ASX Release

19 October 2020

0

0

Drill Results reveal high-grade gold from Buckland Gold Project, NE Victoria

Gold mineralization at the Fairley's Prospect has been extended by the recently completed 18-hole RAB drilling program.

Significant intervals include:

- 13m @ 4.82 g/t Au from 12m in BFCRAB008
 Incl. 2m @ 11.6 g/t Au from 20m
 - 11m @ 2.64 g/t Au from 28m in BFCRAB003
 - Incl. 3m @ 7.49 g/t Au from 29 m
- o **10m @ 2.27 g/t Au** from 4m in BFCRAB017
 - Incl. 2m @ 5.52 g/t Au from 7m
 - 2m @ 4.70 g/t Au from 17m in BFCRAB002
- o 3m @ 2.62 g/t Au from 26m in BFCRAB018
- o 7m @ 1.27 g/t Au from 19m in BFCRAB001
- o 5m @ 1.30 g/t Au from 32m in BFCRAB009

Mineralisation remains open and untested along strike and at depth

Fairley's forms only a small part of the 17.5km long gold and arsenic anomalous, multi-structure Buckland Gold Project, Dart Mining's highest priority exploration project.

Dart Mining NL (ASX:DTM) ("Dart Mining" or "the Company") is pleased to report very encouraging assay results from RAB drilling of gold mineralisation at the Fairley's Prospect, Buckland Valley. The Fairley's Prospect lies within the Company's wholly owned, flagship Buckland Gold Project in Northeast Victoria.

Drill Assay Results

A low impact RAB drill program of 18 holes for 803m undertaken at the Fairley's Prospect has successfully extended the strike extent of gold mineralisation and has returned numerous encouraging gold intersections (see Table 1 for significant Intersections).

The program focused on expanding the strike extent of disseminated sulphide mineralisation along the Fairley's Shear Zone. Drilling targeted mineralisation 60m northwest of, and 45m southeast of previous drilling, extending the concentration of drilling to a strike length of over 240m at the Fairley's prospect. Due to steep terrain, drilling occupies a vertical range of approximately 260m. Drilling and previous chip sampling indicate that mineralisation occurs at surface and remains open at depth.

Key Prospects / Commodities:

GOLDFIELDS

Buckland Rushworth Sandy Creek Granite Flat Dart Mt Elmo Saltpetre Zulu Upper Indi

LITHIUM / TIN / TANTALUM

Empress – Li-Sn-Ta Eskdale / Mitta – Li-Sn-Ta

PORPHYRY GOLD / COPPER / MOLYBDENUM

Empress – Au-Cu Stacey's – Au-Cu Copper Quarry – Cu+/- Au Gentle Annie – Cu Morgan Porphyry – Mo-Ag-Au Unicorn Porphyry – Mo-Cu-Ag

Investment Data:

Shares on issue: 87,739,915 Unlisted Options: 21,850,808

Substantial Shareholders:

Top 20 Holdings: 56.84 %

Board & Management:

Managing Director: James Chirnside Non-Executive Director: Dr Denis Clarke Non-Executive Director: Luke Robinson Company Secretary: Julie Edwards

Dart Mining NL

ACN 119 904 880

Contact Details:

4 Bryant Street, Corryong VIC 3707 Australia

James Chirnside

Email: jchirnside@dartmining.com.au

Visit our webpage: www.dartmining.com.au

Table 1: Significant intersections from recent Fairley's RAB Drilling

	Hole ID	From (m)	To (m)	Interval (m)	Au (ppm)	Comments
	BFCRAB001	19	26	7	1.27	South of Fairley's Level 1 open cut
	BFCRAB002	17	19	2	4.70	Beneath Fairley's Level 1 drive
		25	26	1	0.57	
Ł	BFCRAB003	28	34	11	2.64	Hole drilled between Level 1 open cut and top open cut, targeting
	including	29	32	3	7.49	high-grade mineralisation
ſ	BFCRAB004	10	14	4	1.23	
t		20	23	3	1.15	
Ē	BFCRAB005	3	7	2	0.74	
1		11	12	1	1.27	
ľ		15	16	1	1.67	
F	BFCRAB007	49	50	1	0.70	
Ę	BFCRAB008	12	25	13	4.82	Targeting NW extension of Fairley's structure
P	including	20	22	2	11.60	
F	BFCRAB009	21	22	1	0.73	Targeting NW extension of Fairley's structure
J		32	37	5	1.30	
P	BFCRAB010	5	7	2	2.32	Targeting and extension of a secondary mineralised structure
D	5	18	22	4	1.10	identified by earlier drilling at depth
7	BFCRAB011	9	10	1	0.69	Targeting an extension of a secondary mineralised structure
		21	23	2	1.56	identified by earlier drilling at depth
		30	32	2	0.97	
]	46	47	1	0.64	
μ	BFCRAB014	35	37	2	2.58	Targeting mineralisation associated with Rose & Thistle
	BFCRAB013	34	36	2	1.58	Targeting mineralisation associated with Rose & Thistle
ŀ		40	41	1	0.92	Townships and I shows the sast of Fairley's waits line
F		29	31	2	0.87	Targeting sman structure east of Fairies smain line
6	BrCKABU1/	4	14	10	2.27	vertical noie over structure dipping at 57 degrees SW, hear Rose & Thistle workings
ł		/	9	2	5.52	Abaya Daga & Thiatla washinga
	BFCRAB018	26	29	3	2.62	Above Rose & Thistle Workings

Notes:

1. Significant intervals are calculated using a 0.5ppm Au lower cut-off and no more than 2m of internal dilution

2. All intervals are down hole thicknesses with true widths yet to be determined

Discussion of Results

The results have demonstrated that significant widths and grades of gold mineralisation occur across a large strike and depth extent at the Fairley's Prospect. Although most of the holes were relatively shallow, the varying topography allows the Fairley's Shear Zone to be tested at a significant vertical range along strike. The program has successfully extended the drilled strike extent to approximately 240m and has shown that both narrow, high-grade gold and broad, disseminated, lower grade enveloping mineralisation exist across the full strike and depth extent tested to date. Much of the current drill program was designed to also confirm that surface rock and channel sampled silica-sericite-sulphide altered and mineralised rock extends to depth and has successfully demonstrated that this is indeed the case. The Fairley's Shear remains open along strike and at depth and Dart believes that great potential exists at the prospect for the discovery of a significant body of gold mineralisation.

The disseminated style of gold mineralisation evident at Fairley's is comparable to the traditional Fosterville-style orogenic gold mineralisation in Central Victoria (Dart ASX August 2016). Previous RC and diamond drilling at Fairley's have identified good intersections (Dart ASX 15 December 2008, Dart ASX 31 December 2008, Dart ASX 30 January 2015), with mineralisation remaining open along strike extents, and at depth. The Fairley's Prospect represents a small portion of a 17.5 km-long shear zone (which remains open to the south) that has been identified in the last two years by Dart through extensive soil sampling and mapping that have revealed strong As and Au anomalism (Figure 4, Dart Mining ASX February 2020). Earlier exploration by Dart Mining at the Fairley's Prospect has been detailed in several reports (Dart ASX October 2007; Dart ASX April 2008; Dart ASX June 2008; Dart ASX October 2008; Dart ASX 15 December 2014; Dart ASX 31 December 2014).

Figure 1: Composite Cross-section of targeted mineralisation at Fairley's. Note that the cross-section is compiled

NE

Unnamed

workings

BFCRAB16

Fairley's

Lithology

50

Access Track

Mudstone

Laminated shale

Fine sandstone

Coarse sandstone

M-scale turbidite

Au mineralisation

100m

Alteration zone

BFCRAB15

Figure 2: Plan of collars for the recent drilling at the Fairley's Prospect.

Figure 3: Oblique Long Section looking northeast through the Fairley's mineralised zone. Recent RAB intercepts are marked by purple squares. Mineralisation remains open and untested along strike and at depth. Historic drill results (pink spots) are described in (*Dart ASX 15 December 2008, Dart ASX 31 December 2008, Dart ASX 30 January 2015*).

