was done on the relationship between nickel and other modelled elements. Iron, sulphur and cobalt show a strong, direct linear relationship. The correlation is less for arsenic, copper and MgO. As with many nickel deposits in the Widgiemooltha region, arsenic is interpreted to have been introduced in a later mineralising episode. Each of these elements has been modelled separately with no correlation assumed in modelling and grade estimation.

Figure 9 illustrates the relationship between nickel and sulphur, and nickel and arsenic. Nickel and sulphur show a strong, direct linear relationship, whereas the nickel-arsenic association is less clear.

Figure 10- Plots of composites used in the estimate illustrating the correlation between Nickel and Sulphur, and the poor correlation between Nickel and Arsenic

Model Validation

All elements were estimated using ordinary kriging. Table 9 below shows a comparison of the mean composite grade, which is the mean of all the drill composites within the domain and with top cuts applied, against the block grade, which is the average block model grade within the domain with no cut-off grade applied. The variation between composites and block grades is generally within acceptable limits and does not display any significant bias.

Table 9 – Comparison between Block Model and Composite grades for the Zabel Mineral Resource

Element	Ni %	Co ppm	Cu ppm	Fe2O3 %	MgO %	S %	As ppm
comp count	261	223	259	127	127	124	188
mean cut comp grade	1.47	480	2,128	19.9	13.5	53,906	537
block grade	1.67	520	2,310	20.5	14.3	54,507	493
Block : comp ratio	114%	108%	109%	103%	106%	101%	92%

In addition to ordinary kriging, nickel was estimated with inverse distance squared. A comparison between these two estimation methods reported at a cut-off of 1% Ni is shown in table 10. The inverse distance squared model has fewer tonnes at higher grade for about the same contained nickel metal.

Table 10 – Comparison between ordinary Kriged and Inv	verse Distance estimation, values are not rounded
---	---

Estimation method	Tonnes	Grade Ni %	Nickel tonnes
Inverse distance squared	324,233	2.063	6,689
Ordinary Kriging	351,049	1.923	6,751

Previous Mineral Resource Estimates

Further validation includes comparison with previous Mineral Resource models estimated for Zabel. The four estimates tabled below have comparable levels of drill and sample data. In 2016 Apollo Phoenix had the 2006 Consolidated Nickel estimate for Zabel reviewed and validated to enable reporting in accordance with JORC 2012. As a result of the review there were no changes to the tonnages, grade, or classifications from the August 2006 Consolidated Nickel estimate

Table 11– Comparison with previous Zabel Mineral Resource Estimations, values may be rounded

Company	Year	Tonnes	Ni grade %	Contained Ni	Cut-off grade %
WMC	1992	305,000	2.6	7,890	unknown
Titan Resources	2005	580,000	1.81	10,500	1.0
Consolidated Nickel	2006	333,000	1.75	5,800	1.0
Neometals	2020	351,000	1.9	6,750	1.0

The 2006 and 2020 models are similar with slight changes in the interpretation and modelling parameters causing the difference in the tonnes and grade. In addition, three RC holes drilled by Neometals in 2019 have been used in the 2020 estimation.

The competent person believes that the current 2020 geology interpretation and grade block model are fair representations of the *in situ* mineralisation.

Mining and Metallurgical Considerations

Mining and metallurgical factors or assumptions were not explicitly used in estimating the Mineral Resource.

It is assumed that underground mining methods would be used for any future mining operations, with the development of a portal using a box cut for an entry point to the decline.

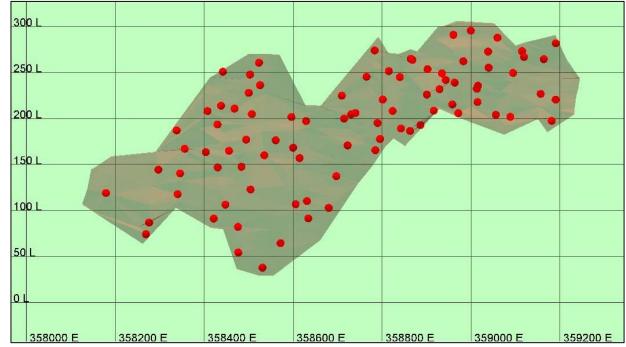
A nickel cut-off grade of 1.0% is considered the most appropriate for the Mineral Resource estimate, however, the mineralisation is robust and maintains some continuity when higher cut-off grades are applied. The 1% nickel cut-off grade is considered to approximate economic mining cut-off grades for an underground mining scenario comparable to recently published updated underground nickel Ore Reserves and Mineral Resources in the area.

The distribution of high grade arsenic and magnesium requires further delineation, and a more detailed interpretation will be needed for the planning of any future economic extraction.

Site Visit

Mr Maddocks visited the project on 17 March 2020. The site visit included viewing recent and historic RC and diamond core drilling collars and sample bags.

Future Work


Future work at Zabel may include additional infill RC and diamond core drilling so that a thorough structural and geo-metallurgical interpretation of the deposit can be incorporated into an upgraded Mineral Resource Estimate.

Controls on high grade nickel mineralisation appear to be complex. Closer spaced drilling, along with an increased understanding of the structural history of the deposit, should increase confidence in the distribution of high grade nickel mineralisation.

Arsenic is an important element in nickel sulphide deposits due to its deleterious impact on processing. The drilling described above would increase the understanding of the distribution of arsenic mineralisation.

Nickel mineralisation remains open at depth so further deep drilling will test the extent of the Mineral Resource. Down Hole Electromagnetic surveys (DHEM) will be carried out where possible for all future drilling at Zabel to aid in the delineation and discovery of conductive nickel sulphide mineralisation.

Diamond core drilling and sampling will improve the understanding of the structural orientation, geotechnical attributes, mineralogy, and metallurgical characteristics to pave the way for advanced mining studies.

Figure 11 - Long section of Zabel looking east with drill pierce points within the modelled nickel mineralisation. Future work should include structurally orientated diamond core, and infill drilling to increase understanding and confidence in the Mineral Resource

Competent Person Attribution

The information in this report that relates to Exploration Results used in the Zabel Mineral Resource estimate is based on, and fairly represents, information and supporting documentation compiled by Gregory Hudson; BSc (Hons). Mr. Hudson is an employee and shareholder of Neometals Ltd, and is a member of the Australian Institute of Geoscientists (member no. 10,123) with over 20 years of experience. Mr. Hudson has sufficient experience which is relevant to the styles of mineralisation and type of deposit under consideration and to the activity he is undertaking, to qualify as a Competent Person as defined in the JORC Code. Mr. Hudson has consented to the inclusion of the matters in this report based on his information in the form and context in which it appears.

The information in this report that relates to the Zabel Mineral Resource is based on, and fairly represents, information and supporting documentation compiled by Richard Maddocks; MSc in Mineral Economics, BAppSc in Applied Geology and Grad Dip in Applied Finance and Investment. Mr. Maddocks is a consultant to Auralia Mining Consulting and is a Fellow of the Australasian Institute of Mining and Metallurgy (member no. 111714) with over 30 years of experience. Mr. Maddocks has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the JORC Code. Mr. Maddocks consents to the inclusion in this report of the matters based on his information in the form and content in which it appears.

Compliance Statement

The information in this report that relates to Exploration Results and Mineral Resources for Neometals other than those discussed relevant to Zabel are extracted from the ASX Announcements listed in the table below, which are also available on the Company's website at www.neometals.com.au

19/04/2018	Mt Edwards Nickel - Mineral Resource Estimate
25/06/2018	Mt Edwards - Mineral Resource Over 120,000 Nickel Tonnes
31/10/2018	Quarterly Activities Report
05/08/2019	Mt Edwards Nickel – Drill Results
13/11/2019	Additional Nickel Mineral Resource At Mt Edwards
11/12/2019	Mt Edwards Nickel - Drill Results from Widgie South Trend
31/01/2020	Further Massive Nickel Sulphide Results from Mt Edwards
16/04/2020	60% Increase in Armstrong Mineral Resource
26/05/2020	Increase in Mt Edwards Nickel Mineral Resource
05/10/2020	132N Nickel Mineral Resource and exploration update at Mt Edwards

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original market announcements.

Authorised on behalf of Neometals by Christopher Reed, Managing Director.

ENDS

For further information, please contact: **Chris Reed** Managing Director Neometals Ltd T: +61 8 9322 1182 E: info@neometals.com.au

Jeremy Mcmanus General Manager - Commercial and IR Neometals Ltd T: +61 8 9322 1182 E: jmcmanus@neometals.com.au

About Neometals Ltd

Neometals innovatively develops opportunities in minerals and advanced materials essential for a sustainable future. With a focus on the energy storage megatrend, the strategy focuses on de-risking and developing long life projects with strong partners and integrating down the value chain to increase margins and return value to shareholders.

Neometals has four core projects with large partners that span the battery value chain:

Recycling and Resource Recovery:

- Lithium-ion Battery Recycling a proprietary process for recovering cobalt and other valuable materials from spent and scrap lithium batteries. Pilot plant testing completed with plans well advanced to conduct demonstration scale trials with 50:50 JV partner SMS group, working towards a development decision in early 2022; and
- Vanadium Recovery a 27-month option to evaluate establishing a 50:50 joint venture to recover vanadium from processing by-products ("Slag") from leading Scandinavian steel maker SSAB. Underpinned by a 10-year Slag supply agreement, a decision to develop sustainable European production of high-purity vanadium pentoxide is targeted for December 2022.

Downstream Advanced Materials:

• Lithium Refinery Project – evaluating the development of India's first lithium refinery to supply the battery cathode industry with potential 50:50 JV partner Manikaran Power, underpinned by a binding lifeof-mine annual offtake option for 57,000 tonnes per annum of Mt Marion 6% spodumene concentrate, working towards a development decision in 2022.

Upstream Industrial Minerals:

Barrambie Titanium and Vanadium Project - one of the world's highest-grade hard-rock titanium-vanadium deposits, working towards a development decision in mid-2021 with potential 50:50 JV partner
IMUMR.

