

EXCELLENT GOLD INTERSECTIONS AT LYDIA PROSPECT

Ora Gold Limited (Ora) is pleased to announce excellent assay results from the recently completed reverse circulation drilling program at the Lydia Prospect near the Crown Prince deposit. The Lydia gold intersections demonstrate the high-grade potential of shallow supergene mineralisation and open-ended deeper gold mineralisation in the primary zone.

The results include an outstanding intersection in oxide/supergene mineralisation from below thin transported cover:

> 7m at 116.8g/t Au from 7m, incl. 1m at 794.2g/t Au from 9m in OGGRC266

Visible gold within ferruginised quartz brecccia (drill chips; OGGRC266; 9-10m; original assay 830.4q/t Au with a repeat of 757.9q/t Au)

The following significant intersections were also in the oxide/supergene zone:

- > 20m at 1.00g/t Au from 43m (OGGRC262)
- 8m at 2.26g/t Au from 17m (OGGRC264)
- 17m at 1.33g/t Au from 6m (OGGRC271)
- > 10m at 1.54g/t Au from 32m (OGGRC274)
- 6m at 2.94g/t Au from 31m (OGGRC282)

The following significant intersections were in the primary zone and all finished in mineralisation:

- 5m at 2.23g/t Au from 74m and open (OGGRC271)
- 12m at 1.27g/t Au from 85m and open (OGGRC273)
- 13m at 1.15g/t Au from 88m and open (OGGRC276)
- 13m at 1.49g/t Au from 81m and open (OGGRC277)
- 14m at 1.05g/t Au from 89m and open (OGGRC279)

The drilling program on the Lydia Shear Zone near the Crown Prince deposit (location see Figures 1 and 2) has further outlined oxide/supergene gold mineralisation in an 80m wide dilation zone of about 120m strike length (Figure 3). Current interpretation of the mineralisation is of high gold grades at lithological margins with mineralised fault breccias, a pervasive supergene blanket, persistent high- grade mineralisation in the relict structures within the oxide zone and open primary mineralisation at depth. All are positive indications for development potential and with historical mining over a strike length of about 500m, there may be extensions or repetitions found with further drilling.

The current program was completed in July 2020 and consisted of 27 reverse circulation holes totalling 2,003m. All holes were drilled vertically and noted for the persistent +0.1g/t Au mineralisation. The deepest holes were stopped due to slow penetration rate and excess water, though strong mineralisation was still evident.

The program has improved the outlook for mine development in the oxide/supergene zone and at depth and followed up previous drilling by Ora in 2016-18, which confirmed strong gold mineralisation to over 200m depth (25 June 2020). The details of the recent drill holes and significant gold intersection assay results are shown in Tables 1 and 2.

Figure 1. Location of the Lydia and Crown Prince prospects within the Garden Gully Project.

Figure 2. Mining lease applications over the Crown Prince and Lydia prospects on the aerial photo image.

Supergene gold mineralisation is intersected along the main mineralised structure and is considered to strengthen to the east of the competent mafic sill, and to the north, where there is intense mineralised faulting and a deeper weathering, and these areas are yet to be drilled.

The central portion of the Lydia structure is a mineralised dilation zone that wraps around a medium coarse-grained intrusive mafic sill which appears to be folded and faulted. This mafic unit is gently folded along west/north-westerly axes and plunges to the north-west (Figure 4). Pre-existing fold axes favour the mineralised fault zones, which developed during the latest compression and sinistral strike-slip movements. These fault zones are expected to host high-grade mineralisation and are interpreted to be Riedel shears (dilational jogs) during the gold mineralisation event.

The primary mineralisation intersected at Lydia is below 80m under the more competent mafic unit and has been drilled to depths beyond 200m (14m at 2.20g/t Au from 216m and 15m at 1.60g/t Au from 243m in TGGRC033 - ASX Announcement, 20 June, 2017). Though these intersections are modest grades, the depth potential for the Lydia deposit is similar to the Crown Prince and other prospective targets in the Abbotts greenstone belt, which are expected to be mineralised to depths of the order of 1,000m like other Archaean greenstone belt gold deposits.

Deep reverse circulation drilling is planned to follow up the north-western plunge of the primary mineralisation and several sections of core drilling will be required to better define the structural setting of the mineralised system.

All anomalous gold assays from the current drilling are included in Table 3.

Figure 3. Significant gold intersections from the recent program and the previous supergene gold intersections in the middle section of the mineralised Lydia Shear Zone

Figure 4. Lydia SSW/NNE long section showing drill holes within 10m slice with significant intersections and the current interpretation of the mineralisation, structures and lithology.

About Ora Gold Limited

The Company is an ASX-listed company exploring and conducting pre-production activities on its Abbotts and Garden Gully tenements near Meekatharra, Western Australia. The near-term focus is of low-cost development of its already identified shallow gold mineralisation, while investigating the potential for larger gold and base metal deposits. The Company's 100% owned tenements cover the majority of the Abbotts Greenstone Belt and comprise 2 granted Mining Leases, 2 Mining Lease applications, 21 granted Prospecting Licences and 8 granted Exploration Licences covering about 309 square kilometres.

