

HUGE INCREASE IN HOMBRE MUERTO WEST (HMW) INDICATED RESOURCE - NOW OVER 2 MILLION TONNES

Highlights:

- Galan overtakes POSCO as the third largest publicly disclosed lithium resource in the Hombre Muerto salt flat basin
- HMW Indicated resource massively expands by 65% with an additional 895 thousand tonnes (Kt) of contained lithium carbonate equivalent (LCE) @ 946mg/l Li (no cut off)
- Substantial resource increase arises from the strategic acquisition of Del Condor concession and an SRK review of average porosity data
- Galan's total HMW resource estimate now stands at a world class 2.3 million tonnes (Mt) LCE @ 946mg/l Li
- POSCO's \$US280m transaction with Galaxy based on a resource of 2.5Mt @ 732mg/l Li
- Galan's combined total resources in the Hombre Muerto basin ~3.0Mt Mt @ 858mg/l Li
- PEA/scoping study remains on track for delivery in Q4 2020

Galan Lithium Limited (ASX: GLN) (**Galan** or **the Company**) is very pleased to announce a revised JORC (2012) reported Mineral Resource estimate for the Hombre Muerto West lithium brine project located in Catamarca province, Argentina. The resource estimate was completed by the Company's consultants SRK Consulting (Australasia) (**SRK**) and was conducted by their Australian based team.

The initial Hombre Muerto West resource estimate (ASX: GLN 12 March 2020) was updated by SRK on 22 June 2020 to include the acquisition of the Deceo III concession, adjacent to the Pata Pila licence area and the resource estimate was re-classified from Inferred to Indicated. SRK have now updated the HMW resource based on the recent acquisition of the Del Condor concession and a review of specific yield values used in the resource calculations. The key HMW concessions (Del Condor, Deceo III, Pata Pila and Rana de Sal; see figure 1) have been combined to produce a total indicated resource of approximately 2.3 million tonnes of contained lithium carbonate equivalent (LCE) product grading at 946mg/l Li (with no Li cut off). A summary of the HMW mineral resource, is provided in the Mineral Resource Statement (Table 1).

Galan's Managing Director Juan Pablo (JP) Vargas de la Vega said: "Being the third largest publicly disclosed resource in the Hombre Muerto and overtaking POSCO, is an amazing milestone. This is something we were not even dreaming about when we first started drilling late last year. The increase from 1.4Mt to 2.3Mt of LCE at HMW is a huge step up for the Project's economic and technical potential that we will now reflect in our ongoing PEA and scoping studies due for completion in early Dec'20.

This fantastic result could not have been achieved without the concerted efforts of our tireless and loyal teams in South America and Australia who continue to deliver these great milestones, even under the trying conditions brought about by COVID-19."

Summary of Resource Estimate and Reporting Criteria

The mineral resource estimation was undertaken by SRK Consulting (Australasia) (**SRK**) and was based upon results from drill holes within the Pata Pila, Deceo III and Rana de Sal tenement holdings at Hombre Muerto West (see figure 1) for a total of 1,054 metres (see ASX: GLN 12 March, 2020 for a summary of drill data). The hydrogeologic domains were constrained by logged units within both holes and from interpretation of ten geophysical profiles (controlled source audio-frequency magnetotellurics [CSMAT]) The mineral resource estimates undertaken by SRK were determined for lithium and potassium. Lithium is reported as lithium carbonate (Li2CO3) equivalent, and potassium as potassium chloride (KCI). Table 1 below provides a summary of the resource reported in accordance with the JORC Code guidelines. According to SRK, the maiden Hombre Muerto West Mineral Resource represents geologically well-defined zones of high-grade lithium mineralisation. It comprises significant mineralised hydrogeologic domains. The units within the domains show some variation in thickness along strike and depth, see figure 2.

Resource Category	Brine Vol. (Mm ³)	ln situ Li (Kt)	Avg. Li (mg/l)	LCE (Kt)	Avg. K (mg/l)	ln situ K (Kt)	KCI Equiv. (Kt)
		Hombre Muerto	West: Sa	nd Domain			
Indicated	430	407	945	2,166	8,720	3,753	7,157
		Hombre Muerto	West: Gra	vel Domain			
Indicated	12	12	947	61	8,804	107	204
		Hombre Muerto	West: Hal	ite Domain			
Indicated	8	8	946	40	8,846	70	134
HMW Total	450	426	946	2,267	9,725	3,931	7,496
Candelas North (*)							
Indicated	196	129	672	685	5,193	1,734	3,307
Galan's Resource Inventory							
Grand Total	646	555	858	2,952	8767	5,665	10,803

NB.; no cut-off grade for HMW, Li: 500mg/l cut off for Candelas North, no cut off for K based on 325,012,500 m³ volume. These results refer to the drainable porosity, the specific yield (SY) values used are as follows: Sand – 12.5%, Gravel – 6% and Halite – 4%. There may be minor discrepancies in the above table due to rounding. The conversion for LCE = Li x 5.3228, KCI = K x 1.907.