APPENDIX 1: Table 1 as per the JORC Code Guidelines (2012)

	Section 1 Sampling Technic	ques and Data
Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Titan Resources and Neometals used RC and Diamond core drilling with RC sampling based on 1m intervals. Core was split and submitted as half core or quarter core. Titan Resources core and RC sampling procedures were as follows; Diamond drill core is orientated using a spear every run (~ 3 metres). The core is marked up by geologists and cut by ALS. The core is halved and then one half is cut in half again to produce ¼ core. The ¼ core is sampled for assaying. The core is sampled to the mineralisation contacts and at 1 m intervals through the mineralisation. Sampling continues for 10 m below the mineralisation footwall and 10m above the hanging wall. Non mineralised material is not sampled.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Samples are produced at 1m intervals from RC drill holes. The samples are usually sampled as either 1 m or 4m composites. A representative scoop is taken through the sample bag. An anomalous 4 m composite sample is resampled at 1m intervals. For Neometals samples were acquired at one metre intervals from a chute beneath a cyclone on the RC drill rig. Sample size was then reduced through a cone sample splitter. Two identical sub-samples were captured in pre- numbered calico bags, with typical masses ranging between 2 and 3.5kg. Care was taken to ensure that both original sub-samples and duplicate sub-samples were collected representatively, and therefore are of equal quantities. The remainder of the sample (the reject) was been retained in green mining bags. Samples which returned nickel grades >0.5% Ni have been retained and stored.
Drilling Techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	The Zabel Mineral Resource is predominantly based on diamond core and RC drilling techniques. In 2019 3 Reverse Circulation (RC) drill holes have been completed on M15/97 by Neometals using a face sampling hammer. Equipment used was a SCHRAMM Drill Rig, Auxiliary compressor and Booster. Drill rods were 6 metres long and drill bit diameter is 143mm, and hence so is the size of drill hole diameter. Holes were drilled at a dip angles of -55° & -60° at an azimuth of 090 in order to orthogonally intercept the interpreted favourable geological contact zones.
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Sample recovery of drilling prior to 2000 is not known. No relationship between sample recovery and grade has been recognised in the 2019 drilling.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	All drill holes have been geologically logged for lithology, weathering, alteration and mineralogy. All samples were logged in the field at the time of drilling and sampling with spoil material and sieved rock chips assessed.

	Section 1 Sampling Technic	ques and Data
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Information relating to RC chip samples collected before 1999 is scarce. Information such as sample interval is well recorded. From 2003 Titan samples were collected in 1m or 2m intervals, after passing through a cyclone, and split via a 50:50 or 75:25 riffle splitter. Approximately 3-5kg of sample was submitted for analysis, and the remaining sample left in plastic bags at drill sites (these sites have since been rehabilitated). Details as to the sampling of wet holes pre 2003 are unknown. Post 2003 wet holes have not been encountered as the rigs utilized had sufficient air to keep the holes and therefore samples dry. Procedures used by Neometals are detailed below. 1 metre samples Samples collected at 1 metre intervals from the splitter (which are truly the 2 to 3.5kg sub-samples of the sample material extracted and captured from each metre through the drilling process) were collected in the field, received by the lab, sorted and recorded. Composite Samples Equal amounts (usually ~600g) of material were taken by scoop or spear from individual reject bags in sequences of 4 representing 4 metres of drilled material and placed into a prenumbered calico bag. If there was insufficient sample for a 600g scoop the smallest individual sample is exhausted and the other 3 samples that make up the composite are collected to match the size of the smallest sample. The ~ 2.4kg composite sample was then sent to the lab for sample preparation and analysis. Hereafter the sample preparation is the same for 1 metre and composite samples. Sample Near angles were weighed as received and then dried in a gas oven for up to 12 hours at 105C. Samples >3 kg's were riffle split 50:50 and excess discarded. All samples were weighed as received and then dried in a gas oven for up to 12 hours at 105C. Samples >3 kg's were riffle split 50:50 and excess discarded. All samples were then pulverised in a LMS pulveriser for 5 minutes to achieve 85% passing 75um. 1:50 grind checks were performed to verify passing was achieved. A 300g split was ta
Quality of assay data and laboratory tests	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	QAQC procedures carried out by operators before 1999 are not known. The QAQC results were sourced from the Titar Resources annual exploration report for 2003-2004. These indicated that no significant or material discrepancies was identified by the QAQC sampling/analysis for drilling and sampling conducted by Titan Resources or Consolidated Nickel.

		Section 1 Sampling Technic	ues and Data
)	Quality of assay data and laboratory tests cont.	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks)	Pre 1999 samples (WMC) were submitted to the Silver Lake Laboratory for analysis. Little is known about the laboratory used however it is believed that on the basis of information subsequently collected there is no reason to doubt the assays. Detection limits are not often recorded on the available data and the analytical scheme cannot be verified. According to WMC it was standard practice to submit duplicates and standards.
		and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	It has been noted that many nickel samples from Widgiemooltha and Kambalda were analysed at the Silver Lake Laboratory and there is no basis for believing the analytical results to be incorrect.
			Post 2003 reputable laboratories, namely ALS Chemex (ALS) and Ultra Trace Pty Ltd, were utilized. These laboratories have stringent quality control systems, ALS has ISO9002 certification.
			The analytical methods and detection limits used did not alter between drill methodologies. Analytical methods and detection limits are merged into the database assay file.
			 For analysis undertaken at ALS, Perth, the entire sample was prepared. Analytical schemes and detection limits as follows ME-ICP61 (formerly IC587) four acid digestion, HF-HNO3-HCLO4 acid digestion, HCL leach and ICP - AES, detection limits in brackets. Cu (1ppm), Co (1ppm), Ni (1ppm), Cr (1ppm), As (5ppm), Mn (5ppm), Al (0.01%), S (0.01%), Mg (0.01%) and Fe (0.01%). Copper and nickel values in excess of 1% were re assayed via analytical schemes AA46 (formerly A101) and AA62 (formerly A102) with lower detection limits of 0.01%. Au-AA24. Nominal sample weight 30g. Au (0.01ppm). Some samples were analysed for platinum, palladium and gold using PGM-MS27 (formerly PM223). Nominal sample weight 30g – fire assay. Pt (0.05ppm), Pd (0.01ppm) and Au (0.01ppm).
			 After preparation ALS take a split or check from every 25th sample and send it to Ultra Trace Analytical Laboratories in Perth. Analytical schemes and detection limits are as follows Four acid digest, detection limits in brackets. Cu (1ppm), Co (1ppm), Ni (1ppm), Cr (5ppm), As (5ppm), Mn (1ppm), Al (0.01%), S (0.01%), Mg (0.01%) and Fe (0.01%). Gold, platinum and palladium. 40g charge fire assay determination via ICP (inductively coupled plasma) Mass Spectrometry. Au, Pt and Pd all with lower detection limits of 1ppb A detailed QAQC analysis is been carried out with all results from Titan Resources and Consolidated Nickel with no significant issues or bias detected. Neometals followed established QAQC procedures for this exploration program with the use of Certified Reference Materials as field and laboratory standards.
			Nickel standards (Certified Reference Materials, CRM) in pulp form have been submitted at a nominal rate of one for every 50 x 1 metre samples. QAQC analysis has been carried out with all results from
			Titan Resources and Neometals with no significant issues or bias detected.

Verification of	The verification of significant intersections by either	Assay, Sample ID and logging data of the historica
sampling and assaying	independent or alternative company personnel. The use of twinned holes The verification of significant intersections by either independent or alternative company personnel. Discuss any adjustment to assay data	databases are matched and validated using filters in the dr databases. The data is further visually validated b Neometals geologists and database staff. There has been no validation and cross checking o laboratory performance at this stage. No adjustments have been made to assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used	MGA94_51S is the grid system used in this program. Historic survey methods are not known but INCO and WM data was originally recorded in in local grids that have bee converted to current MGA data. This conversion may hav introduced some small errors. Downhole survey using Reflex gyro survey equipment wa conducted during the program by the drill contractor. Olde drill helps used eight each comerce of protections.
	Quality and adequacy of topographic control	drill holes used single shot cameras, some do not have azimuth data due to interference of steel drill rods. Downhole Gyro survey data were converted from true nort to MGA94 Zone51S and saved into the data base. The formulas used are: Grid Azimuth = True Azimuth + Grid Convergence. Grid Azimuth = Magnetic Azimuth + Magnetic Declination Grid Convergence. The Magnetic Declination and Grid Convergence were calculated with an accuracy to 1 decimal place using plugir in QGIS. Magnetic Declination = 0.8 Grid Convergence = -0.7
Data spacing	Data spacing for reporting of Exploration Results	All RC drill holes were sampled at 1 metre intervals dow
and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied	hole. Select sample compositing has been applied at a nominal metre intervals determined by the geologist. Historic RC drilling was at a minimum of 1m in mineralise zones. Some non-mineralised areas were sampled at large intervals of up to 4m. Diamond core was sampled geological contacts with some samples less than 1m length.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Drilling has generally been oriented perpendicular to strik or in many cases art grid 090, at dips from -45 to -5 degrees. Intersections are generally not true lengths b show some exaggeration due to the near vertical nature the mineralisation. There is no significant bias introduce due to drilling orientation.
Sample	The measures taken to ensure sample security	Historic security measures are not known.
security		For Lake Eaton South all samples collected during the current nickel exploration program were transported personally by Neometals and/or geological consultant staff to a commercial laboratory in Kalgoorlie for submission in Western Australia.

Nm	

	Section 2 Reporting of Exploration	on Results
Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Neometals holds all mineral rights other than gold on Mining Lease M15/97
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Neometals have held an interest in M15/97 since April 2018, hence all prior work has been conducted by other parties.
		The project area has a long history of exploration and mining and has been explored for nickel since the 1960s, initially by INCO in the 1960's and then Western Mining Corporation from the early 1980's. Numerous companies have taken varying interests in the project area since this time. Titan Resources held the tenement from 2001.
		Consolidated Minerals took ownership from Titan in 2006, and Salt Lake Mining in 2014.
Geology	Deposit type, geological setting and style of mineralisation.	The geology at Zabel comprises of sub-vertically dipping multiple sequences of ultramafic rock, metabasalt rock units and intermittent meta- sedimentary units.
		The Zabel Mineral Resource is hosted within ultramafic material just on and above the basalt-ultramafic contact.
		Contact zones between ultramafic rock and metabasalt are considered as favourable zones for nickel mineralisation.
Drill hole information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar	Relevant drill hole information has been tabled in the report including hole ID, drill type, drill collar location, elevation, drilled depth, azimuth, dip and respective tenement number.
	elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Historic drilling completed by previous owners has been verified and included in the drilling database.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated	Samples assessed as prospective for nickel mineralisation were assayed at single metre sample intervals, while zones where the geology were considered less prospective were assayed at a nominal 4 metre length composite sample.
	and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	

		Section 2 Reporting of Exploration	on Results
ĺ	Relationship between	These relationships are particularly important in the reporting of Exploration Results	Nickel mineralisation is hosted in the ultramafic rock unit close to the metabasalt contact zones.
	mineralisation widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	All drilling is angled to best intercept the favourable contact zones between ultramafic rock and
		If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect	metabasalt rock units to test for true widths of mineralisation.
		(eg 'down hole length, true width not known').	Due to the steep orientation of the mineralised zones there will be minor exaggeration of the width of intercepts reported.
	Diagrams	Appropriate maps and sections (with scales) and	Appropriate maps, sections and tables are included in
	Diagrams	tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	the body of the Report
	Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Current understanding is based on historical mining, mapping, drilling and sampling conducted by previous owners of the tenement. The geology of the Zabel deposit is well known.
	Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics potential deleterious or contaminating substances.	No further exploration data has been collected at this stage.
	Further work	The nature and scale of planned further work (eg tests for lateral extensions or large scale step out drilling. Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further drilling is recommended to test the potential lateral extents and infill areas for nickel mineralisation. DHEM is also planned in new and some existing drill holes.