Table 1. Reverse circulation drill hole details

_					_			
Hole ID	Dip	Azimuth	RL	Type	Depth	Easting	Northing	Comments
OGGRC261	-90	0	485	RC	25	644332	7072952	Abandoned; not sampled
OGGRC262	-90	0	484	RC	70	644347	7072950	Supergene mineralisation
OGGRC263	-90	0	485	RC	49	644373	7072947	Stopped in mafic sill
OGGRC264	-90	0	484	RC	58	644358	7072941	Stopped in mafic sill
OGGRC265	-90	0	485	RC	43	644362	7072928	Stopped in mafic sill
OGGRC266	-90	0	485	RC	64	644346	7072931	Supergene mineralisation
OGGRC267	-90	0	485	RC	61	644329	7072933	Stopped in mafic sill
OGGRC268	-90	0	484	RC	77	644328	7072919	Stopped in mafic sill
OGGRC269	-90	0	485	RC	61	644349	7072910	Stopped in mafic sill
OGGRC270	-90	0	486	RC	52	644347	7072899	Stopped in mafic sill
OGGRC271	-90	0	485	RC	79	644335	7072901	Supergene and primary mineralisation
OGGRC272	-90	0	485	RC	67	644341	7072883	Stopped in mafic sill
OGGRC273	-90	0	484	RC	97	644328	7072872	Primary mineralisation
OGGRC274	-90	0	485	RC	70	644338	7072860	Supergene mineralisation
OGGRC275	-90	0	484	RC	70	644317	7072861	Stopped in mafic sill
OGGRC276	-90	0	484	RC	101	644320	7072846	Primary mineralisation
OGGRC277	-90	0	484	RC	94	644335	7072849	Supergene and primary mineralisation
OGGRC278	-90	0	484	RC	86	644338	7072839	Supergene mineralisation
OGGRC279	-90	0	484	RC	103	644325	7072858	Primary mineralisation
OGGRC280	-90	0	485	RC	100	644300	7072832	Week primary mineralisation
OGGRC281	-90	0	485	RC	99	644316	7072830	Supergene and primary mineralisation
OGGRC282	-90	0	485	RC	95	644325	7072829	Supergene and primary mineralisation
OGGRC283	-90	0	485	RC	95	644344	7072872	Week primary mineralisation
OGGRC284	-90	0	484	RC	100	644315	7072868	
OGGRC285	-90	0	484	RC	70	644294	7072811	Supergene mineralisation
OGGRC286	-90	0	483	RC	64	644289	7072790	
OGGRC287	-90	0	484	RC	53	644357	7072978	Abandoned in fault zone

Table 2. Significant gold intersections from the recent drilling (+0.3g/t Au)

Hole ID	From	То	Gold Intercept/Comments
OGGRC262	43	63	20m at 1.0g/t Au
OGGRC264	3	10	7m at 1.14g/t Au
OddRC204	17	25	8m at 2.26g/t Au
OGGRC266	7	14	
OGGRC266		14	7m at 116.8g/t Au
			including
			1m at 794.2g/t Au
00000074	-	22	Open at depth
OGGRC271	6	23	17m at 1.33/t Au
			including
	19	22	3m at 4.09g/t Au
	74	79	5m at 2.23g/t Au
			Open at depth
OGGRC273	85	97	12m at 1.27/t Au
			Open at depth
OGGRC274	32	42	10m at 1.54/t Au
	68	69	1m at 6.54g/t Au
OGGRC276	88	101	13m at 1.15/t Au
			Open at depth
OGGRC277	23	24	1m at 2.3g/t Au
	81	94	13m at 1.49g/t Au
			Open at depth
OGGRC278	19	22	3m at 1.69g/t Au
	75	82	7m at 1.06g/t Au
OGGRC279	89	103	14m at 1.05g/t Au
			Open at depth
OGGRC281	86	99	13m at 0.77g/t Au
			Open at depth
OGGRC282	31	37	6m at 2.94g/t Au
	70	74	4m at 1.55g/t Au
OGGRC285	47	54	7m at 0.73g/t Au

Table 3. All anomalous gold values over 0.1g/t Au from the recent drilling at Lydia

	Hole ID	From	То	Au (g/t)	Comments
	OGGRC262	3	4	0.186	
	OGGRC262	5	6	0.201	
	OGGRC262	6	7	0.102	
	OGGRC262	8	9	0.101	
	OGGRC262	12	13	0.174	
	OGGRC262	13	14	0.157	
	OGGRC262	26	27	0.212	
	OGGRC262	31	32	0.656	
	OGGRC262	34	35	0.949	
	OGGRC262	38	39	0.159	
	OGGRC262	40	41	0.113	
	OGGRC262	41	42	0.352	
	OGGRC262	42	43	0.335	
	OGGRC262	43	44	3.001	
	OGGRC262	44	45	2.253	
	OGGRC262	45	46	0.324	
	OGGRC262	46	47	0.636	
r	OGGRC262	47	48	2.63	
	OGGRC262	48	49	1.698	
	OGGRC262	49	50	0.113	
	OGGRC262	50	51	0.353	
	OGGRC262	51	52	0.159	
	OGGRC262	52	53	2.104	
	OGGRC262	53	54	1.274	
	OGGRC262	54	55	1.378	20m at 1g/t (43-63m)
	OGGRC262	55	56	0.77	Supergene mineralisation
	OGGRC262	56	57	0.303	
	OGGRC262	57	58	0.393	
	OGGRC262	58	59	0.684	
	OGGRC262	59	60	0.152	
	OGGRC262	60	61	0.717	
	OGGRC262	61	62	0.337	
	OGGRC262	62	63	0.722	
	OGGRC262	63	64	0.145	
	OGGRC262	64	65	0.233	
	OGGRC262	65	66	0.55	
F	OGGRC262	66	67	0.246	
\vdash	OGGRC262	67	68	0.358	
	OGGRC262	68	69	0.288	
	OGGRC262	69	70	0.205	Open at depth
\vdash	OGGRC263	25	26	0.1	- h
\vdash	OGGRC264	3	4	5.59	
H	OGGRC264	4	5	0.476	
F	OGGRC264	5	6	0.782	
\vdash	OGGRC264	6	7	0.26	
T	OGGRC264	7	8	0.239	7m at 1.14g/t Au (3-10m)
	OGGRC264	8	9	0.206	Supergene mineralisation
_		ı	i		