(*) The Candelas North Mineral Resource Statement was originally announced by Galan on 1 October 2019.

There may be minor discrepancies in the above table due to rounding.

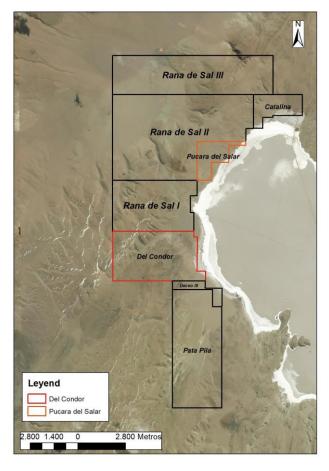


Figure 1: Galan Lithium Ltd's key Western Basin tenure, Hombre Muerto Salar Argentina

Location & Tenure

The Hombre Muerto West (HMW) Project is located on the western shores of the Hombre Muerto, a world-renowned lithium bearing salar, located in the Argentinean Puna plateau region of the high Andes mountains at an elevation of approximately 4 km above sea-level. The HMW Project comprises six exploration areas (Catalina and Pucara not included in HMW resource), covering a total estimated polygon area of 7.5km strike, up to 2.5km in width and up to 718m in depth. It lies adjacent to Livent Corporation, Galaxy Resources and POSCO's Sal de Vida projects. It is approximately 1,400 km northwest of the capital of Buenos Aires and 170 km west-southwest of the city of Salta (in a straight line).

Geological Model

As part of the mineral resource estimation process, SRK modelled the hydrogeologic domains (figure 2) of HMW using Seequent's Leapfrog Geo*TM* geological modelling and section interpretation software package. The contiguous geology enabled all the concessions to be evaluated as a whole and a model was produced based on the lithologies.

The modelling used the following datasets:

- Resistivity and Conductivity profiles (CSMAT);
- Downhole geophysics (particularly gamma);
- Assays obtained from Alex Stewart International laboratory;
- Zelandez downhole data including total porosity and specific yield; and
- Lithological logs.

For Pucara/Del Condor, an additional CSMAT line coverage (from previous owners) was made available. This allowed more detailed interpretation resulting in higher confidence of the hydrogeologic domains.

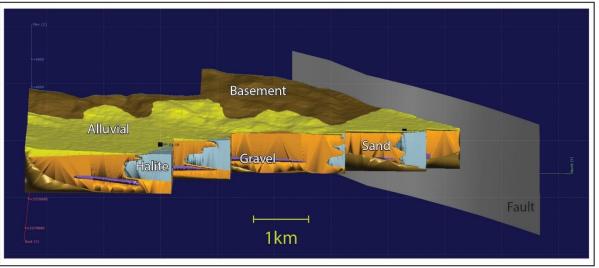


Figure 2: The geological model for Hombre Muerto West produced by SRK. Note specific yields are: Sand (12.5%), Halite (4%) and Gravels (6%)

HMW project areas are located along the western shores of the Salar. The Salar is a closed drainage basin, structurally controlled and bounded by normal faults. The drill holes were located upon alluvial fans that have prograded out onto the Salar. The younger alluvial fan deposits rest conformably upon the salar.

All borehole drilling was by the diamond drill method, with an internal triple tube for core recovery. Core was sampled in 1.5m lengths and logged by a geologist. Water/brine samples were taken from multiple target intervals using packer, bailer and airlift tests (see table 1 for more details). Downhole geophysics were employed e.g. downhole geophysical profiling and borehole magnetic resonance. Geochemical analyses of brine were undertaken by ICP-MS in two independent accredited laboratories (see table 1 for more details).

The resource boundaries of the hydrogeologic wireframes were determined as follows:

- Vertical limits are constrained between top of basement and top of sand / base of alluvial cover
- The western boundary is limited where the sand unit pinches out against basement
- The eastern margin is constrained by the tenement boundary
- The northern margin is constrained by a northeast-southwest very steeply dipping to the southeast fault, and
- The southern margin is constrained where the sand unit pinches out on shallow basement

In general, the style of geology has been assumed to be relatively flat to gentle basinward dipping stratigraphy with no preferred direction of mineralisation continuity.

A block model was created to cover the extents of both licence areas and was confined by a wireframe model based upon the various lithologies. When choosing appropriate model cell dimensions of 250 (easting) by 250 (northing) by 5m (elevation), consideration was given to drill spacing, sample interval, the interpreted geometry and thickness of the hydrogeologic domains and the style of mineralisation.