Г

|--|

Database integrity corrup errors Minera Data Site visits Comp no site the car Confid geolog	lence in (or conversely, the uncertainty of) the gical interpretation of the mineral deposit. e of the data used and of any assumptions	Commentary The database is an accumulation of exploration results I several companies. Data were inspected for errors. N obvious errors were found. Drillhole locations, downloc surveys, geology and assays all corresponded to expected locations. The competent person for the Zabel Mineral Resource have visited the site. An inspection of the site was conducted on 1 March 2020. The competent person for exploration results has spent mo than 60 days at site since 2018. There are sufficient drill intersections through the mineralisation and geology to be confident of the geologic interpretation. These types of nickel deposits have beed mined in the Kambalda/Widgiemooltha region for many year and the geology is well documented. The basal contact of the ultramafic overlying mafics has beed accurately located through many drill hole intersections. The nickel enriched base of the ultramafic, has been accurated determined through drill intersections.
Database integrity corrup errors Minera Data Site visits Comp no site the car Comp no site the car Geological integridation Confic geological Nature	oted by, for example, transcription or keying , between its initial collection and its use for al Resource estimation purposes. validation procedures used. Thent on any site visits undertaken by the etent Person and the outcome of those visits. If e visits have been undertaken indicate why this is se. Hence in (or conversely, the uncertainty of) the gical interpretation of the mineral deposit. e of the data used and of any assumptions	 several companies. Data were inspected for errors. Nobvious errors were found. Drillhole locations, downloc surveys, geology and assays all corresponded to expected locations. The competent person for the Zabel Mineral Resource have survey to the site. An inspection of the site was conducted on 2 March 2020. The competent person for exploration results has spent mothan 60 days at site since 2018. There are sufficient drill intersections through the mineralisation and geology to be confident of the geologic interpretation. These types of nickel deposits have been mined in the Kambalda/Widgiemooltha region for many year and the geology is well documented. The basal contact of the ultramafic overlying mafics has been accurately located through many drill hole intersections. The hanging wall of the ultramafic, has been accurated the accurated securated for the ultramafic, has been accurated and the geology well of the ultramafic, has been accurated and the securated base of the ultramafic, has been accurated and the geology well of the ultramafic, has been accurated and the geology well of the ultramafic, has been accurated and the geology well of the ultramafic, has been accurated and the geology well of the ultramafic, has been accurated and the geology well of the ultramafic overlying mafics has been accurated and the geology and the geology for the ultramafic, has been accurated and the geology and the ultramafic, has been accurated and the geology and the ultramafic, has been accurated and the geology at the ultramafic overlying mafice accurated and the geology at the ultramafic overlying mafice and the geology at the hanging wall of the ultramafic overlying mafice accurated and the geology at the ultramafic overlying mafice accurated accur
Site visits Comp no site the ca Geological Nature	etent Person and the outcome of those visits. If e visits have been undertaken indicate why this is se. lence in (or conversely, the uncertainty of) the gical interpretation of the mineral deposit. e of the data used and of any assumptions	visited the site. An inspection of the site was conducted on a March 2020. The competent person for exploration results has spent mothan 60 days at site since 2018. There are sufficient drill intersections through the mineralisation and geology to be confident of the geologic interpretation. These types of nickel deposits have been mined in the Kambalda/Widgiemooltha region for many year and the geology is well documented. The basal contact of the ultramafic overlying mafics has been accurately located through many drill hole intersections. The hanging wall of the ultramafic, has been accurates the hanging wall of the ultramafic, has been accurates the hanging wall of the ultramafic, has been accurates the hanging wall of the ultramafic, has been accurates the hanging wall of the ultramafic, has been accurates the hanging wall of the ultramafic, has been accurates the hanging wall of the ultramafic was been accurates the hanging wall of the ultramafic was been accurates the hanging wall of the ultramafic was been accurates the hanging wall of the ultramafic was been accurates the hanging wall of the ultramafic was been accurates the hanging wall of the ultramafic was been accurates the hanging wall of the ultramafic was been accurates the hanging wall of the ultramafic was been accurates the hanging wall of the ultramafic was been accurates the hanging wall of the ultramafic was been accurates the hanging wall of the ultramafic was been accurates the hanging wall of the ultramafic was been accurates the hanging wall of the ultramafic was been accurates the hanging wall of the ultramafic was been accurates the hanging wall of the ultramafic was been accurates the hanging was be
Geological geologi	gical interpretation of the mineral deposit. e of the data used and of any assumptions	than 60 days at site since 2018. There are sufficient drill intersections through t mineralisation and geology to be confident of the geologic interpretation. These types of nickel deposits have be mined in the Kambalda/Widgiermooltha region for many yea and the geology is well documented. The basal contact of the ultramafic overlying mafics has be accurately located through many drill hole intersections. T nickel enriched base of the ultramafics, and enriched zones the hanging wall of the ultramafic, has been accurated
Geological geologi	gical interpretation of the mineral deposit. e of the data used and of any assumptions	There are sufficient drill intersections through t mineralisation and geology to be confident of the geologic interpretation. These types of nickel deposits have be mined in the Kambalda/Widgiemooltha region for many yea and the geology is well documented. The basal contact of the ultramafic overlying mafics has be accurately located through many drill hole intersections. T nickel enriched base of the ultramafics, and enriched zones the hanging wall of the ultramafic, has been accurated
Miner The u Resou	ffect, if any, of alternative interpretations on al Resource estimation. se of geology in guiding and controlling Mineral rce estimation. actors affecting continuity both of grade and By	The basal contact corresponds closely with the higher-gra- nickel mineralisation. High grade nickel is distributed along a narrow, convolut ribbon extending down dip along the basal conta Remobilisation of massive sulphides may complicate th distribution.
Dimensions expre	xtent and variability of the Mineral Resource ssed as length (along strike or otherwise), plan and depth below surface to the upper and lower	The modelled deposit has a strike extent of 500m and vertical down dip extent of about 330m. The deepest part the mineralised domain is 350m below surface. T

	Section 3 Estimation and Reportin	ng of Mineral Resources
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domains, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by- products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	The estimation was done using ordinary kriging. One mineralised domain was estimated representing the basal accumulation of nickel bearing sulphides. Lower levels of nickel mineralisation representing non sulphide nickel in the ultramafic rocks were generally not included however sometimes for continuity of domain modelling lower grade intersections were included. The mineral resource was estimated using Vulcan v12. Also modelled were Fe2O3, MgO, As, Co, Cu, S. Composites were modelled at 1m intervals to reflect the dominant sample intervals in the database. The block size was 10mX, 25mY, 10mZ. A sub-block size of 1.25Mx, 1.25My, 1.25Mz was used to accurately model the narrow mineralised horizon. The search directions were based on the orientation of the mineralised horizon. A two-pass estimation was used, pass 1 reflected the variography model ranges and pass 2 was larger to ensure all blocks within the domain were estimated. No assumptions were made on correlation of modelled variables. Each modelled variable was estimated in its own right. All elements were modelled using OK. Top cuts were applied to arsenic, copper and nickel based on coefficient of variation analysis and cumulative log normal graphs.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Estimates are on a dry tonne basis
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The cut-off grade of 1% Ni used for reporting corresponds to a potential mining cut-off grade appropriate for underground mining methods.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	While no mining factors have been implicitly used in the modelling, the model was constructed with underground mining methods most likely to be used.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous.	No metallurgical factors have been assumed.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	No environmental factors or assumptions were used in the modelling.

		Section 3 Estimation and Reportin	g of Mineral Resources
)	Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	Bulk density within the mineralised horizon was estimated with a regression formula derived from 2,197 measurements on 43 diamond drill holes. The formula used is: Bulk Density $(t/m3) = (0.2044 \times Ni \%) + 2.8793$ Weathered material was assigned a density of 2.2. Fresh Mafic waste 2.7 and ultramafic waste 2.9
	Classification	The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e., relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data. Whether the result appropriately reflects the Competent Person's view of the deposit.	The Zabel Mineral Resource has been classified as Indicated and Inferred. Indicated resources were based on a minimum of 5 drill holes per estimate and 10 samples per estimation. Indicated resources are found in the areas of recent drilling where the drill density is greater and there is adequate QAQC data supporting the drilling, sampling and assaying. This classification reflects the Competent Person's view of the deposit.
	Audits or reviews	The results of any audits or reviews of Mineral Resource estimates	Auralia Mining Consultants are independent of Neometals. No audit or review has bee undertaken on this work I the near term.
	Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	There is much drilling into the Zabel Mineralisation. The position of the nickel mineralised horizon has been well established as has the global grade. There appears to have been some minor remobilisation of massive nickel bearing sulphides, sometimes into the underlying mafics. This does impact on the continuity of the high grade mineralisation. The stated tonnages and grade reflect the geological interpretation and the categorisation of the mineral resource estimate reflects the relative confidence and accuracy.