Hole ID	From	То	Au (g/t)	Comments
OGGRC264	9	10	0.479	
OGGRC264	17	18	1.421	
OGGRC264	18	19	0.27	
OGGRC264	19	20	0.866	
OGGRC264	20	21	1.263	8m at 2.26g/t Au (17-25m)
OGGRC264	21	22	7.9	Supergene mineralisation
OGGRC264	22	23	0.487	
OGGRC264	23	24	4.808	
OGGRC264	24	25	1.063	
OGGRC264	30	31	0.298	
OGGRC264	32	33	0.456	
OGGRC264	33	34	0.147	
OGGRC264	42	43	0.315	
OGGRC264	43	47	0.203	
OGGRC265	2	3	1.391	
OGGRC265	24	25	0.359	
OGGRC266	1	2	0.178	
OGGRC266	2	3	0.304	
OGGRC266	3	4	0.153	
OGGRC266	4	5	0.184	
OGGRC266	5	6	0.438	
OGGRC266	6	7	0.178	
OGGRC266	7	8	1.161	
OGGRC266	8	9	3.037	
OGGRC266	9	10	794.2	
OGGRC266	10	11	6.241	7m at 116.8g/t Au (7-14m)
OGGRC266	11	12	7.203	including:
OGGRC266	12	13	5.902	1m at 794.2g/t Au (9-10m)
OGGRC266	13	14	0.475	(830.428/757.98 Repeat)
OGGRC266	14	15	0.25	Supergene mineralisation
OGGRC266	15	16	0.249	
OGGRC266	16	17	0.144	
OGGRC266	18	19	0.247	
OGGRC266	21	22	0.282	
OGGRC266	22	23	2.159	
OGGRC266	23	24	0.134	
OGGRC266	24	25	0.973	
OGGRC266	25	26	0.067	
OGGRC266	26	27	0.839	
OGGRC266	30	31	0.101	
OGGRC266	38	39	0.394	
OGGRC266	41	42	0.229	
OGGRC266	42	43	0.13	
OGGRC266	43	44	0.325	
OGGRC266	44	45	0.249	
OGGRC266	60	64	0.116	Open at depth
OGGRC267	2	3	0.141	
OGGRC267	3	4	0.151	
OGGRC267	26	27	0.32	

Hole ID	From	То	Au (g/t)	Comments
OGGRC267	29	30	0.348	
OGGRC267	32	33	0.1	
OGGRC267	33	34	0.109	
OGGRC267	35	36	0.133	
OGGRC268	2	3	0.244	
OGGRC268	3	4	0.185	
OGGRC268	4	5	0.126	
OGGRC268	53	54	0.288	
OGGRC268	54	55	0.297	
OGGRC268	55	56	0.16	
OGGRC268	56	57	0.152	
OGGRC268	57	58	0.584	
OGGRC268	58	59	0.147	
OGGRC269	16	17	0.131	
OGGRC269	21	22	0.216	
OGGRC269	25	26	0.107	
OGGRC270	2	3	0.184	
OGGRC270	3	4	0.527	
OGGRC270	28	29	0.134	
OGGRC270	29	30	0.329	
OGGRC270	30	31	0.32	
OGGRC270	31	32	0.222	
OGGRC270	32	33	0.81	
OGGRC270	33	34	0.319	
OGGRC271	2	3	0.275	
OGGRC271	3	4	0.229	
OGGRC271	6	7	1.818	
OGGRC271	7	8	0.749	
OGGRC271	8	9	1.754	
OGGRC271	9	10	0.562	
OGGRC271	10	11	0.147	
OGGRC271	11	12	2.028	
OGGRC271	12	13	0.088	
OGGRC271	13	14	0.088	17m at 1.33g/t Au (6-23m)
OGGRC271	14	15	0.113	including:
OGGRC271	15	16	1.306	3m at 4.09g/t (19-22m)
OGGRC271	16	17	0.096	Supergene mineralisation
OGGRC271	17	18	0.602	Supergene mineralisation
OGGRC271	18	19	0.602	
OGGRC271	19	20	6.85	
OGGRC271	20	21	1.855	
OGGRC271	21	22	3.572	
OGGRC271	22	23	0.37	
OGGRC271	24	25	0.128	
OGGRC271	25	26	0.143	
OGGRC271	30	31	0.361	
OGGRC271	31	32	0.225	
OGGRC271	47	48	0.14	
OGGRC271	49	50	1.651	