The main assay intervals for both holes are based on 72-hour airlift samples. As a result, no useful variography is possible from two averaged air lift samples. For Pata Pila, the air lift sample was obtained from interval 40 to 718.5m, and for Rana de Sal, the sample was obtained from 100 to 433m. Two simple packer samples were also obtained from the Rana de Sal drillhole over 32 to 122m.

A simple Inverse distance weighted (to the power value of 2) extrapolation was carried out, using an isotropic search that allowed all blocks coded with Sand, Gravel or Halite to be interpolated. The maximum extrapolated distance for Pata Pila (including Deceo III) is 2.57 km with an average distance of 1.3 km. For Rana de Sal, the maximum extrapolated distance is 1.1 km with an average distance of 0.6 km.

A study by Houston et al., (2011)(#) showed that drill spacing of between 7 and 10km should be sufficient for Inferred resource definition. Therefore, the distance of 4.5 km between the two holes and maximum extrapolation distances of around 2.6 km are considered reasonable for Indicated classification.

- "The Evaluation of Brine Prospects and the Requirement for Modifications to Filing Standards" by John Houston, Andrew Butcher, Peter Ehren, Keith Evans and Linda Godfrey (October 2011)

Resource Classification

The mineral resource estimate for the Hombre Muerto West project has been classified in accordance with the JORC Code, 2012 edition. This classification also conforms to the AMEC "Guidelines for Resource and Reserve Estimation for Brines". Numerous factors were taken into consideration when assigning the classification applied to the Mineral Resource estimate.

Of these factors, it is considered that the classification has been primarily influenced by the drill coverage, geological complexity and data quality as described below:

<u>Specific Yield:</u> The AMEC guidelines recommend specific yield be verified by independent methodologies. Due to instability within the drill holes and sample integrity issues, HMW were unable to obtain representative samples for measurement of specific yield by 'relative brine release capacity'. Therefore, Zelandez Limited were contracted to obtain measurements of total porosity, pore-size distribution and specific yield by downhole borehole magnetic resonance technology profiling. However, the values obtained are strongly controlled by fractures (permeability) in the host sequences.

A geostatistical analysis of the Zelandez results was compared to numerous existing porosity and specific yield studies of salars in the region (including Hombre Muerto) undertaken by other companies. The review found that the Zelandez derived results are anomalously low when compared to similar salar settings and sedimentology. Based on this review and in the absence of direct measurements of porosity at HMW, an update on the specific yield was implemented.

The specific yield of halite is a function of depth with "porous halite" having typical values of around 6 to 14% (e.g. 3Q Project, NEO Lithium Corp, NI 43-101 dated 07/05/2019). At depth, these values reduce to around typical values of around 4%. SRK applied a conservative specific yield value of 4% for the halite hydrogeologic domain.

The specific yield of gravels, channel deposits, flanglomerate sequences has been benchmarked to other projects, with typical values ranging around 11% (e.g. 3Q Project, NEO Lithium Corp, NI 43-101 dated 07/05/2019; Rincon Lithium project, AGY'S ASX release dated 13/11/2018). SRK applied a conservative specific yield value of 6% for the gravel hydrogeologic domain.

The specific yield of sand, silt, clay units has a wide range of between 8 and 15% (e.g. Sulfa Mina on Salar de Pular, PNN's ASX release dated 04/01/2019; Hombre Muerto Norte project, NRG Metals Inc. dated 07/08/2019). The ranges tend to be a function of the coarseness of sand grains and proportion of clay.

The higher clay content tends to result in a reduction in the porosity and hence specific yield. The sandy units at HMW are a mix of silts, sands and clays, but is dominantly coarse sand. This is part of the reason for the hole instability due to high proportion of unconsolidated sandy units. As a result of the relative abundance of coarse sands within the sand hydrogeologic domain, SRK applied a specific yield of 12.5%.

<u>Data quality</u>: The datasets comprise a mix of sample data which were provided to SRK in numerous separate editable files. QAQC for Galan's data was acceptable for brine chemistry. Geochemical results from Alex Stewart International laboratory were preferred for resource estimation. The brine occurrence and chemistry, the relative consistency of the data and confidence in the drilling and sampling results is good.

<u>Geological complexity</u>: The general orientation of the major defined hydrogeologic domains / horizons appears to be consistent and predictable. Thickness is variable for each hydrogeologic domain. The lower boundary of Sand and Gravels needs to be better constrained due to some basement topography as indicated by basement encountered at 710m in Pata Pila and at 189m at Rana de Sal. The geophysical resistivity lines also show this irregularity and were used to help guide the model. Structures can be clearly observed and mapped from surface. However, it is not clear at present as to their affect at depth. Overall, there is reasonable understanding of the stratigraphy of the basin with excellent correlation of units between most areas.