Г

APPENDIX 2: Drill holes used in the Zabel Mineral Resource block model

Hole ID	Drill Type	East	North	RL	Depth	Dip	Azimuth	Company
MERC077	RC	358701	6526044	328.41	162	-60.14	96.79	Neometals
MERC078	RC	358715	6526083	326.51	150	-62	93	Neometals
MERC079	RC	358627	6526166	326.19	198	-57	94	Neometals
WD10752	DD	359059.7	6526166	323.39	16.46	-90	359.53	INCO
WD10753	DD	359029.6	6526161	323.39	9.14	-90	359.53	INCO
WD10907	DD	359104.8	6526173	323.39	38.1	-90	359.53	INCO
WD10908	DD	359044.6	6526163	323.39	48.77	-90	359.53	INCO
WD10981	DD	358218.6	6527138	328.39	60.96	-90	359.53	INCO
WD10982	DD	358233.6	6527141	328.39	51.82	-90	359.53	INCO
WD10983	DD	358248.6	6527143	328.89	39.62	-90	359.53	INCO
WD10984	DD	358263.7	6527146	328.89	36.58	-90	359.53	INCO
WD10985	DD	358318.6	6526908	327.39	51.82	-90	359.53	INCO
WD10986	DD	358333.7	6526910	327.39	33.53	-90	359.53	INCO
WD10987	DD	358348.7	6526913	327.39	33.53	-90	359.53	INCO
WD10988	DD	358363.7	6526915	327.39	30.48	-90	359.53	INCO
WD10990	DD	359159.7	6525935	322.99	45.72	-90	359.53	INCO
WD10991	DD	359129.7	6525930	323.19	33.53	-90	359.53	INCO
WD10992	DD	358859.6	6526627	325.39	45.72	-90	359.53	INCO
WD10993	DD	358829.5	6526622	325.39	45.72	-90	359.53	INCO
WD10994	DD	358814.5	6526619	325.39	39.62	-90	359.53	INCO
WD10995	DD	358799.4	6526617	325.39	51.82	-90	359.53	INCO
WD10996	DD	359144.7	6525933	323.19	38.1	-90	359.53	INCO
WD3302	DD	358262.4	6526651	326.89	194.77	-45	260.53	INCO
WD3303	DD	358547.3	6526021	322.74	339.85	-60	80.53	INCO
WD3309	DD	358512.8	6526138	322.77	293.83	-60	80.53	INCO
WD3312	DD	358464.5	6526252	326.39	299.92	-60	80.53	INCO
WD3315	DD	358438.5	6526372	326.39	278.59	-65	80.53	INCO
WD3320	DD	358368.3	6526236	326.89	398.07	-65	80.53	INCO
WD3807	DD	358739.1	6526236	324.89	24.38	-90	359.53	INCO
WD3808	DD	358724	6526234	324.89	18.29	-90	359.53	INCO
WD3809	DD	358709	6526231	324.89	44.2	-90	359.53	INCO
WD3810	DD	358694	6526229	324.89	39.62	-90	359.53	INCO
WD3811	DD	358678.9	6526226	324.89	30.48	-90	359.53	INCO
WD3814	DD	358774.1	6526118	324.39	41.15	-90	359.53	INCO
WD3815	DD	358874.1	6525888	324.39	50.29	-90	359.53	INCO
WD3816	DD	358859.1	6525885	324.39	39.62	-90	359.53	INCO
WD3817	DD	358844.1	6525883	324.39	45.72	-90	359.53	INCO
WD3818	DD	358829	6525880	324.39	45.72	-90	359.53	INCO
WD3819	DD	358814	6525878	324.39	42.67	-90	359.53	INCO
WD3820	DD	358799	6525875	324.89	33.53	-90	359.53	INCO
WD3821	DD	358783.9	6525873	324.89	30.48	-90	359.53	INCO
WD3822	DD	358768.9	6525870	324.89	36.58	-90	359.53	INCO
WD3823	DD	358753.9	6525868	324.89	45.72	-90	359.53	INCO
WD3824	DD	358704.1	6526354	324.89	24.38	-90	359.53	INCO

Hole ID	Drill Type	East	North	RL	Depth	Dip	Azimuth	Company
WD3825	DD	358674	6526349	325.39	15.24	-90	359.53	INCO
WD3831	DD	358788.3	6526219	321.69	235.61	-50	260.53	INCO
WD3832	DD	357936.8	6526844	328.89	257.25	-50	260.53	INCO
WD3837	DD	358807.1	6526124	324.39	267	-50	260.53	INCO
WD3838	DD	358705.8	6525860	325.39	285.29	-45	80.53	INCO
WD3839	DD	358866	6526132	321.01	256.03	-50	260.53	INCO
WD3841	DD	358532.7	6526325	325.89	253.29	-50	80.53	INCO
WD3842	DD	358661.1	6525937	321.99	260.3	-45	80.53	INCO
WD3845	DD	358430.6	6526494	326.39	200.25	-50	80.53	INCO
WD3846	DD	358469.2	6526438	326.39	184.1	-50	80.53	INCO
WD3847	DD	358363.1	6526668	322.89	160.02	-50	80.53	INCO
WD3848	DD	358587.3	6526150	322.32	199.95	-50	80.53	INCO
WD3849	DD	358640.5	6526033	322.14	184.4	-50	80.53	INCO
WD3850	DD	358304	6526782	326.39	138.99	-50	80.53	INCO
WD4115	DD	358636.1	6525911	322.15	267.61	-65	80.53	INCO
WD4119	DD	358373.5	6526484	326.39	79	-45	80.53	INCO
WD4411	DD	358643.9	6526344	325.39	15.24	-90	359.53	INCO
WD4412	DD	358613.9	6526339	325.39	27.43	-90	359.53	INCO
WD4413	DD	358583.8	6526334	325.89	21.34	-90	359.53	INCO
WD4414	DD	358528.9	6526572	325.89	33.53	-90	359.53	INCO
WD4415	DD	358513.8	6526569	325.89	27.43	-90	359.53	INCO
WD4416	DD	358498.8	6526567	325.89	28.96	-90	359.53	INCO
WD4417	DD	358573.9	6526579	325.39	21.34	-90	359.53	INCO
WD4418	DD	358558.9	6526577	325.39	12.19	-90	359.53	INCO
WD4419	DD	358543.9	6526574	325.89	12.19	-90	359.53	INCO
WD4420	DD	358759	6526116	324.39	51.82	-90	359.53	INCO
WD4421	DD	358744	6526113	324.89	54.86	-90	359.53	INCO
WD4422	DD	358729	6526111	324.89	51.82	-90	359.53	INCO
WD4443	DD	358493.6	6526319	326.39	39.61	-90	359.53	INCO
WD4444	DD	358478.6	6526316	326.39	41.15	-90	359.53	INCO
WD4445	DD	358463.6	6526314	326.39	41.15	-90	359.53	INCO
WD4446	DD	358448.5	6526311	326.39	54.86	-90	359.53	INCO
WD4447	DD	358433.5	6526309	326.39	33.53	-90	359.53	INCO
WD4448	DD	358418.5	6526307	326.39	51.82	-90	359.53	INCO
WD4449	DD	358403.4	6526304	326.39	32	-90	359.53	INCO
WD4450	DD	358624	6526464	325.89	33.53	-90	359.53	INCO
WD4451	DD	358609	6526462	325.89	24.38	-90	359.53	INCO
WD4455	DD	358593.9	6526459	325.89	33.52	-90	359.53	INCO
WD4456	DD	358578.9	6526457	325.89	27.43	-90	359.53	INCO
WD4457	DD	358854.2	6526008	324.39	45.72	-90	359.53	INCO
WD4458	DD	358824.1	6526003	324.39	45.72	-90	359.53	INCO
WD4459	DD	358809.1	6526001	324.39	79.25	-90	359.53	INCO
WD4460	DD	358794	6525998	324.39	76.2	-90	359.53	INCO
WD4461	DD	358779	6525996	324.89	60.95	-90	359.53	INCO
WD4462	DD	358764.1	6526179	324.69	30.48	-90	359.53	INCO
WD4463	DD	358749.1	6526176	324.69	27.43	-90	359.53	INCO

Hole ID	Drill Type	East	North	RL	Depth	Dip	Azimuth	Company
WD4464	DD	358734	6526174	324.89	48.77	-90	359.53	INCO
WD4465	DD	358719	6526171	324.89	45.72	-90	359.53	INCO
WD4466	DD	358704	6526169	324.89	45.72	-90	359.53	INCO
WD4467	DD	358814.1	6526063	324.39	41.15	-90	359.53	INCO
WD4468	DD	358799.1	6526061	324.39	36.58	-90	359.53	INCO
WD4469	DD	358784.1	6526058	324.39	25.91	-90	359.53	INCO
WD4470	DD	358769	6526056	324.39	42.66	-90	359.53	INCO
WD4471	DD	358754	6526053	324.39	42.66	-90	359.53	INCO
WD4472	DD	358849.1	6525946	324.39	45.72	-90	359.53	INCO
WD4473	DD	358834.1	6525943	324.39	73.15	-90	359.53	INCO
WD4474	DD	358819.1	6525941	324.39	60.96	-90	359.53	INCO
WD4706	DD	358624	6526464	325.89	33.52	-90	359.53	INCO
WD4707	DD	358609	6526462	325.89	18.29	-90	359.53	INCO
WD4708	DD	358593.9	6526459	325.89	18.29	-90	359.53	INCO
WD4709	DD	358578.9	6526457	325.89	36.58	-90	359.53	INCO
WD4710	DD	358563.9	6526454	325.89	39.61	-90	359.53	INCO
WD4711	DD	358548.8	6526452	325.89	42.67	-90	359.53	INCO
WD4712	DD	358533.8	6526449	325.89	33.52	-90	359.53	INCO
WD4713	DD	358518.8	6526447	325.89	36.58	-90	359.53	INCO
WD4714	DD	358503.7	6526444	325.89	39.61	-90	359.53	INCO
WD4715	DD	358483.8	6526564	325.89	36.58	-90	359.53	INCO
WD4716	DD	358478.8	6526687	325.89	18.29	-90	359.53	INCO
WD4717	DD	358463.8	6526685	325.89	24.37	-90	359.53	INCO
WD4718	DD	358448.8	6526682	325.89	47.24	-90	359.53	INCO
WD4719	DD	358433.7	6526680	325.89	35.05	-90	359.53	INCO
WD4720	DD	358413.8	6526800	326.39	30.48	-90	359.53	INCO
WD4721	DD	358398.7	6526798	326.39	35.05	-90	359.53	INCO
WD4722	DD	358383.7	6526795	326.39	47.24	-90	359.53	INCO
WD4723	DD	358368.7	6526793	326.39	39.62	-90	359.53	INCO
WD4724	DD	358453.8	6526745	326.39	18.29	-90	359.53	INCO
WD4725	DD	358438.8	6526742	326.39	21.34	-90	359.53	INCO
WD4726	DD	358423.7	6526740	326.39	36.58	-90	359.53	INCO
WD4727	DD	358408.7	6526737	326.39	45.72	-90	359.53	INCO
WD4728	DD	358393.7	6526735	326.39	30.48	-90	359.53	INCO
WD4729	DD	358518.9	6526632	325.89	21.34	-90	359.53	INCO
WD4730	DD	358503.8	6526630	325.89	19.81	-90	359.53	INCO
WD4731	DD	358488.8	6526627	325.89	24.37	-90	359.53	INCO
WD4732	DD	358473.8	6526625	325.89	32	-90	359.53	INCO
WD4733	DD	358458.7	6526622	325.89	36.58	-90	359.53	INCO
WD4734	DD	358603.9	6526399	325.89	39.61	-90	359.53	INCO
WD4735	DD	358588.9	6526397	325.89	36.58	-90	359.53	INCO
WD4736	DD	358573.8	6526394	325.89	42.66	-90	359.53	INCO
WD4737	DD	358608.7	6526091	325.89	42.66	-90	359.53	INCO
WD4738	DD	358593.7	6526088	325.89	57.91	-90	359.53	INCO
WD4739	DD	358578.7	6526086	325.89	67.06	-90	359.53	INCO
WD4740	DD	358563.6	6526083	325.89	54.86	-90	359.53	INCO