Hole ID	From	То	Au (g/t)	Comments
OGGRC271	50	51	5.86	3m at 2.59g/t Au (49-52m)
OGGRC271	51	52	0.273	Supergene mineralisation
OGGRC271	55	56	0.247	
OGGRC271	57	58	0.12	
OGGRC271	58	59	0.194	
OGGRC271	59	60	0.692	
OGGRC271	60	61	0.351	
OGGRC271	61	62	0.656	
OGGRC271	62	63	0.473	
OGGRC271	63	64	0.103	
OGGRC271	64	65	0.143	
OGGRC271	65	66	0.27	
OGGRC271	69	70	0.769	
OGGRC271	70	71	0.118	
OGGRC271	71	72	0.1	
OGGRC271	73	74	0.268	
OGGRC271	74	75	2.318	
OGGRC271	75	76	1.404	
OGGRC271	76	77	2.036	5m at 2.23g/t Au (74-79m)
OGGRC271	77	78	1.122	Primary mineralisation
OGGRC271	78	79	4.29	Open at depth
OGGRC272	3	4	0.108	· · · · · · · · · · · · · · · · · · ·
OGGRC272	4	5	0.138	
OGGRC272	5	6	0.152	
OGGRC272	14	15	0.602	
OGGRC272	25	26	0.817	
OGGRC273	2	3	0.125	
OGGRC273	3	4	0.159	
OGGRC273	20	21	0.338	
OGGRC273	23	24	0.159	
OGGRC273	26	27	0.119	
OGGRC273	27	28	0.114	
OGGRC273	38	39	0.218	
OGGRC273	39	40	0.217	
OGGRC273	52	53	0.314	
OGGRC273	55	56	0.117	
OGGRC273	75	76	0.367	
OGGRC273	80	81	0.184	
OGGRC273	83	84	0.138	
OGGRC273	85	86	1.856	
OGGRC273	86	87	3.87	
OGGRC273	87	88	0.524	
OGGRC273	88	89	0.68	
OGGRC273	89	90	1.139	
OGGRC273	90	91	3.02	Primary mineralisation
OGGRC273	91	92	1.298	12m at 1.27g/t Au (85-97m)
OGGRC273	92	93	0.579	G, 5110 (55 5111)
OGGRC273	93	94	0.714	
OGGRC273	94	95	1.375	

Hole ID	From	То	Au (g/t)	Comments
OGGRC273	95	96	0.117	
OGGRC273	96	97	0.142	Open at depth
OGGRC274	2	3	0.133	
OGGRC274	3	4	0.222	
OGGRC274	7	8	0.176	
OGGRC274	17	18	0.19	
OGGRC274	19	20	0.206	
OGGRC274	21	22	0.71	
OGGRC274	25	26	0.226	
OGGRC274	26	27	0.224	
OGGRC274	27	28	0.335	
OGGRC274	28	29	0.397	
OGGRC274	30	31	0.105	
OGGRC274	32	33	0.566	
OGGRC274	33	34	1.357	
OGGRC274	34	35	3.68	10m at 1.54g/t Au(32-42m)
OGGRC274	35	36	2.55	Supergene mineralisation
OGGRC274	36	37	0.801	
OGGRC274	37	38	2.365	
OGGRC274	38	39	2.29	
OGGRC274	39	40	0.481	
OGGRC274	40	41	0.711	
		42		
OGGRC274		43	0.214	
OGGRC274		63	0.59	
		64	1	
			1	
	1			
			1	
			1	
			1	
			1	
		•		
			1	
			1	
			1	
	1		1	Dulma o marina qualita a Ataur
			1	Primary mineralisation 13m at 1.15g/t Au (88-101m)
			1	19111 at 1.138\ f An (99-101111)
			1	
	OGGRC273 OGGRC274	OGGRC273 95 OGGRC274 2 OGGRC274 3 OGGRC274 7 OGGRC274 17 OGGRC274 19 OGGRC274 21 OGGRC274 25 OGGRC274 26 OGGRC274 28 OGGRC274 28 OGGRC274 30 OGGRC274 32 OGGRC274 33 OGGRC274 34 OGGRC274 35 OGGRC274 36 OGGRC274 37 OGGRC274 39 OGGRC274 39 OGGRC274 40 OGGRC274 41 OGGRC274 62 OGGRC274 62 OGGRC274 63 OGGRC274 64 OGGRC274 65 OGGRC274 65 OGGRC274 66 OGGRC275 3 OGGRC276 3 OGGRC275	OGGRC273 95 96 OGGRC274 2 3 OGGRC274 3 4 OGGRC274 7 8 OGGRC274 17 18 OGGRC274 19 20 OGGRC274 21 22 OGGRC274 25 26 OGGRC274 26 27 OGGRC274 28 29 OGGRC274 28 29 OGGRC274 30 31 OGGRC274 32 33 OGGRC274 32 33 OGGRC274 34 35 OGGRC274 34 35 OGGRC274 36 37 OGGRC274 38 39 OGGRC274 39 40 OGGRC274 39 40 OGGRC274 41 42 OGGRC274 40 41 OGGRC274 62 63 OGGRC274 64 65	Hole ID From To (g/t) OGGRC273 95 96 0.117 OGGRC274 2 3 0.133 OGGRC274 3 4 0.222 OGGRC274 7 8 0.176 OGGRC274 17 18 0.19 OGGRC274 19 20 0.206 OGGRC274 21 22 0.71 OGGRC274 25 26 0.226 OGGRC274 26 27 0.224 OGGRC274 28 29 0.397 OGGRC274 28 29 0.397 OGGRC274 30 31 0.105 OGGRC274 32 33 0.566 OGGRC274 32 33 0.566 OGGRC274 34 35 36.8 OGGRC274 34 35 36.8 OGGRC274 35 36 2.55 OGGRC274 36 37 0.801