Figure 4: Buckland Goldfield with graduated regional soil arsenic (As) level (ppm) with significant anomalies highlighted (magenta). The Fairley's Prospect (marked) is dwarfed by the extent of geochemical anomalism and spread of historical mine workings across the project. Historic mine location data (red stars) from F. Sargent Historical Mining Activity layer (GeoVic: https://earthresources.vic.gov.au/geology-exploration/maps-reports-data/geovic) for reference.

Future Work Program

Follow-up drilling will employ Reverse Circulation techniques near the northern extent, from Fairley's Ridge, to chase the structure with the intent of identifying the grade and character of mineralisation at depth.

A standard workplan is currently being prepared to add several drill pads 150–400m west of the Fairley's mineralised structure, where a second, parallel mineralised structure of comparable size to the Fairley's structure has been mapped in outcrop and soil samples. This Western Anomaly has an associated soil As anomaly along a strike length of 400m and a width of approximately 70m. Outcrop across this structure demonstrates strong silica-sericite alteration, with several anomalous rock chip samples, including **4m at 9.79 g/t Au**. Biological surveys and offset calculations have already been completed, with submission of the workplan planned by late this year.

Future targets, which will hopefully extend the Fairley's mineralisation further north towards the Murray Creek catchment (1.2 km north of the Fairley's Prospect) include establishing drill access and pads around workings on the same or similar, parallel lines of strike within the Fairley's Shear Zone, which have already had rewarding chip sample results. These include Miners Glory (1m @ 17.8 g/t Au, 0.2m @ 83.9 g/t Au), Try Again (1m @ 48.5 g/t Au), Queen

Jubilee (**7.5 m @ 2.66 g/t Au, 60.8 g/t Au** grab) and St Lawrence (**0.6m @ 18.85 g/t Au, 2.5m @ 5.7 g/t Au**) (*Dart ASX* <u>September, 2020</u>; *Dart ASX February 2020*). These sites are all located within 400 to 1200m along strike from Fairley's.

Planned geological mapping will include a detailed examination and chip sampling program of the lower-level adit in Murrays Creek, some 340m in elevation below the Fairley's Level 1 adit. This work is aimed at assessing the potential for a mineralised extension deep below the current target at Fairley's.

Geophysical surveys, including Induced Polarisation (IP) to detect the silica-sericite alteration associated with gold mineralisation and ground magnetometer traverses to assist with mapping geology and structure are also being considered.

Summary of Previous Exploration at Fairley's

Selected highlights of previous drilling and sampling include drill intersections of **3m** @ **18.37** g/t Au (including **1m** @ **34.2** g/t Au) and **6.0m** @ **2.63** g/t Au (*Dart ASX 15 December 2008*), **21m** @ **1.41** g/t Au (including **7.8m** @ **3.15** g/t Au) and **40.4m** @ **0.84** g/t Au (*Dart ASX 31 December 2008*). Previous channel and chip sample sites targeted during the current program include channel samples of **2.05m** @ **9.78** g/t Au (*Dart ASX August 2016*), and **5.6m** @ **10.7** g/t Au (*Dart ASX December 2019*), **13.7m** @ **3.97** g/t Au (*Dart ASX October 2007*), and chip samples of **6.4** m @ **13.17** g/t Au (including **1m** @ **48.8** g/t Au) and **2.3m** @ **2.54** g/t Au nearby at the Rose & Thistle workings (*Dart ASX February 2020*), and **10m** @ **2.99** g/t Au in the Fairley's track road cutting (*Dart ASX 31 December 2008*; Figure 1)

Figure 5: Location of the Fairley's Project in Northeast Victoria.

For more information contact

James Chirnside Managing Director jchirnside@dartmining.com.au Peter Taylor Investor Relations peter@nwrcommunications.com.au 0412 036 231

About Dart Mining

Dart Mining (ASX: DTM) floated on the ASX in May of 2007 with the aim of evaluating and developing several historic goldfields, as well as substantiating a new porphyry province in North East Victoria. The area is prospective for precious, base, and minor metals. These include Lithium, Gold, Silver, Copper, Molybdenum, Zinc, Tungsten, Tin, Tantalum, and a host of other important minerals. Dart Mining has built a strategically placed gold exploration footprint in the Central and North East regions of Victoria, where historic surface and alluvial gold mining indicates the existence of potentially significant gold endowment.

Additional JORC Information

Further details relating to the information on the Fairley's and Buckland gold projects can be found in Dart Mining's ASX announcements:

- 1 September 2020; "Drilling of Gold Mineralisation Commencing at Buckland Valley & Sandy Creek Projects, NE Victoria".
- 6 May 2020; "<u>Re-Discovering the Goldfields of Central and North East Victoria; NWR Virtual Resources Conference</u>".
- 30 April 2020; "Quarterly Activities and Cashflow Report".
- 20 February 2020; "<u>Buckland Gold Project Update</u>".
- 31 January 2020; "Quarterly Activities and Cashflow Reports".
- 13 December 2019; "<u>Buckland Gold Project Update</u>".
- 29 November 2019; "<u>AGM Presentation</u>"
- 2 September 2019; "<u>Buckland Gold Project</u>".
- 20 August 2019; "<u>Buckland Project NE Victoria</u>".
- 1 August 2019; "<u>Quarterly Activity Report</u>".
- 16 July 2019; "<u>NE Victoria Historic Gold Fields</u>".
- 30 April 2019; "<u>Quarterly/Activities and Cashflow Report</u>".
- 31 January 2019; "<u>Report for the Quarter Ended 31 December 2018</u>".
- 9 August 2016; "<u>Fairleys Gold Update</u>".
- 30 January 2015; "<u>Report for the Quarter Ended 31 December 2014"</u>.
- 31 December 2008; "Report for the Quarter Ended 31 December 2008".
- 15 December 2008; "Immediate Exploration Success significant intercepts at Fairley's Gold Project".
- 29 October 2008; "<u>Report for the Quarter Ended 30 September 2008</u>".
- June 2008' "Solid First Year Progress for Dart Mining".
- 28 April 2008; "Report for the Quarter Ended 31 March 2008".
- 29 October 2007; "<u>Report for the Quarter Ended 30 September 2007</u>".

Competent Person's Statement

The information in this report that relates to Exploration Results has been compiled by Dr. Ben Hines PhD who is a full-time Senior Geologist for Dart Mining, and verified by Mr Steven Groves BSc, MSc. A Competent Person who is a Member of the Australian Institute of Geoscientists. Mr Groves is the exploration manager for Dart Mining. Mr Groves has sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity being undertaken to qualify as a competent person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Groves consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward-Looking Statement

Certain statements contained in this document constitute forward-looking statements. Forward-looking statements include, but are not limited to, Dart Mining's current expectations, estimates and projections about the industry in which Dart operates, and beliefs and assumptions regarding Dart's future performance. Such forward-looking statements are based on a number of estimates and assumptions made by the Company and its consultants in light of experience, current conditions and expectations of future developments which the Company believes are appropriate in the current circumstances. When used in this document, words such as; "anticipate", "could", "intends", "estimate", "potential", "plan", "seeks", "may", "should", and similar expressions are forward-looking statements. Although Dart believes that its expectations presented in these forward-looking statements are reasonable, such statements are subject to known and unknown risks, uncertainties and other factors, which may cause the actual results, achievements and performance of the Company to be materially different from the future results and achievements expressed or implied by such forward-looking statements. Investors are cautioned that forward-looking information is no guarantee of future performance and accordingly, investors are cautioned not to place undue reliance on these forward-looking statements.