Hole ID	Drill Type	East	North	RL	Depth	Dip	Azimuth	Company
WD4741	DD	358834.2	6526128	324.39	36.58	-90	359.53	INCO
WD4742	DD	358849.2	6526131	324.39	36.58	-90	359.53	INCO
WD4743	DD	358508.8	6526507	325.89	45.72	-90	359.53	INCO
WD4744	DD	358193.2	6526640	327.39	36.58	-90	359.53	INCO
WD4745	DD	358178.2	6526637	327.39	45.72	-90	359.53	INCO
WD4746	DD	358308.3	6526412	327.39	48.77	-90	359.53	INCO
WD4747	DD	358163.2	6526635	327.39	38.1	-90	359.53	INCO
WD4748	DD	358148.1	6526632	327.39	48.77	-90	359.53	INCO
WD4749	DD	358133.1	6526630	327.39	41.15	-90	359.53	INCO
WD4750	DD	358854.1	6525823	324.39	60.95	-90	359.53	INCO
WD4751	DD	358804	6525938	324.89	57.91	-90	359.53	INCO
WD4752	DD	358789	6525936	324.89	70.09	-90	359.53	INCO
WD4753	DD	358699	6526291	324.89	18.29	-90	359.53	INCO
WD4754	DD	358684	6526289	324.89	39.61	-90	359.53	INCO
WD4755	DD	358669	6526286	324.89	35.05	-90	359.53	INCO
WD4756	DD	358653.9	6526284	324.89	22.86	-90	359.53	INCO
WD4757	DD	358638.9	6526281	324.89	18.29	-90	359.53	INCO
WD4758	DD	358659	6526346	325.39	27.43	-90	359.53	INCO
WD4759	DD	358659	6526346	321.61	36.58	-90	359.53	INCO
WD4760	DD	358598.9	6526336	325.89	33.52	-90	359.53	INCO
WD4761	DD	358634	6526404	325.39	24.37	-90	359.53	INCO
WD4762	DD	358618.9	6526402	325.39	33.52	-90	359.53	INCO
WD4763	DD	358568.9	6526517	325.89	18.29	-90	359.53	INCO
WD4764	DD	358553.9	6526514	325.89	45.72	-90	359.53	INCO
WD4765	DD	358738.8	6525865	324.89	57.91	-90	359.53	INCO
WD4766	DD	358723.8	6525863	324.89	70.09	-90	359.53	INCO
WD4767	DD	358708.8	6525860	325.39	47.24	-90	359.53	INCO
WD4768	DD	358693.8	6525858	325.39	67.05	-90	359.53	INCO
WD4769	DD	358678.7	6525855	325.39	51.82	-90	359.53	INCO
WD4770	DD	358663.7	6525853	325.89	67.05	-90	359.53	INCO
WD4771	DD	358774	6525933	324.89	70.09	-90	359.53	INCO
WD4772	DD	358758.9	6525931	324.89	36.58	-90	359.53	INCO
WD4773	DD	358743.9	6525928	324.89	39.61	-90	359.53	INCO
WD4774	DD	358728.9	6525926	324.89	65.53	-90	359.53	INCO
WD4775	DD	358713.8	6525923	324.89	67.05	-90	359.53	INCO
WD4776	DD	358698.8	6525921	324.89	57.91	-90	359.53	INCO
WD4777	DD	358683.8	6525918	325.39	44.2	-90	359.53	INCO
WD4778	DD	358668.7	6525916	325.39	64.01	-90	359.53	INCO
WD4779	DD	358703.9	6525983	325.39	64.01	-90	359.53	INCO
WD4780	DD	358688.8	6525981	325.39	67.05	-90	359.53	INCO
WD4781	DD	358673.8	6525978	325.39	51.82	-90	359.53	INCO
WD4789	DD	358869.1	6525825	324.39	44.2	-90	359.53	INCO
WD4790	DD	358143.2	6526755	327.89	33.52	-90	359.53	INCO
WD4791	DD	358128.2	6526753	327.89	47.24	-90	359.53	INCO
WD4792	DD	358113.1	6526750	327.89	45.72	-90	359.53	INCO
WD4793	DD	358824	6525818	324.39	50.29	-90	359.53	INCO

Hole ID	Drill Type	East	North	RL	Depth	Dip	Azimuth	Company
WD4794	DD	358839	6525820	324.39	57.91	-90	359.53	INCO
WD4795	DD	358523.8	6526509	325.89	30.48	-90	359.53	INCO
WD4796	DD	358538.8	6526512	325.89	42.66	-90	359.53	INCO
WD4797	DD	358583.7	6526149	325.89	50.29	-90	359.53	INCO
WD4798	DD	358568.7	6526146	325.89	45.72	-90	359.53	INCO
WD4799	DD	358553.6	6526144	325.89	51.82	-90	359.53	INCO
WD5103	DD	358763.9	6525808	325.09	57.91	-90	359.53	INCO
WD5104	DD	358778.9	6525810	325.09	45.72	-90	359.53	INCO
WD5105	DD	358793.9	6525813	324.89	54.86	-90	359.53	INCO
WD5106	DD	358809	6525815	324.39	48.77	-90	359.53	INCO
WD5466	DD	358548.6	6526081	325.89	51.82	-90	359.53	INCO
WD5467	DD	358533.6	6526078	325.89	57.91	-90	359.53	INCO
WD9595	DD	358894.3	6526138	323.89	50.29	-90	359.53	INCO
WD9596	DD	358924.4	6526143	323.89	56.39	-90	359.53	INCO
WD9597	DD	358954.5	6526148	323.89	54.86	-90	359.53	INCO
WD9598	DD	359014.6	6526158	323.39	60.96	-90	359.53	INCO
WD9599	DD	359074.7	6526168	323.39	60.96	-90	359.53	INCO
WD9600	DD	359134.8	6526178	323.39	47.24	-90	359.53	INCO
WD9797	DD	358934.7	6526639	321	4.57	-90	359.53	INCO
WD9798	DD	358964.8	6526644	321	6.4	-90	359.53	INCO
WDC029	RC	358636.9	6526097	327.85	250	-59.87	92.94	Titan
WDC030	RC	358656.9	6526037	330.13	214	-60.75	86.06	Titan
WDC031	RC	358776.9	6526157	325.01	80	-60.62	87.69	Titan
WDC032	RC	358616.9	6526137	326.79	211	-59.74	97.82	Titan
WDC033	RC	358736.9	6526007	326.37	170	-59.91	93.13	Titan
WDC100	RC	358586.9	6526127	327.51	234	-60.81	92.97	Titan
WDC101	RC	358636.9	6526157	326.2	180.8	-60.11	88.45	Titan
WDC102	RC	358596.9	6526157	327.24	249	-60.25	89.58	Titan
WDC103	RC	358556.9	6526157	328.36	250	-59.8	89.43	Titan
WDC104	RC	358696.9	6526082	328.05	120	-59.91	90.07	Titan
WDC105	RC	358636.9	6526082	328.15	250	-60.61	91.04	Titan
WDC106	RC	358686.9	6526032	329.23	150	-60.01	93.33	Titan
WDC119	RC	358754.9	6526038	326.05	100	-60.07	89.31	Titan
WDC120	RC	358716.9	6526097	326.5	120	-59.82	86.56	Titan
WDC121	RC	358756.9	6526076	326.05	80	-60.65	90.71	Titan
WDC122	RC	358696.9	6526136	325.62	120	-59.82	88.16	Titan
WDC123	RC	358635.9	6526216	325.64	140	-60.09	89.5	Titan
WDC124	RC	358645.9	6526174	325.7	160	-60.02	89.38	Titan
WDC125	RC	358716.9	6526157	323.86	100	-60	90	Titan
WDC126	RC	358615.9	6526256	325.04	140	-60	90	Titan
WDC127	RC	358536.9	6526336	324.42	168	-59.78	91.05	Titan
WDC128	RC	358513.9	6526355	324.15	220	-59.41	87.98	Titan
WDC129	RC	358854.9	6525815	325.99	80	-60.3	89.7	Titan
WDC130	RC	358814.9	6525816	327.9	120	-60	90	Titan
WDC131	RC	358856.9	6525879	324.86	80	-60	90	Titan
WDC132	RC	358797.9	6525938	325.99	80	-60	90	Titan

Hole ID	Drill Type	East	North	RL	Depth	Dip	Azimuth	Company
WDC187	RC	358896.9	6526204	321.5	78	-60	270	Titan
WDC188	RC	358984.9	6526198	320.5	109	-60	270	Titan
WDC189	RC	358588.9	6526294	325.78	140	-60	86.79	Titan
WDC190	RC	358566.1	6526228	323.5	198	-60	90	Titan
WDC191	RC	358659.9	6525913	324	228	-60	90	Titan
WDC208	RC	359074.9	6525859	320.5	80	-50	270	Titan
WDC209	RC	359136.9	6525862	318	114	-50	270	Titan
WDC216	RC	358980.9	6526417	321	155	-50	270	Titan
WDC217	RC	358938.9	6526420	321	157	-50	270	Titan
WDC218	RC	358890.9	6526562	324	175	-50	270	Titan
WDC219	RC	358938.9	6526564	322	304	-50	270	Titan
WDC220	RC	359033.9	6526414	321	246	-50	270	Titan
WDC221	RC	358940.9	6526202	321	108	-50	270	Titan
WDC238	RC	358917	6526437	320	140	-50.39	269.43	Titan
WDD032	DD	358697.9	6525998	320	171.6	-60.27	88.77	Titan
WDD033	DD	358683.9	6526056	322	159.6	-60	90	Titan
WDD034	DD	358677.9	6526077	322	159.6	-60	90	Titan
WDD035	DD	358656.9	6526117	323	171.6	-60.26	86.69	Titan
WDD036	DD	358715.9	6526074	322	120.6	-60.54	86.2	Titan
WDD037	DD	358639.9	6526135	323	180.6	-60.2	88.66	Titan
WDD038	DD	358597.9	6526196	323	195.7	-60.22	85.96	Titan
WDD039	DD	358556.9	6526196	323	231.7	-60.34	85.51	Titan
WDD040	DD	358596.9	6526216	324	183.8	-60.38	87.79	Titan
WDD041	DD	358536.9	6526237	323	252.8	-60	90	Titan
WDD042	DD	358517.9	6526256	322	252.7	-60	90	Titan
WDD043	DD	358577.9	6526277	320	165.7	-60	90	Titan
WDD044	DD	358555.9	6526296	320	186.4	-60	90	Titan
WDD045	DD	358514.9	6526297	320	216.7	-60	90	Titan
WDD046	DD	358735.9	6525958	320	166	-60	90	Titan
WDD047	DD	358466.9	6526416	320	222.7	-60	90	Titan
WDD048	DD	358434.9	6526414	320	252.7	-60	90	Titan
WDD049	DD	358454.9	6526456	320	150	-60	90	Titan
WDD052	DD	358443.9	6526456	323	241	-60	90	Titan
WDD060	DD	358518.9	6526197	325	280	-60	90	Titan
WDD061	DD	358467.9	6526200	322.5	330.5	-60	90	Titan
WDD062	DD	358426.9	6526236	325	350	-60	90	Titan
WDD063	DD	358613.9	6526115	323	100	-60	90	Titan
WDD064	DD	358518.9	6526114	322.5	200	-60	90	Titan
WDD065	DD	358678	6525957	323	150	-60	90	Titan
WDD066	DD	358366.9	6526455	323	320.3	-60	90	Titan
WDD067	DD	358503.9	6526416	324	90	-60	90	Titan
WDD068	DD	358414.9	6526413	324	162	-60	90	Titan
WDD069	DD	358415.9	6526275	324	228	-60	90	Titan
WDD070	DD	358427.9	6526321	323	200	-60	90	Titan
WDD071	DD	358397.9	6526357	322.5	198	-60	90	Titan
WDD072	DD	358502.9	6526169	324	318.5	-60	90	Titan