Hole ID	From	То	Au (g/t)	Comments
OGGRC276	97	98	0.246	
OGGRC276	98	99	0.374	
OGGRC276	99	100	0.08	
OGGRC276	100	101	0.916	Open at depth
OGGRC277	4	5	0.1	·
OGGRC277	10	11	0.171	
OGGRC277	18	19	0.104	
OGGRC277	19	20	0.267	
OGGRC277	20	21	0.588	
OGGRC277	21	22	0.243	
OGGRC277	22	23	0.637	
OGGRC277	23	24	2.303	
OGGRC277	25	26	0.242	
OGGRC277	26	27	0.134	
OGGRC277	28	29	0.654	
OGGRC277	33	34	0.142	
OGGRC277	34	35	0.254	
OGGRC277	36	37	0.123	
OGGRC277	37	38	0.102	
OGGRC277	66	67	0.165	
OGGRC277	71	72	0.139	
OGGRC277	72	73	0.269	
OGGRC277	73	74	0.153	
OGGRC277	76	77	0.481	
OGGRC277	77	78	0.252	
OGGRC277	78	79	0.108	
OGGRC277	81	82	1.989	
OGGRC277	82	83	0.135	
OGGRC277	83	84	0.549	
OGGRC277	84	85	2.12	
OGGRC277	85	86	2.795	
OGGRC277	86	87	1.19	
OGGRC277	87	88	1.738	
OGGRC277	88	89	4.72	13m at 1.49g/t Au (81-94m)
OGGRC277	89	90	1.98	Primary mineralisation
OGGRC277	90	91	0.449	-
OGGRC277	91	92	0.334	
OGGRC277	92	93	0.722	
OGGRC277	93	94	0.713	Open at depth
OGGRC278	2	3	0.402	
OGGRC278	3	4	0.996	
OGGRC278	10	11	0.197	
OGGRC278	11	12	0.168	
OGGRC278	12	13	0.529	
OGGRC278	13	14	0.717	
OGGRC278	18	19	0.437	
OGGRC278	19	20	1.88	
OGGRC278	20	21	0.908	3m at 1.69g/t Au (19-22m)
OGGRC278	21	22	3.55	Supergene mineralisation

Hole ID	From	То	Au (g/t)	Comments
OGGRC278	26	27	0.207	
OGGRC278	35	36	0.281	
OGGRC278	39	40	0.825	
OGGRC278	40	46	0.114	
OGGRC278	64	65	0.328	
OGGRC278	68	69	0.546	
OGGRC278	69	70	1.15	
OGGRC278	73	74	0.113	
OGGRC278	75	76	3.004	
OGGRC278	76	77	3.16	
OGGRC278	77	78	0.255	7m at 1.06g/t Au (75-82m)
OGGRC278	78	79	0.419	
OGGRC278	79	80	0.408	
OGGRC278	80	81	0.026	
OGGRC278	81	82	0.213	
OGGRC279	2	3	0.235	
OGGRC279	10	11	0.268	
OGGRC279	23	24	0.245	
OGGRC279	24	25	0.979	
OGGRC279	34	35	0.476	
OGGRC279	74	78	0.103	
OGGRC279	89	90	0.497	
OGGRC279	90	91	0.406	
OGGRC279	91	92	0.07	
OGGRC279	92	93	1.74	
OGGRC279	93	94	0.11	
OGGRC279	94	95	0.147	14m at 1.05g/t Au (89-103m)
OGGRC279	95	96	0.281	Primary mineralisation
OGGRC279	96	97	3.85	,
OGGRC279	97	98	2.327	
OGGRC279	98	99	3.081	
OGGRC279	99	100	0.547	
OGGRC279	100	101	0.164	
OGGRC279	101	102	0.161	
OGGRC279	102	103	1.36	Open at depth
OGGRC280	33	34	0.951	·
OGGRC280	34	35	1.14	
OGGRC280	36	37	0.539	
OGGRC280	57	61	0.272	
OGGRC280	75	76	0.113	
OGGRC280	78	79	0.123	
OGGRC280	96	97	0.107	
OGGRC281	19	20	0.107	
OGGRC281	26	27	0.33	
OGGRC281	27	28	0.404	
OGGRC281	29	30	2.91	
OGGRC281	31	32	0.285	
OGGRC281	32	33	0.185	
OGGRC281	33	34	1.245	