APPENDIX 1 - RAB Hole Collar Details

Hole ID	Easting (MGA_55)	Northing (MGA_55)	Collar Azimuth (Grid)	Collar Dip	RL (m)	Down Hole Depth (m)
BFCRAB01	485593	5921574	44	-45	769	38
BFCRAB02	485588	5921607	194	-45	777	47
BFCRAB03	485578	5921624	196	-50	792	53
BFCRAB04A	485579	5921625	202	-35	793	8
BFCRAB04	485571	5921610	202	-36	793	38
BFCRAB05	485567	5921602	202	-30	794	26
BFCRAB06	485490.3	5921675	48	-50	860	21
BFCRAB07	485489.9	5921674	48	-70	860	53
BFCRAB08	485486.6	5921687	10	-50	863	27
BFCRAB09	485485.8	5921687	10	-70	863	52
BFCRAB10	485506	5921722	75	-50	866	32
BFCRAB11	485505	5921720	75	-85	866	48
BFCRAB16B	485531	5921753	75	-45	868	69
BFCRAB13	485477	5921744	202	-30	883	54
BFCRAB14	485471	5921747	232	-30	883	53
BFCRAB15	485527	5921793	38	-35	886	59
BFCRAB16	485532	5921754	60	-30	868	12
BFCRAB17	485452	5921723	360	-90	887	45
BFCRAB18	485455	5921731	232	-70	886	68

APPENDIX 2 – Gold Assay Results

Hole ID	From (m)	To (m)	Sampled Interval (m)	Au (ppm)
BFCRAB001	0	1	1	
BFCRAB001	1	2	1	0.21
BFCRAB001	2	3	1	0.17
BFCRAB001	3	4	1	0.18
BFCRAB001	4	5	1	0.14
BFCRAB001	5	6	1	0.04
BFCRAB001	6	7	1	0.08
BFCRAB001	7	8	1	0.08
BFCRAB001	8	9	1	0.02
BFCRAB001	9	10	1	0.01
BFCRAB001	10	11	1	0.01
BFCRAB001	11	12	1	0.01
BFCRAB001	12	13	1	0.03
BFCRAB001	13	14	1	0.11
BFCRAB001	14	15	1	0.41
BFCRAB001	15	16	1	0.14

Hole ID	From (m)	To (m)	Sampled Interval (m)	Au (ppm)
BFCRAB001	16	17	1	0.02
BFCRAB001	17	18	1	0.33
BFCRAB001	18	19	1	0.47
BFCRAB001	19	20	1	0.95
BFCRAB001	20	21	1	0.51
BFCRAB001	21	22	1	1.08
BFCRAB001	22	23	1	1.7
BFCRAB001	23	24	1	1.03
BFCRAB001	24	25	1	2.73
BFCRAB001	25	26	1	0.92
BFCRAB001	26	27	1	0.16
BFCRAB001	27	28	1	0.07
BFCRAB001	28	29	1	0.11
BFCRAB001	29	30	1	0.05
BFCRAB001	30	31	1	0.02
BFCRAB001	31	32	1	0.01

Hole ID	From (m)	To (m)	Sampled Interval (m)	Au (ppm)		Hole ID	From (m)	To (m)	Sample Interval
BFCRAB001	32	33	1	0.01	ĺ	BFCRAB002	38	39	1
BFCRAB001	33	34	1	0.01		BFCRAB002	39	40	1
BFCRAB001	34	35	1	-0.01		BFCRAB002	40	41	1
BFCRAB001	35	36	1	0.02		BFCRAB002	41	42	1
BFCRAB001	36	37	1	0.01		BFCRAB002	42	43	1
BFCRAB001	37	38	1	0.01		BFCRAB002	43	44	1
BFCRAB002	0	1				BFCRAB002	44	45	1
BFCRAB002	1	2	2	0.04		BFCRAB002	45	46	1
BFCRAB002	2	3		0.04		BFCRAB002	46	47	1
BFCRAB002	3	4	2	0.02		BFCRAB003	0	1	
BFCRAB002	4	5		0.02	ĺ	BFCRAB003	1	2	2
BFCRAB002	5	6	2	0.01		BFCRAB003	2	3	
BFCRAB002	6	7		0.01		BFCRAB003	3	4	2
BFCRAB002	7	8	2	-0.01		BFCRAB003	4	5	
BFCRAB002	8	9		-0.01		BFCRAB003	5	6	2
BFCRAB002	9	10	2	0.01		BFCRAB003	6	7	
BFCRAB002	10	11		0.01		BFCRAB003	7	8	2
BFCRAB002	11	12	2	0.07		BFCRAB003	8	9	
BFCRAB002	12	13		0.07		BFCRAB003	9	10	2
BFCRAB002	13	14	2	0.02		BFCRAB003	10	11	
BFCRAB002	14	15		0.02		BFCRAB003	11	12	2
BFCRAB002	15	16	2	0.38		BFCRAB003	12	13	
BFCRAB002	16	17		0.38		BFCRAB003	13	14	2
BFCRAB002	17	18	2	4.7		BFCRAB003	14	15	
BFCRAB002	18	19		4.7		BFCRAB003	15	16	2
BFCRAB002	19	20	2	0.43		BFCRAB003	16	17	
BFCRAB002	20	21	1	0.11		BFCRAB003	17	18	2
BFCRAB002	21	22	1	0.03	ĺ	BFCRAB003	18	19	
BFCRAB002	22	23	1	0.02		BFCRAB003	19	20	2
BFCRAB002	23	24	1	0.03		BFCRAB003	20	21	1
BFCRAB002	24	25	1	0.01		BFCRAB003	21	22	1
BFCRAB002	25	26	1	0.57		BFCRAB003	22	23	1
BFCRAB002	26	27	1	0.17		BFCRAB003	23	24	1
BFCRAB002	27	28	1	0.03		BFCRAB003	24	25	1
BFCRAB002	28	29	1	0.01		BFCRAB003	25	26	1
BFCRAB002	29	30	1	0.05		BFCRAB003	26	27	1
BFCRAB002	30	31	1	0.03		BFCRAB003	27	28	1
BFCRAB002	31	32	1	0.03		BFCRAB003	28	29	1
BFCRAB002	32	33	1	0.01		BFCRAB003	29	30	1
BFCRAB002	33	34	1	-0.01		BFCRAB003	30	31	1
BFCRAB002	34	35	1	0.02		BFCRAB003	31	32	1
BFCRAB002	35	36	1	0.05		BFCRAB003	32	33	1
BFCRAB002	36	37	1	0.02		BFCRAB003	33	34	1
BECRAB002	37	38	1	0.01		BECRABOO3	34	25	1

(ppm)