Hole ID	Drill Type	East	North	RL	Depth	Dip	Azimuth	Company
WDD072A	DD	358502.9	6526167	332	197	-60	90	Titan
WDD073	DD	358428.9	6526204	324	372.5	-60	90	Titan
WDD135	DD	358467	6526161	324.01	368.6	-61.9	91.26	Titan
WDD146	DD	358267	6526418	327.02	408.04	-59.79	94.12	Titan
WID1325	DD	358412.6	6526472	323.03	246.6	-60	80.53	WMC
WID1326	DD	358466.5	6526447	322.83	217	-61	86.53	WMC
WID1327	DD	358500.2	6526365	322.67	187.39	-60	84.53	WMC
WID1328	DD	358646.7	6526045	322.08	202.6	-61.2	83.53	WMC
WID1329	DD	358638.7	6526004	322.03	229.1	-60	83.53	WMC
WID1330	RC	358574.4	6526363	322.41	96	-60	89.53	WMC
WID1331	RC	358594.9	6526360	322.34	85	-60	89.53	WMC
WID1332	RC	358589.3	6526318	322.25	94	-60	89.53	WMC
WID1333	RC	358609.2	6526321	322.34	50	-60	89.53	WMC
WID1333A	RC	358607.4	6526320	322.25	82	-60	89.53	WMC
WID1334	RC	358628.9	6526304	322.05	100	-60	89.53	WMC
WID1335	RC	358647.5	6526302	322.1	80	-60	89.53	WMC
WID1336	RC	358666	6526301	322.05	50	-60	89.53	WMC
WID1337	RC	358695.1	6526122	321.63	115	-60	89.53	WMC
WID1338	RC	358764.3	6526119	321.44	45	-60	89.53	WMC
WID1339	RC	358713.6	6526066	321.69	106	-60	89.53	WMC
WID1340	RC	358741.2	6526063	321.56	80	-60	89.53	WMC
WID1341	RC	358713.3	6526038	321.76	115	-60	89.53	WMC
WID1342	RC	358742.1	6526034	321.53	85	-60	89.53	WMC
WID1343	RC	358773.2	6526030	321.3	45	-60	89.53	WMC
WID1344	RC	358739	6526004	321.53	110	-60	89.53	WMC
WID1345	RC	358799.2	6526000	321.12	45	-60	89.53	WMC
WID1346	RC	358769.1	6526002	321.31	80	-60	89.53	WMC
WID1347	RC	358736.6	6525976	321.59	115	-60	89.53	WMC
WID1348	RC	358772.2	6525979	321.23	80	-60	89.53	WMC
WID1349	RC	358794.3	6526186	321.23	45	-60	89.53	WMC
WID1372	RC	358612.5	6526367	320.85	54	-60	89.53	WMC
WID1373	RC	358630.4	6526323	320.5	54	-60	89.53	WMC
WID1374	RC	358726.1	6526119	321.64	90	-60	89.53	WMC
WID1375	RC	358770.7	6526060	321.33	54	-60	89.53	WMC
WID1376	RC	358797.9	6525973	321.26	54	-60	89.53	WMC
WID1377	RC	358555.2	6526442	320.74	16	-60	89.53	WMC
WID1377A	RC	358563.8	6526441	320.49	90	-60	89.53	WMC
WID1378	RC	358543.3	6526434	320.93	112	-60	89.53	WMC
WID1379	RC	358584.6	6526427	322.52	54	-60	89.53	WMC
WID1380	RC	358647.5	6526266	321.67	112	-60	89.53	WMC
WID1381	RC	358667.6	6526266	321.95	90	-60	89.53	WMC
WID1382	RC	358686.6	6526267	321.78	54	-60	89.53	WMC
WID1383	RC	358670	6526227	321.69	70	-60	89.53	WMC
WID1384	RC	358688.9	6526227	321.73	90	-60	89.53	WMC
WID1385	RC	358707.9	6526228	321.61	54	-60	89.53	WMC
WID1386	RC	358684.3	6526187	322.26	112	-60	89.53	WMC

Hole ID	Drill Type	East	North	RL	Depth	Dip	Azimuth	Company
WID1386A	RC	358643.6	6526193	321.88	116	-60	89.53	WMC
WID1387	RC	358664.2	6526189	322.21	90	-60	89.53	WMC
WID1387A	RC	358666.7	6526189	322.21	110	-60	89.53	WMC
WID1388	RC	358643.6	6526193	321.88	72	-60	89.53	WMC
WID1389	RC	358730.7	6525934	321.24	118	-60	89.53	WMC
WID1390	RC	358751.4	6525935	321.14	90	-60	89.53	WMC
WID1391	RC	358771.3	6525934	321.33	54	-60	89.53	WMC
WID1402	DD	358501.1	6526364	324.24	251	-70	65.53	WMC
WID1403	DD	358502.8	6526364	324.24	189.19	-50.4	69.53	WMC
WID1406	DD	358543.1	6526338	322.54	221	-70	79.53	WMC
WID1407	DD	358543.1	6526338	322.54	267	-80	74.53	WMC
WID1408	DD	358467	6526447	322.83	251	-70.2	81.53	WMC
WID1424	AC	359184.4	6527039	325.38	37			WMC
WID1438	AC	359123.6	6527139	322.89	48			WMC
WID1440	AC	359163.6	6527139	322.89	28			WMC
WID1568	DD	358531.9	6526199	322.54	225	-51.2	83.53	WMC
WID1569	DD	358641.6	6526126	322.09	204	-69.8	84.53	WMC
WID1570	DD	358640	6526126	322.11	155.89	-50.5	83.53	WMC
WID1736	RC	358813.9	6525837	321.52	80	-60	89.53	WMC
WID1737	RC	358794.1	6525835	321.73	106	-60	89.53	WMC
WID1738	RC	358774.3	6525834	321.86	130	-60	89.53	WMC
WID1748	RC	358795.5	6525887	321.62	92	-60	89.53	WMC
WID1749	RC	358777.4	6525886	322.02	116	-60	89.53	WMC
WID1750	RC	358756.8	6525886	321.92	140	-60	89.53	WMC
WID1782	DD	358587.5	6526274	323.02	184	-60	103.53	WMC
WID1783	DD	358525.6	6526267	323.01	247	-60	79.53	WMC
WID1784	DD	358526.9	6526304	323.08	223.05	-60	79.53	WMC
WID1805	DD	358524.4	6526267	323.07	253	-55.2	85.53	WMC
WID1806	DD	358526.7	6526304	323.09	249	-66.2	78.53	WMC
WID1807	DD	358526.7	6526304	323.09	288	-72.6	79.53	WMC
WID1818	DD	358524.7	6526267	322.91	283	-67.7	88.53	WMC
WID1819	DD	358526.2	6526267	323.02	211	-49.2	92.53	WMC
WID1820	RC	358662.9	6526093	322.39	102	-60	89.53	WMC
WID1820A	DD	358662.9	6526093	322.39	168.8	-47.5	87.53	WMC
WID1821	DD	358659.6	6526090	322.23	193.25	-61	89.53	WMC
WID1822	DD	358689.7	6526006	322.19	175.5	-60	83.53	WMC
WID1848	RC	358688.5	6526160	322.24	118	-60	89.53	WMC
WID1849	RC	358679.4	6526185	322.23	100	-60	89.53	WMC
WID1850	RC	358669.9	6526215	322.4	120	-60	89.53	WMC
WID1851	RC	358720.7	6525936	322.23	160	-60	89.53	WMC
WID1852	RC	358771.4	6525886	321.82	124	-60	89.53	WMC
WID1853	RC	358811.3	6525885	321.42	124	-60	89.53	WMC
WID1854	RC	358860.4	6525842	321.1	86	-60	89.53	WMC
WID1855	RC	358819.5	6525840	321.43	106	-60	89.53	WMC
WID1856	RC	358757.2	6525827	322.06	154	-60	89.53	WMC
WID1867	RC	358628.1	6526271	322.64	118	-60	89.53	WMC