Hole ID	From	То	Au (g/t)	Comments
OGGRC281	34	35	0.224	
OGGRC281	35	36	1.734	
OGGRC281	36	37	0.888	
OGGRC281	37	38	0.283	
OGGRC281	84	85	0.28	
OGGRC281	86	87	2.33	
OGGRC281	87	88	0.83	
OGGRC281	88	89	1.503	
OGGRC281	89	90	0.107	
OGGRC281	90	91	0.225	
OGGRC281	91	92	0.21	
OGGRC281	92	93	2.675	13m at 0.77g/t Au (86-99m)
OGGRC281	93	94	0.498	Primary mineralisation
OGGRC281	94	95	0.422	•
OGGRC281	95	96	0.753	
OGGRC281	96	97	0.291	
OGGRC281	97	98	0.048	
OGGRC281	98	99	0.138	Open at depth
OGGRC282	4	5	0.383	·
OGGRC282	23	24	0.233	
OGGRC282	31	32	2.228	
OGGRC282	32	33	5.69	
OGGRC282	33	34	3.79	
OGGRC282	34	35	2.925	6m at 2.94g/t Au (31-37m)
OGGRC282	35	36	2.779	Supergene mineralisation
OGGRC282	36	37	0.285	
OGGRC282	65	66	0.178	
OGGRC282	70	71	2.048	
OGGRC282	71	72	1.382	4m at 1.55g/t Au (70-74m)
OGGRC282	72	73	0.056	Supergene mineralisation
OGGRC282	73	74	2.748	
OGGRC282	78	79	1.697	
OGGRC282	79	80	0.33	
OGGRC282	87	88	0.198	
OGGRC282	89	90	0.108	
OGGRC282	90	91	0.68	
OGGRC282	91	92	1.317	
OGGRC282	92	93	0.157	
OGGRC282	93	94	0.14	
OGGRC283	5	6	0.116	
OGGRC283	27	28	0.352	
OGGRC283	30	31	0.204	
OGGRC283	41	42	0.185	
OGGRC283	79	80	0.163	
OGGRC283	81	82	1.828	
OGGRC283	89	90	0.321	
OGGRC283	92	93	0.773	
OGGRC284	2	3	0.249	
OGGRC285	32	33	0.333	

Hole ID	From	То	Au (g/t)	Comments
OGGRC285	33	34	0.507	
OGGRC285	43	44	0.162	
OGGRC285	47	48	3.12	
OGGRC285	48	49	0.278	
OGGRC285	49	50	0.075	
OGGRC285	50	51	0.111	7m at 0.73g/t Au (47-54m)
OGGRC285	51	52	0.598	Supergene mineralisation
OGGRC285	52	53	0.15	
OGGRC285	53	54	0.827	
OGGRC285	54	55	0.15	
OGGRC286	27	28	0.399	
OGGRC286	28	29	0.164	
OGGRC286	30	31	0.244	
OGGRC286	35	36	0.207	
OGGRC286	40	43	0.228	
OGGRC287	29	30	0.337	
OGGRC287	30	31	0.174	
OGGRC287	31	32	0.101	
OGGRC287	34	35	0.1	

Appendix 1: JORC Table 1 Checklist of Assessment and Reporting Criteria

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code Explanation	Commentary		
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representativity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are material to the Public Report. In cases where 'industry 	 RC sample was collected and split in even metre intervals where sample was dry. Wet sample was speared or on occasion sampled by scooping. RC drill chips from each metre were examined visually and logged by the geologist. Evidence of alteration or the presence of mineralisation was noted on the drill logs. Intervals selected by the site geologist were tested by hand-held XRF and all those with elevated arsenic contents have been bagged and numbered for laboratory analysis. Duplicate samples are submitted at a rate of approximately 10% of total samples taken (ie one duplicate submitted for every 20 samples). The Delta XRF Analyser is 		
	standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	calibrated before each session and is serviced according to the manufacturer's (Olympus) recommended schedule. • The presence or absence of mineralisation is initially determined visually by the site geologist, based on experience and expertise in evaluating the styles of mineralisation being sought.		
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Narrow diameter reverse circulation drilling using a Hydco 150 scout drill rig with the capacity of 100m depth using a 600cfmcompressor at 200psi with an auxiliary compressor.		
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Volume of material collected from each metre interval of drilling completed is monitored visually by the site geologicand field assistants. Dry sample recoveries were estimated at ~95%. Wet sample recovery was lower, estimated to an average of 40%. Samples were collected and dry sample split using a riff splitter. Based on the relatively small number of assays received to date, there is no evidence of either a recovery/grade relationship or of sample bias. 		
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	RC chips are logged visually by qualified geologists. Lithology, and where possible structures, textures, colours alteration types and minerals estimates, are recorded. Representative chips are retained in chip trays for each metre interval drilled.		

	The total length and percentage of the relevant intersections logged.	The entire length of each drill hole is logged and evaluated.
	intersections loggeti.	evaluateu.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, 	 RC samples were collected and dry sample split using a riffle splitter. Material too moist for effective riffle splitting was sampled using a 4cm diameter spear. Sample submitted to the laboratory comprised three spear samples in different
	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representativity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	directions into the material for each metre interval. The samples were sent to Intertek labs in Perth for Au
		analysis by FA50 (Fire Assay on 50g charge). Sample preparation techniques are well-established standard industry best practice techniques. Drill chips are dried and crushed and pulverised (whole sample) to 95% of the sample passing -75µm grind size.
		Field QC procedures include using certified reference
		materials as assay standards. One duplicate sample is submitted for every 20 samples and a blank at 100 samples, approximately.
		Evaluation of the standards, blanks and duplicate samples assays shows them to be within acceptable limits of variability.
		Sample representativity and possible relationship between grain size and grade was confirmed following re- sampling and re-assaying of high-grade interval.
		Sample size follows industry standard best practice and is considered appropriate for these style(s) of mineralisation.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF	• The assay techniques used for these assays are international standard and can be considered total. Samples were dried, crushed and pulverised to 95% passing -75µm and assayed for gold by 50g Fire Assay following ICPO (Atomic) Emission Spectrometry.
	instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. • Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	The handheld XRF equipment used is an Olympus Delta XRF Analyser and Ora Gold Ltd. follows the manufacturer's recommended calibration protocols and usage practices but does not consider XRF readings sufficiently robust for public reporting. Ora Gold Ltd. uses the handheld XRF data as an indicator to support the selection of intervals for submission
		The laboratory that carried out the assays is an AQIS registered site and is ISO certified. It conducts its own internal QA/QC processes in addition to the QA/QC implemented by Ora Gold Ltd, as its sample submission procedures. Evaluation of the relevant data indicates satisfactory performance of the field sampling protocols in place and of the assay laboratory. The laboratory uses check samples and assay standards to complement the duplicate sampling procedures practiced by Ora Gold Ltd.

