

ASX Announcement

ASX Code: OKR

26 September 2019

OKAPI SECURES CONTROLLING PROJECT INTEREST IN MULTI-MILLION OUNCE GOLD PROVINCE IN DRC

Highlights

- Option secured to earn an initial 50% equity holding in the Tendao Gold Project ("Tendao Project") in the multi-million ounce Kilo-Moto Greenstone Belt of the Haut Uele Province, Democratic Republic of Congo
- The Kilo-Moto District hosts Barrick's world-class 13Moz (JORC M&I) Kibali Gold Project, one of the largest gold mines in Africa, that produced over 800koz in 2018
- The Tendao Gold Project is located within the north-east mineral trend of the Kilo-Moto Greenstone Belt which hosts other gold deposits within the district including the Giro and Moku deposits
- Geophysical data from previous owners has identified seven priority areas as defined from the interpretation of an 8,000km magnetics program
- Several drill-ready targets have been identified by previous owners including Barrick and Anglo
 American, with drilling planned to commence as soon as possible

Okapi Chairman, Mr. Klaus Eckhof commented, "Randgold previously called this area 'the world's hottest gold exploration ground' and I am pleased to again be involved in this world class gold district. Okapi has recently secured a cornerstone stake in the Australian listed entity, Amani Gold Limited (ASX:ANL), which manages and controls the multimillion ounce Giro Project, located immediately adjacent to the Tendao Gold Project. Technical work completed by past owners has identified several highly prospective, advanced mineralised targets, similar to those found within Barrick's Kibali Gold licence package. We will undertake an aggressive exploration program over the short-term to fully test and hopefully define significant resources at the project and move from explorer to producer."

Level 2, 8 Colin Street, West Perth WA 6005 | PO Box 520, West Perth WA 6872

Ph: +61 8 6117 9338 | FAX: +61 8 6118 2106 | www.okapiresources.com | ACN 619 387 085

Okapi Resources Limited (ASX:"OKR") ("Okapi" & "Company") is pleased to announce that Okapi has executed a Binding Term Sheet to earn an initial 50% equity right in Wanga Mining Company SARL (WMC). WMC holds a 100% interest in mineral licences PE5045, PE5050, PE5054, PE5069 and PE13062 located in the Democratic Republic of Congo ("DRC").

The tenements comprise the Tendao Gold Project, which was first mined in the early 1900's and has recorded historical drill intercepts of up to 43.3g/t Au. It should be noted that these results are from the 1940/50's and were obtained from the archives of SOKIMO in Watsa, DRC and no details regarding the nature of the results are available. All known historic drilling results are shown in Appendix I.

The Tendao Gold Project is potentially a significant, advanced gold project in what is a very well-endowed and under explored gold province in northern DRC. It is located in a district of multi-million ounce discoveries and hosts several immediate exploration targets defined by previous work.

The Tendao Gold Project covers an area of over 1,400km² and incorporates five exploitation licences (5045, 5050, 5054, 5069 and 13062) in the Haute Uele region of the Orientale Province, Democratic Republic of Congo (Figure 1). The concession area is situated on the western boundary of the Kilo-Moto Gold Belt. To the north, the Kibali River flows across the north-eastern corner of the licence. Along the western border, the Yebu River runs from south to north eventually flowing into the Kibali River. The Kibali Gold Project, owned by Barrick and Anglogold Ashanti, is situated 20 kilometres to the east of the Project licences. Within the Tendao Project area there are numerous sites of historical bedrock and placer gold mining. Many of these locations are now being exploited by local artisanal gold mining activities.

Figure 1: Tendao Gold Project Location Map

Key Terms of the Agreement

- Subject to Shareholders' approval, Okapi is to purchase a 50% equity interest in WMC from Mineral Invest International Congo AB (Mineral Invest) for a total amount of US\$7,500,000 paid in tranches as per below:
 - A non-refundable option fee of US\$500,000 upon execution of this agreement, allowing a 30 day Due Diligence period;
 - ii) Upon satisfaction of Due Diligence, a payment of US\$2,000,000 to be paid within 20 day of notification of decision to proceed (Tranche 1);
 - iii) A payment of US\$2,500,000 (Tranche 2) within 3 months of the date of the Tranche 1 payment;
 - iv) Final Tranche (Tranche 3) of US\$2,500,000 to be paid within 3 months of the date of Tranche 2 payment. Mineral Invest has the option to convert part or all of the Tranche 3 payment into Okapi ordinary shares, subject to shareholder and any regulatory approval. The conversion price will be based on a 30-day VWAP of Okapi shares traded on the ASX prior to the due date of Tranche 3.
 - v) Subject to Shareholders' and other regulatory approval including ASX Listing Rule 6.1, Performance Shares with the following vesting conditions, will be issued to Mineral Invest;

No	Milestone Hurdle	Number of shares
1	On the discovery of 1 million ounces of gold at 1.3g/t average to JORC Indicated standard	5,000,000
2	To the discovery of 2 million ounces of gold at 1.3g/t average to JORC Indicated standard	10,000,000
3	Upon the discovery of 5 million ounces of gold at 1.3g/t average to JORC Indicated standard	20,000,000

- Okapi will fund the Tendao Project's operations to the completion of a Definitive Feasibility Study.
- Okapi will have the first right of refusal with respect to the purchase of any equity quota held by the interests of the Tendao Project from the other parties.
- Subject to Shareholders and regulatory approval, Mr. Bijoux Lombeya Lotumbe will be appointed
 to the Board of Okapi and will be awarded 1,000,000 Performance Rights with the following
 vesting conditions:

No	Milestone Hurdle	Number of PR
1	The Company achieves and maintains a market capitalisation of A\$12 million or more for a 30-day period before the 31st December 2021	333,333
2	The Company has achieved and maintains a market capitalisation A\$18 million or more for a 30-day period before 31st December 2021	333,333
3	The Company achieves and maintains a market capitalisation A\$24 million or more for a 30-day period before 31 December 2021	333,334

The acquisition price will be funded through existing cash holdings and utilising the available placement capacity to complete a placement to potential sophisticated and professional investors. The Company will also seek shareholders' approval for immediate additional capacity to fund the balance of the acquisition price. A General Meeting will be called as soon as practicable.

Issue of Performance Rights

Subject to shareholders approval in the coming Annual General Meeting, the Directors will be issued Performance Rights with the following vesting conditions:

Tranche 1 shall vest if the Company has achieved and maintains a market capitalisation of A\$30 million or more for a 30-day period before 31st December 2024

Tranche 2 shall vest if the Company has achieved and maintains a market capitalisation of A\$40 million or more for a 30-day period before 31st December 2024

Tranche 3 shall vest if the Company has achieved and maintains a market capitalisation of A\$50 million or more for a 30-day period before 31st December 2024

Director	Position	Number of Performance Rights
Klaus Eckhof	Chairman	3,000,000
Nigel Ferguson	Managing Director	1,500,000
Michael Montgomery	Technical Director	750,000
Raymond Liu	Non-Executive Director	600,000

These Performance Rights will expire on 31st December 2024 and will vest in three equal tranches upon the milestones being achieved as described above.

In addition, and subject to shareholders approving the issue of the Performance Rights to the Directors, the Board will issue 5,850,000 Performance Rights to key employees and contractors under the Company's Performance Rights Plan. These Performance Rights will expire on 31st December 2024 and will vest in equal three tranches upon the milestones being achieved and on the same terms and conditions as the Directors Performance Rights as described above.

The Board recognises the importance of providing incentives not only to motivate, but also to retain and attract employees and contractors.

History of Discovery

The discovery of gold in the region occurred in the early 1900s. The Kilo-Moto gold belt was initially exploited by alluvial and placer mining, with later development of the primary gold deposits which were the source of the alluvial gold. Out of a reported 350t (11.25Moz) of gold produced in the Congo, some 90% has been from the Kilo-Moto Greenstone Belt (**Figure 2**).

Mining operations were originally undertaken by the Belgian Government via the Société des Mines d'Or de Kilo-Moto ("SOKIMO"), which was established in 1926. Most of the systematic mining activity within the Moto Gold Project areas was undertaken during the 1950s and early 1960s. After independence in 1960, gold production dropped sharply. Negligible amounts of gold are currently produced in the project area by artisanal workers and small-scale alluvial operations.