Hole ID	Drill Type	East	North	RL	Depth	Dip	Azimuth	Company
WID1868	RC	358607.7	6526267	322.55	150	-60	89.53	WMC
WID1869	RC	358582.6	6526311	322.87	146	-60	89.53	WMC
WID1809	RC	358556.5	6526359	323.18	130	-60	89.53	WMC
WID1898	DD	358474.2	6526321	323.27	307	-72	82.53	WMC
WID1899	DD	358511.1	6526236	323.69	317.6	-70.2	82.53	WMC
WID1900	DD	358511.7	6526236	323.66	283	-60	83.53	WMC
WID1902	DD	358514.6	6526184	323.18	300.15	-60	89.53	WMC
WID2200	RC	358530.4	6526203	323.49	20	-90	359.53	WMC
WID2202	RC	358525.8	6526212	323.55	20	-90	359.53	WMC
WID2204	RC	358521.5	6526221	323.62	20	-90	359.53	WMC
WID2206	RC	358517.2	6526230	323.62	20	-90	359.53	WMC
WID2208	RC	358513	6526239	323.6	20	-90	359.53	WMC
WID2210	RC	358508.5	6526248	323.67	20	-90	359.53	WMC
WID2210	RC	358504.9	6526166	323.73	20	-90	359.53	WMC
WID2212	RC	358500	6526266	323.73	20	-90	359.53	WMC
WID2214	RC	358495.8	6526275	323.75	20	-90	359.53	WMC
WID2218	RC	358491.6	6526284	323.87	20	-90	359.53	WMC
WID2210	RC	358487.2	6526293	323.85	20	-90	359.53	WMC
WID2222	RC	358483	6526302	323.89	20	-90	359.53	WMC
WID2222	RC	358478.6	6526312	323.92	20	-90	359.53	WMC
WID2226	RC	358475.1	6526319	323.81	20	-90	359.53	WMC
WID2228	RC	358469.5	6526330	323.99	20	-90	359.53	WMC
WID2220	RC	358465.7	6526338	323.97	20	-90	359.53	WMC
WID2230	RC	358461.3	6526347	323.99	20	-90	359.53	WMC
WID2232	RC	358457.1	6526356	323.99	20	-90	359.53	WMC
WID2234	RC	358452.9	6526365	323.94	20	-90	359.53	WMC
WID2230	RC	358448.4	6526375	323.94	20	-90	359.53	WMC
WID2238	RC	358444.1	6526384	323.38	20	-90	359.53	WMC
WID2240	RC	358440	6526393	324.02	20	-90	359.53	WMC
WID2242	RC	358435.6	6526402	324.02	20	-90	359.53	WMC
WID2244 WID2246	RC	358431.2	6526411	323.98	20	-90	359.53	WMC
WID2240	RC	358427	6526420	323.98	20	-90	359.53	WMC
WID2248	RC	358422.7	6526420	324.02	20	-90	359.53	WMC
WID2250	RC	358418.3	6526438	324.12	20	-90	359.53	WMC
WID2252	RC	358413.9	6526447	324.08	20	-90	359.53	WMC
WID2254	RC	358409.5	6526456	324.07	20	-90	359.53	WMC
WID2258	RC	358405.3	6526465	324.21	20	-90	359.53	WMC
WID2258	RC	358403.3	6526474	324.21	20	-90	359.53	WMC
WID2260	RC	358396.9	6526483	324.24	20	-90 -90	359.53	WMC
WID2262	RC	358392.6	6526492	324.21	20	-90	359.53	WMC
WID2266	RC	358388.2	6526501	324.22	20	-90	359.53	WMC
WID2268	RC	358383.9	6526510	324.25	20	-90 -90	359.53	WMC
WID2208	RC	358379.7	6526510	324.27	20	-90 -90	359.53	WMC
WID2270	RC	358375.5	6526528	324.24	20	-90	359.53	WMC
WID2272	RC		6526528	324.28	20	-90 -90		WMC
		358371.1					359.53	
WID2276	RC	358366.6	6526546	324.48	20	-90	359.53	WMC

Hole ID	Drill Type	East	North	RL	Depth	Dip	Azimuth	Company
WID2400	RC	358717.4	6526437	322.49	9	-90	359.53	WMC
WID2401	RC	358712.9	6526434	322.47	9	-90	359.53	WMC
WID2402	RC	358708.4	6526432	322.44	9	-90	359.53	WMC
WID2403	RC	358704	6526430	322.6	9	-90	359.53	WMC
WID2404	RC	358699.3	6526428	322.54	9	-90	359.53	WMC
WID2405	RC	358694.9	6526426	322.6	9	-90	359.53	WMC
WID2406	RC	358690.4	6526424	322.59	9	-90	359.53	WMC
WID2407	RC	358685.9	6526422	322.69	9	-90	359.53	WMC
WID2408	RC	358681.2	6526420	322.71	9	-90	359.53	WMC
WID2409	RC	358676.8	6526418	322.75	9	-90	359.53	WMC
WID2410	RC	358672.3	6526415	322.69	9	-90	359.53	WMC
WID2411	RC	358668	6526413	322.76	9	-90	359.53	WMC
WID2412	RC	358663.2	6526411	322.87	9	-90	359.53	WMC
WID2414	RC	358654	6526407	322.89	9	-90	359.53	WMC
WID2416	RC	358645.3	6526402	322.98	9	-90	359.53	WMC
WID2418	RC	358636.3	6526398	323.11	9	-90	359.53	WMC
WID2420	RC	358627.2	6526394	323.17	9	-90	359.53	WMC
WID2422	RC	358618.2	6526390	323.21	9	-90	359.53	WMC
WID2424	RC	358609.3	6526385	323.27	9	-90	359.53	WMC
WID2426	RC	358600	6526381	323.24	9	-90	359.53	WMC
WID2428	RC	358591	6526376	323.3	9	-90	359.53	WMC
WID2430	RC	358581.9	6526373	323.26	9	-90	359.53	WMC
WID2432	RC	358573.2	6526368	323.33	9	-90	359.53	WMC
WID2434	RC	358564.4	6526364	323.39	9	-90	359.53	WMC
WID2436	RC	358554.9	6526360	323.55	9	-90	359.53	WMC
WID2438	RC	358546.1	6526355	323.51	9	-90	359.53	WMC
WID2440	RC	358537.2	6526351	323.62	9	-90	359.53	WMC
WID2442	RC	358528.3	6526346	323.65	9	-90	359.53	WMC
WID2444	RC	358519.4	6526342	324.28	9	-90	359.53	WMC
WID2446	RC	358510.3	6526338	323.78	9	-90	359.53	WMC
WID2448	RC	358501.1	6526333	323.84	9	-90	359.53	WMC
WID2449	RC	358496.4	6526331	323.81	9	-90	359.53	WMC
WID2450	RC	358492.1	6526329	323.87	9	-90	359.53	WMC
WID2452	RC	358483.5	6526325	323.78	9	-90	359.53	WMC
WID2454	RC	358473.3	6526320	323.84	9	-90	359.53	WMC
WID2456	RC	358464.7	6526316	323.91	9	-90	359.53	WMC
WID2458	RC	358456.1	6526312	323.99	9	-90	359.53	WMC
WID2460	RC	358447.5	6526308	323.98	9	-90	359.53	WMC
WID2462	RC	358438.2	6526304	324.05	9	-90	359.53	WMC
WID2464	RC	358429.2	6526299	324.09	9	-90	359.53	WMC
WID2466	RC	358420.1	6526295	324.15	9	-90	359.53	WMC
WID2468	RC	358411.1	6526291	324.23	9	-90	359.53	WMC
WID2470	RC	358402	6526286	324.19	9	-90	359.53	WMC
WID2472	RC	358393.2	6526282	324.27	9	-90	359.53	WMC
WID2474	RC	358384.2	6526278	324.35	9	-90	359.53	WMC
WID2476	RC	358375.2	6526274	324.43	9	-90	359.53	WMC

Hole ID	Drill Type	East	North	RL	Depth	Dip	Azimuth	Company
WID2478	RC	358366	6526269	324.47	9	-90	359.53	WMC
WID2480	RC	358357.1	6526265	324.45	9	-90	359.53	WMC
WID2482	RC	358348.3	6526261	324.42	9	-90	359.53	WMC
WID2484	RC	358338.9	6526256	324.64	9	-90	359.53	WMC
WID2486	RC	358329.5	6526252	324.59	9	-90	359.53	WMC
WID2488	RC	358320.5	6526248	324.7	9	-90	359.53	WMC
WID2490	RC	358311.8	6526243	324.71	9	-90	359.53	WMC
WID2492	RC	358302.7	6526239	324.75	9	-90	359.53	WMC
WID2494	RC	358293.8	6526235	324.71	9	-90	359.53	WMC
WID2496	RC	358284.8	6526230	324.68	9	-90	359.53	WMC
WID2498	RC	358275.6	6526226	324.78	9	-90	359.53	WMC
WID2500	RC	358267	6526222	324.85	9	-90	359.53	WMC
WID2502	RC	358257.4	6526217	324.94	9	-90	359.53	WMC
WID2504	RC	358248.5	6526213	324.96	9	-90	359.53	WMC
WID2506	RC	358239.5	6526209	325	9	-90	359.53	WMC
WID2508	RC	358230.6	6526204	325.04	9	-90	359.53	WMC
WID2510	RC	358221.8	6526200	325.08	9	-90	359.53	WMC
WID2512	RC	358212.8	6526196	325.12	9	-90	359.53	WMC
WID2514	RC	358203.6	6526191	325.22	9	-90	359.53	WMC
WID2516	RC	358194.7	6526187	325.2	9	-90	359.53	WMC
WID2518	RC	358185.4	6526183	325.28	9	-90	359.53	WMC
WID2520	RC	358177	6526179	325.28	9	-90	359.53	WMC
WID2522	RC	358167.7	6526175	325.33	9	-90	359.53	WMC
WID2524	RC	358158.6	6526170	325.4	9	-90	359.53	WMC
WID2526	RC	358149.3	6526166	325.4	9	-90	359.53	WMC
WID2528	RC	358140.6	6526162	325.51	9	-90	359.53	WMC
WID2530	RC	358131.4	6526157	325.53	9	-90	359.53	WMC
WID2532	RC	358122.4	6526153	325.57	9	-90	359.53	WMC
WID2534	RC	358113.4	6526149	325.61	9	-90	359.53	WMC
WID2536	RC	358104.2	6526144	325.73	9	-90	359.53	WMC
WID2538	RC	358099	6526140	322.89	9	-90	359.53	WMC
WID2540	RC	358086.1	6526135	325.85	9	-90	359.53	WMC
WID2542	RC	358077.1	6526131	325.85	9	-90	359.53	WMC
WID2544	RC	358067.9	6526127	326.03	9	-90	359.53	WMC
WID2546	RC	358054	6526120	326.07	9	-90	359.53	WMC
WID2548	RC	358050.3	6526118	326.06	9	-90	359.53	WMC
WID2550	RC	358040.8	6526114	326.01	9	-90	359.53	WMC
WID2552	RC	358030.9	6526111	326.08	9	-90	359.53	WMC
WID2554	RC	358022.1	6526107	326.16	9	-90	359.53	WMC
WID2556	RC	358013.7	6526101	326.21	9	-90	359.53	WMC
WID2558	RC	358004.8	6526097	326.25	9	-90	359.53	WMC
WID2560	RC	357995.9	6526092	326.29	9	-90	359.53	WMC
WID2562	RC	357986.8	6526088	326.4	9	-90	359.53	WMC
WID2564	RC	357977.6	6526084	326.38	9	-90	359.53	WMC
WID2566	RC	357968.7	6526080	326.65	9	-90	359.53	WMC
WID2568	RC	357959.6	6526075	326.7	9	-90	359.53	WMC