Brines will migrate from unit to unit throughout the basin during production pumping. Therefore, at this stage, much of the resource is categorised as Inferred, but with more precise interpretation of the hydrogeologic domains, this would result in potential upgrade of the category to Indicated. At this stage, SRK does not deem it necessary to understand the local variations to that level of detail.

<u>Data coverage:</u> The data coverage reflects the 2019 drilling and geophysical surveys. The drillhole spacing is 4.5 km and both holes are vertical. All estimated blocks within the defined extents and hydrogeologic domains were assigned a classification of Indicated Resource.

<u>Validation results</u>: The model validation checks show a reasonable match between the input data and estimated grades, indicating that the estimation procedures have performed as intended.

<u>Potential economic viability:</u> The deposit is located in a well-known area of brine lithium with good existing infrastructure and nearby mills available for ore processing.

When assessing the criteria described above, SRK considers the greatest source of uncertainty to be the large drillhole spacing and large sample intervals which has resulted in data aggregation. The large intervals have also resulted in some degree of smearing of high grades within the modelled domains.

The minimum interpolated grade is around 945 Li mg/l, which is very high grade, and above what has been deemed in similar projects as an economic cut-off grade. For example, a 500 Li mg/l cut off was used for ¹NRG Metals Inc's Hombre Muerto North project that has a combined Measured/Indicated resource.

¹NRG Metals, NI 43-101 Preliminary Economic Assessment Report for the Hombre Muerto Norte Project Salta Province, Argentina. Effective Date 3rd June 2019

Next Steps

Geophysical surveys are planned to be undertaken in the first quarter of 2021 to further delineate the extent of the resources in all the HMW concessions for exploration upside.

The Galan Board has authorised this release.

For further information contact:

Juan Pablo ("JP") Vargas de la Vega Managing Director Email: jp@galanlithium.com.au Tel: +61 8 9322 6283 Terry Gardiner Non-Executive Director Email: TGardiner@galanlithium.com.au Tel: + 61 4000900377

About Galan

Galan is an ASX listed company exploring for lithium brines within South America's Lithium Triangle on the Hombre Muerto salar in Argentina. Hombre Muerto is proven to host the highest grade and lowest impurity levels within Argentina and is home to Livent Corporation's El Fenix operation and Galaxy Resources and POSCO's Sal de Vida projects.

Galan has two projects:

Candelas: a ~15km long by 3-5km wide valley filled channel which project geophysics and drilling have indicated the potential to host a substantial volume of brine and over which a maiden resource estimated 685kt LCE (Oct 2019). Furthermore, Candelas has the potential to provide a substantial amount of processing water by treating its low-grade brines with reverse osmosis, this is without using surface river water from Los Patos River.

Hombre Muerto West (HMW): a ~14km by 1-5km region on the west coast of Hombre Muerto salar neighbouring Livent Corp to the east. HMW is currently comprised of seven concessions – Pata Pila, Rana de Sal, Deceo III, Del Condor, Pucara, Catalina and Santa Barbara. Geophysics and drilling at HMW demonstrated a significant potential of a deep basin. In March 2020, a maiden resource estimate delivered 1.1Mt of LCE for two of the largest concessions (Pata Pila and Rana de Sal). That resource now sits at 2.3Mt of LCE with exploration upside remaining for the rest of the HMW concessions not included in the current indicated resource.

Figure 3: HMW Project looking north from Pata Pila

Competent Persons Statements

Competent Persons Statement 1

The information contained herein that relates to exploration results and geology is based on information compiled or reviewed by Dr Luke Milan, who has consulted to the Company. Dr Milan is a Member of the Australasian Institute of Mining and Metallurgy and has sufficient experience which is relevant to the style of mineralisation and types of deposit under consideration and to the activity which they are undertaking to qualify as a Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr Milan consents to the inclusion of his name in the matters based on the information in the form and context in which it appears.

Competent Persons Statement 2

The information relating to the Exploration Results and integrity of the database was compiled by Mr Francisco Lopez (Geology). Mr Lopez is a full-time employee of Galan Lithium Limited and has been engaged by Galan as their Geology Manager. The integrity of the database and site inspection was done by Dr Michael Cunningham, GradDip, (Geostatistics) BSc honours (Geoscience), PhD, MAusIMM, MAIG, MGSA, FGSL. Dr Cunningham is an Associate Principal Consultant of SRK Consulting (Australasia) Pty Ltd.