The Société changed its name to Offices des Mines d'Or de Kilo-Moto (OKIMO) in 1966.

A detailed assessment of the area was conducted on behalf of the Government of Zaire in 1991, with funding from the African Development Bank. This assessment included a significant amount of drilling to verify historical data.

Barrick Gold Corporation (BGC) acquired exploration rights over most of the Kilo-Moto belts in 1996 in joint venture with OKIMO and drilled a number of targets as well as completing regional and detailed soil sampling programs. At this time Barrick defined a major soil anomaly at the Kibali prospect.

In 1998, BGC entered into a joint venture with Anglo American Corporation (AAC), whereby AAC became the operator of the project. The BGC/AAC joint venture completed a number of drilling programs, mainly concentrated around the Kibali and Pakaka Prospects.

Kibali is now a joint venture between Barrick Gold Corporation (45%), AngloGold Ashanti (45%) and the Congolese parastatal SOKIMO (10%). The project is operated by Barrick and represents an investment of more than \$US2.5 billion by the partners developing the current Measured and Indicated Resources of some 126 Mt at 3.26 g/t Au for some 13 million ounces of gold.

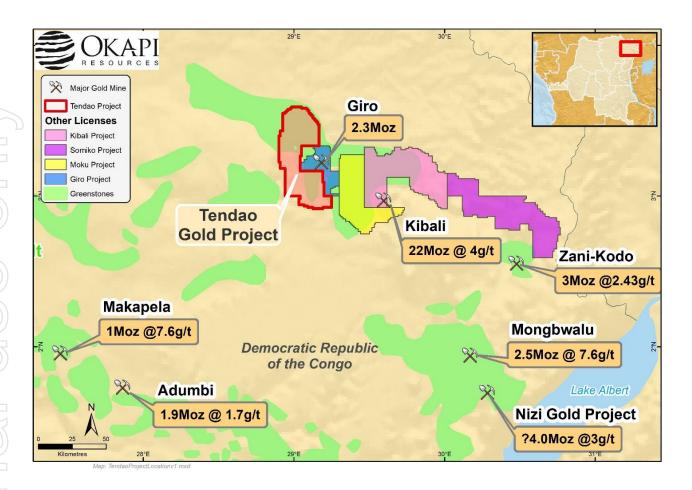


Figure 2: Greenstone Distribution showing Major Gold Mines

Geology of the District

The Kilo-Moto Goldfields are located within the Kilo and Moto greenstone belt, which comprises Archean Kibalian volcano-sedimentary rocks and ironstone-chert horizons metamorphosed to greenschist facies. They are cut by regional scale faults and are bounded to the north by the Middle Archaean West Nile granite-gneiss complex and cut to the south by the Upper Zaire granitic complex. The Kilo-Moto greenstone belt is part of the larger Congo Craton and is associated with greenstone and granite emplacement dated between 3,200-2,600 Ma and are associated with island arc tectonics.

The stratigraphy consists of a volcano-sedimentary sequence comprising fine-grained sedimentary rocks, several varieties of pyroclastic rocks, basaltic flow rocks, mafic-intermediate intrusions (dykes and sills) and intermediate-felsic intrusive rocks (stocks, dykes and sills). The rocks are variably altered. Gold mineralisation within the Kilo-Moto Belt is associated with epigenetic mesothermal style mineralisation, consistent with the majority of Archaean and Proterozoic greenstone terranes worldwide, including the Birimian Supergroup of West Africa, the Yilgarn Block in Western Australia, the Lake Victoria District in Tanzania and the Abitibi Greenstone Belt in Canada.

This style of mineralisation is generally associated with regionally metamorphosed terranes that have experienced a long history of thermal and deformational events. As such, the gold deposits are invariably structurally controlled. The most common style of mineralisation in this setting is fracture and vein-type gold mineralisation in zones of brittle to ductile dislocation.

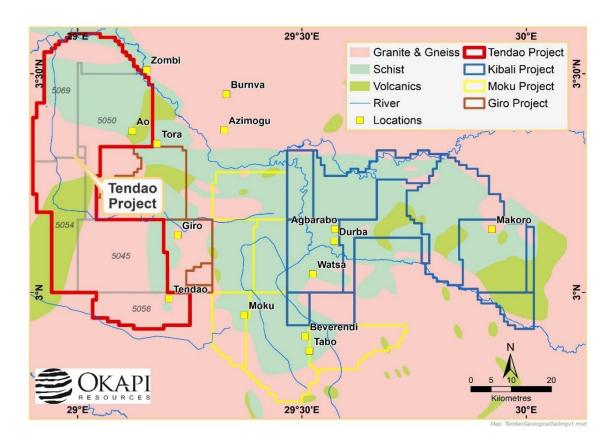


Figure 3: District Geology and Adjacent Properties

Tendao Gold Project

Locally the Tendao Project area is comprised of volcano-sedimentary rocks with intermediate intrusives and accompanying granitic rocks. Gold mineralisation has been observed to occur in several styles:

- Associated with quartz vein networks proximal to contacts of volcanoclastic sediments and intermediate intrusions;
- Quartz veins associated with the greenstone-granite contact;
- Gold associated with hematite veinlets within mafic rocks; and
- Alluvial gold.

Historic mining in the project area was originally performed by the Belgians in the early 1900s around the Ao and Tendao areas (**Figure 3**), with Tendao being the main area of production. Firstly, alluvials were mined and later mining focussed on the saprolite material associated with the primary deposit. The alluvials were generated by the shedding of material from the primary deposit along the contact of volcanic sediments and intermediate intrusives. Quartz veins along this contact are around 10 centimetres thick (**Figure 4**), grey to brown in colour and on occasions contain visible gold. Veins follow the trend of the contact and strike to the NNE and dip steeply dipping to the east. Work to date by previous owners has identified approximately one kilometre of strike extent to the intrusion which is around 200-300 metres wide. Away from the quartz veins the intrusive itself is of lower gold grade, which previous owners have quoted up to 3 grams/tonne in this unit. It is believed that gold grades within the intrusive unit are a function of the development of fracture porosity, the more fractured the better the gold mineralisation. Recent work by Mineral Invest International AB has documented sample results around the 'Old Belgian' workings at Tendao have returned grades in excess of 27 g/t Au (**Figure 5**).

It should be noted that any historical results, including results generated by Mineral Invest, have not been validated by Okapi and such validation will be part of future work programs.

Figure 4: Quartz Veining Along Intermediate Intrusive - Volcanic Sediment Contact at Tendao

The Tendao Mine processing plant operated from 1926 to 1956. The processed material included the extensive weathered bedrock 'saprolite' containing auriferous quartz veins and shear zones, and to a limited degree, their extension into the unaltered bedrock. Most of the saprolite has since been removed and the resultant ore processed. The unweathered bedrock underlying the saprolite was mined by open pit to a shallow depth of around 25 metres in 6 open pits.

The tailings from the processing plant were discharged into the Wanga river valley from which the gold bearing alluvial deposits had previously been exploited. Over 500 samples were taken from the Tendao tailings in 2011, these results are shown in Appendix II, and the results were included in resource work performed by SRK ES. Metallurgical test work was also reported as performed on Tendao tailings material at this time. Mineral Invest AB reports indicate this program included test work on:

- Tailings head grade
- Gravity recoverable gold
- Gold size distribution
- Mineralogy

Work on the Tendao alluvial resource by SRK ES was conducted by Mineral Invest International AB in 2011. Original data or the SRK ES report describing the resource work is unknown to Okapi and all reference to this work has been obtained from Mineral Invest internal reports and the robustness or conclusions of this work cannot be commented upon by Okapi and are thereby not included here.