-0.01

-0.01

-0.01

-0.01

0.27

0.03

0.01

0.02

-0.01

0.03 0.03

0.01 0.01

0.01

0.01

0.01 0.01

-0.01 -0.01

-0.01 -0.01

-0.01 -0.01

-0.01 -0.01

-0.01 -0.01

-0.01

0.03

0.29

0.04

0.02

0.02

0.01

0.03

0.01

0.63

12.9 7.13

2.43

0.82

0.74

0.4

Hole ID	From (m)	To (m)	Sampled Interval (m)	Au (ppm)		Hole ID	From (m)	To (m)	Sampled Interval (m)
BFCRAB003	35	36	1	0.29		BFCRAB004	26	27	1
BFCRAB003	36	37	1	1.7		BFCRAB004	27	28	1
BFCRAB003	37	38	1	0.58		BFCRAB004	28	29	1
BFCRAB003	38	39	1	1.44		BFCRAB004	29	30	1
BFCRAB003	39	40	1	0.07		BFCRAB004	30	31	1
BFCRAB003	40	41	1	0.04		BFCRAB004	31	32	1
BFCRAB003	41	42	1	0.03		BFCRAB004	32	33	1
BFCRAB003	42	43	1	0.3		BFCRAB004	33	34	1
BFCRAB003	43	44	1	0.14		BFCRAB004	34	35	1
BFCRAB003	44	45	1	0.07		BFCRAB004	35	36	1
BFCRAB003	45	46	1	0.03		BFCRAB004	36	37	1
BFCRAB003	46	47	1	0.05		BFCRAB004	37	38	1
BFCRAB003	47	48	1	0.01		BFCRAB005	0	1	1
BFCRAB003	48	49	1	0.02		BFCRAB005	1	2	1
BFCRAB003	49	50	1	0.29		BFCRAB005	2	3	1
BFCRAB003	50	51	1	0.04		BFCRAB005	3	4	1
BFCRAB003	51	52	1	0.03		BFCRAB005	4	5	1
BFCRAB003	52	53	1	0.01		BFCRAB005	5	6	1
BFCRAB004	0	1				BFCRAB005	6	7	1
BFCRAB004	1	2	2	0.03		BFCRAB005	7	8	1
BFCRAB004	2	3		0.03		BFCRAB005	8	9	1
BFCRAB004	3	4	2	0.02		BFCRAB005	9	10	1
BFCRAB004	4	5		0.02		BFCRAB005	10	11	1
BFCRAB004	5	6	2	0.01		BFCRAB005	11	12	1
BFCRAB004	6	7		0.01		BFCRAB005	12	13	1
BFCRAB004	7	8	2	0.04		BFCRAB005	13	14	1
BFCRAB004	8	9		0.04		BFCRAB005	14	15	1
BFCRAB004	9	10	2	0.32		BFCRAB005	15	16	1
BFCRAB004	10	11	1	2.24		BFCRAB005	16	17	1
BFCRAB004	11	12	1	0.63		BFCRAB005	17	18	1
BFCRAB004	12	13	1	0.55		BFCRAB005	18	19	1
BFCRAB004	13	14	1	1.5		BFCRAB005	19	20	1
BFCRAB004	14	15	1	0.17		BFCRAB005	20	21	1
BFCRAB004	15	16	1	0.06		BFCRAB005	21	22	1
BFCRAB004	16	17	1	0.18		BFCRAB005	22	23	1
BFCRAB004	17	18	1	0.2		BFCRAB005	23	24	1
BFCRAB004	18	19	1	0.37		BFCRAB005	24	25	1
BFCRAB004	19	20	1	0.17		BFCRAB005	25	26	1
BFCRAB004	20	21	1	1.14		BFCRAB006	0	1	
BFCRAB004	21	22	1	1.31		BFCRAB006	1	2	
BFCRAB004	22	23	1	1.01		BFCRAB006	2	3	1
BFCRAB004	23	24	1	0.13		BFCRAB006	3	4	1
BFCRAB004	24	25	1	0.38		BFCRAB006	4	5	1
BFCRAB004	25	26	1	0.04		BFCRAB006	5	6	1

(ppm)

0.03

0.06

0.04

0.04

0.02

0.03

0.02

0.02

0.01

0.03

0.03

0.05

0.49

0.35

0.68

0.76

0.13

1.39

0.2

0.46

0.07

0.21

1.27

0.21

0.36

0.22

1.67

0.19

0.05

0.01

0.01

0.05

0.01

0.01

0.01

0.01

0.03

0.02

0.15

0.01

Hole ID	From (m)	To (m)	Sampled Interval (m)	Au (ppm)		Hole ID	From (m)	To (m)	Sampled Interval (m)
BFCRAB006	6	7	1	0.01		BFCRAB007	29	30	1
BFCRAB006	7	8	1	0.01		BFCRAB007	30	31	1
BFCRAB006	8	9	1	0.01		BFCRAB007	31	32	1
BFCRAB006	9	10	1	-0.01		BFCRAB007	32	33	1
BFCRAB006	10	11	1	0.01		BFCRAB007	33	34	1
BFCRAB006	11	12	1	0.05		BFCRAB007	34	35	1
BFCRAB006	12	13	1	-0.01		BFCRAB007	35	36	1
BFCRAB006	13	14	1	0.02		BFCRAB007	36	37	1
BFCRAB006	14	15	1	0.02		BFCRAB007	37	38	1
BFCRAB006	15	16	1	0.05		BFCRAB007	38	39	1
BFCRAB006	16	17	1	0.26		BFCRAB007	39	40	1
BFCRAB006	17	18	1	0.06		BFCRAB007	40	41	1
BFCRAB006	18	19	1	0.06		BFCRAB007	41	42	1
BFCRAB006	19	20	1	0.17		BFCRAB007	42	43	1
BFCRAB006	20	21	1	0.34		BFCRAB007	43	44	1
BFCRAB007	0	1				BFCRAB007	44	45	1
BFCRAB007	1	2	2	0.03		BFCRAB007	45	46	1
BFCRAB007	2	3		0.03		BFCRAB007	46	47	1
BFCRAB007	3	4	2	0.02		BFCRAB007	47	48	1
BFCRAB007	4	5		0.02		BFCRAB007	48	49	1
BFCRAB007	5	6	2	0.02		BFCRAB007	49	50	1
BFCRAB007	6	7		0.02		BFCRAB007	50	51	1
BFCRAB007	7	8	2	0.01		BFCRAB007	51	52	1
BFCRAB007	8	9		0.01		BFCRAB007	52	53	1
BFCRAB007	9	10	2	0.01		BFCRAB008	0	1	1
BFCRAB007	10	11		0.01		BFCRAB008	1	2	1
BFCRAB007	11	12	2	0.01		BFCRAB008	2	3	1
BFCRAB007	12	13		0.01		BFCRAB008	3	4	1
BFCRAB007	13	14	2	0.01		BFCRAB008	4	5	1
BFCRAB007	14	15		0.01		BFCRAB008	5	6	1
BFCRAB007	15	16	2	0.01		BFCRAB008	6	7	1
BFCRAB007	16	17		0.01		BFCRAB008	7	8	1
BFCRAB007	17	18	2	0.02		BFCRAB008	8	9	1
BFCRAB007	18	19		0.02		BFCRAB008	9	10	1
BFCRAB007	19	20	2	0.01		BFCRAB008	10	11	1
BFCRAB007	20	21	1	0.02		BFCRAB008	11	12	1
BFCRAB007	21	22	1	0.01		BFCRAB008	12	13	1
BFCRAB007	22	23	1	-0.01		BFCRAB008	13	14	1
BFCRAB007	23	24	1	0.03		BFCRAB008	14	15	1
BFCRAB007	24	25	1	0.06		BFCRAB008	15	16	1
BFCRAB007	25	26	1	0.04		BFCRAB008	16	17	1
BFCRAB007	26	27	1	0.02		BFCRAB008	17	18	1
BFCRAB007	27	28	1	0.01		BFCRAB008	18	19	1
BFCRAB007	28	29	1	0.02] [BFCRAB008	19	20	1

(ppm)