The information in this report that relates to the Mineral Resources estimation approach at Candelas and Hombre Muerto West was compiled by Dr Cunningham. Dr Cunningham is an Associate Principal Consultant of SRK Consulting (Australasia) Pty Ltd. He has sufficient experience relevant to the assessment and of this style of mineralisation to qualify as a Competent Person as defined by the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves – The JORC Code (2012)". Dr Cunningham consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements, and that all material assumptions and technical parameters have not materially changed. The Company also confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

JORC Code, 2012 Edition – Table 1 Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling	• Nature and quality of sampling (e.g.	• Drill core was recovered in 1.5 m
techniques	 Nuture and quary of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done, this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 bill core was recovered in 1.9 m length core runs in core split tubes to minimize sample disturbance. Core recovery was carefully measured by comparing the measured core to the core runs. Drill core was undertaken along the entire length of the holes to obtain representative samples of the stratigraphy and sediments that host brine. Water/brine samples from target intervals were collected by either the Packer or Bailer tests. Bailer tests; purge isolated sections of the hole of all fluid a total of five times to minimise the possibility of contamination by drilling fluid (fresh water), although some contamination (5-15%) may occur The hole is then allowed time to refill with ground water. On the fifth purge the sample for lab analysis is collected. The casing lining the hole ensures contamination with water from higher levels in the borehole is likely prevented. Packer tests utilise a straddle packer device which isolates a discrete interval and allows for sampling purely from this interval. Samples were taken from the relevant section based upon geological logging and conductivity testing of water. Water/brine samples were collected from multiple intervals a listed in tables 1 and 2. Conductivity tests are taken on sit with a field portable Hanna Ph/EC/DO multiparameter. Density measurements were undertaken on site with a field portable Atmospheric Mud Balance, made by OFI testing equipment. Downhole geophysical profiling

Criteria	JORC Code explanation	Commentary
	JUKC Code explanation	 Commentary Electronics MPX-14Multiplex Well Logger. Downhole Borehole Magnetic Resonance (BMR) profiling, adapted to high salinity, was conducted by Zelandez to log continuous specific yield. This is a common geophysical method for continuous measurements of porosity downhole. The geophysical method is based on the ability of water to absorb and emit electromagnetic energy of a certain frequency, and provides a lithology independent measurement of the porosity. Total porosity is then split into its fractional components by applying cut-offs within the pore size distribution. The specific retention and specific yield can then be calculated. Specific yield logs obtained by this method were then compared and validated with similar projects of the Punta region i.e. Sulfa Mina on Salar de Pular (PNN's ASX release on 04/01/2019). Hombre Muerto Norte project, NRG Metals Inc. (07/08/2019). MSB Blanco Lithium Carbonate project, Salar Blanco (17/01/2019). Sal de Vida project, Lithium One Inc. (07/03/2012). Candelas (East) project (GLN's ASX release on 13/11/2018). 3Q Project (NEO Lithium Corp, NI 43-101 dated 07/05/2019).
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	 Diamond drilling with internal (triple) tube was used for drilling. The drilling produced core with variable core recovery, associated with unconsolidated material. Recovery of the more friable sediments was difficult, however core recovery by industry standards was very good. Fresh water is used as drilling fluid for lubrication during drilling.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Diamond drill core was recovered in 1.5m length intervals in triple (split) tubes. Appropriate additives were used for hole stability to maximise core recovery. The core recoveries were measured from the core and compared to the length of each run to calculate the recovery. Brine samples were collected over relevant sections based upon the geology encountered and ground water representation. Brine quality is not directly related to core recovery and is largely independent of the quality of core samples. However, the porosity and permeability of the lithologies where samples are taken is related to the rate of brine inflow.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 The core is logged by a senior geologist and contract geologists who are overseen by the senior geologist who also supervised the taking of samples for laboratory analysis. Logging is both qualitative and quantitative in nature. The relative proportions of different lithologies which have a direct bearing on the overall porosity, contained and potentially extractable brine are noted, as are more qualitative characteristics such as the sedimentary facies. Cores are split for sampling and are photographed. All core was logged by a geologist
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	 Bailer sampling: Utilises a stainless steel hollow 3m- long tube with a check valve at the bottom. The hole was first purged by extracting a calculated volume of liquid (brine and drilling mud) to ensure that sampled brine corresponds to the sampled depth. Once the calculated volume was extracted and brine was clear, samples were collected in plastic bottles and delivered to the laboratories. The lower part of the