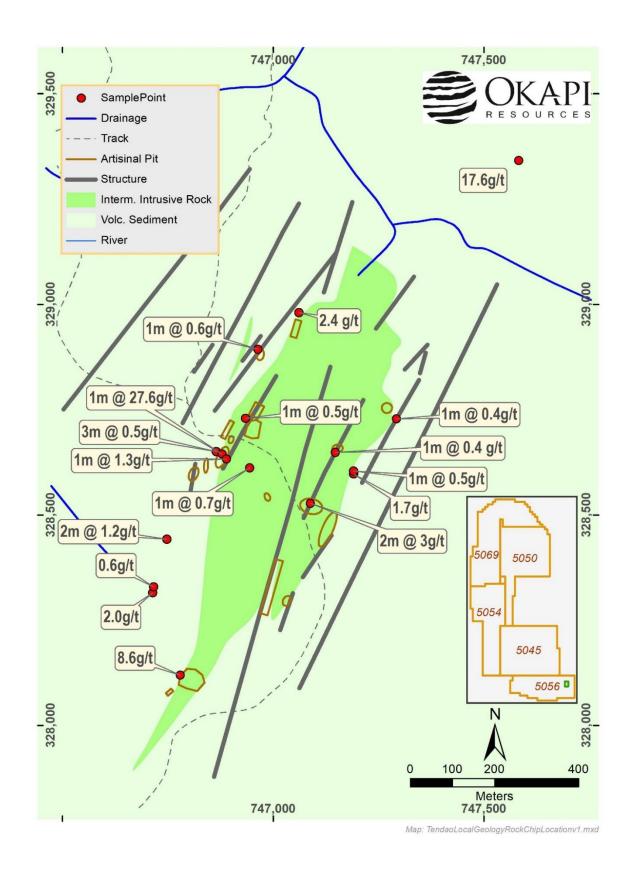


Figure 5: Tendao Local Geology and Rock Chip Sample Location from Mineral Invest International AB (Tendao December 2016 report - Mineral Invest AB Internal Report)

In 2012 New Resolution Geophysics flew almost 8,000 line kilometres of heliborne magnetics and radiometrics for Mineral Invest International AB. Geophysical data was reviewed and interpreted by SRK ES. Seven priority targets were the result of this interpretation (Figure 6 taken from the Mineral Invest AB internal report). The Airborne geophysical (magnetic and radiometric) survey was conducted between the 16 to 30 May 2012 by New Resolution Geophysics (NRG) of South Africa, using their helicopter borne 'Xplorer' system. A total of 7,957 line km were surveyed at an altitude of 20-30 m above the ground. Lines were flown in a west-east direction at a spacing of 200 m. North-south tie lines were also flown at a spacing of 2,000 m. SRK ES was supplied with the corrected and levelled geophysical databases, in Geosoft format, after completion of the survey in the latter part of June 2012.

Magnetic data was acquired from a horizontal gradient platform with Scintrex CS3 sensors separated by 13 m. Radiometric data was acquired using a RS-500 airborne gamma ray spectrometer. A total of 7,957 line km were surveyed at an altitude of 20 to 30 m above ground level. Lines were flown in an east - west direction at a spacing of 200 m. North - south tie lines were flown at a spacing of 2,000 m.

Original geophysical data has not been reviewed by Okapi and is the subject of further work by Okapi.

In addition to the work described above it is known from historical reports held at the Watsa offices of Sokimo that there have been historical activities undertaken by Sokimo in the Project area previously. These include extraction of gold from alluvial sources and waterways within the general project area. Although the exact areas sampled and mined are not known, it is expected that these mining activities would relate to the Tendao and Ao areas within active waterways.

Discovery and growth are integral to Okapi's business strategy. Exploration activities at Okapi are a combination of organic greenfields and brownfields exploration, augmented by identifying and securing exploration prospects at various stages of maturity through joint ventures with local entities. This approach is underpinned by the significant experience and success of Okapi's management within the DRC.

Tendao represents an advanced exploration project that fits perfectly into the Okapi asset portfolio. Okapi's management are confident that Tendao can be developed quickly to form a key project within the Okapi project pipeline as a lead asset in a gold portfolio within the Kilo Moto goldfields.

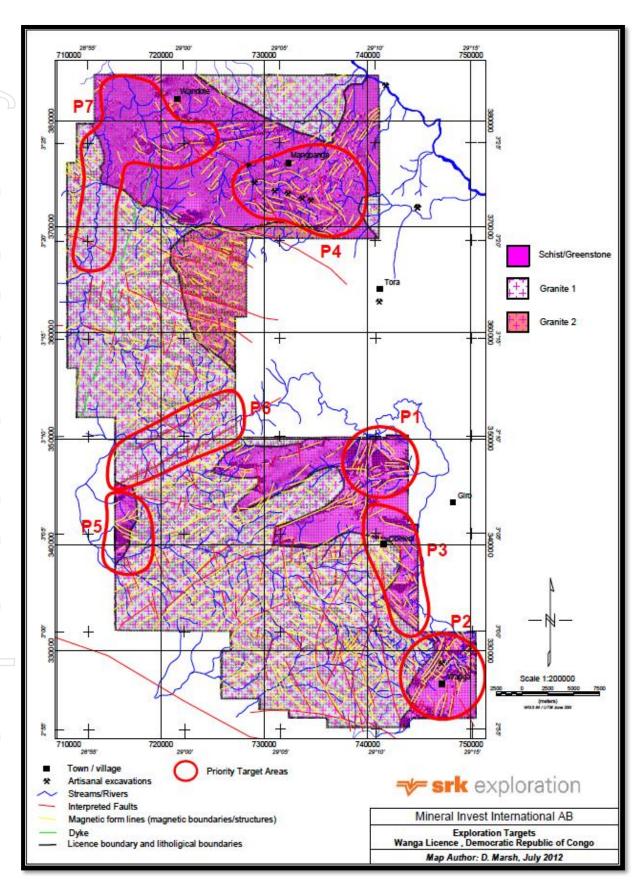


Figure 6: SRK ES Priority Exploration Targets - Tendao Gold Project (SRK 2012)

For further information please contact:

Leonard Math Nigel Ferguson Managing Director Company Secretary

Okapi Resources Ltd **Okapi Resources Ltd**

T: 08 6117 9338 **T:** 08 6117 9338

E: leonard.math@okapiresources.com

Competent Person's Statements

The information in this report that relates to Exploration Results is based on, and fairly represents information and supporting documentation compiled by Mr. Michael Montgomery, a Competent Person who is a member of The Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Mr. Montgomery is a consultant of Okapi Resources Limited. Mr. Montgomery has sufficient experience that is relevant to the style of mineralisation and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resource and Ore Reserves". Mr. Montgomery consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

About Okapi Resources

Okapi Resources Limited is a mineral exploration company focused on the discovery and commercialisation of mineral deposits in the Democratic Republic of the Congo (DRC) and Western Australia.

Our primary objective is to discover and develop mineral resources from our current portfolio and to also pursue a growth strategy that aims to appraise and secure further exploration and development opportunities within major world renowned gold and mineral endowed districts.

The Company carefully selects projects with historical workings and excellent results. Okapi has a team of professionals with an exemplary record of success and with a particular history in Western Australia and more so the Democratic Republic of Congo (DRC).

For more information please visit: www.okapiresources.com

1.1

0.8

0.7

0.4

1.8 2.2

0.5

0.80

0.70 0.50 0.70

g/t

Total Au g/t 2.15

1.00 7.20

1.50

1.15 2.00 5.00 3.00

1.25 2.25

4.50

1.15

22.50

1.00

1.00

2.00

1.00

1.10

3.90 2.50

1.00 1.00 <u>2.10</u>

1.30

1.05

2.20

1.90

0.75 0.120

0.50 0.60

1.30

1.90

2.00

3.10

0.70

0.40

APPENDIX 1 HISTORICAL EXPLORATION DRILLING RESULTS

TENDAO MINE, WANGA CIRCA 1945

Tendao Historical Drilling Miner	ralized Intersections
----------------------------------	-----------------------