0.01

0.01

0.02

0.02

0.01

0.01

0.01

0.01

0.01

0.06

0.02

0.01

0.04

0.01

0.02

0.02

0.05

0.13

0.05

0.08

0.7

0.42

0.46

0.28

0.02

0.01

0.01

0.01

0.01

0.02

0.02

0.01

-0.01

0.01

0.03

0.15

2.74

4.67

7.95

3.95

1.79

2.62

3.39

3.82

Hole ID	From (m)	To (m)	Sampled Interval (m)	Au (ppm)		Hole ID	From (m)	To (m)	Sampled Interval (m)	Au (ppm)
BFCRABOO	08 20	21	1	11.2	1	BFCRAB009	37	38	1	0.16
BFCRAB00)8 21	22	1	12	1	BFCRAB009	38	39	1	0.05
BFCRAB00	08 22	23	1	3.67		BFCRAB009	39	40	1	0.06
BFCRAB00)8 23	24	1	2.71		BFCRAB009	40	41	1	0.11
BFCRAB00	08 24	25	1	2.19		BFCRAB009	41	42	1	0.05
BFCRAB00)8 25	26	1	0.32		BFCRAB009	42	43	1	0.21
BFCRAB00	08 26	27	1	0.12		BFCRAB009	43	44	1	0.06
BFCRAB00	0 0	1	1	0.04		BFCRAB009	44	45	1	0.06
BFCRAB00)9 1	2	1	0.12		BFCRAB009	45	46	1	0.11
BFCRAB00)9 2	3	1	0.15		BFCRAB009	46	47	1	0.1
BFCRAB00)9 3	4	1	0.04		BFCRAB009	47	48	1	0.04
BFCRAB00)9 4	5	1	0.02		BFCRAB009	48	49	1	0.31
BFCRAB00)9 5	6	1	0.02		BFCRAB009	49	50	1	0.06
BFCRABOO)9 6	7	1	0.01		BFCRAB009	50	51	1	0.19
BFCRABOO	9 7	8	1	-0.01	-	BFCRAB009	51	52	1	
BFCRABOO	9 8	9	1	0.01		BFCRAB010	0	1	1	
BFCRABOO	9 9	10	1	0.04	1	BFCRAB010	1	2	1	0.08
BFCRABOC	9 10	11	1	0.01		BFCRAB010	2	3	1	0.01
BFCRABOC	9 11	12	1	0.01		BFCRAB010	3	4	1	0.04
BFCRABOC	9 12	13	1	0.01		BFCRAB010	4	5	1	0.23
BFCRABOC	9 13	14	1	0.08		BFCRAB010	5	6	1	3.18
BFCRABOC	9 14	15	1	0.02	-	BFCRAB010	6	7	1	1.45
BFCRABOC	9 15	16	1	0.02		BFCRAB010	7	8	1	0.18
BFCRABOC	9 16	17	1	0.11	-	BFCRAB010	8	9	1	0.11
BFCRABOC	9 17	18	1	0.01		BFCRAB010	9	10	1	0.04
BFCRABOC	9 18	19	1	-0.01		BFCRAB010	10	11	1	0.03
BFCRABOC	9 19	20	1	0.01	-	BFCRAB010	11	12	1	0.05
BFCRABOC	9 20	21	1	0.01	-	BFCRAB010	12	13	1	0.05
BFCRABOC	9 21	22	1	0.73		BFCRAB010	13	14	1	0.01
BFCRABOC	9 22	23	1	0.01	-	BFCRAB010	14	15	1	0.01
BFCRABOC	9 23	24	1	0.01	-	BFCRAB010	15	16	1	0.01
BFCRABOC	9 24	25	1	0.04	-	BFCRAB010	16	17	1	0.03
BFCRABOC	9 25	26	1	0.01	-	BFCRAB010	17	18	1	0.32
BFCRABOC	9 26	27	1	-0.01		BFCRAB010	18	19	1	0.69
BFCRABOC	9 27	28	1	0.09		BFCRAB010	19	20	1	0.43
BFCRABOC)9 28	29	1	0.33		BFCRAB010	20	21	1	2.48
BFCRABOC)9 29	30	1	0.02		BFCRAB010	21	22	1	0.78
BFCRABOC)9 30	31	1	0.07		BFCRAB010	22	23	1	0.11
BECRABOC)9 31	32	1	0.05	-	BFCRAB010	23	24	1	0.1
BECRABOC	19 32	33	1	0.7	-	BFCRAB010	24	25	1	0.05
BECRABOC)g 32	34	1	2.59	1	BECRAB010	25	26	1	0.02
BFCRAROC)9 34	35	1	1.23	-	BFCRAB010	26	27	1	0.03
BECRAROC)9 25	36	1	0.86		BECRAR010	20	28	1	0.02
		27	1	1.1			20	20	1	0.02

Hole ID	From (m)	To (m)	Sampled Interval (m)	Au (ppm)]	Hole ID	From (m)	To (m)	Sampled Interval (m)	Au (ppm)
BFCRAB010	29	30	1	0.01	Ī	BFCRAB011	41	42	1	0.02
BFCRAB010	30	31	1	0.01		BFCRAB011	42	43	1	0.02
BFCRAB010	31	32	1	0.01		BFCRAB011	43	44	1	0.02
BFCRAB011	0	1	1	0.02		BFCRAB011	44	45	1	0.03
BFCRAB011	1	2	1	0.27		BFCRAB011	45	46	1	0.15
BFCRAB011	2	3	1	0.27		BFCRAB011	46	47	1	0.64
BFCRAB011	3	4	1	0.07		BFCRAB011	47	48	1	0.09
BFCRAB011	4	5	1	0.03		BFCRAB016B	0	1		
BFCRAB011	5	6	1	0.02		BFCRAB016B	1	2	2	0.01
BFCRAB011	6	7	1	0.01		BFCRAB016B	2	3		0.01
BFCRAB011	7	8	1	-0.01		BFCRAB016B	3	4	2	0.03
BFCRAB011	8	9	1	0.01		BFCRAB016B	4	5		0.03
BFCRAB011	9	10	1	0.69		BFCRAB016B	5	6	2	0.02
BFCRAB011	10	11	1	0.04		BFCRAB016B	6	7		0.02
BFCRAB011	11	12	1	0.01		BFCRAB016B	7	8	2	-0.01
BFCRAB011	12	13	1	0.02		BFCRAB016B	8	9		-0.01
BFCRAB011	13	14	1	0.01		BFCRAB016B	9	10	2	0.01
BFCRAB011	14	15	1	-0.01		BFCRAB016B	10	11	1	-0.01
BFCRAB011	15	16	1	-0.01		BFCRAB016B	11	12	1	0.01
BFCRAB011	16	17	1	-0.01	1	BFCRAB016B	12	13	1	-0.01
BFCRAB011	17	18	1	-0.01		BFCRAB016B	13	14	1	-0.01
BFCRAB011	18	19	1	-0.01		BFCRAB016B	14	15	1	-0.01
BFCRAB011	19	20	1	0.03		BFCRAB016B	15	16	1	-0.01
BFCRAB011	20	21	1	0.05		BFCRAB016B	16	17	1	-0.01
BFCRAB011	21	22	1	0.62		BFCRAB016B	17	18	1	-0.01
BFCRAB011	22	23	1	2.5	1	BFCRAB016B	18	19	1	-0.01
BFCRAB011	23	24	1	0.22		BFCRAB016B	19	20	1	-0.01
BFCRAB011	24	25	1	0.16	1	BFCRAB016B	20	21	1	-0.01
BFCRAB011	25	26	1	0.1		BFCRAB016B	21	22	1	0.01
BFCRAB011	26	27	1	0.03		BFCRAB016B	22	23	1	-0.01
BFCRAB011	27	28	1	0.03		BFCRAB016B	23	24	1	-0.01
BFCRAB011	28	29	1	0.01		BFCRAB016B	24	25	1	-0.01
BFCRAB011	29	30	1	0.24		BFCRAB016B	25	26	1	-0.01
BFCRAB011	30	31	1	1.28		BFCRAB016B	26	27	1	-0.01
BFCRAB011	31	32	1	0.66		BFCRAB016B	27	28	1	-0.01
BFCRAB011	32	33	1	0.08		BFCRAB016B	28	29	1	-0.01
BFCRAB011	33	34	1	0.09		BFCRAB016B	29	30	1	-0.01
BFCRAB011	34	35	1	0.03		BFCRAB016B	30	31	1	-0.01
BFCRAB011	35	36	1	0.01]	BFCRAB016B	31	32	1	-0.01
BFCRAB011	36	37	1	0.02]	BFCRAB016B	32	33	1	-0.01
BFCRAB011	37	38	1	0.01	1	BFCRAB016B	33	34	1	-0.01
BFCRAB011	38	39	1	0.02	1	BFCRAB016B	34	35	1	-0.01
BFCRAB011	39	40	1	0.01	1	BFCRAB016B	35	36	1	-0.01
BFCRAB011	40	41	1	0.22	1	BFCRAB016B	36	37	1	-0.01