Criteria	JORC Code explanation	Commentary
	Measures taken to ensure that the sampling is representative of the in-	sampling hole section was temporarily sealed during purging
	situ material collected, including for	and sampling. A total of 1 Bailer
	instance results for field	samples were obtained.
	duplicate/second-half sampling.	Simple packer sampling:
	Whether sample sizes are	Packer sampling was performed
	appropriate to the grain size of the	during drilling of each hole and
	material being sampled.	after well casing and developmen using both simple and double
		packer system. Water/brine
		samples were collected by purging
		isolated sections of the hole of all
		fluid in the hole, to minimise the
		possibility of contamination by
		drilling fluid, then allowing the ho
		to re-fill with ground waters.
		Samples were then taken form the
		relevant section. A total of 10
		samples were obtained and an
		additional 5 duplicate samples
7		were obtained for quality control
		purposes.
		Airlift sampling:
		 Utilises an airline that delivers compressed air to the end of
		compressed air to the end of the drill string (drill bit) within
		the drill hole. The compressed
		air is pumped into the air line
		and this lifts the water/brine
		sample up the rod string and is
		subsequently captured at the
		surface.
		 Airlift sampling was carried out at each drill hole with 72-hour
		pumping. For Pata Pila/Deceo
		(PP-01-19), a total of 5 samples
		were taken at 2, 24, 36, 44 and
		64 hours. For Rana de Sal, a
		total of 4 samples were taken a
		5, 30, 54 and 74 hours. For
		every sample sent to the
		primary laboratory, a duplicate
		was sent to a second laborator
		for check analysis.
Quality of assay	The nature, quality and	The Alex Stewart International
data and	appropriateness of the assaying and	laboratory located in Jujuy,
laboratory tests	laboratory procedures used and	Argentina, is used as the primary
	whether the technique is	laboratory to conduct the assayin
	considered partial or total.	of the brine samples collected.

Criteria	JORC Code explanation	Commentary
	 For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 The Alex Stewart International laboratory is ISO 9001 and ISO 14001 certified and is specialised in the chemical analysis of brines and inorganic salts, with considerable experience in this field. The SGS laboratory was used for secondary check analyses and is also certified for ISO 14001. In most case, SGS results returned slightly higher values than Alex Stewart International 39 brine samples (including replicates) were sent to the Alex Stewart International and SGS laboratories, respectively. Based on ion balance, all results from Alex Stewart International plotted within the ±10% acceptance envelope, indicating high analytical data acceptability.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Field duplicates, standards (synthetic brines) and blanks are used to monitor potential contamination of samples and the repeatability of analyses. Standards consisted in one high- grade and one medium-grade synthetic brine prepared at the Alex Stewart International laboratory in Mendoza (Argentina). Synthetic standards were sent to both in-country laboratories to monitor accuracy of the latest batch of samples (long-term airlift sampling). One blank was analysed at Rana De Sal. Reproducibility between Alex Stewart International and SGS was displayed acceptable, though SGS showed a slightly higher bias for all analytes The Alex Stewart QA/QC standards are underestimating the synthetic brine certified values, with the largest difference being with the lower grade (550 Li mg/l) standard. Therefore, more samples need to be submitted for future work, and

[Criteria	JORC Code explanation	Commentary
			 investigation is required to better understand why the values are being underestimated. However, the brine occurrence and chemistry, the relative consistency of the data and confidence in the drilling and sampling results is reasonable for Indicated resource Accuracy of both laboratories was displayed acceptable for the latest sample batch as indicated by RPD values smaller than ±10%. Overall, QC assessment results support acceptability for both laboratories. The slightly higher bias with SGS needs further investigation. Therefore, the Alex Stewart International results were preferred for resource estimation. Specific yields from Zelandez logging were checked. The CP is of the opinion that the values underestimate porosity (based on similar settings in the region), and adjustments were therefore made to the specific yields for resource estimation.
	Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The survey locations were located using modern Garmin handheld GPS with an accuracy of +/- 5m. For accuracy and certainty drill holes are located with two GPS devices one using latitude and longitude and the other map coordinates. The grid System used by Quantec: POSGAR 94, Argentina Zone 3 Topographic control was obtained by handheld GPS, and the topography is mostly flat with very little relief. SRTM was used for modelling purposes.
	Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the 	 Water/brine samples were collected within isolated sections of the hole based upon the results of geological logging.

Criteria	JORC Code explanation	Commentary
	 Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The brine concentrations being explored for generally occur as sub-horizontal layers and lenses hosted by sand, silt, clay, gravels and some conglomerate. Vertical diamond drilling is ideal for understanding this horizontal stratigraphy and the nature of the sub-surface brine bearing aquifers.
Sample security	 The measures taken to ensure sample security. 	 Data was recorded and processed by trusted employees, consultants and contractors to the Company and overseen by senior management ensuring the data was not manipulated or altered. Samples are transported from the drill site to secure storage at the camp on a daily basis.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 No audits or reviews have been conducted to date. The drilling is at a very early stage however the Company's independent consultants and CP have approved the procedures to date.

Section 2 Reporting of Exploration Results (Criteria listed in section 1 also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Hombre Muerto West Lithium Project consists of numerous licences located in Catamarca Province, Argentina. The tenements are owned by Blue Sky Lithium Pty Ltd ('Blue Sky'). Galan and Blue Sky executed a Share Sale Agreement whereby Galan purchased 100% of the issued share capital of Blue Sky. The Del Condor tenement lies between Pata Pila/Deceo III and Rana de Sal I tenements, and Pucara del Salar to the northeast.