ORA GOLD LIMITED ASX RELEASE 8 September 2020

Verification	The verification of significant intersections by either	All significant intersections are calculated and verified o
of sampling	independent or alternative company personnel.	screen and are reviewed prior to reporting.
and assaying	The use of twinned holes.	The program included no twin holes.
	Documentation of primary data, data entry procedures,	Data is collected and recorded initially on hand-written
	data verification, data storage (physical and electronic)	logs with summary data subsequently transcribed in the
	protocols.	field to electronic files that are then copied to head office.
	Discuss any adjustment to assay data.	No adjustment to assay data has been needed.
Location of	Accuracy and quality of surveys used to locate drill holes	Collar locations were located and recorded using hand-
data points	(collar and down-hole surveys), trenches, mine workings and	held GPS (Garmin 62S model) with a typical accuracy of ±5n
	other locations used in Mineral Resource estimation.	Due to the short hole length and scout drilling nature of the
		programme, the only down-hole survey carried out is the d
	Specification of the grid system used.	at the end of the hole. No down-hole azimuth measured.
	Quality and adequacy of topographic control.	• The map projection applicable to the area is Australian Geodetic GDA94, Zone 50.
	quanty and analysis, or sep-6, aparts	Tonographic control is based on standard industry
		Topographic control is based on standard industry practice of using the GPS readings. Local topography is
		practice of using the GPS readings. Local topography is
		relatively flat. Detailed altimetry is not warranted.
Data spacing	Data spacing for reporting of Exploration Results.	Drill hole collars were located and oriented to deliver
and		maximum relevant geological information to allow the
distribution	Whether the data spacing and distribution is sufficient to	geological model being tested to be assessed effectively.
	establish the degree of geological and grade continuity	
	appropriate for the Mineral Resource and Ore Reserve	This is still early stage exploration and is not sufficiently
	estimation procedure(s) and classifications applied.	advanced for this to be applicable.
	Whether sample compositing has been applied.	Various composite sampling was applied depending on
		the geology of the hole. All anomalous sample intervals as
		reported in Table 3. Zones where geological logging and/or
		XRF analyses indicated the presence of mineralised interval
		ARE alialyses indicated the presence of initieralised interva
		were sampled on one metre intervals.
Orientation	Whather the orientation of sampling achieves unhissed	,
	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this	This programme is the first exploration drilling to test the second control of the
Orientation of data in	sampling of possible structures and the extent to which this	This programme is the first exploration drilling to test the supergene potential above the Lydia Shear Zone and as success.
of data in relation to		This programme is the first exploration drilling to test the supergene potential above the Lydia Shear Zone and as successful insufficient data has been collected and compiled yet to be
of data in relation to geological	sampling of possible structures and the extent to which this is known, considering the deposit type.	This programme is the first exploration drilling to test the supergene potential above the Lydia Shear Zone and as such insufficient data has been collected and compiled yet to be able to establish true widths, orientation of lithologies,
of data in relation to	sampling of possible structures and the extent to which this is known, considering the deposit type. • If the relationship between the drilling orientation and	This programme is the first exploration drilling to test the supergene potential above the Lydia Shear Zone and as successful insufficient data has been collected and compiled yet to be
of data in relation to geological	sampling of possible structures and the extent to which this is known, considering the deposit type. • If the relationship between the drilling orientation and the orientation of key mineralised structures is considered	This programme is the first exploration drilling to test the supergene potential above the Lydia Shear Zone and as such insufficient data has been collected and compiled yet to be able to establish true widths, orientation of lithologies,
of data in relation to geological	sampling of possible structures and the extent to which this is known, considering the deposit type. • If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed	This programme is the first exploration drilling to test the supergene potential above the Lydia Shear Zone and as succeins ufficient data has been collected and compiled yet to be able to establish true widths, orientation of lithologies, relationships between lithologies, or the nature of any
of data in relation to geological	sampling of possible structures and the extent to which this is known, considering the deposit type. • If the relationship between the drilling orientation and the orientation of key mineralised structures is considered	This programme is the first exploration drilling to test the supergene potential above the Lydia Shear Zone and as such insufficient data has been collected and compiled yet to be able to establish true widths, orientation of lithologies, relationships between lithologies, or the nature of any structural controls. The main aim of this programme is to
of data in relation to geological	sampling of possible structures and the extent to which this is known, considering the deposit type. • If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed	This programme is the first exploration drilling to test the supergene potential above the Lydia Shear Zone and as such insufficient data has been collected and compiled yet to be able to establish true widths, orientation of lithologies, relationships between lithologies, or the nature of any structural controls. The main aim of this programme is to generate geological data to develop an understanding of these parameters.
of data in relation to geological	sampling of possible structures and the extent to which this is known, considering the deposit type. • If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed	This programme is the first exploration drilling to test the supergene potential above the Lydia Shear Zone and as such insufficient data has been collected and compiled yet to be able to establish true widths, orientation of lithologies, relationships between lithologies, or the nature of any structural controls. The main aim of this programme is to generate geological data to develop an understanding of
of data in relation to geological structure	sampling of possible structures and the extent to which this is known, considering the deposit type. • If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	This programme is the first exploration drilling to test the supergene potential above the Lydia Shear Zone and as such insufficient data has been collected and compiled yet to be able to establish true widths, orientation of lithologies, relationships between lithologies, or the nature of any structural controls. The main aim of this programme is to generate geological data to develop an understanding of these parameters. Data collected so far presents no suggestion that any sampling bias has been introduced.