	Date	Zone	Line	Hole ID	Intersec	tion (m)	Amalgam	Total	Interse	Zone	Line	Hole ID	Intersec	
	Nov-49	Zone	Line	1	From 51	To 52	g/t	Au g/t 1.00	Jun-50	Lone	Line	3b	From 38	To 39
					52	53		1.00					39	40
					65	66		2.00					40	41
					103 109	104 110		3.1 1.3					43 45	44 46
					110	111		1.0					47	48
					120	121	0.24	1.4					48	49
					124 126	125 127		1.0					49 50	50 51
7/5)					127	128		2.8					53	54
	Jan-50			1c	32	33		1.00					54	55
					47 54	48 55		2.10 3.30	May E0			. 4	57 27	58 28
\bigcirc	Nov-49			2	42	43.4		2.40	May-50			•	33	34
					51	52		3.60				,	34	35
					53	54		1.20					38	39
7	Oct-49			. 2a	54 72	55.2 73	1.60	<u>2.60</u> 4.60	Mar-50 Jul-50			4a 4c	86 33	87 34
	JUI-43			∡a	89	90	1.00	1.20	Jui-30			40	34	35
					90	91		1.20					36	37
					91 92	92 93	3.95	2.60 8.40					42 61	43 62
					99	100	3.80	1.60					62	63
					100	101	7.6	26.00					63	64
	F 1 50				101	102	1.95	5.60	May-50			5	41	42
	Feb-50			3	31 34	32 35		1.40 1.60					42 58	43 59
					35	36		1.10	Jun-50		•	5a	35	36
					37	38		1.60	Jun-50			6	27	28
					57	58		2.00	Jun-50				25	30
					58 59	59 60		1.00 <u>3.60</u>	Dec-50 Dec-50	II II		12 11	54 41	57 42
					60	61		1.10	Dec-50		•	13	32	33
					61	62		1.60	Dec-50	II	2	14	46	48
					62	63		1.50	Dec-50	II	1	. 15	49	51
					63	64		2.40	Dec-50	II	1	16	40	43
									Head Kilingobo					
					64	65		2.40	- North					
					65	66		2.00	Jan-51			18	38	39
					66	67		6.00	Tendao Cei			40	0.0	0.4
					69 70	70 71		2.70 1.70	Jan-51	III		19	9.0 9.4	9.4 9.8
					72	73		1.80					9.8	11.4
					75 70	76		2.20					11.4	11.9
					76 77	77 78		2.00 6.10					11.9 12.6	12.6 12.8
					78	79		3.60	Feb-51			20	27.0	28.0
\mathcal{I}					79	80		4.50	Feb-51		•	23	12.5	16.3
					80	81		3.20					30.0	31.3
					81 82	82 83		2.10 1.00	Mar-51			24	44.70 53.35	45.35 54.90
					83	84		1.00	Mar-51			25	62.36	63.16
	 		-		<u>84</u>	<u>85</u>		2.00	_				78.76	79.26
	May-50			3a	21	22		2.10	Mar-51		-	26	35.0	35.5
					22	23		7.80	May-51			27	12.4	12.7
					23	24		3.80	May-51			28	65.8	66.5
					27	28		1.50	May-51			29	34.5	34 9
					27 29	28 30		1.50 1.60	May-51			29	34.5	34.9
					29 30	30 31		1.60 <u>3.00</u>	May-51			29	34.5	34.9
					29	30		1.60	May-51			29	34.5	34.9

APPENDIX 2

TENDAO TAILINGS

SAMPLING DATA AND RESULTS 2011

Lab ID	Area	Sample ID	Hole ID	From	То	Depth	Sample Length	EASTING	NORTHING	Elevation	Au g/t	Comments
WT0001	Tailings 2	200/0-1	200-00	0	10	0,5	0,5	746377	328885	878	0,25	0.5m recovered
WT0001	Tailings 2	220/0-1	220-00	0	1	1	1	746358	328893	876	0,23	1m recovered Residual
WT0002	Tailings 2	240/0-1	240-00	0	1	'	- i	746340	328901	876	0,06	1m recovered Residual
WT0003	Tailings 2	240/0-1	240-00	1	2	1,3	0.3	740540	320301	0/0	0.06	0.3m recovered
WT0005	Tailings 2	360/0-1	360-00	0	1	1,0	1	746230	328951	873	0.09	U.SITTECOVETCO
WT0005	Tailings 2	360/0-1	360-00	1	2	2	1	740230	320931	0/3	0,09	Residual
WT0007	Tailings 2	380/0-1	380-00	0	1	1	1	746211	328960	874	0,17	1m recovered Residual
WT0007	Tailings 2	400/0-1	400-00	0	1	'	1	746195	328973	868	0,21	1m recovered
1			400-00	1	2	2	1	746193	320973	000		Residual
WT0009	Tailings 2	400/1-2	400.00					710170	000004	074	0,05	
WT0010	Tailings 2	420/0-1	420-00	0	1		1	746179	328984	871	0,06	1m recovered
WT0011	Tailings 2	420/1-2		1	2		1				0,05	
WT0012	Tailings 2	420/2-3	112.22	2	3	3	11				0,10	
WT0013	Tailings 2	440/0-1	440-00	0	1		1	746161	328994	865	0,08	Residual
WT0014	Tailings 2	440/1-2		1	2		1				0,09	Residual
WT0015	Tailings 2	440/2-3		2	3	ار	1				0,05	Residual
WT0016	Tailings 2	440/3-4	400.00		4	4	1	710115	000004	000	0,06	Residual
WT0017	Tailings 2	460/0-1	460-00	0	1		1	746145	329004	868	0,03	Residual
WT0018	Tailings 2	460/1-2		1	2	0.5	1				0,04	Residual
WT0019	Tailings 2	460/2-3	400.00	2	3	2,5	0,5	710100	000011	005	129	0.5m recovered, bottom is reddish rock
WT0020	Tailings 2	480/0-1	480-00	0	1		1	746126	329014	865	2,39	1m recovered in water possible contamination
WT0021	Tailings 2	480/1-2		1	2		1				0,06	1m recovered in water possible contamination
WT0022	Tailings 2	480/2-3	500.00	2	3	3	11	710111			0,04	1m recovered in water possible contamination
WT0023	Tailings 2	500/0-1	500-00	0	1	1	11	746111	329025	866	0,10	1m recovered in deep water
WT0024	Tailings 2	520/0-1	520-00	0	1	1	1	746095	329037	863	0,85	1m recovered in deep water
WT0025	Tailings 2	540/0-1	540-00	0	1	1	1	746077	329045	867	0,04	1m recovered in deep water
WT0026	Tailings 2	560/0-1	560-00	0	1	1	1	746062	329059	859	1,43	1m recovered in deep water Residual
WT0027	Tailings 2	580/0-1	580-00	0	1		1	746034	329071	869	0,07	
WT0028	Tailings 2	580/1-2		1	2		1				0,33	
WT0029	Tailings 2	580/2-3		2	3		1				0,55	Residual
WT0030	Tailings 2	580/3-4		3	4	3,2	0,2				6,31	0.20m yellow rock bottom
WT0031	Tailings 2	600/0-1	600-00	0	1	1	1	746014	329080	867	0,17	1m mixed material (closed pit)
WT0032	Tailings 2	260S5	260-100S	0	1		1	746315	328807	865	0,16	
WT0033	Tailings 2	260S5		1	2	2	1				0,22	
WT0034	Tailings 2	260S4	260-80S	0	1		1	746316	328825	873	0,16	1m recovered in water
WT0035	Tailings 2	260S4		1	2	1,6	0,6				1,66	0.60 m recovered in water
WT0036	Tailings 2	220S4	220-80S	0	1		1	746347	328807		0,28	
WT0037	Tailings 2	220S4		1	2		1				0,05	
WT0038	Tailings 2	220S4		2	3	2,7	0,7				0,19	0.7m
WT0039	Tailings 2	220S5	220-100S	0	1		1	746352	328790		0,19	
WT0040	Tailings 2	220S5		1	2	1,9	0,9				0,17	0.9m
WT0041	Tailings 2	240S3	240-60S	0	1		1	746333	328835		0,21	
WT0042	Tailings 2	240S3		1	2	1,9	0,9				0,1	0.9m
WT0043	Tailings 2	240S4	240-80S	0	1		1	746328	328816		0,13	
WT0044	Tailings 2	240S4		1	2		1				0,34	
WT0045	Tailings 2	240S4		2	3	1,85	0,85				1,56	0.85m
WT0046	Tailings 2	240S5	240-100S	0	1		1	746328	328798		3,98	
WT0047	Tailings 2	240S5		1	2	1,3	0,3				0,29	0.30m
WT0048	Tailings 2	280S2	280-40S	0	1	,	1	746302	328870		0,08	
WT0049	Tailings 2	280S2		1	2		1				0,13	
WT0050	Tailings 2	280S2		2	3	2,3	0,3				0,45	0.30m