Hole ID	From (m)	To (m)	Sampled Interval (m)	Au (ppm)	Hole ID	From (m)	To (m)	Sampled Interval (m)	Au (ppm)
BFCRAB016B	37	38	1	-0.01	 BFCRAB014	12	13	1	-0.01
BFCRAB016B	38	39	1	-0.01	BFCRAB014	13	14	1	-0.01
BFCRAB016B	39	40	1	-0.01	BFCRAB014	14	15	1	0.07
BFCRAB016B	40	41	1	-0.01	BFCRAB014	15	16	1	0.25
BFCRAB016B	41	42	1	-0.01	BFCRAB014	16	17	1	0.14
BFCRAB016B	42	43	1	-0.01	BFCRAB014	17	18	1	0.03
BFCRAB016B	43	44	1	-0.01	BFCRAB014	18	19	1	-0.01
BFCRAB016B	44	45	1	-0.01	BFCRAB014	19	20	1	-0.01
BFCRAB016B	45	46	1	-0.01	BFCRAB014	20	21	1	-0.01
BFCRAB016B	46	47	1	-0.01	BFCRAB014	21	22	1	-0.01
BFCRAB016B	47	48	1	-0.01	 BFCRAB014	22	23	1	0.2
BFCRAB016B	48	49	1	-0.01	BFCRAB014	23	24	1	0.33
BFCRAB016B	49	50	1	-0.01	BFCRAB014	24	25	1	0.27
BFCRAB016B	50	51	1	0.01	BFCRAB014	25	26	1	0.43
BFCRAB016B	51	52	1	-0.01	BFCRAB014	26	27	1	0.13
BFCRAB016B	52	53	1	-0.01	BFCRAB014	27	28	1	0.06
BFCRAB016B	53	54	1	-0.01	BFCRAB014	28	29	1	0.03
BFCRAB016B	54	55	1	-0.01	BFCRAB014	29	30	1	0.04
BFCRAB016B	55	56	1	-0.01	BFCRAB014	30	31	1	0.02
BFCRAB016B	56	57	1	-0.01	 BFCRAB014	31	32	1	0.03
BFCRAB016B	57	58	1	-0.01	BFCRAB014	32	33	1	0.04
BFCRAB016B	58	59	1	-0.01	 BFCRAB014	33	34	1	0.04
BFCRAB016B	59	60	1	-0.01	BFCRAB014	34	35	1	0.05
BFCRAB016B	60	61	1	0.01	BFCRAB014	35	36	1	3.76
BFCRAB016B	61	62	1	-0.01	BFCRAB014	36	37	1	1.39
BFCRAB016B	62	63	1	-0.01	 BFCRAB014	37	38	1	0.29
BFCRAB016B	63	64	1	-0.01	BFCRAB014	38	39	1	0.15
BFCRAB016B	64	65	1	-0.01	BFCRAB014	39	40	1	0.07
BFCRAB016B	65	66	1	-0.01	BFCRAB014	40	41	1	0.04
BFCRAB016B	66	67	1	-0.01	BFCRAB014	41	42	1	0.06
BFCRAB016B	67	68	1	-0.01	BFCRAB014	42	43	1	0.01
BFCRAB016B	68	69	1	-0.01	BFCRAB014	43	44	1	-0.01
BFCRAB014	0	1	1	-0.01	BFCRAB014	44	45	1	0.02
BFCRAB014	1	2	1	0.12	 BFCRAB014	45	46	1	0.01
BFCRAB014	2	3	1	-0.01	 BFCRAB014	46	47	1	0.01
BFCRAB014	3	4	1	-0.01	BFCRAB014	47	48	1	0.03
BFCRAB014	4	5	1	0.01	 BFCRAB014	48	49	1	0.01
BFCRAB014	5	6	1		 BFCRAB014	49	50	1	0.02
BFCRAB014	6	7	1	0.03	 BFCRAB014	50	51	1	0.01
BFCRAB014	7	8	1	0.01	BFCRAB014	51	52	1	0.01
BFCRAB014	8	9	1	-0.01	BFCRAB014	52	53	1	-0.01
BFCRAB014	9	10	1	-0.01	BFCRAB013	0	1	1	
BFCRAB014	10	11	1	-0.01	BFCRAB013	1	2	1	0.01
BFCRAB014	11	12	1	-0.01	BFCRAB013	2	3	1	0.01
BFCRAB014 BFCRAB014 BFCRAB014	9 10 11	10 11 12	1 1 1	-0.01 -0.01 -0.01	 BFCRAB013 BFCRAB013 BFCRAB013	1 2	1 2 3	1 1 1	С С

Hole ID	From (m)	To (m)	Sampled Interval (m)	Au (ppm)	Hole ID	From (m)	To (m)	Sampled Interval (m)	Au (ppm)
BFCRAB013	3	4	1	-0.01	BFCRAB013	47	48	1	0.01
BFCRAB013	4	5	1	0.01	BFCRAB013	48	49	1	0.01
BFCRAB013	5	6	1	0.01	BFCRAB013	49	50	1	0.01
BFCRAB013	6	7	1	0.01	BFCRAB013	50	51	1	0.01
BFCRAB013	7	8	1	-0.01	BFCRAB013	51	52	1	0.01
BFCRAB013	8	9	1	0.01	BFCRAB013	52	53	1	0.01
BFCRAB013	9	10	1	0.01	BFCRAB013	53	54	1	0.01
BFCRAB013	10	11	1	-0.01	BFCRAB013	54	55	1	0.01
BFCRAB013	11	12	1	0.05	BFCRAB015	0	1	1	
BFCRAB013	12	13	1	0.13	BFCRAB015	1	2	1	0.03
BFCRAB013	13	14	1	0.08	BFCRAB015	2	3	1	0.02
BFCRAB013	14	15	1	0.04	BFCRAB015	3	4	1	0.01
BFCRAB013	15	16	1	0.35	BFCRAB015	4	5	1	0.01
BFCRAB013	16	17	1	0.31	BFCRAB015	5	6	1	0.01
BFCRAB013	17	18	1	0.14	BFCRAB015	6	7	1	-0.01
BFCRAB013	18	19	1	0.04	BFCRAB015	7	8	1	-0.01
BFCRAB013	19	20	1	0.03	BFCRAB015	8	9	1	-0.01
BFCRAB013	20	21	1	0.02	BFCRAB015	9	10	1	-0.01
BFCRAB013	21	22	1	0.12	BFCRAB015	10	11	1	-0.01
3FCRAB013	22	23	1	0.04	BFCRAB015	11	12	1	-0.01
FCRAB013	23	24	1	0.02	BFCRAB015	12	13	1	-0.01
FCRAB013	24	25	1	0.06	BFCRAB015	13	14	1	-0.01
FCRAB013	25	26	1	0.37	BFCRAB015	14	15	1	-0.01
FCRAB013	26	27	1	0.2	BFCRAB015	15	16	1	0.01
3FCRAB013	27	28	1	0.08	BFCRAB015	16	17	1	-0.01
3FCRAB013	28	29	1	0.06	BFCRAB015	17	18	1	0.01
BFCRAB013	29	30	1	0.06	BFCRAB015	18	19	1	-0.01
BFCRAB013	30	31	1	0.32	BFCRAB015	19	20	1	-0.01
BFCRAB013	31	32	1	0.34	BFCRAB015	20	21	1	0.01
BFCRAB013	32	33	1	0.15	BFCRAB015	21	22	1	0.05
BFCRAB013	33	34	1	0.34	BFCRAB015	22	23	1	0.45
BFCRAB013	34	35	1	1.57	BFCRAB015	23	24	1	0.05
BFCRAB013	35	36	1	1.59	BFCRAB015	24	25	1	0.01
BFCRAB013	36	37	1	0.23	BFCRAB015	25	26	1	-0.01
BFCRAB013	37	38	1	0.13	BFCRAB015	26	27	1	0.01
BFCRAB013	38	39	1	0.11	BFCRAB015	27	28	1	-0.01
BFCRAB013	39	40	1	0.41	BFCRAB015	28	29	1	-0.01
BFCRAB013	40	41	1	0.92	BFCRAB015	29	30	1	1.21
BFCRAB013	41	42	1	0.18	BFCRAB015	30	31	1	0.53
BFCRAB013	42	43	1	0.13	BFCRAB015	31	32	1	0.05
BFCRAB013	43	44	1	0.04	BFCRAB015	32	33	1	0.01
BFCRAB013	44	45	1	0.04	BFCRAB015	33	34	1	0.01
BFCRAB013	45	46	1	0.03	BFCRAB015	34	35	1	0.01
BECRAB013	46	17	1	0.02		25	26	1	0.02