Nm

Hole ID	Drill Type	East	North	RL	Depth	Dip	Azimuth	Company
WID2570	RC	357950.8	6526071	326.75	9	-90	359.53	WMC
WID2572	RC	357941.8	6526067	326.9	9	-90	359.53	WMC
WID2574	RC	357932.8	6526062	326.89	9	-90	359.53	WMC
WID2576	RC	357923.7	6526058	326.96	9	-90	359.53	WMC
WID2578	RC	357914.7	6526054	326.99	9	-90	359.53	WMC
WID2580	RC	357905.6	6526050	327.05	9	-90	359.53	WMC
WID2582	RC	357896.5	6526045	327.15	9	-90	359.53	WMC
WID2584	RC	357887.7	6526041	327.18	9	-90	359.53	WMC
WID2586	RC	357878.6	6526036	327.27	9	-90	359.53	WMC
WID2588	RC	357869.6	6526032	327.32	9	-90	359.53	WMC
WID2590	RC	357860.2	6526028	327.37	9	-90	359.53	WMC
WID2592	RC	357851.5	6526023	327.41	9	-90	359.53	WMC
WID2594	RC	357842.5	6526019	327.46	9	-90	359.53	WMC
WID2596	RC	357831.3	6526015	327.48	9	-90	359.53	WMC
WID2598	RC	357824.7	6526011	327.52	9	-90	359.53	WMC
WID2599	RC	358496.9	6526330	323.74	9	-90	359.53	WMC
WID2600	RC	358495.8	6526333	323.72	9	-90	359.53	WMC
WID2634	DD	359191.9	6526584	326	48	-90	359.53	WMC
WID2662	RC	358286.2	6526837	327.22	100	-60	64.53	WMC
WID2663	RC	358246.5	6526917	328.49	114	-60	64.53	WMC
WID2664	RC	358205.9	6526996	329.28	118	-60	64.53	WMC
WID2665	RC	358166.2	6527077	329.92	132	-60	64.53	WMC
WID727	RC	358524.2	6527065	325.1	8	-90	359.53	WMC
WID728	RC	358464	6527055	325.7	10	-90	359.53	WMC
WID729	RC	358403.9	6527046	326	12	-90	359.53	WMC
WID730	RC	358434	6527051	325.9	4	-90	359.53	WMC
WID731	RC	358418.9	6527048	325.9	4	-90	359.53	WMC
WID732	RC	358664.1	6526594	325	10	-90	359.53	WMC
WID733	RC	358604	6526584	325	14	-90	359.53	WMC
WID734	RC	358694.2	6526599	325	8	-90	359.53	WMC
WID735	RC	358694.2	6526599	325	4	-90	359.53	WMC

APPENDIX 3: Significant and Mineralised Nickel Drill Intersections at Zabel

This is a table of all drilling intersections within the nine modelled domains. This is all drill intercepts of the modelled domains. Due to the nature of the deposit not all have mineralisation. Where there is no value shown, the element was not assayed.

Hole ID	From	То	Width	Ni %	As ppm	Co ppm	Cu ppm	Fe₂O₃ %	MgO %	S ppm
WDD061	292.1	296.95	4.85	6.66	32	1,825	8,025	54.10	5.19	231,704
MERC077	108	118	10	2.88	868	869	3,417	28.50	5.34	109,908
WD3837	72.239	89.61	17.371	1.50			27,077			
WID1341	94	104	10	1.84	524	570	1,614			
WDC120	82	87	5	3.21	669	985	3,889	31.68	5.21	135,640
WDD042	207.1	210	2.9	5.36	46	1,438	5,473	43.16	9.01	170,144
WDC106	127	130	3	5.16	4,240	1,720	5,104	36.35	9.73	208,081
WDD036	90.6	93	2.4	4.73	1,933	1,278	5,016	38.52	3.11	183,242
WDD046	111.7	121	9.3	1.00	220	367	413	13.85	14.69	14,467

Hole ID	From	То	Width	Ni %	As ppm	Co ppm	Cu ppm	Fe₂O₃ %	MgO %	S ppm
WID1899	257.4	259.8	2.4	3.86	100	999	6,161			
WID1900	229.95	232.85	2.9	3.06	5 <i>,</i> 308	637	5,717			
WID1805	191.35	193.75	2.4	3.26	115	745	3,289			
WDC119	58	65	7	1.10	158	279	1,190	15.68	4.53	1,543
WID1806	198.35	199.35	1	7.51	300	1,550	3,000			
WID1783	200.65	203.8	3.15	2.30	197	738	4,478			
WDC121	38	44	6	1.14	148	217	1,955	14.21	3.16	1,050
WD3849	152.03	153.62	1.59	4.20			5,914			
WID1818	232.75	234.55	1.8	3.70	15	905	7,199			
WID1402	216.9	219.8	2.9	2.27	169	651	3,099			
WID1340	66	70	4	1.53	625	795	7,210			
WID1375	27.294	33.113	5.819	1.05	197	150	2,590			
WID1380	70	72	2	3.05	0	800	2,250			
MERC078	88	91	3	1.97	435	557	2,481	26.54	13.72	76,278
WDC102	180	182	2	2.52	78	857	1,190	25.76	15.00	109,951
WID1819	188.7	190.35	1.65	3.02	23	784	3,972			
WDD044	149.7	151.15	1.45	3.30	35	923	5,188	31.32	14.83	123,278
WID1342	74	78	4	1.14	145	490	2,405			
WID1343	36	40	4	1.14	110	185	1,750			
WDD033	122.55	124.4	1.85	2.43	2,239	727	3,101	28.27	9.76	94,578
WDD060	245.8	247.5	1.7	2.60	696	918	2,336	30.00	13.50	83,507
WID1339	94	96	2	2.15	1,260	420	4,250			
WDC033	87	90	3	1.40	379	435	163	14.47	7.85	5,033
WID1569	166.3	169.4	3.1	1.29	195	427	1,465			
WD3839	202.69	206.35	3.66	1.05			716			
WD3309	259.14	261.76	2.62	1.45			1,334			
WD3312	269.02	271.82	2.8	1.22			1,730			
WID1867	86	88.415	2.415	1.39		385	1,438			
WID1784	179.65	180.3	0.65	4.95	100	905	2,825			
WDC126	102	104	2	1.57	36	467	4,034	23.62	13.18	86,640
WD3848	164.59	166.88	2.29	1.36			2,422			
WDC122	85	87	2	1.45	1,540	652	765	15.37	12.32	16,149
WID1344	81.717	84.795	3.078	0.92	221	354	203			
WDD039	193	197	4	0.70	11	277	908	15.03	29.89	24,325
WD3842	173.28	174.8	1.52	1.57			2,858			
WID1869	132	134	2	1.16		370	860			
WID1898	263.2	265.05	1.85	1.24	157	423	1,381			
WID1820A	131.8	134.9	3.1	0.71	690	230	703			
WDD073	328.5	330	1.5	1.40	249	386	2,848	15.44	18.77	45,793
WDC125	56.051	58.09	2.039	1.02	743	600	1,649	13.45	17.26	39,612
WID1346	54	56	2	1.01	410	180	430			
WDD043	132	134.1	2.1	0.96	6	354	1,895	18.71	13.51	31,709
WDC101	139	141.9	2.9	0.66	1,267	241	599	17.11	19.45	25,264
WDD041	191	196.6	5.6	0.34	56	159	374	11.05	26.13	12,421
WID1376	44	45.99	1.99	0.92	0	100	200			
WID1337	88	90	2	0.85	0	200	2,800			

	Hole ID	From	То	Width	Ni %	As ppm	Co ppm	Cu ppm	Fe₂O ₃ %	MgO %	S ppm
	WID1347	108	110	2	0.83	0	700	2,800			
	WDD038	147	151.45	4.45	0.37	46	157	387	10.60	30.34	10,882
	WID1374	64	66	2	0.79	0	100	3,600			
	WID1848	88	89.428	1.428	1.07		340	1,080			
8	WID1348	64	66	2	0.75	0	300	900			
	WID1407	239.25	240	0.75	2.00	8,699	583	1,580	22.83	7.23	
	WDD040	143.586	146.265	2.679	0.51	11	228	1,311	17.43	8.01	30,150
	WID1807	215.1	216.3	1.2	1.04	100	344	944			
	WD4460	55.972	58.978	3.006	0.41			129			
	WID1902	246.547	249.731	3.184	0.39	221	164	371			
	MERC079	143	145.07	2.07	0.59	1,068	181	416	9.46	29.77	10,957
	WID1822	136.95	138.6	1.65	0.68	367	272	732			
	WID1821	145.2	149.3	4.1	0.26		54	68			
	WDD037	147.515	150.652	3.137	0.33	935	182	420	13.10	14.93	12,376
	WDD032	134	136.75	2.75	0.36	5	158	651	13.25	21.58	19,707
	WDC029	160	164	4	0.22	171	98	82	7.78	25.87	3,300
	WDD062	313.7	314.5	0.8	1.05	17	342	1,378	17.26	23.75	48,800
	WID1568	202	204.15	2.15	0.39	100	179	385			
	WID1406	188.4	190.5	2.1	0.38	5	144	277	10.19	14.43	
	WDC104	111.797	115.025	3.228	0.24	221	167	119	17.48	6.93	741
	WID1782	136	138	2	0.35	150	160	265			
	WDD035	133.105	135.425	2.321	0.30	16	135	289	9.98	29.25	7,271
	WID1868	108.77	110.591	1.821	0.36		157	323			
	WDD072	266.337	268.185	1.848	0.30	131	131	281	8.85	26.81	7,002
	WDC103	218.896	220.224	1.327	0.35	276	155	315	9.80	31.56	8,228
	WDD034	130.007	130.97	0.963	0.43	1,788	232	300	12.63	17.58	17,801
	WID1570	133.657	135.821	2.163	0.19	796	127	488			
•	WDC124	118.989	119.818	0.83	0.25	6	120	268	9.15	26.61	7,200
	WDC032	175.093	176.996	1.903	0.01	11	54	89	10.78	5.14	700
	WDC190	170.442	172.698	2.255	0.01	5	40	102	11.03	4.49	2,036
	WDD045	190.868	193.118	2.25	0.01	5	34	90	10.58	5.60	1,005
•	WID1334	81.96	82.517	0.557	0.02	0	50	119			·
	WDC189	128.546	129.497	0.951	0.01	5	36	85	10.64	5.97	2,100
•	WDC127	165.05	165.533	0.483	0.01	6	52	92	11.24	7.64	700