Criteria	JORC Code explanation	Commentary
		The Del Condor and Pucara tenements are 100% owned (as per ASX announcement dated 4 Nov'20)
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 No historical exploration has been undertaken on these licence areas. Both PP-01-19 and RS- 01-19 are west of the adjacent licence area held by Livent Corporations (NYSE:LVHM).
Geology	Deposit type, geological setting and style of mineralisation.	 Del Condor, Pucara, Pata Pila/Deceo III and Rana De Sal licence areas cover sections of alluvial fans located on the western shore of the Hombre Muerto salar proper. The salar hosts a world- renowned lithium brine deposit. The lithium is sourced locally from weathered and altered felsic ignimbrites and is concentrated in brines hosted within basin fill alluvial sediments and evaporites.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole downhole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Drillhole ID: PP-01-19 Easting: 3,377,958 E Northing: 7,191,256 N Elevation: 4,007 m Vertical hole Hole Depth 719 m Drillhole ID: RS-01-19 Easting: 3,376,769 E Northing: 7,195,513 N Elevation: 3,944 m Vertical hole Hole Depth 474 m
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high 	 No weighting or cut off grades have been applied

Criteria	JORC Code explanation	Commentary
	 grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Pumping tests continue to be carried out at Candelas West to ensure quality control All new assay results received to date are included in this report.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the downhole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 It is fairly assumed that the brine layers lie sub horizontal and, give that drillholes are vertical, the intercepted thicknesses of brine layers would be of true thickness.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views. 	 Refer to maps, figures and tables in the Report
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced in order to avoid misleading reporting of Exploration Results.	 These results are from one drillhole at Rana de Sal and one drillhole from Pata Pila/Deceo III
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test 	 All meaningful and material information is reported Refer to previous ASX Company releases: ASX:GLN - 11 September, 2019 ASX:GLN - 9 October, 2019 ASX:GLN - 19 December, 2019

Crite	eria	JORC Code explanation	Commentary
653		n section 1, and where relevant in section 2,	
	Section 3	Estimation and Reporting of Mineral Resou	Irces
	her work	 results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 ASX:GLN - 13 January, 2020 ASX:GLN - 15 January, 2020 ASX:GLN - 12 March, 2020 Geophysical surveys are planned for Q1 2021 for further exploration to potential upsides As announced on 24 July 2020 and 24 August 2020, a PEA and Scoping/Pre-Feasibility study commenced and is focused on the HMW project.
Crite	eria	JORC Code explanation	Commentary

(Criteria listed in section 1, and where relevant in section 2, also apply to this section	n.)
	,

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 All logs provided to SRK were imported and validated in Postgres SQL database server. Boreholes are plotted in ArcGIS for plan generation. All data is checked for accuracy.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 The CP visited the site from 22 to 26 July 2019 which included Hombre Muerto West. The CP reviewed core and cuttings for Candelas. The CP consulted with exploration manager regarding details of the descriptions and lithologies, and the same methods and procedures have been applied to Hombre Muerto West. The CP reviewed locations and drilling and sampling practices whilst at site for Candelas and visited the sites to be drilled for Hombre Muerto West (i.e. PP-01- 19 and RS-01-19).
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological 	• The spacing of both drill holes (~4.5 km) coupled with extensive coverage of conductivity surveys,

Criteria	JORC Code explanation	Commentary
	 interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 gives a moderate degree of confidence in the geological model. The brine level is horizontal and physical parameters of density, temperature and pH along with time and depth were recorded during drilling to identify any variation and assist in sampling. No samples were obtained from basement or alluvials, and therefore only the Sand, Gravels and Halite are estimated as potential economic resources.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	 The extents of the resource are approximately 2.75 km (easting) by 7.750 km (northing) by 1.2 m (vertical), giving a total volume of interest of ~25.5 km³. Downhole geophysics and depth-specific data (i.e. specific yield and brine chemistry) were used to estimate the resource. Priority was given to 72 hour airlift samples. Grades are relatively uniform with depth and lateral extent.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen, include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation). 	 Due to the nature of the mineralisation style, the long sample intervals, and the need for some averaging of overlapping samples, an Inverse Distance interpolation (using power 2) was deemed most appropriate at this stage. The search ellipse was spheroidal. The search distances were at a distance to ensure all blocks within the hydrogeologic domains were estimated, up to a maximum of 2.7 km. Downhole measurements of specific yield (SY) (drainable porosity) were obtained by Zelandez using Borehole Magnetic Resonance technology. The technique uses a unique measurement that responds to volumes of fluids present in the sequences and the distribution of those fluids as a function of pore