Hole ID	From (m)	To (m)	Sampled Interval (m)	Au (ppm)	Hole ID	From (m)	To (m)	Sampled Interval (m)
BFCRAB015	36	37	1	0.03	BFCRAB017	21	22	1
BFCRAB015	37	38	1	0.08	BFCRAB017	22	23	1
BFCRAB015	38	39	1	0.25	BFCRAB017	23	24	1
BFCRAB015	39	40	1	0.02	BFCRAB017	24	25	1
BFCRAB015	40	41	1	0.02	BFCRAB017	25	26	1
BFCRAB015	41	42	1	0.01	BFCRAB017	26	27	1
BFCRAB015	42	43	1	0.01	BFCRAB017	27	28	1
BFCRAB015	43	44	1	0.01	BFCRAB017	28	29	1
BFCRAB015	44	45	1	0.01	BFCRAB017	29	30	1
BFCRAB015	45	46	1	0.01	BFCRAB017	30	31	1
BFCRAB015	46	47	1	0.01	BFCRAB017	31	32	1
BFCRAB015	47	48	1	0.01	BFCRAB017	32	33	1
BFCRAB015	48	49	1	0.01	BFCRAB017	33	34	1
BFCRAB015	49	50	1	-0.01	BFCRAB017	34	35	1
BFCRAB015	50	51	1	-0.01	BFCRAB017	35	36	1
BFCRAB015	51	52	1	-0.01	BFCRAB017	36	37	1
BFCRAB015	52	53	1	-0.01	BFCRAB017	37	38	1
BFCRAB015	53	54	1	-0.01	BFCRAB017	38	39	1
BFCRAB015	54	55	1	-0.01	BFCRAB017	39	40	1
BFCRAB015	55	56	1	-0.01	BFCRAB017	40	41	1
BFCRAB015	56	57	1	-0.01	BFCRAB017	41	42	1
BFCRAB015	57	58	1	-0.01	BFCRAB017	42	43	1
BFCRAB015	58	59	1	-0.01	BFCRAB017	43	44	1
BFCRAB017	0	1	1		BFCRAB017	44	45	1
BFCRAB017	1	2	1	0.05	BFCRAB018	0	1	1
BFCRAB017	2	3	1	0.24	BFCRAB018	1	2	1
BFCRAB017	3	4	1	0.17	BFCRAB018	2	3	1
BFCRAB017	4	5	1	0.72	BFCRAB018	3	4	1
BFCRAB017	5	6	1	0.43	BFCRAB018	4	5	1
BFCRAB017	6	7	1	1.03	BFCRAB018	5	6	1
BFCRAB017	7	8	1	7.27	BFCRAB018	6	7	1
BFCRAB017	8	9	1	3.77	BFCRAB018	7	8	1
BFCRAB017	9	10	1	1.92	BFCRAB018	8	9	1
BFCRAB017	10	11	1	2.24	BFCRAB018	9	10	1
BFCRAB017	11	12	1	2.96	BFCRAB018	10	11	1
BFCRAB017	12	13	1	1.31	BFCRAB018	11	12	1
BFCRAB017	13	14	1	1.01	BFCRAB018	12	13	1
BFCRAB017	14	15	1	0.24	BFCRAB018	13	14	1
BFCRAB017	15	16	1	0.41	BFCRAB018	14	15	1
BFCRAB017	16	17	1	0.3	BFCRAB018	15	16	1
BFCRAB017	17	18	1	0.24	BFCRAB018	16	17	1
BFCRAB017	18	19	1	0.27	BFCRAB018	17	18	1
BFCRAB017	19	20	1	0.34	BFCRAB018	18	19	1
BFCRAB017	20	21	1	0.16	BFCRAB018	19	20	1

Au (ppm) 0.13 0.07 0.05 0.05

0.1 0.15 0.05 0.02 0.05 0.24 0.09 0.1 0.06 0.03 0.04 0.23 0.08 0.03 0.04 0.09 0.22 0.26 0.05 0.02

0.18 0.13 0.03 0.01 -0.01 0.1 0.01 0.01 0.02 0.03 0.09 0.05 0.03 0.03 0.1 0.05 0.16 0.06 0.09

Hole ID	From (m)	To (m)	Sampled Interval (m)	Au (ppm)		Hole ID	From (m)	To (m)	Sampled Interval (m)	
FCRAB018	20	21	1	0.06	-	BFCRAB018	44	45	1	t
BFCRAB018	21	22	1	0.06	-	BFCRAB018	45	46	1	
BFCRAB018	22	23	1	0.08	-	BFCRAB018	46	47	1	
BFCRAB018	23	24	1	0.13	ľ	BFCRAB018	47	48	1	
BFCRAB018	24	25	1	0.13	-	BFCRAB018	48	49	1	
BFCRAB018	25	26	1	0.39	-	BFCRAB018	49	50	1	
BFCRAB018	26	27	1	2.8		BFCRAB018	50	51	1	
BFCRAB018	27	28	1	4.14		BFCRAB018	51	52	1	
BFCRAB018	28	29	1	0.93	Ī	BFCRAB018	52	53	1	
BFCRAB018	29	30	1	0.17		BFCRAB018	53	54	1	
BFCRAB018	30	31	1			BFCRAB018	54	55	1	
BFCRAB018	31	32	1	0.05		BFCRAB018	55	56	1	
BFCRAB018	32	33	1	0.02		BFCRAB018	56	57	1	
BFCRAB018	33	34	1	0.01		BFCRAB018	57	58	1	
BFCRAB018	34	35	1	0.01		BFCRAB018	58	59	1	
BFCRAB018	35	36	1	0.01		BFCRAB018	59	60	1	
BFCRAB018	36	37	1	-0.01		BFCRAB018	60	61	1	
BFCRAB018	37	38	1	0.01		BFCRAB018	61	62	1	
BFCRAB018	38	39	1	-0.01	Ī	BFCRAB018	62	63	1	
BFCRAB018	39	40	1	0.01		BFCRAB018	63	64	1	
BFCRAB018	40	41	1	0.01		BFCRAB018	64	65	1	
BFCRAB018	41	42	1	-0.01		BFCRAB018	65	66	1	
BFCRAB018	42	43	1	0.03		BFCRAB018	66	67	1	
BFCRAB018	43	44	1	-0.01	Ī	BFCRAB018	67	68	1	Γ

APPENDIX 3

JORC CODE, 2012 EDITION - TABLE 1

SECTION 1 SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to 	 Rotary Air Blast (RAB) drilling was used to obtain 1 m bulk samples (~ 15 kg) which were collected in plastic bags and examined for lithological logging purposes. Samples off the cyclone were split via a riffle splitter and collected in a calico bag, which was removed every 1m to produce 1m composite samples (~ 1.5kg). The cyclone was cleaned out at the end of each hole and periodically during drilling. In interpreted mineralised or altered zones, 1m samples were submitted for

Criteria	JORC Code explanation	Commentary
D	produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	 analysis. In interpreted unmineralized zones, 2m sample composites were submitted Samples submitted to ALS were whole sample crushed to 70% <2mm, riffle/rotary split off 1 kg, pulverise to >85% passing 75 microns, then assayed by ALS method AU-AA26 (50g sample aliquot by fire assay). Certified Reference Materials OREAS 235_OREAS 237 and OREAS 245 as well
		as CRM blank OREAS C27c were inserted every 10 samples as part of a QA/QC system.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	 18 RAB drillholes were drilled by EDrill Pty Ltd limited over the strike extent of mineralised structures. Face sampling 90 mm RAB drilling Holes surveyed using a Eastman single shot camera for collar shots. Verified using clinometer and compass survey of rods. All-drill related data are referenced to the original ASX report by date published. All details appear in the original report.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Each 1m – 2m sample was weighed and results recorded to monitor sample recovery – a high average recovery was achieved in all holes. Experienced geologists ensured best drilling and sampling practices were maintained. Experienced drillers ensured best drilling and sampling practices were maintained, including pausing drilling between sample intervals to ensure all sample is out of the system and regular cleaning of the sampling equipment. There was no observable relationship between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 Drill chips were geologically logged at 1 m intervals for lithology (including quartz types and percentages), alteration and mineralisation, and drilling conditions Representative chips from each metre were collected in chip trays. Chip trays were photographed. 100% of the drilling was logged.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	 Samples were collected from a riffle splitter from the bulk sample bag after removal from the cyclone. Selected unmineralized intervals were combined into 2m composite samples at the splitting stage at the drill site. 12.5% of the sample was split with the remainder collected in residue bags.