V	_	Area	Sample ID	Hole ID	From	То	Depth	Sample Length	EASTING	NORTHING	Elevation	Au g/t	Comments
٧	WT0051	Tailings 2	280S3	280-60S	0	1		1	746299	328850		0,44	
	WT0052	Tailings 2	280S3		1	2	1,9	0,9				0,38	0.9m
114	WT0053	Tailings 2	280S4	280-80S	0	1		1	746303	328829		0,21	
_	WT0054	Tailings 2	280S4		1	2	2	1				0,39	
	WT0055	Tailings 2	280S5	280-100S	0	1			746301	328807			No Sample
_	WT0056	Tailings 2	280S5		1	2	1,8	0,8				0,52	0.8m
	WT0057	Tailings 2	260S3	260-60S	0	1	1	1	746319	328842		0,14	
	WT0058	Tailings 1	T1-1	Not on grid	0	1		1	746583	329136	875	0,96	1m channel sampled with auger
V	WT0059	Tailings 1	T1-1		0	1		1				0,96	duplicate
	WT0060	Tailings 1	T1-1		1	2		1				1,21	1m channel sampled with auger
_	WT0061	Tailings 1	T1-1		2	3	3	1				1,24	1m channel sampled with auger
_	WT0062	Tailings 1	T1-1	Not on grid					746583	329136		3,00	31.5kgs of process sample
	WT0063	Tailings 1	T1-4	Not on grid	0	1		1	746568	329253	870	1,73	1m channel sampled with shovel
-	WT0064	Tailings 1	T1-4		0	1		1				1,72	duplicate
- N /	WT0065	Tailings 1	T1-4		1	2	_	1				1,43	1m channel sampled with shovel
	WT0066	Tailings 1	T1-4		2	3	3	1	7.10500	000050		3,22	1m channel sampled with shovel
	WT0067	Tailings 1	T1-4	Not on grid					746568	329253	070	1,61	31.5kgs of process sample
- 1	WT0068	Tailings 1	T1-7	Not on grid	0	1 1		1	746653	329227	873	2,40	1m channel sampled with shovel
	WT0069	Tailings 1	T1-7		0	1		1				2,19	duplicate
	WT0070	Tailings 1	T1-7		1	2		1				1,36	1m channel sampled with shovel
	WT0071 WT0072	Tailings 1 Tailings 1	T1-7 T1-7		2	3 3,5	3,5	0,5				1,52 1,63	1m channel sampled with shovel 0,5m channel sampled with shovel
	WT0072 WT0073	Tailings 1	T1-7	Not on grid	3	3,3	3,3	0,0	746653	329227		1,81	22.5kgs of process sample
	WT0073	Tailings 1	T1-7	Not on grid	0	-1		- 1	746536	329212	874	1,01	1m channel sampled with auger
	WT0074 WT0075	Tailings 1	T1-9	Not on grid	0	1		1	746036	329212	0/4	1,21	duplicate
-1/	WT0076	Tailings 1	T1-9		1	2		1				1,36	1m channel sampled with auger
- 1	WT0077	Tailings 1	T1-9		2	3	3	1				1,18	1m channel sampled with auger
\ <u></u>	WT0077	Tailings 1	T1-9	Not on grid		3	3	'	746536	329212		2,31	22kgs of process sample
-	WT0079	Tailings 1	T1-2-0	Not on grid	0	1		1	746579	329171	863	0,46	Sample for to test, taken on the first meter
	WT0075	Tailings 1	T1-2-1	Not on grid	0	1 1		1	740075	023171	000	0,46	Sample for to test, taken on the mist meter
- 1	WT0081	Tailings 1	T1-2-2		1	2		1				0,90	
	WT0082	Tailings 1	T1-2-3		2	3	3	i i				0,79	Water met at 2.20m depth
	WT0083	Tailings 1	T1-3-0	Not on grid	0	1		1	746577	329217	862	0,93	
	WT0084	Tailings 1	T1-3-1	. tot on g.i.a	Ō	l i		1		0202	552	1,75	
	VT0085	Tailings 1	T1-3-2		1	2	2	1				2,44	Water met at 2.20m depth
-	WT0086	Tailings 1	T1-5-0	Not on grid	0	1	1	1	746564	329295	858	1,49	Alluvial tailings
V	WT0087	Tailings 1	T1-6-0	Not on grid	0	1		1	746618	329215	865	1,87	-
	WT0088	Tailings 1	T1-6-1	J	1	2		1				1,19	Water met at 2.10m depth
	WT0089	Tailings 1	T1-6-2		0	₹ +1	3	1				1,38	Taken at the top of the removal material
_	WT0090	Tailings 1	T1-8-0	Not on grid	0	1		1	746695	329226	859	1,92	
V	WT0091	Tailings 1	T1-8-1		0	1		1				0,07	
	VT0092	Tailings 1	T1-8-2		1	2		1				0,08	Water met at 2.00m
	WT0093	Tailings 1	T1-10-0	Not on grid	0	1		1	746496	329213	860		
V	WT0094	Tailings 1	T1-10-1		0	1		1					
V	VT0095	Tailings 1	T1-10-2		1	2	2,5	1,5					1.50m recovered, water met at 1.40m dept
I	No Sample	Tailings 1	T1-11-0	Not on grid	0	1			746458	329217	860		No tailings but saprolite red to brownish, fi
	No Sample			300S1	0	1		1	746284	328923	875		No tailings recovered
- N	No Sample	Tailings 2		300S2	0	1		1	746284	328904	870		No tailings recovered
	WT128	Tailings 2	300S3/0-1	300S3	0	1		1	746283	328884	869	1,27	Original yellowish clay material
	WT129	Tailings 2	300S3/1-2		1	2		1				0,28	Original fine clay material
	WT130	Tailings 2	300S3/2-3		2	3		1				0,22	Original fine to coarse material
/\v	WT135	Tailings 2	300S5/0-1	300S5	0	1		1	746279	328842	869	1,01	Original gravely sand