Criteria	JORC Code explanation	Commentary
	 JORC Code explanation In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drillhole data, and use of reconciliation data if available. 	Commentarygeometry. Thus, the technique is used to measure pore network fluids allowing determination of Specific Yield (SY), Specific Retention and permeability i.e. hydraulic conductivity.• Given no other independent method was used for measuring SY, the CP did a comparison of SY for other similar deposits and used conservative values for SY. The values assigned to each hydrogeologic unit (which includes both Pata Pila and Rana de Sal) are as follows: o Sand – 12.5% o Gravel – 6% o Halite – 4%• Total volumes of the hydrogeologic domains used for flagging the resource model are: o Sand – 3.44 km³ o Gravel – 0.20 km³ o Halite – 0.19 km³• Lithium and potassium content were estimated into a proportional block model based on 5m composites for each domain using soft boundaries. The composite length was chosen to account for the lenses of halite and gravel.• The block model dimensions are: o Easting (250 m) o Northing (250 m) Elevation (5 m).
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	Lithium brine is a liquid resource, moisture content is not relevant to resource calculations
Cut-off paramet	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 The minimum interpolated grade is around 950 mg/l Li, which is very high grade, and above what has been deemed in similar projects as an economic cut-off grade. For example, a 500 mg/l Li cut-off was used for NRG Metals' Hombre Muerto North project, a combined Measured/Indicated resource.

Criteria	JORC Code explanation	Commentary
		Hence, no cut-off grade was applied but the upper fresh and brackish water units are assumed to be zero.
		 Based on observations that the brine density and chemistry is relatively consistent below a depth of about 80 metres, it was assumed that with depth, all parts of the salar between this depth and base of RS-01-19 at 713 m, will have saturated brine. The geophysics has shown that the basement topography is irregular and may result in some parts of the system being shallower than this depth, particularly towards the western margins of the resource. This has been taken into account in Resource classification.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 Potential brine abstraction is considered to involve pumping via a series of production wells. The thick and mostly unconsolidated sand units dominate the drainable brine resource. The CP believes that the transmissivity of future wells completed in these units would be favourable for extracting brine because of the assumed favourable aquifer conditions associated with these clastic units.
Metallurgical factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the 	 The production of lithium carbonate (Li₂CO₃) from lithium brine has been demonstrated by a number of companies with projects in Argentina in close proximity to Hombre Muerto, for example Livent Corporation's El Fenix, and Galaxy's Hombre de Muerto. It is assumed Galan would use similar methods to enrich brine to 99.6% lithium and produce lithium carbonate (Li₂CO₃). As announced on 10 Sep 2020, Galan has commenced lab test

Criteria	JORC Code explanation	Commentary
	basis of the metallurgical assumptions made.	production of battery grade lithium carbonate.
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 No factors or assumptions are made at this time. However, an environmental report has been accepted by the mining court for the tenement grant. Environmental monitoring and reporting are ongoing
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Bulk density determination is not relevant for brine resource calculations as the drainable porosity or specific yield of the hydrogeologic units is the relevant factor for brine resource calculations. Synthetic values of drainable porosity and specific yield values are obtained from downhole geophysics downhole geophysics (Zelandez) and includes all aquifer material. The CP did a comparison of similar aquifer material from other nearby projects as a check on the results, and where necessary modified accordingly. A summary of samples including specific yield and modifications to the synthetic measurements per hydrogeological domain is provided in the main body of the report. Specific yields for each domain are: Sand 12.5% Gravel 6%

Criteria	JORC Code explanation	Commentary
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 All the estimated Resource is assigned as Indicated. This is consistent with recommendations by Houston et al., (2011) where they suggest that well spacing required to estimate a Measured Resource be no farther than 3-4 kilometres apart from each other. The high quality of geophysical survey data also demonstrates the continuity, and geometry of the brine acquirers at depth. Numerous factors were taken into consideration when assigning the classification applied to the Mineral Resource estimate. Of these factors, it is considered that the classification has been primarily influenced by the drill coverage, geological complexity and data quality as described in the main announcement above. When assessing these criteria, SRK considers the greatest source of uncertainty to be the large sample intervals, which have resulted in data aggregation. The large intervals have also resulted in some degree of smearing of high grades within the modelled domains. Also, the specific yields may be underestimated and provide potential upside.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	 The Resource estimate was subject to internal peer review by SRK Consulting (Australasia) and Galan.
Discussion of relative accuracy/ confidence	 Where appropriate, a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the 	 Samples were analysed by two separate laboratories and included duplicate brine samples submitted to both laboratories to confirm repeatability as part of the Quality Assurance/ Quality Control (QA/QC) procedure. To date, a total of 11 bailer/packer tests (including 5 duplicate samples) and a total of 15 airlift samples (including 8 duplicates, 2 blanks and 4 synthetic brines) were submitted were submitted to Alex Stewart and SGS. A high and a low

 relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. The sandy units that dominate the drainable brine resource are believed by the CP to suggest that the transmissivity of future wells completed in these units would be favourable for extracting brine
aquifer conditions associated with these clastic units.