of data in relation to geological structure	sampling of possible structures and the extent to which this is known, considering the deposit type. • If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed	This programme is the first exploration drilling to test the supergene potential above the Lydia Shear Zone and as such insufficient data has been collected and compiled yet to be able to establish true widths, orientation of lithologies, relationships between lithologies, or the nature of any structural controls. The main aim of this programme is to generate geological data to develop an understanding of these parameters. Data collected so far presents no suggestion that any sampling bias has been introduced. When all relevant intervals have been sampled, the
of data in relation to geological	sampling of possible structures and the extent to which this is known, considering the deposit type. • If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	This programme is the first exploration drilling to test the supergene potential above the Lydia Shear Zone and as such insufficient data has been collected and compiled yet to be able to establish true widths, orientation of lithologies, relationships between lithologies, or the nature of any structural controls. The main aim of this programme is to generate geological data to develop an understanding of these parameters. Data collected so far presents no suggestion that any sampling bias has been introduced. When all relevant intervals have been sampled, the samples are collected and transported by company
of data in relation to geological structure	sampling of possible structures and the extent to which this is known, considering the deposit type. • If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	This programme is the first exploration drilling to test the supergene potential above the Lydia Shear Zone and as such insufficient data has been collected and compiled yet to be able to establish true widths, orientation of lithologies, relationships between lithologies, or the nature of any structural controls. The main aim of this programme is to generate geological data to develop an understanding of these parameters. Data collected so far presents no suggestion that any sampling bias has been introduced. When all relevant intervals have been sampled, the samples are collected and transported by company personnel to secure locked storage in Perth before delivery
of data in relation to geological structure	sampling of possible structures and the extent to which this is known, considering the deposit type. • If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	This programme is the first exploration drilling to test the supergene potential above the Lydia Shear Zone and as such insufficient data has been collected and compiled yet to be able to establish true widths, orientation of lithologies, relationships between lithologies, or the nature of any structural controls. The main aim of this programme is to generate geological data to develop an understanding of these parameters. Data collected so far presents no suggestion that any sampling bias has been introduced. When all relevant intervals have been sampled, the samples are collected and transported by company
of data in relation to geological structure Sample security	sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. The measures taken to ensure sample security.	This programme is the first exploration drilling to test the supergene potential above the Lydia Shear Zone and as such insufficient data has been collected and compiled yet to be able to establish true widths, orientation of lithologies, relationships between lithologies, or the nature of any structural controls. The main aim of this programme is to generate geological data to develop an understanding of these parameters. Data collected so far presents no suggestion that any sampling bias has been introduced. When all relevant intervals have been sampled, the samples are collected and transported by company personnel to secure locked storage in Perth before delivery by company personnel to the laboratory for assay.
of data in relation to geological structure Sample security	sampling of possible structures and the extent to which this is known, considering the deposit type. • If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. • The measures taken to ensure sample security.	This programme is the first exploration drilling to test the supergene potential above the Lydia Shear Zone and as such insufficient data has been collected and compiled yet to be able to establish true widths, orientation of lithologies, relationships between lithologies, or the nature of any structural controls. The main aim of this programme is to generate geological data to develop an understanding of these parameters. Data collected so far presents no suggestion that any sampling bias has been introduced. When all relevant intervals have been sampled, the samples are collected and transported by company personnel to secure locked storage in Perth before delivery by company personnel to the laboratory for assay.
of data in relation to geological structure	sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. The measures taken to ensure sample security.	This programme is the first exploration drilling to test the supergene potential above the Lydia Shear Zone and as such insufficient data has been collected and compiled yet to be able to establish true widths, orientation of lithologies, relationships between lithologies, or the nature of any structural controls. The main aim of this programme is to generate geological data to develop an understanding of these parameters. Data collected so far presents no suggestion that any sampling bias has been introduced. When all relevant intervals have been sampled, the samples are collected and transported by company personnel to secure locked storage in Perth before delivery by company personnel to the laboratory for assay.

Competent Person Statement

The details contained in this report that pertain to Exploration Results, Mineral Resources or Ore Reserves, are based upon, and fairly represent, information and supporting documentation compiled by Mr Costica Vieru, a Member of the Australian Institute of Geoscientists and a full-time employee of the Company. Mr Vieru has sufficient experience which is relevant to the style(s) of mineralisation and type(s) of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Vieru consents to the inclusion in this report of the matters based upon the information in the form and context in which it appears.

The release of this ASX announcement was approved and authorised by the Board.

For Further Information Contact: **ASX Code ORA GOLD LIMITED**

Philip Bruce Quoted Shares: 840.8M OAU +61 412 409555 / +61 8 9389 6927 **Unquoted Options** 60.4M (various prices)