Lab ID	Area	Sample ID	Hole ID	From	То	Depth	Sample Length	EASTING	NORTHING	Elevation	Au g/t	Comments
WT131	Tailings 2	300S3/3-4		3	4		1		-		0,39	Original coarse material
WT132	Tailings 2	300S3/4-5		4	5		1				0,09	Original fine clay material
WT133	Tailings 2	300S3/5-6		5	6	5.4	0,4				0,39	Original greenschist
WT134	Tailings 2		300S4	0	1	1	1	746281	328861	871	0,08	Original gravely sand
WT134 WT136			30034	- 1	<u> </u>	'		740201	320001	071		
	Tailings 2				2	2.7	1				1,01	Original gravely sand
WT137	Tailings 2			2	3	2,7	0,7				1,38	Original gravel
WT138		DUPLICATE		_		4	1					Original control element
WT139	Tailings 2	300S6/0-1	300S6	0	1		1	746277	328820	868	1,40	Original fine clay material
WT140	Tailings 2	300S6/1-2		1	2		1				0,45	Original fine clay material
WT141	Tailings 2	300\$6/2-3		2	3	3	1				0,2	Original fine clay material
WT142	Tailings 2	340S1/0-1	340S1	0	1		1	746247	328939	873	0,97	Original fine clay material
WT143	Tailings 2	340S1/1-2		1	2		1				0,22	Original fine clay material
WT144	Tailings 2	340S1/2-3		2	3	3	0,4				5,95	Original hole collapse
WT145	Tailings 2	340S2/0-1	340S2	0	1		1	746243	328920	870	0,74	mixed waste material
WT146	Tailings 2	340S2/1-2		1	2		1				0,14	mixed waste material
WT147	Tailings 2	340S2/2-3		2	3		1				0,26	Original fine clay material
WT148	Tailings 2	340S2/3-4		3	4	3.7	0,7				0,13	Original fine clay material
WT149	Tailings 2	340S3/0-1	340S3	0	1	-,.	1	746245	328895	872	0,19	Original fine clay material
WT150	Tailings 2	340S3/1-2	54005	1	2		1 1	140243	320033	012	1,48	Original medium clayey material
WT150 WT151	Tailings 2	340S3/1-2 340S3/2-3		2	3		4				0,3	Original medium clayey material
WT151	Tailings 2	340S3/2-3		3	4		1 1				0,3	Original hedium clayey material Original bad recovery
WT152 WT153	Tailings 2	340S3/4-5		4	5		1 1				0,13	Original bad recovery Original bad recovery
					_	F F2	0.50					
WT154	Tailings 2	340S3/5-6		5	6	5,53	0,53	710011			0,07	Original saprolite greenschist
WT155	Tailings 2	340S4/0-1	340S4	0	1		1 1	746244	328878	874	0,22	Original fine clay material
WT156	Tailings 2	340S4/1-2		1	2		1				0,7	Original consolidate material
WT157	Tailings 2	340S4/2-3		2	3		1				0,23	Original consolidate material
WT158	Tailings 2	340S4/3-4		3	4		1				0,3	Original consolidate material
WT159	Tailings 2	340S4/4-5		4	5		1				0,05	Original consolidate material
WT160	Tailings 2	340S4/5-6		5	6	5,56	0,56				0,64	Original greenschist
WT161	Tailings 2	340S5/0-1	340S5	0	1		1	746245	328855	870	0,25	Original fine claymaterial
WT162	Tailings 2	340S5/1-2		1	2		1				0,13	Original fine claymaterial
WT163	Tailings 2	340S5/2-3		2	3		1				6,59	Original coarse material
WT164	Tailings 2	340S5/3-4		3	4		1				0,095	Original bad recovering
WT165	Tailings 2	340S5/4-5		4	5	4,85	0,85				0,06	Original greenschist rock
WT166	Tailings 2	340S6/0-1	340S6	0	1		1	746242	328836	873	0,06	Original fine clay material
WT167	Tailings 2	340S6/1-2		1	2		1				0,05	Original fine clay material
WT168	Tailings 2	340\$6/2-3		2	3		i i				0,36	Original fine to coarse material
WT169		340S6/3-4		3	4	2.7					0,30	
	Tailings 2		20004	_	4	3,7	0,7	740046	220055	074		Original greenschist rock
WT170	Tailings 2	380S1/0-1	380S1	0	1		1	746210	328955	874	0,35	Original coarse material
WT171	Tailings 2	380S1/1-2		1	2		1 1				0,35	Original coarse material
WT172	Tailings 2	380\$1/2-3		2	3	_	1				2,04	Original coarse material
WT173	Tailings 2	380S1/3-4		3	4	4	1				1,50	Original greenschist rock
WT174	Tailings 2	380S2/0-1	380S2	0	1		1	746207	328942	871	0,11	Original fine clay material
WT175	Tailings 2	380S2/1-2		1	2		1				0,09	Original fine clay material
WT176	Tailings 2	380S2/2-3		2	3		1				0,23	Original fine clay material
WT177	Tailings 2	380S2/3-4		3	4	3,45	0,45				0,85	Original hard rock
WT178	Tailings 2	380S3/0-1	380S3	0	1		1	746204	328914	867	0,1	Original fine clay material
WT179	Tailings 2	380S3/1-2		1	2		1				0,32	Original fine clay material
WT180	Tailings 2	380S3/2-3		2	3		i				0,09	Original fine clay material
WT181	Tailings 2	380S3/3-4		3	4		l i				0,03	Original fine clay material
WT182	Tailings 2	380S3/4-5		4	5	4,7	0,7				0,13	Original greenschist
WT183	Tailings 2	380S4/0-1	380S4	0	4	4,1	4	746204	328894	866	0,13	Original fine clay material
		20004/0-1	30034				1	740204	320094	000		
WT184	Tailings 2	380S4/1-2		1	2		1 1				0,15	Original fine clay material
WT185	railings 2	380S4/2-3		2	3		1				0,07	Original fine clay material

Lab ID	Area	Sample ID	Hole ID	From	То	Depth	Sample Length	EASTING	NORTHING	Elevation	Au g/t	Comments
WT186	Tailings 2	380\$4/3-4		3	4		1				0,15	Original fine clay material
WT187	Tailings 2	380S4/4-5		4	5	4,8	0,8				0,08	Original greenschist rock
WT188	Tailings 2	380S5/0-1	380S5	0	1		1	746202	328874	866	0,12	Original fine clay material
WT189	Tailings 2	380S5/1-2		1	2		1				0,09	Original fine clay material
WT190	Tailings 2	380S5/2-3		2	3		1				0,08	Original fine clay material
WT191	Tailings 2	380S5/3-4		3	4	3,7	0,7				0,39	Original greenschist
WT192	Tailings 2	380S6/0-1	380S6	0	1		1	746199	328851	869	0,08	Original fine clay material
WT193	Tailings 2	380S6/1-2		1	2		1				0,06	Original fine clay material
WT194	Tailings 2	380S6/2-3		2	3		1				0,07	Original fine clay material
WT195	Tailings 2	380S6/3-4		3	4	3,25	0,25				0,12	Original greenschist
WT196	Tailings 2	420S1/0-1	420S1	0	1		1	746173	328970	874	0,12	Original fine clay material
WT197	Tailings 2	420S1/1-2		1	2		1				0,15	Original clay material+rocks
WT198	Tailings 2	420S1/2-3		2	3		1				0,67	Original clay material+rocks
WT199	Tailings 2	420S1/3-4		3	4	3,13	0,13				0,73	Original greenschist
WT200	Tailings 2	420S2/0-1	420S2	0	1		1	746169	328947	871	0,09	Original fine clay material in water
WT201	Tailings 2	420S2/1-2		1	2		1				0,2	Original clayey sand
WT202	Tailings 2	420S2/2-3		2	3		1				1,85	Original coarse material
WT203	Tailings 2	420S2/3-4		3	4	3,47	0,47				1,05	Original greenschist
WT204	Tailings 2	420S3/0-1	420S3	0	1		1	746166	328933	871	0,17	Original fine clayey material in water
WT205	Tailings 2	420S3/1-2		1	2	1	1				0,1	Original fine clayey material
WT206	Tailings 2	420S3/2-3		2	3		1				0,11	Original fine clayey material
WT207	Tailings 2	420S3/3-4		3	4	3,4	0,4				0,04	Original greenschist
WT208	Tailings 2	420S4/0-1	420S4	0	1		1	746157	328910	875	0,12	Original fine clayey material
WT209	Tailings 2	420S4/1-2		1	2		1				1,39	Original coarse material
WT210	Tailings 2	420S4/2-3		2	3		1				0,61	Original fine clayey material
WT211	Tailings 2	420S4/3-4		3	4	3,6	0,6				0,12	Original fine clayey material
WT212	Tailings 2	420S5/0-1	420S5	0	1	<i>'</i>	1	746158	328893	865	0,17	Original fine clayey material
WT213	Tailings 2	420S5/1-2		1	2		1				0,16	Original fine clayey material
WT214	Tailings 2	420S5/2-3		2	3		1				0,14	Original fine clayey material
WT215	Tailings 2	420S5/3-4		3	4		1				0,1	Original fine clayey material
WT216	Tailings 2	420S5/4-5		4	5	4,4	0.4				0,07	Original fine clayey material
WT217	Tailings 2	420N1/0-1	420N1	0	1		1	746178	328992	872	0,1	Original fine clayey material
WT218	Tailings 2	420N1/1-2		1	2		1				11,5	Original fine clayey material
WT219	Tailings 2	420N1/2-3		2	3		1				0,49	Original fine clayey material
WT220	Tailings 2	420N1/3-4		3	4	3,3	0,3				0,25	Original greenschist
WT221	Tailings 2	420N2/0-1	420N2	0	1	-	1	746178	328008	870	2,46	Original fine clayey material
WT222	Tailings 2	420N2/1-2		1	2	2	1				0,24	Original fine clayey material
WT223	Tailings 2	460S1/0-1	460S1	0	1		1	746135	328985	865	0,21	Original fine clayey material
WT224	Tailings 2	460S1/1-2		1	2		i i		020000	000	0,13	Original fine clayey material
WT225	Tailings 2	460S1/2-3		2	3	3	1 1				0,07	Original fine clayey material
WT226	Tailings 2	460S2/0-1	460S2	0	1		i i	746133	328969	870	0,14	Original greenschist
WT227	Tailings 2	460S2/1-2	40002	1	2	1	1 1	140100	020000	0.0	0,14	Original fine clayey material
WT228	Tailings 2	460S2/2-3		2	3	3	1 i				0,13	Original fine clayey material
WT229	Tailings 2	460N1/0-1	460N1	0	1		1	746135	329006	867	0,14	Original greenschist
WT230	Tailings 2	460N1/1-2	400111	1	2	1,5	0,5	140133	323000	001	0,14	Original fine clayey material
WT231	Tailings 2	460N2/0-1	460N2	0	1	1,0	1	746142	329028	867	0,03	Original greenschist
WT231	Tailings 2	460N2/1-2	4001112	1	2	1,3	0,3	140142	323020	001	2,68	Original fine clayey material
WT232		500S1/2-3	500S1	2	3	0,7	0,3	746101	328998	868	0,10	Original greenschist
				2	_							
WT234	Tailings 2	500N1/2-3	500N1	2	3	0,5	0,5	746100	329019	874	0,06	Original greenschist in water
WT235	Tailings 2	500N2/2-3	500N2	2	3	0,4	0,4	746103	329038	867	0,16	Original greenschist in water
WT236	Tailings 2	500N3/0-1	500N3	2	3	0,6	0,6	746103	329057	867	0,065	Original greenschist in water
WT237	Tailings 3	T3-1/1	T3-1	0	1		1	745555	329206	866	0,24	Original fine grained, reddish clayed mate
WT238	Tailings 3	T3-1/2		1	2	2	1				0,21	Original fine grained, brownish clayed ma
WT239	Tailings 3	T3-2/1	T3-2	0	1		1	745518	329214	867	0,34	Original fine grained, reddish clayed mate