Criteria	JORC Code explanation	Commentary				
D	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The majority of samples were dry in the shallow holes, there were 12 wet samples collected during the program. The sampling procedure is appropriate for the mineralisation style of disseminated gold and is better described in the body of the report. The samples were sent to ALS Laboratories, Pooraka SA. 				
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Samples were submitted to ALS Chemex and analysed for gold using ALS Methods Method AU-AA26 (fire assay is considered a total extraction technique for gold). These techniques are appropriate and considered a total extraction technique for Au. Samples were whole sample crushed, pulverised and assayed by ALS method AU-AA26. Au standards OREAS 235, OREAS 237 and OREAS 245 as well as rhyodacite blanks (OREAS C27c) were included every 10 samples as part of the internal QA/QC system. All results are within expected confidence limits. ALS conducted their own internal laboratory checks. Laboratory blanks, standards are reviewed per batch to monitor accuracy and precision. 				
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The laboratory supplies all assay data as an export to a CSV file. The raw data is edited to separate all duplicates and CRM results into a QA/QC tab in the CSV file and reviewed. Verification of significant intersections were made by alternative company personnel. No independent review of assay data has been carried out. Data were logged onto paper and transferred to a spreadsheet and checked. Electronic-only assay data is imported into a spreadsheet from the laboratory's electronic data. No holes were twinned at this early exploration stage. Below detection limit data is identified in Appendix 1 using a < character followed by the detection limit. 				
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The location of drill hole collars and geological mapping used a Garmin GPSMAP 62S GPS using the MGA94 Grid Datum (Zone 55) with topographic control taken from the GPS. Accuracy is variable but maintained <5m during the mapping process with constant visual quality assessment conducted. 				

Criteria	JORC Code explanation	Commentary
		 Hand held GPS is used to survey a control point and drill hole collar positions are then measured by tape and compass relative to the GPS control. The accuracy between holes is <2m but absolute accuracy is relative to the original GPS control point at <10m. Because of the high probability of RAB hole collapse, and the short length of holes, collar shots were used to survey hole orientation. All maps, plans and data are on an MGA datum and GDA94 zone 55 projection. Elevation is established from the GPS control point.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill sites were restricted to existing tracks. It was not intended to establish a drill spacing for resource estimation although these holes may be used at a later date. 1m or 2m assay composites, depending on logged geology, were collected at the splitter on the drill site. This sample interval is considered appropriate for the style of gold mineralisation tested. All drill related data are referenced to the original ASX report by date published. All details appear in the original report.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drilling was restricted to existing tracks. However, in all cases it was possible to drill at a high angle to the host structures (refer figures 3 to 10), and achieve a suitable orientation that cross cuts the mineralisation. True width intersections are provided in drill sections, there appears to be no relationship between drill orientation and mineralisation grades, Except for BFCRAB08, which is oriented at a lower angle to the strike of mineralisation. Due to the steep grade of tracks and topography, hole orientation was limited or dictated by landscape physiology in some instances.
Sample security	• The measures taken to ensure sample security.	 All samples submitted for analysis are placed in sealed poly-weave bags and delivered to a commercial transport company for delivery to the laboratory. Any evidence of sample damage or tampering is immediately reported by the laboratory to the company and a decision made as to the integrity of the sample and the remaining samples within the damaged / tampered bag/s.

	Criteria	JORC Code explanation		Commentary				
	Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 		d • An intern operatio analytica Dart Mir	 An internal review of procedures, operations, sampling techniques and analytical techniques was made by Dart Mining. 			
2	SECTION	2 REPORTING OF EXPLORATION RES	ULTS					
	Criteria	JORC Code explanation	Comme	ntary				
	Mineral tenement and	• Type, reference name/number, location and ownership including agreements or	All tene	ments rem	ain in good stand	ing as at 30	D th Septo	ember 2020.
	land tenure	material issues with third parties such as	Tenement Number	Name	Tenement Type	Area (km2) Unless specified	Interest	Location
	status	Joint ventures, partnersnips, overriaing	EL5315	Mitta Mitta ⁴	Exploration	172	100%	NE Victoria
		sites, wilderness or national park and	EL006016 EL006277	Rushworth Empress	Exploration Exploration	60 165	100%	Central Victoria NE Victoria
		environmental settings.	EL006300	Eskdale ³	Exploration	183	100%	NE Victoria
F		• The security of the tenure held at the time	EL006486	Mt Creek	Exploration	190	100%	NE Victoria
1		of reporting along with any known	EL006/64 EL006861	Buckland	EL (Application)	414	100%	NE Victoria NE Victoria
		impediments to obtaining a licence to	EL006865	Dart	EL (Application)	567	100%	NE Victoria
		operate in the area.	EL006866	Cudgewa	EL (Application)	508 142	100%	NE Victoria
F			EL007007	Union	EL (Application)	3	100%	Central Victoria
			EL007008	Buckland West	EL (Application)	344	100%	NE Victoria
			EL007099	Sandy Creek	EL (Application)	437	100%	NE Victoria
	1		RL006615	Fairley's ²	Retention License Application	27 340 Ha	100%	NE Victoria
			RL006616	Unicorn ^{1&2}	Retention License Application	23,243 Ha	100%	NE Victoria
			MIN006619	Mt View ²	Mining License	224 Ha	100%	NE Victoria
	Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	dated 29 A) NOTE 2: Ar NOTE 3: Ar DTM ASX R NOTE 4: Ar William Mo • The esta revi maj The diss Mir init	pril 2013. eas subject to a eas are subject to eas are subject to lease 1 June 20 eas are subject to Lennan. Buckland ablish the r jew reef st pping and the has not cominated ning, the fin jated explo	1.5% Founders NSR Royalt to a 1.0% NSR Royalty Agre 116). Goldfield has bee remaining alluvial yle historic mines sampling carried of been any previou gold (shear hoste rst to recognize th pration in 2005	y Agreement. ement with Min ralty on gold pro n explored potential a with surfa- but (EL1394 is assessme d) within th is style of r	vest Corpor duction, pa and limi- ce and u 4, 1985 ent of Fa ne goldf mineral	ration Pty Ltd (See yable to Bruce Doast to ted effort to underground – 1988). airley's style field. Dart ization,
	Geology	• Deposit type, geological setting and style of mineralisation.	 The gra foo relation 	e Buckland de (free go tprint. Da ated to diss	Goldfield was a tr old) reef style field rt Mining recogniz seminated sulphic	raditional n l with a ver zed some g les in sheai	arrow v y large old min rs.	vein, high alluvial gold eralization is
	Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	 Appendix 1 provides all drill hole locations and hole orients data in the body of the report. All down hole weighted average gold grade data quoted as significant intersections is provided down hole widths and calculated using a lower cut-off grade of 0.5g/t Au and no more than 2m of internal dilution. All drill-related data are referenced to the original ASX rep by date published. All details appear in the original report 			le orientatior uoted as dths and and no ASX report al report.		

		justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
	Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of material and procedure and procedure and procedure and procedure and procedure and the shown in detail. 	 All down hole weighted average gold grade data quoted as significant intersections is calculated using a lower cut-off grade of 0.5g/t Au and no more than 2m of internal dilution in each drill hole. Gold assay data is tabulated in Appendix A for all holes. The nominal sample length in potentially mineralised intervals is 1m with any 2m sample lengths in unmineralized sections requiring a length weighted average technique to be used for reporting intersections.
4	2	stated.	
J	Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 The relationship between the drill hole and the geometry of the mineralised structures is clearly presented in a series of summary cross sections and drill plans. The angle between the drill hole and the mineralisation structure is variable with an interpretation of the relative geometry presented as cross sections down hole, down hole average grades are also presented on these drill sections and are representative of the current geological interpretation, this interpretation may change over time as more drilling information become available. Structural interpretation is constrained with surface geological mapping and down hole lithology logging.
	Diagrams •	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	• A summary table showing the hole location and orientation for all drilling is presented in Table 1. Drill plans and cross sections are also presented for all holes to illustrate the relationship between drill holes and average grades from down hole intersections within the target structures.
1	Balanced • reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Both summary (weighted average) grade intersections and full assay data is provided as cross sections and tabulated data referenced in the body of the report.
	Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Any other relevant information is discussed in the main body of the report.

Further	work
rururu	WOIN

•

- The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).
- Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.
- Planned work is discussed in the body of the report and is dependent on future company direction.