WITCOC	Area	Sample ID	Hole ID	From	To	Depth	Sample Length	EASTING	NORTHING	Elevation	Au g/t	Comments
WT296	Tailings 3	T3-28/1	T3-28	0	1	1	1	745728	329605	872	1,895	Original medium grained, reddish material
WT297	Tailings 3	T3-29/1	T3-29	0	1		1	745727	329586	868	0,77	Original medium grained, yellowish material
WT298	Tailings 3	T3-29/2	1.0 20	ĭ	2		1		520000	-	0,87	Original medium grained, yellowish material
WT299	Tailings 3	T3-29/3		2	3	3	1				1,13	Original fine grained, reddish clayed materia
WT300	Tailings 3	T3-30/1	T3-30	0	1		1	745728	329567	865	0,82	Original medium grained, vellowish material
WT300	Tailings 3	T3-30/1	13-30	1	2		1	143120	323301	000	0,82	Original medium grained, yellowish material
WT302	Tailings 3	T3-30/2		2	3		1				1,25	Original fine grained, reddish material
WT302	Tailings 3	T3-30/4		3	4	4	1				1,25	Original fine grained, reddish rhaterial Original fine grained, reddish clayed materia
WT304	Tailings 3	T3-30/4	T3-31	0	1	+ +	1	745730	329546	864	1,03	Original line grained, reddish clayed materia
WT304 WT305	Tailings 3	T3-31/1	13-31	4	2	1,5	0,5	145130	323340	004	1,53	Original line grained, reddish clayed material
			T2 22	0	4	1,5		745730	329513	863	•	waste material medium grained, yellowish materia
WT306	Tailings 3	T3-32/1	T3-32	0	1	2	1	145130	329513	003	3,93	
WT307	Tailings 3	T3-32/2	T2 22	1	2		1	745000	220000	000	0,92	waste material very fine grained, brownish o
WT308	Tailings 3	T3-33/1	T3-33	0	1		1	745688	329609	866	3,91	Original medium grained, yellowish materia
WT309	Tailings 3	T3-33/2	T0.0:	1	2	1,5	0,5	745005	00055	000	0,72	Original very fine grained, brownish clayed
WT310	Tailings 3	T3-34/1	T3-34	0	1	1	1	745685	329591	863	0,77	Original medium grained, reddish clayed ma
WT311	Tailings 3	T3-35/1	T3-35	0	1	1	0,7	745682	329571	863	0,62	Original very fine grained, brownish clayed
WT312	Tailings 3	T3-36/1	T3-36	0	1		1	745683	329551	863	1,13	Original medium grained, yellowish material
WT313	Tailings 3	T3-36/2		1	2		1				0,53	Original medium grained, reddish clayed ma
WT314	Tailings 3	T3-36/3		2	3	3	1				1,13	Original very fine grained, brownish clayed
WT315	Tailings 3	T3-37/1	T3-37	0	1	1	1	745695	329644	862	2,07	waste materialmedium grained, yellowish m
WT316	Tailings 3	T3-38/1	T3-38	0	1	1	1	745648	329621	864	1,03	Original medium grained, reddish clayed ma
WT317	Tailings 3	T3-39/1	T3-39	0	1	1	1	745653	329596	869	0,08	waste material medium grained, brownish of
WT318	Tailings 3	T3-40/1	T3-40	0	1	1	1	745650	329578	871	0,39	Original fine grained, brownish clayed mate
WT319	Tailings 3	T3-41/1	T3-41	0	1		1	745649	329556	869	0,49	Original fine grained, reddish clayed materia
WT320	Tailings 3	T3-41/2		1	2	1,7	0,7	. 13043	020000	333	0,80	Original fine grained, reddish clayed materi
WT321	Tailings 3	T3-41/2	T3-42	0	1	1,1	1	745651	329537	868	2,09	Original coarse grained, reddish material
WT321	Tailings 3	T3-42/1	13-42	1	2	2	1	743031	323331	000	1,39	Original coarse grained, reddish material
WT323		T3-42/2	T3-43	0	4		1	745652	329642	863	1,39	Original coarse grained, reddish material Original fine grained, reddish clayed materia
WT324	Tailings 3	T3-43/1	13-43	4	2	2	1	140002	323042	003	1,30	
	Tailings 3		T2 44	1				745007	220027	004		Original fine grained, reddish clayed materia
WT325	Tailings 3	T3-44/1	T3-44	0	1	_	1	745607	329627	864	1,46	Original medium grained, reddish clayed ma
WT326	Tailings 3	T3-44/2	T2 45	1	2	2	1	745007	220000	005	1,08	Original coarse grained, reddish material
WT327	Tailings 3	T3-45/1	T3-45	0	1		1	745607	329609	865	1,87	Original medium grained, yellowish material
WT328	Tailings 3	T3-45/2		1	2	_	1				0,56	Original medium grained, yellowish material
WT329	Tailings 3	T3-45/3		2	3	3	1				0,47	Original fine grained, reddish clayed materia
WT330	Tailings 3	T3-46/1	T3-46	0	1	_	1	745606	329587	863	0,49	Original medium grained, yellowish material
WT331	Tailings 3	T3-46/2		1	2	2	1				0,21	Original coarse grained, grey clayed materia
WT332	Tailings 3	T3-47/1	T3-47	0	1		1	745604	329563	858	0,25	Original fine grained, yellowish clayed mate
WT333	Tailings 3	T3-47/2		1	2	2	1				0,28	Original fine grained, yellowish clayed mate
WT334	Tailings 3	T3-48/1	T3-48	0	1		1	745608	329643	860	1,41	Original coarse grained, brownish material
WT335	Tailings 3	T3-48/2		1	2	2	1				3,47	Original coarse grained, reddish material
WT336	Tailings 3	T3-49/1	T3-49	0	1	1	1	745611	329666	863	0,79	Original medium grained, brownish clayed r
	Tailings 3		T3-50	0	1	1	1	745574	329628	870		Original No tailings recovered
	Tailings 3		T3-51	0	1	1	1	745574	329628	870		Original No tailings recovered
WT337	Tailings 3	T3-52/1	T3-52	0	1		1	745570	329612	870	1,25	Original coarse grained, brownish material (
WT338	Tailings 3	T3-52/2	1	1	2	2	i				1,94	Original coarse grained, brownish material
	Tailings 3		T3-53	0	1	1	1	745574	329595	867	.,	Original No tailings recovered
	Tailings 3		T3-54	0	1	1	1	745571	329575	866		Original No tailings recovered
	Tailings 3	T3-55/1	T3-54	0	1	'	1	745569	329673	869	1,03	Original medium grained, reddish clayed ma
WT339	Tailings 3	T3-55/2	13-33	1	2	2	1 1	140000	323013	003	0,69	Original medium grained, reddish clayed ma

ſ	Lab ID	Area	Sample ID	Hole ID	From	То	Depth	Sample Length	EASTING	NORTHING	Elevation	Au g/t	Comments
	WT341	Tailings 3	T3-56/1	T3-56	0	1		1	745572	329685	864	0,79	Original medium grained, brownish clayed material
	WT342	Tailings 3	T3-56/2		1	2		1				0,64	Original medium grained, brownish clayed material 1
	WT343	Tailings 3	T3-56/3	T0 57	2	3	3	1	745050	000500	000	0,49	Original fine grained, brownish clayed material
	WT344 WT345	Tailings 3 Tailings 3	T3-57/1 T3-57/2	T3-57	0	1 2		1	745858	329560	866	0,83 0,99	Original medium grained, reddish clayed material Original medium grained, reddish clayed material
	WT346	Tailings 3	T3-57/3		1 2	3	3	1 1				1,96	Original medium grained, reddish clayed material
	WT347	Tailings 3	T3-58/1	T3-58	0	1	<u> </u>	1	745858	329540	868	0,44	waste material medium grained, reddish clayed mate
	WT348	Tailings 3	T3-58/2		1	2	2	1				1,21	Original coarse grained, brownish material in swamp
	WT349	Tailings 3	T3-59/1	T3-59	0	1	1	1	745546	329105	857	0,38	Original fine grained, yellowish clayed material in swa
	WT350	Tailings 3	T3-60/1	T3-60	0	1	1	1	745548	329086	865	0,33	Original fine grained, brownish clayed material in swa
	WT351	Tailings 3	T3-61/1	T3-61	0	1	4.0	1	745486	329218	866	0,3	Original fine grained, reddish clayed material
	WT352	Tailings 3	T3-61/2		1	2	1,6	0,6				0,36	Original fine grained, reddish clayed material
<i>a</i> s													
20													
02													
	_ 1												
90													
20													
(T													
as													
													20 24
													20 24

Tendao Gold Project PEs 5054, 5050, 5054, 5069 & 13062 **Checklist of Assessment and Reporting Criteria**

JORC Table Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections)

Criteria	Explanation
	No sampling has been undertaken by The Company and any reference to sampling data relates to historic work by various previous owners. Nothing is known in regard to the sampling methodology or analytical techniques relating to these results.
Sampling	No comment can be made on sample representative as Okapi has not undertaken any sampling.
Techniques	No comment can be made on the materiality of historic samples by Okapi.
	The samples will not be used for any purpose other than indicating potential mineralised areas. The results will not be used for resource estimations. And further work is planned to validate results generated by previous owners
Drilling Techniques	Not applicable at this stage as no drilling has been undertaken by The Company as yet. All references to drilling refer to historic work and is clearly described as such. No details are known by The Company in regard to previous drilling programs except historic results obtained from internal reports of other companies or those found in SOKIMO archives which do not describe drilling techniques.
Drill Sample Recovery	Not applicable at this stage as no drilling has been undertaken by The Company as yet. All references to drilling refer to historic work and is clearly described as such. No details are known by The Company in regard to previous drilling programs except historic results obtained from internal reports of other companies or those found in SOKIMO archives which do not describe details relating to sample recovery.
Logging	Not applicable at this stage as no drilling has been undertaken by The Company as yet. All references to drilling refer to historic work and is clearly described as such. No details are known by The Company in regard to previous drilling programs except historic results obtained from internal reports of other companies or those found in SOKIMO archives which do not describe details relating to logging techniques.

	Sub-sampling techniques and sample preparation	No sampling has been conducted by The Company, all results referred to are historic by nature and sampling techniques are unknown. No details are known by The Company in regard to previous drilling programs except historic results obtained from internal reports of other companies or those found in SOKIMO archives which do not describe details relating to sub sampling techniques and sample preparation. It is not known if they are representative of the material sampled. The samples will not be used for resource estimations. No core has been collected.
	Quality of assay data and laboratory tests	The analytical techniques are not known as results referred to are historic. No duplicate or certified reference materials are known of. No details are known by The Company in regard to previous drilling programs except historic results obtained from internal reports of other companies or those found in SOKIMO archives which do not describe details relating to assay data or analytical techniques so their appropriateness cannot be commented on by The Company.
	Verification of sampling and assaying	None conducted at this early stage and are planned to be included in upcoming work.
)	Location of data points	How the sample positions were recorded are unknown. They are located in WGS84 datum, UTM Zone 35N. Topographic control is not warranted at this stage of reconnaissance exploration. All previous sample work is subject to validation by The Company.
	Data spacing and distribution	All results are historic and not applicable at this acquisition phase. The Company's work program is to follow post acquisition. Resources are not being estimated.
) .	Orientation of data in relation to Geological structure	All results are historic and not applicable at this acquisition phase. The Company's work program is to follow post acquisition. Resources are not being estimated.
	Sample security	All results are historic and not applicable at this acquisition phase. The Company's work program is to follow post acquisition. No details are known by The Company in regard to previous drilling programs except historic results obtained from internal reports of other companies or those found in SOKIMO archives which do not describe details relating to sample security. Resources are not being estimated.
	Audits or reviews	None known.

None known.

Section 2 Reporting of Exploration Results (Criteria listed in the previous section also apply to this section)

Criteria	Explanation
Mineral tenement and land tenure status	The "Permis d'Exploitation No.s 5045, 5050, 5054, 5069 & 13062" (PEs 5045, 5050, 5054, 5069, & 13062) which comprise the Tendao Gold Project are 100% owned by Wanga Mining Company SARL, address n55 Avenue Lukusa, Commune de la Gombe, Ville de. The licences are 1,985 blocks in size (in excess of 1,400km². There are no known historical or environmentally sensitive areas.
Exploration done by other parties	This is an exploration project that has not been exposed to significant modern exploration work. The majority of the work done within the project area was conducted in the 1940's and 50's by Belgian operators. In 2012 remote sensing work was done by Mineral Invest International. The same company also did some metallurgical and resource work on alluvials in the project area. Documentation of this more recent work is limited and hard to source.
Geology	The stratigraphy consists of a volcano-sedimentary sequence comprising fine-grained sedimentary rocks, several varieties of pyroclastic rocks, basaltic flow rocks, mafic-intermediate intrusions (dykes and sills) and intermediate-felsic intrusive rocks (stocks, dykes and sills). The rocks are variably altered. Gold mineralisation within the Kilo-Moto Belt is associated with epigenetic mesothermal style mineralisation, consistent with the majority of Archaean and Proterozoic greenstone terranes worldwide, including the Birimian Supergroup of West Africa, the Yilgarn Block in Western Australia, the Lake Victoria District in Tanzania and the Abitibi Greenstone Belt in Canada.
Drill hole information	Not applicable at this stage as no drilling has been undertaken as yet. Details of historic work are rare to absent. Ground truthing will be undertaken if data becomes available.
Data aggregation methods	Not applicable because no aggregation has been completed.

Relationship between mineralization widths and intercept lengths	Unknown as no work programs have been undertaken. Historical limited drilling information sourced shows metre to decimetre wide zones.
Diagrams	As included and limited in information due to the scarcity of available locational data.
Balanced reporting	Due to the nature of the samples; being historical, they are to be considered indicative only.
Other substantive exploration data	Not applicable, this being prior to the commencement of any work programs
Further work	Further work will include detailed geological mapping and outcrop rock chip sampling to identify specific target lithologies. Areas of poor outcrop will be tested by grid based soil geochemistry. Subsequent target areas will be trenched and pitted and then RC drilling of the higher priority targets will be carried out. Subsequent diamond and RC drilling will be undertaken to define resources to JORCF standards based on results received.